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Abstract

Low-shot relation extraction (RE) aims to rec-
ognize novel relations with very few or even no
samples, which is critical in real scenario ap-
plication. Few-shot and zero-shot RE are two
representative low-shot RE tasks, which seem
to be with similar target but require totally dif-
ferent underlying abilities. In this paper, we
propose Multi-Choice Matching Networks to
unify low-shot relation extraction. To fill in the
gap between zero-shot and few-shot RE, we
propose the triplet-paraphrase meta-training,
which leverages triplet paraphrase to pre-train
zero-shot label matching ability and uses meta-
learning paradigm to learn few-shot instance
summarizing ability. Experimental results on
three different low-shot RE tasks show that the
proposed method outperforms strong baselines
by a large margin, and achieve the best perfor-
mance on few-shot RE leaderboard1.

1 Introduction

Relation extraction (RE) aims to extract the re-
lation between two given entities in the context.
The most popular approaches to build RE mod-
els are based on supervised learning (Zeng et al.,
2014; Baldini Soares et al., 2019). Despite the su-
perior performance, supervised relation extraction
approaches severely suffer from the data bottleneck,
which restricts their application to more relation
types in real scenarios.

Consequently, low-shot relation extraction has
become a recent research hotspot in RE area. There
are two mainstream learning paradigms widely ex-
plored in low-shot relation extraction, namely zero-
shot RE (Levy et al., 2017) and few-shot RE (Han
et al., 2018). Few-shot relation extraction aims
to identify instances of novel relation type with
only a few illustrative instances, while zero-shot
RE is more progressive, which only uses external

∗Corresponding authors.
1https://thunlp.github.io/2/fewrel2_nota.html
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Figure 1: Difference between zero-shot RE and few-
shot RE. (a) Zero-shot requires for the ability of label
semantic matching, while (b) Few-shot requires for the
ability of support instance (Sup. Ins.) summarizing.

knowledge and the name or definition of the novel
relations to recognize them. Because low-shot RE
only requires very limited manually annotated data,
it can effectively alleviate data bottlenecks in con-
ventional RE and therefore attached great attention.

However, even with similar goals, zero-shot RE
and few-shot RE actually require different funda-
mental abilities. Specifically, zero-shot RE is built
on label semantic matching ability, which requires
models to sufficiently exploit the label semantic of
given novel relations, and matches relations and
queries based on their underlying semantics. While
few-shot RE is built on instance semantic summa-
rizing ability, which requires a model to quickly
generalize to novel relations by summarizing crit-
ical information from few-shot instances. Due to
this fundamental difference, current state-of-the-art
architectures are separately learned to deal with
these two low-shot RE tasks. For zero-shot RE,
the most popular solution is to transform it into a
textual entailment (Obamuyide and Vlachos, 2018;
Sainz et al., 2021), word prediction (Brown et al.,
2020) or MRC problem (Levy et al., 2017; Bragg
et al., 2021) and use external resources from these
tasks to pre-training the label semantic matching
ability. However, the divergence between relation
extraction and these tasks will inevitably under-
mine the performance. Besides, MRC and tex-
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tual entailment architecture can only deal with one
novel relation each time, which significantly in-
creases the computational and storage cost of de-
ploying such models in real-world scenarios. For
few-shot RE, current methods mainly focus on sum-
marizing better prototypes from a few illustrative
instances (Snell et al., 2017), or learning a model
that can generalize to novel types within a few
steps (Finn et al., 2017). These approaches require
few-shot examples to fine-tune or summarize pro-
totypes, and therefore can not be directly applied
to zero-shot RE. As a result, current relation extrac-
tion models can not be effectively and efficiently
to apply to all low-shot RE settings.

