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Abstract

AI systems embodied in the physical world
face a fundamental challenge of partial ob-
servability; operating with only a limited view
and knowledge of the environment. This cre-
ates challenges when AI systems try to reason
about language and its relationship with the
environment: objects referred to through lan-
guage (e.g. giving many instructions) are not
immediately visible. Actions by the AI system
may be required to bring these objects in view.
A good benchmark to study this challenge
is Dynamic Referring Expression Recognition
(dRER) task where the goal is to find a tar-
get location by dynamically adjusting the field
of view (FoV) in a partially observed 360◦

scenes. In this paper, we introduce HOLM,
Hallucinating Objects with Language Models,
to address the challenge of partial observabil-
ity. HOLM uses large pre-trained language
models (LMs) to infer object hallucinations for
the unobserved part of the environment. Our
core intuition is that if a pair of objects co-
appear in an environment frequently, our us-
age of language should reflect this fact about
the world. Based on this intuition, we prompt
language models to extract knowledge about
object affinities which gives us a proxy for
spatial relationships of objects. Our experi-
ments show that HOLM performs better than
the state-of-the-art approaches on two datasets
for dRER; allowing to study generalization for
both indoor and outdoor settings.

1 Introduction

One of the fundamental challenges in building
AI systems physically present in the world is ad-
dressing the issue of partial observability, the phe-
nomenon where the entire state of the environment
is not known or available to the system. People
cope with partial observability by reasoning about
what is not immediately visible (see example in
Figure 1). People combine their general knowl-
edge about the world and adapt their knowledge
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Figure 1: Illustration of our main contribution: Halluci-
nating Objects. Knowledge about object relationships
is helpful when navigating in an unknown and partially
observed environment. In the example above, the TV
is not visible, but the couch hints that a TV might be in
front of it because usually couches face TVs.

to specific contexts (Torralba et al., 2006). Gen-
eral knowledge about kitchens can help to know
approximately where to look for pans or utensils
in a kitchen that has never been seen before. How
can an AI system build general knowledge about
objects and their environment to help with a similar
task? Even more interestingly, can we gather this
information from language, using readily available
resources such as language models trained on a
large collection of unlabeled text?

In this paper, we introduce a method called
HOLM, Hallucinating Objects with Language
Models, for reasoning about the unobserved parts
of the environment. Inspired by the recent suc-
cesses of large pre-trained language models (LM)
extracting knowledge about the real world, we pro-
pose a methodology based on spatial prompts to
extract knowledge from language models about
object. HOLM extracts spatial knowledge about
objects in the form of affinity scores, i.e., how often
a pair of objects are observed together. This knowl-
edge of objects are combined with observed spatial
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Figure 2: Illustration of the dRER task with an example of language instruction and its recognition in four
steps.
The agent adjusts its FoV by looking at different directions and navigate on the graph in the spherical view. Note
that objects mentioned in bold in the instruction are not visible at all until timestep 4. Thus, the agent needs to
reason about possible locations of the mentioned object using its partial view of the scene.

layout to hallucinate what might appear in the un-
observed part of the scene. We evaluate our HOLM
approach on Dynamic Referring Expression Recog-
nition (dRER) task where the goal is to find a target
location by dynamically adjusting the field of view
(FoV) in partially observed 360◦ scenes. We exam-
ine how HOLM compares with the state-of-the-art
approaches on two publicly available datasets to
study generalization for both indoor and outdoor
settings.

2 Dynamic Referring Expression
Recognition (dRER) Task

dRER task is designed to localize a target location
in a dynamically observed 360◦ scene given natural
language instruction. Unlike conventional referring
expression recognition, which refers to an object
in a static visual input, in dRER, only a small part

of the scene is visible in a field of view. However,
the system can adjust the field of view to find the
described point in the scene. In Figure 2, we illus-
trate the dRER task and motivate our method. On
top, natural language instruction is given. In the
middle, the spherical view of the scene is illustrated
– the agent explores only some portion of a 360◦

scene. FoVs on the sphere represented as square
nodes form a graph. By navigating to a neighbor-
ing node, the agent adjusts its FoV and observes a
different view of the scene. Note that objects men-
tioned in the instruction “oven” and “range hood”
are not visible until the fourth timestep. However,
we can reason about where to look using visible
objects such as the air vent or the fridge. Thus, to
perform well on this task, it is essential to reason
about where objects might appear.