In this paper, we propose to unify low-shot rela-
tion extraction by returning to the essence of rela-
tion extraction. Fundamentally, relation extraction
can be viewed as a multiple choice task. Given two
entities in context, a RE system needs to match the
most appropriate relation – or others for none-of-
the-above – from a set of pre-defined relation types.
The information required to accomplish the multi-
choice matching can be summarized from either
the surface form of relation name or from few-shot
instances. Motivated by this, we propose Multi-
Choice Matching Network (MCMN) for unified
low-shot RE, which is shown in Figure 2. Specif-
ically, MCMN converts all candidate relation de-
scriptions into a multi-choice prompt. Then the in-
put instance is concatenated with the multi-choice
prompt and passes through a pre-trained encoder
to obtain the semantic representations of the input
instance and candidate relations. Finally, MCMN
conduct relation extraction by directly matching
the relation representations and the instance repre-
sentation.

To equip MCMN with both label semantic
matching ability and instance semantic summariz-
ing ability, we propose to pre-train MCMN via
triplet-paraphrase meta pre-training, which con-
tains the following two critical components: 1) a
text-triple-text paraphrase module, which can gen-
erate large-scale pseudo relation extraction data
to pre-train the label semantic matching ability
of MCMN; 2) a meta-learning style training al-
gorithm, which enriches MCMN with instance se-
mantic summarizing ability to quickly generalize
across different relation extraction tasks. Specifi-
cally, given large-scale raw texts, triplet-paraphrase
first extracts (subject, predicate, object) triplets via
OpenIE (Cui et al., 2018) toolkit. Then based on

the extracted triplets, paraphrases of the original
texts is generated using an RDF-to-Text genera-
tion model. In this way, we can obtain large-scale
pseudo annotations by collecting the generated sen-
tences and the predicate in the triples. Such cor-
pus can be used to effectively pre-train the label
semantic matching ability of MCMN by match-
ing the paraphrases to the corresponding predicate.
Furthermore, to enrich MCMN with the instance
semantic summarizing ability, such pre-training
is conducted in a meta-learning paradigm. That
is, MCMN is asked to learn different relation ex-
traction tasks at each iteration, so that the MCMN
can not over-fit the pre-training corpus by directly
memorizing specific target relations.

To evaluate our methods, we conduct experi-
ments on three fairly different RE tasks: zero-shot
RE, few-shot RE, and few-shot RE with none-of-
the-above relation. Experiments show that the pro-
posed method outperform previous methods on all
these three tasks. Our source code is available
at https://github.com/fc-liu/MCMN.

The main contributions of this work are:

• We propose MCMN, a unified architecture
for low-shot relation extraction by fundamen-
tally formulating relation extract using a multi-
choice matching paradigm.

• We propose to pre-train MCMN with triplet-
paraphrase meta training, which enriches
MCMN with label semantic matching abil-
ity and instance semantic summarizing ability
for both zero-shot RE and few-shot RE.

• We comprehensively study the performance
of MCNN on three different relation extrac-
tion tasks, including zero-shot, few-shot, and
few-shot with none-of-the-above relation ex-
traction, where MCMN outperforms strong
baseline models.

2 Background

In this section, we formulate relation extraction
task and the low-shot RE settings including zero-
shot RE and few-shot learning RE.

Relation Extraction. Suppose the input text T =
[t1, t2, ..., tn] contains n tokens, e1 = [i, j] and
e2 = [k, l] indicate the entity pair spans, where 1 ≤
i ≤ j, j < k ≤ l and l ≤ n. A relation instance
is defined as x = (T, e1, e2). For example, the
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[choice]  employee of  [choice]  ceo of  [choice]  others [sep]  Tim Cook  is the CEO of  Apple .

… … …

Instance representation

Similarity score

Figure 2: Illustration of our multi-choice matching networks (MCMN).

tuple (“Tim Cook is the CEO of Apple Inc.”,“Tim
Cook”, “Apple Inc.”) is a relation instance. The
aim of relation extraction is to learn a mapping
function: f : x → y, where y is the relation class.
For example, we want mapping (“Tim Cook is the
CEO of Apple Inc.”, “Tim Cook”, “Apple Inc.”) to
its relation class “CEO_of”. Traditional RE tasks
typically pre-define the class space Y and annotate
a large set of instances to train the model. However,
in real scenarios, the targeting relation types vary in
different tasks, and most of the novel relations lack
annotations, rendering the supervised paradigms
inapplicable. In that regard, how to transfer models
to novel tasks becomes critical.