The dRER task can be formulated as a Markov
Decision Process (MDP) (Howard, 1960) M =
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Figure 3: HOLM for the dRER task. (Top) We use language models trained on a large amount of text by
prompting with the spatial relationship of objects to calculate co-occurrence statistics of objects. (Bottom) The
flow of our hallucination method. We determine objects of interest for each action. Then, we combine objects of
interest and co-occurrence table to hallucinate objects, i.e. what might appear after performing an action.

〈S,A, Ps, r〉 where S is the visual state space, A
is the discrete action space 1, Ps is the unknown
environment probability distribution from which
the next state is drawn, and r ∈ R is the reward
function. For a time step t, the agent observes an
image st ∈ S , and performs and action at ∈ A. As
a result of this action, the environment generates
a new observation st+1 ∼ Ps(· | st, at) as the
next state. This interaction continues sequentially
and ends when the agent performs a special STOP
action or a pre-defined maximum episode length is
reached. The resolution process is successful if the
agent ends the episode at the target location.

In dRER, instructions are represented as N se-
quence of sentences represented as x = {xi}Ni=1.
Each instruction sentence xi consists of a sequence
of Li words, xi = [xi,1, xi,2, ..., xi,Li , ]. The train-
ing dataset DE = {X , T } consists of M pairs of
the instruction sequence x ∈ X and its correspond-
ing expert trajectory τ ∈ T . The agent learns to
navigate by learning a policy π via maximum like-

1For computational efficiency, we picked discrete action
space. It could be continuous as well.

lihood estimation (MLE):

max
θ
Lθ(X , T ) , where

Lθ(X , T ) = log πθ(T |X )

Lθ(X , T ) =
1

M

M∑
k=1

log πθ(τ
k|xk)

(1)

3 HOLM

In dRER, the system observes the current FoV and
does not see the resulting FoV before taking any
actions. Thus, it is essential to reason what might
appear in a future observation using what is cur-
rently visible to the system. Our core intuition is
that objects visible in the current FoV and their
locations in the FoV give us a clue about what
might appear if a particular action is taken. Here,
we propose an approach for reasoning about future
observations using what is visible and some back-
ground knowledge of objects. Let us go through
the illustration in Figure 3 to explain our HOLM
method. In the top panel, we feed spatial prompts
to pre-trained language models to extract knowl-
edge about objects in the form of affinity scores. In
the bottom panel, we see the input of the system
where there are natural language instructions, an
FoV of the scene, and detected objects. Next, we
calculate which objects are relevant to each action.
For instance, couch detections are on the right side;
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thus, they are relevant to the right action. Similarly,
the fridge is relevant for the left action because it
is on the left side. Then on the third step, using the
affinity score of a pair of objects, we predict what
might appear after performing an action. For right
action, our model hallucinates a tv and tv-stand
might appear because the couch and tv have a high
affinity score according to the LM.

3.1 Affinity Scores from Language Models
Language models process a large amount of text to
learn regularities in natural language. They do so
by predicting the next word or masked token given
a sequence of words. Our intuition is that objects
that frequently appear in an environment close to
each other will have similar language usage. Thus,
we hypothesize that language models’ capability of
learning affinity scores of words in language also
reflects objects’ spatial properties. In Figure 3’s
top panel, we illustrate how we extract this capabil-
ity. We query language models trained on a large
amount of free-form text with spatial relationship
prompts. These spatial prompts aim to capture the
usage of words when they appear together in the
world. An example of these prompt templates is
“Near the o1, there is ___” where o1 ∈ O is an
object label where O is a set of object labels. If ob-
ject o1 co-occurs with o2 with high frequency, the
language model would provide a high probability
for the phrase “Near the o1, there is o2”. Using all
pairs in O and K2 spatial templates, we generate
queries q. We then calculate affinity scores Co1,o2 ,
i.e., observing o2 when o1 is present as follows:

Co1,o2 =
K∑
i=1

pLM(o2|qi) (2)

Where pLM(o2|q) is a language model that calcu-
lates the probability of observing a token o2 given
a prefix sequence of tokens q.