Low-shot Relation Extraction. Low-shot rela-
tion extraction requires models to recognize novel
relations with very few samples. There are two
mainstream low-shot RE tasks, including:
Zero-shot RE. This task aims to conduct relation
extraction without any annotated instance other
than some external knowledge z (or side informa-
tion), such as relation descriptions. Models are
supposed to transfer the knowledge and extract the
targeting relation yt for input instance x through
only the external knowledge.
Few-shot RE. This task aims to conduct relation
extraction with only a few annotated instances per
novel relations. Each few-shot RE task contains a
support set S = S1, ..., SN for N novel relations.
And for relation i, Si = S0

i , ..., S
K
i contains K

annotated instances. Models are supposed to learn
to transfer the knowledge and extract the targeting
relation yt for instance x through the N -way K-
shot support set.

3 Multi-Choice Matching Networks

In this section, we introduce our multi-choice
matching networks (MCMN). Different from previ-
ous unifying models, MCMN adopts a much more
efficient and lightweight decoding module. Follow-
ing are the detailed descriptions.

3.1 Multi-choice Prompt

Fundamentally, relation extraction can be viewed
as a multiple choice task. Inspired by recent ad-
vances of prompt learning (Brown et al., 2020;
Schick and Schütze, 2021), we construct a multi-
choice prompt for each relation extraction task by
directly concatenate all relation names or descrip-
tions. Formally, the multi-choice prompts are in
the following form:

[C] rel 1 [C] rel 2 ... [C] rel N

where [C] is the placeholder separator for the fol-
lowing relation. For example in Figure 2, the tar-
get RE task contains three novel relations: em-
ployee_of, ceo_of, and others, of which the relation
descriptions are then concatenated altogether to
form the multi-choice prompt “[C] employee of
[C] ceo of [C] others”. After obtaining the multi-
choice prompt, we then feed it accompanied with
the input sentence into the instance encoder, and
the representations at separator [C] is regarded as
the representation of its following relation.

3.2 Instance Encoder

Before instance encoding, we concatenate the
multi-choice prompt with each input instance into
a single sentence, and separate them with a [SEP]
token. Besides, we follow (Baldini Soares et al.,
2019) and wrap the given entity pair with [e1],
[/e1], [e2] and [/e2] respectively. For the example
in Figure 2, the entire input to encoder is: “[CLS]
[C] employee of [C] ceo of [C] others [SEP] [e1]
Tim Cook [/e1] is the CEO of [e2] Apple [/e2]
. [SEP]”. Then we encode the entire sentence x
through a Transformer (Vaswani et al., 2017) en-
coder:

h[CLS],h[C], ...,h[SEP ] = H(x), (1)

where h is the output embedding for each token
in x, d is the dimension of hidden states. These
token embeddings are then used for multi-choice
matching and model prediction.
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Figure 3: The framework of multi-choice matching training strategy. (a) Triplet-Paraphrase Construction
conducts triplet-paraphrase pairs for meta training; (b) Meta Training on the triplet-paraphrase triplets; (c) Online
Task Meta-Training performs an online meta-training for each test tasks.

3.3 Multi-choice Matching and Prediction
The multi-choice matching module matches the
input instance to the corresponding relation. For
each relation type, we use hidden states of [C]
marker to represent each following relation:

hreli = h[C]i , (2)

where hreli is the representation for relation i and
h[C]i is the hidden state for the ith [C] token. For
the input text, we simply average hidden states of
[e1] and [e2] to obtain the instance representation
X:

X = avg(h[e1],h[e2]). (3)

Then we perform matching operation between the
instance and each relation:

D(x, yi) = ∥X− hreli∥2. (4)

In this equation, we adopt the Euclidean distance
to measure the similarity, and the corresponding
probability for each relation is:

P (yi|x; θ) =
exp(−D(x, yi))∑N
j=1 exp(−D(x, yj))

. (5)

Finally, we choose the relation ŷ with the maximal
probability as the prediction:

ŷ = argmax
i

P (yi|x; θ). (6)

3.4 Training Loss
We adopt an end-to-end training manner by mini-
mizing the following loss function:

L(x,y)(θ) = −
N∑
i=1

I(yi) logP (yi|xi; θ), (7)

where I(.) equals 1 if yi is the golden class, other-
wise I(.) = 0. The three-period training process
will be detailed described in the following section.