3.2 Object Hallucination
Our main idea behind HOLM is to reason about
what might be observed in a future observation
by combining (1) which objects are visible in the
current observation and (2) what we know about
the spatial properties of those objects. We explain
the details of our approach in this section.

Let pa ∈ R|O| be the vector of probabilities of
observing an object among a set of all objects O

2Please see Appendix A.1 for the full list of spatial prompt
templates.

after performing an action a. We calculate pa as
follows:

pa = (pFoV � 1a)C (3)

Where pFoV ∈ R|O| is a vector of confidence val-
ues for objects detected in the current FoV. We use
an off-the-shelf object detection system (Anderson
et al., 2018a) to calculate pFoV. C is the affinity
scores of size |O| × |O|. C represents how often a
pair of object appear in a spatial relationship and
represents the background knowledge of objects.
1a ∈ {0, 1}|O| is a binary vector representing spa-
tially related objects for a direction a. This vector
is calculated with an indicator function to deter-
mine whether an object is spatially related to action
a.

We calculate the indicator function as follows.
First, we separate the FoV into 4 imaginary regions
called quadrants where each quadrant determines
how a region in observed FoV is spatially relevant
for canonical directions (i.e., up, down, left, right).
In other words, quadrants are “hot-spots” for each
direction i.e., the left side of the image is more
relevant to the right side of the image if we are
interested in what might appear on the left. For 8
directions (left, right, down, up, down-left, down-
right, up-left, up-right), we calculate how much
each objects’ bounding box overlaps with these
quadrants. If intersection-over-union is above a
fixed threshold we keep this object for the halluci-
nation process.

4 Experiments

We designed our experiments to study and evaluate
our proposed HOLM approach under five different
research questions. RQ1: What is the performance
of HOLM when compared to other state-of-the-art
approaches? RQ2: what is the impact of LM as a
source of knowledge for HOLM when compared
to other more conventional sources (e.g., images)?
RQ3: How essential are external sources of data
for learning knowledge about objects compared to
in domain data? RQ4: How accurate is HOLM
for predicting objects in future observations? RQ5:
How do annotation-free language-based knowledge
sources i.e., LMs and word embeddings compare
for HOLM?

The following section explains the details of ex-
perimental setup. Our results are presented and
discussed in Section 4.2.
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4.1 Experimental Setup

To study the research questions previously men-
tioned, we used two publicly available datasets and
state-of-the-art methods as baselines to compare
with.

Datasets. We selected the following two datasets
to see if our method generalizes to both indoor
and outdoor settings. The Refer360◦ dataset (Cirik
et al., 2020) consists of 17K natural language in-
structions and ground-truth trajectory pairs for lo-
calizing a target point in 360◦ scenes. The ground-
truth trajectories are annotated by human annota-
tors in the form of successive FoVs in partially
observed 360◦ scenes. The dataset uses a subset
of the SUN360 dataset (Xiao et al., 2012) as the
source of scenes and these scenes are from both
indoor and two outdoor locations.

Touchdown (Chen et al., 2018) consists of 9K
natural language instruction and ground-truth lo-
cation pairs for 360◦ scenes on Google Streetview.
Unlike the Refer360◦ dataset, Touchdown does not
have expert trajectories – only expert predictions
for the target location are provided. Thus, we gener-
ated ground-truth trajectories by calculating short-
est path trajectories between a randomly selected
starting point 3 and the target location.

Baselines Models. We compare our method with
the state-of-the-art models and also few simple
baselines (i.e., no parameter learning).

• The Self Monitoring Navigation Agent
(SMNA) (Ma et al., 2019) model is trained
with a co-grounding module where both vi-
sual and textual input is attended at the same
time. The agent also measures its progress
with a progress monitor module.

• FAST (Ke et al., 2019) stands for Frontier
Aware Search with backTracking. The FAST
model learns to score partial trajectories of an
agent for efficiently backtracking to a previous
location after a mistake.

• Speaker-Follower (Fried et al., 2018) uses a
sequence-to-sequence speaker model to re-
rank a follower model’s candidate trajecto-
ries. This pragmatic reasoning model has been
shown to improve navigation agents’ perfor-
mance significantly.

3Following (Cirik et al., 2020), we set the initial random
point to be a fix heading and random yaw.

• LingUNet (Misra et al., 2018) is an image-
to-image encoder-decoder model for learning
image-to-image mappings conditioned on lan-
guage. We should emphasize that, unlike the
previous methods, LingUNet is not a naviga-
tion model; instead, it predicts regions over
an image.

• RANDOM agent randomly picks an action.

• STOP agent predicts the starting FoV as the
target FoV.

For a fair comparison, the same model was used
as the basis for all the compared models. For our
proposed approach HOLM is used to enhance the
SMNA baseline by hallucinating objects for unseen
regions. After getting object hallucinations for each
neighboring FoVs, we use the sum of word embed-
dings for object labels as the input representation
for the neighboring FoV. In the oracle “Next FoV”
scenario, we use ground-truth FoVs to do the same
process. For a fair comparison, we use SMNA as
the base agent for learning to recover from a mis-
take during navigation process with FAST and as
the follower model for pragmatic reasoning with
Speaker-Follower.

Evaluation Metrics. Our main evaluation metric
for methods is FoV accuracy: the percentage of
the time the target location is visible in the final
FoV. The FoV accuracy sets an upper bound on
the localization accuracy for predicting the pixel
location of the target point, i.e., if the target is not
visible, it is impossible to predict the exact location.
Thus, we focus on this metric to compare systems.

Implementation. All models are trained for
100K iterations. We use Adam (Kingma and Ba,
2015) for optimization with a learning rate 0.0001
and weight decay parameter 0.0005 (Krogh and
Hertz, 1992). For each model, we perform a grid-
search over their hyperparameters (e.g., number of
hidden units, number of layers, dropout rate) and
pick the best performing model based on validation
score 4. All models are implemented using PyTorch
(Paszke et al., 2019) and publicly available5.

To speed up the training procedure, we used
fixed a grid of FoVs for all 360◦ images where
each FoV is connected to its neighboring FoVs.
This grid forms the navigation graph depicted in

4For Refer360◦ we use validation unseen split. Touchdown
does not have seen-unseen distinction.

5https://github.com/volkancirik/HOLM
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Method Oracle Refer360◦ Touchdown

Stop Agent 14.1 0.0
Random Agent 12.1 6.8

SMNA (Ma et al., 2019) 27.1 45.9
+ HOLM (this work) 32.2 49.8

SMNA (Ma et al., 2019) Next FoV 33.5 50.2
LingUNet* (Chen et al., 2018) Full Panorama 21.4 47.2

Table 1: FoV accuracy results for Refer360◦ and Touch-
down with no hallucination baseline, best performing
models, and Next FoV oracle model, i.e. the ability to
look ahead for neighbor FoVs, and observing full 360◦

scenes. Our method outperforms the baseline models
from the literature.

the Figure 2. We use 30◦ of separation between
successive FoVs which provides enough overlap to
reveal relevant information about successive FoVs
yet distant enough so that the model needs to rea-
son about future steps. We then pre-calculated the
rectilinear projection of each of the FoVs on the
grid for all scenes.

4.2 Results and Discussion

In this section we present and discuss experimental
results and analyses.

(RQ1) HOLM Improves performance. Our
main results are presented in Table 1. In the first
row block, we see that simple non-learning base-
lines fail to perform on the dRER. In the second
row block, we compare our method with the base-
line where the agent does not have any visual input
from the next FoVs. HOLM improves the baseline
by hallucinating objects for the next FoVs. In the
third row block, we provide results for oracle sce-
narios. For SMNA, we feed ground-truth FoV as
the input of the system. This result sets the upper
bound on HOLM, because it cannot achieve better
hallucination than the ground-truth FoVs. However,
HOLM achieves pretty close to this upper bound
and show that it can provide useful predictions for
this task. For LingUNet, we feed the full 360◦

scenes as the visual input. Since LingUNet is not
a navigation agent i.e. predicts the target location
using full 360◦ scenes, we calculate FoV accuracy
by drawing an FoV around the prediction, which
explains ‘*’.