4 Training Strategies for Multi-Choice
Matching Networks

As mentioned above, the required abilities for zero-
shot and few-shot are different. In this paper, we
propose triplet-paraphrase meta pre-training, which
jointly learn the label semantic matching ability re-
quired by zero-shot RE and instance summarizing
ability required by few-shot RE. Following is the
detailed description of the pre-training framework.

4.1 Triplet-Paraphrase Construction
To endow the label semantic matching ability to
MCMN, it is required to incorporate large-scale
data of both relational sentences and relation types
to pre-train the model. Unfortunately, the highly
limited relation types in existing RE datasets may
lead to overfitting on specific relations and impair
the generalization of MCMN. In this paper, we pro-
pose the triplet-paraphrase to generate large-scale
pre-training data for MCMN from raw texts. The
overall procedure of triplet-paraphrase module is
demonstrated in Figure 3(a), which extracts pred-
icates from large-scaled raw texts as the relation
descriptions. Then we utilize the extracted rela-
tional triplets to generate paraphrase sentences for
further multi-choice matching pre-training. The
elaboration is presented below.

Relational Triplet Extraction. Most complete
sentences contain at least one relational triplet,
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which includes the subject, predicate, and object.
The predicate in a sentence corresponds to prop-
erty or relation between the subject and object,
which can be regarded as a concrete expression
of one relationship. Therefore, To extract large-
scaled triplets from open domain texts, we use
OpenIE model2 to extract on article collections of
Wikipedia. Considering the example sentence: The
service traces its history to an online service known
as PlayNET. OpenIE model extracts all the possible
triplets: (an online service, known as, PlayNET)
and (The service, traces, its history). We collect
all extracted predicates from raw texts to represent
the corresponding relations, preventing the mod-
els from overfitting specific relation types. These
triplets are further used for paraphrase generation
and pre-training.

Paraphrase Generation. One drawback of
matching predicate as the relation is that the predi-
cate extracted by OpenIE is commonly a span from
current sentence, which may lead models to take
the shortcut by directly matching through words
co-occurrence. To eliminate this shortcut, we fol-
low several recent works (Agarwal et al., 2021; Liu
et al., 2021) to generate paraphrase texts to match
the predicate. Specifically, for extracted triplets, we
first wrap them with special markers “[H], [R], [T]”
correspond to subject, predicate and object. Then
we input the wrapped triplet texts to generate the
paraphrase texts. In our implementation, we adopt
T53 (Raffel et al., 2020) as the generator, and pre-
train it on WebNLG dataset (Gardent et al., 2017).
For example, we wrap (an online service, known
as, PlayNET) to “[H] an online service [R] known
as [T] PlayNET” then generate the paraphrase text
playnet is an online service. After generating the
paraphrase, we then match it to the corresponding
predicate for pre-training.

4.2 Triplet-Paraphrase Meta Pre-training

Each instance in the pre-training batch contains the
paraphrase text and the corresponding predicate
span. In addition, as shown in Figure 3(a), we
concatenate all predicates in the current mini-batch
as the multi-choice prompt and follow the training
loss in Equation 7 to pre-train MCMN, where I(yi)
equals to 1 when yi is the corresponding predicate,
otherwise, I(yi) = 0. ·

2https://github.com/dair-iitd/OpenIE-standalone
3https://github.com/UKPLab/plms-graph2text

Algorithm 1 MCMN for Few-shot Prediction
Require: n: fine-tuning epochs in online period
Require: θ∗: meta-learned model parameters
Require: S: support set, xq: query instance
Require: α: learning rate