In Table 2, we compare HOLM with FAST
and Speaker-Follower methods, both of which use
beam search. During the beam search, these meth-
ods use multiple trajectories while deciding on
a trajectory. However, this is not plausible in a
real-world scenario, i.e. a robot would not gen-

Method Beam Search Refer360◦ Touchdown

Baseline SMNA (Ma et al., 2019) 27.1 45.9
+ HOLM (this work) +5.1 +3.9

+ FAST (Ke et al., 2019) ! -6.4 +4.7
+ Speaker-Follower (Fried et al., 2018) ! -4.6 -11.1

Table 2: FoV accuracy results for Refer360◦ and Touch-
down for methods using beam search or single candi-
date trajectory. HOLM consistently improves the base-
line and does not use multiple trajectories.

erate many trajectories before performing action.
HOLM, on the other hand completes the task on a
single trajectory while predicting possible future
states. FAST improves SMNA for Touchdown but
not for Refer360◦ , which might be due to the
richness of scenes in Refer360◦ whereas in Touch-
down , the scenes are always in the same domain.
Speaker-Model’s decreases the score for SMNA
possibly due to the Speaker models’ poor perfor-
mance where the BLEU score is around 6. HOLM
consistently improves for both datasets and does
not perform any expensive look-ahead operations
such as beam search.

Knowledge Type Human Annotation Affinity Scores Refer360◦ Touchdown

Baseline ! Uniform 27.8 45.2
Baseline ! Identity 29.3 45.9
Visual ! VisualGenome 30.8 48.4
Knowledge Base ! WordNet 29.5 48.4
Pre-trained LM XLM 32.2 49.8

Table 3: FoV accuracy results for Refer360◦ and Touch-
down for different methods for calculating affinity
scores for HOLM. XLM-based affinity scores achieve
the best performance.

(RQ2) Pre-trained LM produces better affin-
ity scores compared to other sources. In Table 3,
we compare several baseline methods for calcu-
lating the affinity scores. First, we use uniform
(i.e., each object pair has the same affinity score)
and identity (i.e., object x can only have affinity
score with itself) baselines. We also study calculat-
ing affinity scores using data annotated by humans.
First, we use object annotations in VisualGenome
(Krishna et al., 2017). VisualGenome provides a
large collection of fine-grained annotations for ob-
jects and their spatial relationships. Second, ideally
we would like to use human annotations for cal-
culating the affinity score. However, this requires
annotation of |O|2 annotations. Instead, as a proxy,
we use WordNet (Miller, 1995), a knowledge-base
hierarchy annotated by experts. We use NLTK
(Bird et al., 2009) to calculate the WordNet sim-
ilarity to extract the affinity scores between ob-
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jects. XLM-based HOLM achieves the best results
among these baselines. This result shows that with-
out using human annotations, we can extract useful
knowledge about objects using pre-trained LMs.

Method Data Source Refer360◦ Touchdown

HOLM with XLM External 32.2 49.8
HOLM with Objects Counts Internal 30.3 48.7
Hallucinating with 3-Layer MLP Internal 27.5 46.3

Table 4: FoV accuracy results for Refer360◦ and Touch-
down when task data is used for object hallucination.
The limitation of the domain data can be addressed us-
ing external resources such as pre-trained LMs.

(RQ3) External sources may provide better
information compared to task data. In Table 4,
we compare methods that only use task data for ob-
ject hallucination and HOLM with external sources
such as pre-trained LM. For the second row in
the table), we use the BUTD model (Anderson
et al., 2018a) to annotate training images with ob-
ject bounding boxes. Using bounding boxes of
objects, we calculate affinity scores. For the third
row in the table, we design a model that takes FoV
and an object type as an input and predicts a di-
rection (i.e., hallucinate where it might appear) as
output. We pass the final feature map layer of
152-layer ResNet (He et al., 2016) as input to a
3-layer feed-forward neural network to predict ob-
jects that might appear in neighboring FoVs. This
model achieves an F1 score of 40.3 for direction
prediction. Both of these methods improve over
the SMNA baseline but are worse than the pre-
trained LM. This result indicates that task data may
have limitations, and external sources such as a pre-
trained LM may provide a signal for knowledge
about objects.