1: θ′ = θ∗ # save original model
2: for epoch in range(n) do
3: # compute loss of the support set:
4: LS = E(x,y)∈SL(x,y)(θ∗)
5: # update model parameters:
6: θ∗ ← θ∗ − α∇θ∗LS
7: end for
8: y = fθ∗(xq) # predict the query instance
9: θ∗ = θ′ # restore the original model

10: return y

4.3 Online Task Adaptation
In online learning or testing period, we adopt dif-
ferent adaptation strategies for different low-shot
tasks. For zero-shot RE, we directly use the trained
MCMN to conduct the task. For few-shot RE, we
perform an online task meta-training on the support
set, as shown in Algorithm 1. For each few-shot
task with support set S and query instance xq, we
first update the model with all support instances:

θ∗ ← θ∗ − α∇θ∗E(x,y)∈SL(x,y)(θ∗), (8)

where α is the learning rate, L((x,y)(θ∗)) is the loss
defined in Equation 7. To avoid overfitting, we use
an early-stop criterion controlled by an adaptation
epoch threshold that once the adaptation epoch is
over the threshold, we exit the online fine-tuning
and give the prediction for current query instance
xq:

y = fθ∗(xq). (9)

Finally, we restore the model parameter θ∗ = θ′

and repeat the procedure to the next task.

5 Experiments

5.1 Datasets and Task Settings
We conduct experiments on three low-shot rela-
tion extraction tasks: zero-shot RE (Bragg et al.,
2021), few-shot RE (Bragg et al., 2021) and the
more challenging few-shot RE with none-of-the-
above (NOTA) (Gao et al., 2019b). These tasks are
all conducted based on FewRel dataset (Han et al.,
2018), which is constructed through distantly align-
ing WikiData triplets to Wikipedia articles. In total,
FewRel dataset consists of 100 relation types and
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Model
Zero-shot Few-shot

Avg.Acc.±ci. Std. Acc.±ci. Std.

UniFew (Bragg et al., 2021) 52.5± 2.0 9.7 79.2± 1.5 7.5 65.9
UniFew-meta (Bragg et al., 2021) 79.4 ± 1.9 9.2 87.2± 1.2 5.7 83.3

Our 66.6±1.7 8.7 74.4±1.5 7.6 70.5
Our-meta 82.9±1.3 6.6 87.4±1.2 5.6 85.1

Model
Few-shot with NOTA

Avg.5-way 1-shot 0.15 5-way 5-shot 0.15 5-way 1-shot 0.5 5-way 5-shot 0.5

Proto (CNN) (Gao et al., 2019b) 60.59 77.79 40.00 61.66 60.01
Proto (BERT) (Gao et al., 2019b) 70.02 83.79 45.94 75.21 68.74
Bert-Pair (Gao et al., 2019b) 77.67 84.19 80.31 86.06 82.06
2nd on Leaderboard (anonymous) 79.53 86.31 79.99 81.92 81.94
3rd on Leaderboard (anonymous) 67.97 81.94 74.85 78.12 75.72

Our-meta (1st on Leaderboard) 88.40 89.91 84.56 85.32 87.05

Table 1: Results (%) on zero-shot, few-shot, and few-shot with NOTA RE tasks. We report accuracy (Acc.),
confidence interval (ci.), and standard deviation (Std., lower is better) for zero- and few-shot RE, and only accuracy
for few-shot with NOTA task.

700 instances per type. Standard FewRel settings
adopt a split of 64/16/20 fraction corresponding to
train/validation/test set, where the train and valida-
tion sets are publicly accessible while the test set
is not. Following are the detailed settings for each
evaluation task.

Zero- and Few-shot Relation Extraction Set-
tings. We follow the standard Flex benchmark
settings, which separate the train and validation
sets from FewRel into a train set of 65 relations,
a validation set of 5 relations and a test set of 10
relations. The test tasks are sampled and processed
through the FLEX official toolkit 4.