Knowledge Type Affinity Scores Refer360◦ Touchdown

Visual VisualGenome P 1.4 R 55.3 F1 2.7 P 1.5 R 55.2 F1 2.9
Knowledge Base WordNet P 1.3 R 55.4 F1 2.6 P 1.4 R 55.3 F1 2.8
Pre-trained LM XLM P 2.0 R 49.5 F1 3.9 P 2.2 R 63.2 F1 4.3

Table 5: Precision (P), Recall (R), and F1 scores for
Refer360◦ and Touchdown for hallucinating objects in
neighboring FoVs. Similar to the downstream task re-
sults, pre-trained LM performs the best.

(RQ4) Accuracy of HOLM translates to
dRER So far, we measure the performance of
HOLM for the downstream dRER task. We can
also measure how accurate HOLM is at predicting
the presence of an object in neighboring FoVs. We
annotate each neighboring ground-truth FoVs with
detections from BUTD. If the pia for object oi ∈ O

is above 1
|O| , we count that as a prediction of an

object in the neighboring FoV after performing ac-
tion a. In Table 5, we provide precision, recall, and
F1 score for the performance of different methods
for calculating affinity scores for HOLM. XLM
achieves the best performance among the methods
we compare. We conclude that the performance for
the intrinsic task (i.e., predicting the presence of
objects) translates to dRER performance.

Method Model Refer360◦ Touchdown

Baseline SMNA 27.1 45.9

W
E + HOLM with FastText (Mikolov et al., 2018) 31.6 46.8

+ HOLM with GloVe (Pennington et al., 2014) 31.0 49.2
+ HOLM with word2vec (Mikolov et al., 2013) 29.3 46.2

L
M

+ HOLM with GPT3 (Brown et al., 2020) 31.1 46.3
+ HOLM with Roberta (Liu et al., 2019c) 30.3 46.0
+ HOLM with XLM (Conneau and Lample, 2019) 32.2 49.8

Table 6: FoV accuracy results for Refer360◦ and Touch-
down for models processing unlabeled text. WE and
LM are abbreviations for word embeddings and lan-
guage models. All hallucination-based methods per-
form better than the baseline. XLM achieves the best
performance in both datasets.

(RQ5) Both word embeddings and LMs are
good sources of general knowledge of objects In
Table 6, we compare word embedding methods and
different language models. We use cosine similari-
ties between pairs of objects to calculate the affinity
scores. For language models, we compare Open
AI’s GPT3 (Brown et al., 2020) using their online
API6. We use Transformers Library (Wolf et al.,
2020) for RoBERTa (Liu et al., 2019c) and XLM
(Conneau and Lample, 2019). All methods con-
sistently improve over the baseline SMNA model,
however, we achieve the best performance using
XLM. This result indicates that we can extract use-
ful knowledge about objects with methods relying
on large amount of unlabeled text.

5 Related Work

Our work on dRER is closely related to previous
studies focusing on Referring Expression Recog-
nition (RER), Vision-and-Language Navigation
(VLN), and methods we propose are related to pre-
training language models for vision-and-language
tasks, model-based reinforcement learning, and co-
occcurrence modeling for computer vision. We
review these studies in this section.

RER is the task of localizing a target object or
a point in an image described by a natural lan-
guage expression. The most of existing datasets

6https://beta.openai.com/
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poses the task in 2D images with objects as be-
ing the target (Kazemzadeh et al., 2014; Yu et al.,
2016; Mao et al., 2016; Strub et al., 2017; Liu et al.,
2019a; Akula et al., 2020; Chen et al., 2020). Sev-
eral lines of work are proposed to address RER
(Mao et al., 2016; Nagaraja et al., 2016; Yu et al.,
2016; Hu et al., 2016; Fukui et al., 2016; Luo and
Shakhnarovich, 2017; Liu et al., 2017; Yu et al.,
2017; Zhang et al., 2018; Zhuang et al., 2018; Deng
et al., 2018; Yu et al., 2018; Cirik et al., 2018; Liu
et al., 2019b).