Few-shot RE with NOTA Relation Settings. A
drawback of conventional few-shot RE tasks is that
they neglect the existence of other relations, that
is all query instances are assumed to express one
of the given relations in the support set. Gao et al.
(2019b) point out this problem and add the “none-
of-the-above” (NOTA) relation to consider the sit-
uation where query instance does not express any
of the given relations. In our experiment, we fol-
low the default settings of FewRel benchmark and
evaluate our methods on 5-way 1/5-shot tasks with
a 15% or 50% NOTA rate.

5.2 Baseline and Evaluation Metrics

Baseline Methods. For zero-shot and few-
shot RE tasks, we compare our model with
UniFew (Bragg et al., 2021), a unified few-shot
learning model based on T5 (Raffel et al., 2020).
This model converts each few-shot classification

4https://github.com/allenai/flex

task into a machine reading comprehension format
and predicts the results through generation. With a
pre-training period on large-scaled MRC data, this
model reaches strong performance on both zero-
and few-shot tasks. For few-shot RE with NOTA
relation task, we compare our model with Bert-
Pair (Gao et al., 2019b), an instance-pair matching
framework for few-shot RE tasks. This model com-
putes a similarity and a dissimilarity score simulta-
neously between query instance and each support
instance, then aggregates the similarity score for
each relation and dissimilarity score for NOTA re-
lation. And the results of CNN and BERT based
prototypical networks from Gao et al. (2019b) are
also reported.

Evaluation Metrics. For zero-shot and few-shot
RE tasks, we follow FLEX benchmark and report
the accuracy, confidence interval and standard de-
viation correspondingly. All these results reported
are from the official Flex toolkits. For few-shot RE
with NOTA relation task, we follow FewRel 2.0
benchmark and report the corresponding accuracy
for four different settings.

5.3 Hyperparameters and Implementation
Details

In the triplet-paraphrase construction period, we ex-
tract relation triplets from articles in Wikipedia and
generate the counterpart paraphrase texts. Over-
all, we generate about one million triplet and
paraphrase text pairs. In triplet-paraphrase meta-
training periods, we use a learning rate of 5e-6,
weight decay of 1e-6, dropout rate of 0.5, and a
linear learning schedule with a 0.95 weight decay.
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In the online task meta-training period, we use
learning rate of 5e-6, and the adaptation epoch of
1 or 2 for FewRel NOTA tasks, epochs of 45 for
FLEX tasks, while keep other hyperparameters the
same. We use RoBERTa-large (Liu et al., 2019)
to initialize our model. Furthermore, to better en-
dow the low-shot capability to our model, we adopt
annotated FewRel data (Han et al., 2018) as an
additionally supervised meta-training procedure.

5.4 Overall Results
Table 1 shows the overall results on three different
RE tasks. From this table, we can see that:

• MCMN with triplet-paraphrase pre-training
outperforms previous methods in all three
RE tasks and achieve state-of-the-art perfor-
mance. Compared with the strong baseline meth-
ods, MCMN achieves remarkable performance
improvements. In zero-shot and few-shot RE
tasks, MCNN with triplet paraphrase pre-training
outperforms the baseline methods by at least
1.8% in average. In few-shot RE with NOTA task,
our method outperforms previous best method
by at least 4.99% in average and achieve the best
performance in the leaderboard.

• Our triplet-paraphrase pre-training achieves
promising results on low-shot RE tasks. Com-
paring with other pre-training strategies such as
UniFew model pre-trained with large annotated
MRC datasets, triplet-paraphrase pre-training
achieves much better performance on zero-shot
RE tasks. Besides, triplet-paraphrase can further
enhance MCMN to achieves the new state-of-the-
art results on all three low-shot RE tasks with
supervised meta-training procedure, which are
detailed analyzed in the next section.

• MCMN performs more robust than previous
methods. In zero-shot and few-shot tasks, our
methods perform a lower standard deviation and
more shallow confidence interval than baseline
methods, which means the prediction of our
methods is more stable across different tasks.

5.5 Detailed Analysis
In this section, we conduct several experiments for
in-depth analysis of our methods.

Ablation Studies on Zero- and Few-shot RE
Tasks. To evaluate the effect of each part of our
methods on zero- and few-shot RE tasks, we con-
duct separate experiments on triplet-paraphrase

Model
Zero-shot Few-shot

Avg.acc std. acc. std.

RoBERTa 15.6 5.1 21.4 7.3 18.5
Triplet-Para Pre-train 66.6 8.7 74.4 7.6 70.5
MCMN w/o Pre-train 81.0 6.7 85.3 5.7 83.2

MCMN 82.9 6.6 87.4 5.6 85.1

Table 2: Ablation study results (%) of our methods on
FLEX RE benchmark, Sup. Meta stands for supervised
meta training.

pre-training, MCMN and MCMN without triplet-
paraphrase pre-training on Flex test set. As
shown in Table 2, we can see that the pure
triplet-paraphrase pre-training model outperforms
RoBERTa-large model with a remarkable mar-
gin as well as leverages the MCMN model with
an improvement of at least 1.9% compared with
MCMN without triplet-paraphrase pre-training on
both zero-shot and few-shot settings. These results
demonstrate that triplet-paraphrase pre-training
method can significantly improve the generaliza-
tion and performance of our model, and the frame-
work of multi-choice matching network is quite
applicable in low-shot RE tasks. Besides, we no-
tice the performance of pure triplet-paraphrase pre-
training model is lower than MCMN without triplet-
paraphrase pre-training. To study this issue, we
analyze the triplet-paraphrase data, and find that
many of the generated texts still consist of words in
predicates, though the expression is quite different
from the original sentences. This may still lead
to the shortcut learning problem. On top of that,
the expression of predicates is much different from
the relation name, and the negative predicates are
much easier to distinguish than the real test cases.
These issues altogether result in poor performance.
Fortunately, the triplet-paraphrase pre-training pe-
riod can properly initialize MCMN and leverage
the final performance.

Ablation Studies on Few-shot NOTA RE tasks.
We also conduct detailed analyses of our meth-
ods in few-shot NOTA RE tasks. As shown in Ta-
ble 3, the pure triplet-paraphrase pre-trained model
can also boost the performance of roberta-large
initialized model and leverage the supervised meta-
trained MCMN by at least 0.9% in average. Al-
though we do not consider the NOTA relation in the
triplet-paraphrase pre-training period, this period
can also contribute to the further supervised meta-
training period, which indicates that the matching-
pattern learned in triplet-paraphrase pre-training
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Model
Few-shot with NOTA

Avg.5-way 1-shot 0.15 5-way 5-shot 0.15 5-way 1-shot 0.5 5-way 5-shot 0.5

RoBERTa 27.37 27.88 16.38 16.50 22.03
Triplet-Para Pre-train 69.00 70.59 43.99 43.66 56.81
MCMN w/o. Pre-train 87.89 90.36 83.22 83.10 86.14
MCMN 88.40 89.91 84.56 85.32 87.05

MCMN w/o. Pre-train (0-shot) 83.08 84.10 83.61 83.45 83.56
MCMN (0-shot) 85.11 85.45 82.72 82.16 83.86

Table 3: Ablation study results (%) of MCMN on FewRel NOTA benchmark. Triplet-Para corresponds to triplet-
paraphrase.

period is generalized and robust to down-stream
tasks. Besides, we notice that in NA rate of 0.5
tasks, the pure triplet-paraphrase pre-trained model
suffers from serious performance drops. This may
be caused by the large proportion of negative in-
stances in test tasks. Fortunately, this issue can be
alleviated by the online adaptation period.

Zero-shot NOTA RE tasks. This experiment
studies the zero-shot performance of our methods
on FewRel NOTA tasks. From Table 3, we sur-
prisingly found that our methods also outperform
previous state-of-the-art few-shot NOTA models
even in zero-shot conditions. This also indicates
that our methods are effective in low-shot RE tasks
and are robust enough across different settings.