In Touchdown (Chen et al., 2018) and Refer360◦

(Cirik et al., 2020) the target is a point not an object
in a 360◦ image. In the dRER setup, we also use
360◦ images of Touchdown and Refer360◦ , but
we do not provide the full panoramic view of the
scene. Instead, in a more realistic scenario, the
agent observes a partial and dynamic view of the
scene, i.e. the agent needs to adjust its FoV to
find the target location. Closer to our work, in
REVERIE (Qi et al., 2020b) an embodied setup is
proposed where the agent needs to first navigate to
a location where the target object is visible. Similar
to Touchdown and Refer360◦ , at the final position,
the full 360◦ view is visible to the agent. Unlike
ours and similar to 2D image-based RER, the target
is an object rather than a point in the scene.

VLN is a vision-and-language task where an
agent in a simulated environment observes a visual
input and is given a natural language instruction
to navigate to a target location. The earlier work
(MacMahon et al., 2006; Shimizu and Haas, 2009;
Chen and Mooney, 2011) studies the task with syn-
thetic images or in a very small scale (Vogel and
Jurafsky, 2010). Anderson et al. (2018b) proposes
Room-to-room (R2R) benchmark and revisit VLN
task with a modern look. In R2R, the agent ob-
serves panoramic scans of a house (Chang et al.,
2017) and needs to carry out the natural language
instruction. EnvDrop (Tan et al., 2019) model
shows generalization to unseen environments by
dropping visual features. PREVALENT (Hao et al.,
2020) tackles the data sparsity problem with a pre-
training scheme. Hong et al. (2021) show that a
pre-trained multi-modal can be enhanced with a
memory state for the VLN task by recurrently feed-
ing a contextualized state feature after each time
step. dRER also poses a navigation task where lo-
cations in physical space in VLN correspond to
FoVs in a fixed location. In dRER, a trajectory of
the agent corresponds to its resolution process for

finding the goal location.

Pre-trained models for Vision-and-Language
has been recently studied after the huge success of
transformer-based models (Vaswani et al., 2017) in
NLP (Devlin et al., 2018; Liu et al., 2019c; Con-
neau and Lample, 2019; Sun et al., 2019b; Poerner
et al., 2020; Raffel et al., 2020; Brown et al., 2020).
Numerous studies extend these approaches to the
multimodal domain (Tan and Bansal, 2019; Lu
et al., 2019; Sun et al., 2019a; Su et al., 2020; Li
et al., 2020; Qi et al., 2020a; Hu and Singh, 2021).
They achieve the-state-of-the-art results in several
tasks such as image captioning, text-to-image re-
trieval, or referring expression recognition. Our
work differs from these studies in the sense that
the previous approaches use large scaled paired
image-text data (Chen et al., 2013; Divvala et al.,
2014; Sadeghi et al., 2015; Radford et al., 2021;
Jia et al., 2021) to learn efficient representations
(Frome et al., 2013; Kottur et al., 2016) for visual
and textual modalities whereas we are interested in
spatial information learned in unimodal text repre-
sentations.

Language priors for vision were explored in
recent studies. Lu et al. (2016) use word embed-
dings in a language module to learn a representa-
tion for a object-predicate-object triplet for visual
relationship detection task. Kiela et al. (2019) pro-
pose an approach to extend pre-trained transformer-
based LMs for multimodal tasks. Similarly, Lu
et al. (2021); Tsimpoukelli et al. (2021) show that
pre-trained LMs can be finetuned to perform well in
few-shot settings for image classification and open-
domain Visual Question Answering (Marino et al.,
2019). Marino et al. (2021) also show that multi-
modal transformer architectures capture implicit
knowledge for a pair of objects. Our work differs
from these studies (1) we use only unimodal mod-
els, (2) we do not finetune models – we do not up-
date models during training. The most similar work
to ours, Scialom et al. (2020) show that pre-trained
LMs can perform reasonably well on Visual Ques-
tion Generating (Yang et al., 2015; Mostafazadeh
et al., 2016) out of the box. One difference is that
we use object labels rather than object features or
the appearance of objects to query the language
model; however, they use object features as a vi-
sual token to the language model. Prompts we use
in our work shares similarities with prompts de-
signed in PIQA (Paranjape et al., 2021), but our
work is evaluated in a multimodal setup. In con-
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trast, PIQA is evaluated for textual commonsense
reasoning tasks.