Computing Efficiency of Multi-Choice Match-
ing Networks. This experiment compares the
computing efficiency of our method with MRC-
based method. Each model is tested on the Flex
test set, including both zero-shot and few-shot RE
tasks. Models in zero-shot setting only need infer-
ence while both models in few-shot setting require
fine-tuning on the support set which involves time-
consuming back-propagation operations. For fair
comparison, we use a single TITAN RTX GPU
for each model and keep other computing environ-
ments the same. As a result, UniFew takes 647
minutes (more than 10 hours) to finish the test pre-
diction, while our method takes about 80 minutes
to obtain the results in Table 1, which improves the
speed of roughly an order of magnitude. The main
reason for such an efficiency discrepancy is that
UniFew, as a generative model, involves an auto-
regressive decoder to generate the results, whereas
our method directly matches the relation and in-
stance representations to give the results.

6 Related Works

Relation Extraction. Recent success of super-
vised relation extraction methods (Zeng et al., 2014;

Zhou et al., 2016) heavily depends on large amount
of annotated data. However, the bottleneck on data
annotation severely limits the adaptation of these
supervised methods to real scenarios. Recent works
reply to this dilemma from the perspective of low-
shot learning, which mainly focuses on zero- and
few-shot RE tasks. In this work, we shed light
on three representative sub-fields tasks, including
zero-shot RE, few-shot RE and few-shot RE with
NOTA relation to evaluate our methods

Zero-shot Relation Extraction. Levy et al.
(2017) firstly introduce the zero-shot relation ex-
traction task and adjust the machine reading com-
prehension (MRC)-based paradigm for it. Fol-
lowing this line, other MRC-based methods have
been proposed (Cetoli, 2020; Bragg et al., 2021).
Another paradigm for zero-shot RE is matching-
based (Socher et al., 2013), which falls into the
text-entailment-based methods (Obamuyide and
Vlachos, 2018; Sainz et al., 2021), and the represen-
tation matching-based methods (Chen and Li, 2021;
Dong et al., 2021). Text-entailment-based methods
concatenate the relation description with the input
sentence to assess whether they entail the same
semantic relationship; Representation matching-
based methods separately encode the relation and
instance into the same semantic space but are not
capable of handling the NOTA relation.

Few-shot Relation Extraction. Han et al. (2018)
firstly propose the few-shot relation extrac-
tion task and adopt several meta-learning meth-
ods (Munkhdalai and Yu, 2017; Snell et al., 2017;
Satorras and Estrach, 2018; Mishra et al., 2018)
for it. Recent works on few-shot RE mostly cen-
ters around the metric-based methods (Vinyals
et al., 2016), such as prototype-based methods (Bal-
dini Soares et al., 2019; Ye and Ling, 2019;
Gao et al., 2019a) and meta learning-based meth-
ods (Finn et al., 2017). Besides, Gao et al. (2019b)
extend the FewRel challenge with few-shot domain
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adaptation (DA) and none-of-the-above (NOTA)
tasks, which are more challenging and closer to
real-world application.

Few-shot RE with NOTA. Although NOTA re-
lation is common in conventional supervised RE
tasks (Zhang et al., 2017), it is quite different in
few-shot scenarios due to the label inconsistency
problem. As an example, consider an instance that
expresses relation r. In task A, relation r is not
included in the support set, and thus model learns
the semantic mapping between this instance and
the NOTA relation. But in another task B where
relation r is included in the support set, the model
learned from task A may continue to match this
instance to NOTA relation. Because of the diffi-
culty, attempts to resolve this problem are scarce.
To the best of our knowledge, Bert-Pair (Gao et al.,
2019b) is the only public method for this task, and
our work is the first method to unify the zero-shot,
few-shot and few-shot with NOTA tasks.

7 Conclusions

In this paper, we propose Multi-Choice Match-
ing Networks to unify low-shot relation extrac-
tion. MCMN introduces a multi-choice prompt
to formulate relation extraction as in a multi-
choice paradigm. To equip MCMN with different
zero-shot and few-shot abilities, we propose the
triplet-paraphrase meta pre-training, which lever-
ages triplet paraphrase to pre-train zero-shot label
matching ability and uses meta-learning paradigm
to learn few-shot instance summarizing ability. Ex-
perimental results on three different RE tasks show
MCMN outperforms strong baseline models by
large margins.
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