Hallucination idea is also related the work on
predicting future observations in long horizons (Vil-
legas et al., 2019) which has been studied in the
context of learning planning (Hafner et al., 2019)
and acquiring skills for control problems (Hafner
et al., 2020), and efficient policy learning (Ha and
Schmidhuber, 2018), and vision-and-language nav-
igation (Koh et al., 2021). All these approaches are
interested in longer horizons; however, in our work,
we study predicting single-step future observation.
More recent work (Hu et al., 2021; Rombach et al.,
2021; Rockwell et al., 2021) study view synthe-
sis from a single visual observation. Unlike these
approaches, HOLM does not generate pixel-level
views rather abstractions of views with object la-
bels.

Affinity scores are mainly studied in com-
puter vision tasks in the form of object co-
occurrences. Previous studies have shown that
object co-occurrences are efficient representations
of visual prior for object categorization for object
segmentation (Rabinovich et al., 2007; Galleguil-
los et al., 2008; Ladicky et al., 2010) and zero
shot object-recognition (Mensink et al., 2014), and
scene understanding (Wu et al., 2014). Our work
differs from these studies: we do not calculate
co-occurrence statistics, i.e. we do not count the
frequency of times they appear together; instead,
we calculate a probability measure using language
models.

6 Conclusion

In this paper, we introduced HOLM – a model that
can extract prior knowledge about objects from
LMs and hallucinate objects in future observations.
Our experiments showed that HOLM approach im-
proves over various baselines from the literature.
Surprisingly, our model which used background
knowledge from LMs outperformed models with
knowledge from human-annotated data showing
that LMs learn useful knowledge about the world
without requiring any visual observations. We also
showed that out approach generalizes to both in-
door and outdoor scenarios.

Our work has limitations in the following ways.
First, the hallucination process solely conditions on
the current field of view. However, the instruction
and the previous observations are available to the
system. Conditioning on these sources of infor-

mation could improve the hallucination accuracy
by getting more targeted information from the lan-
guage model. Second, we assume a fixed lexicon
of object labels for hallucination. For both the vi-
sual side i.e., the object detector, and the language
side i.e., the language model, when an unknown
object appears the system cannot use this object for
hallucination. Another issue is the scalability, i.e,
the affinity scores scale with O(N2) where N is
the number of objects, which might be challeng-
ing when N is large. We hope the follow-up work
could address these limitations.

Future work will explore the use of background
knowledge in other domains such as vision-and-
language navigation (Anderson et al., 2018c) and
dialog (Thomason et al., 2020). We also believe
background knowledge of objects would be handy
in complex scenarios such as manipulating ob-
jects in a simulated environment (Shridhar et al.,
2020). Our method examines extracting back-
ground knowledge in a zero-shot manner. However,
the literature shows that learning how to prompt
could be helpful in finding better (Liu et al., 2021).
We strictly compared unimodal approaches for hal-
lucination. Future work extend our work by com-
paring multimodal models (Tan and Bansal, 2019;
Lu et al., 2019; Sun et al., 2019a; Su et al., 2020; Li
et al., 2020; Qi et al., 2020a; Hu and Singh, 2021).

Another interesting direction would be to study
the capability of transferring knowledge from in-
door to outdoor settings and vise versa. Finally,
the success of PREVALENT (Hao et al., 2020)
and other pre-training approaches for VLN could
stem from their ability to implicitly encode prior
knowledge about objects. Hopefully, future studies
examines this phenomenon.
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A Appendix

This section presents details omitted in the main
document.

A.1 Spatial Prompts
We use a fixed set of spatial prompts to query pre-
trained language models. The list is in Table 7

near the object there is
near the object I see a
near the object there should be a
the object near the object is
on the left of object there is
on the right of object there is
on top of object there is
under the object there is
across the object there is
close the object there is

Table 7: Spatial Prompt Templates
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