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Abstract

Automatic code summarization, which aims to
describe the source code in natural language,
has become an essential task in software main-
tenance. Our fellow researchers have at-
tempted to achieve such a purpose through var-
ious machine learning-based approaches. One
key challenge keeping these approaches from
being practical lies in the lacking of retaining
the semantic structure of source code, which
has unfortunately been overlooked by the state-
of-the-art methods. Existing approaches resort
to representing the syntax structure of code by
modeling the Abstract Syntax Trees (ASTs).
However, the hierarchical structures of ASTs
have not been well explored. In this paper,
we propose CODESCRIBE to model the hier-
archical syntax structure of code by introduc-
ing a novel triplet position for code summariza-
tion. Specifically, CODESCRIBE leverages the
graph neural network and Transformer to pre-
serve the structural and sequential information
of code, respectively. In addition, we propose
a pointer-generator network that pays attention
to both the structure and sequential tokens of
code for a better summary generation. Experi-
ments on two real-world datasets in Java and
Python demonstrate the effectiveness of our
proposed approach when compared with sev-
eral state-of-the-art baselines1.

1 Introduction

Code documentation in the form of code comments
has been an integral component of software de-
velopment, benefiting software maintenance (Iyer
et al., 2016), code categorization (Nguyen and
Nguyen, 2017) and retrieval (Gu et al., 2018). How-
ever, few real-world software projects are well-
documented with high-quality comments. Many
projects are either inadequately documented due
to missing important code comments or inconsis-
tently documented due to different naming conven-

1The source code of CODESCRIBE is available at https:
//github.com/GJCEXP/CODESCRIBE

tions by developers, e.g., when programming in
legacy code bases, resulting in high maintenance
costs (de Souza et al., 2005; Kajko-Mattsson, 2005).
Therefore, automatic code summarization, which
aims to generate natural language texts (i.e., a short
paragraph) to describe a code fragment by extract-
ing its semantics, becomes critically important for
program understanding and software maintenance.

Recently, various works have been proposed for
code summarization based on the encoder-decoder
paradigm, which first encodes the code into a dis-
tributed vector, and then decodes it into natural-
language summary. Similarly, several works (Iyer
et al., 2016; Allamanis et al., 2016) proposed to
tokenize the source code into sequential tokens,
and design RNN and CNN to represent them. One
limitation of these approaches is that they only con-
sider the sequential lexical information of code. To
represent the syntax of code, several structural neu-
ral networks are designed to represent the Abstract
Syntax Trees (AST) of code, e.g., TreeLSTM (Wan
et al., 2018), TBCNN (Mou et al., 2016), and Graph
Neural Networks (GNNs) (LeClair et al., 2020). To
further improve the efficiency on AST representa-
tion, various works (Hu et al., 2018a; Alon et al.,
2019) proposed to linearize the ASTs into a se-
quence of nodes or paths.

Despite much progress on code summarization,
there are still some limitations in code comprehen-
sion for generating high-quality comments. Partic-
ularly, when linearizing the ASTs of code into se-
quential nodes or paths, the relationships between
connected nodes are generally discarded. Although
the GNN-based approaches can well preserve the
syntax structure of code, they are insensitive to
the order of nodes in AST. For example, given
the expressions a=b/c and a=c/b, current ap-
proaches cannot capture the orders of variables b
and c. However, these orders are critical to accu-
rately preserve the semantics of code.

To address the aforementioned limitation, this
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Module(body=[Assign(
  targets=[Name(
    id='a',
    ctx=Store())],
  value=BinOp(
    left=Name(
      id='b',
      ctx=Load()),
    op=Div(),
    right=Name(
      id='c',
      ctx=Load())))])
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{4,1,-1} {4,3,-1}

Figure 1: The AST of Python code snippet “a = b / c”. The left is the text form of AST, the middle shows the
tree structure of AST, and the right specifies triplet positions for all nodes of AST structure.

paper proposes to model the hierarchical syntax
structure of code using triplet position, inspired by
the positional encoding used in sequence model-
ing (Gehring et al., 2017; Vaswani et al., 2017), and
incorporates the triplet position into current GNNs
for better code summarization. The triplet position
records the depth, width position of its parent, and
width position among its siblings for each node.

To utilize the triplet position in AST, this pa-
per proposes CODESCRIBE, an encoder-decoder-
based neural network for source code summariza-
tion. Specially, we initialize the embedding of each
AST node by incorporating the triplet positional
embeddings, and then feed them into an improved
GNN, i.e., GraphSAGE (Hamilton et al., 2017)
to represent the syntax of code. In addition, we
also account for the sequential information of code
by using a Transformer encoder (Vaswani et al.,
2017). In such a case, the decoding process is
performed over the learned structural features of
AST and sequential features of code tokens with
two multi-head attention modules. To generate
summaries with higher quality, we further design
a pointer-generator network based on multi-head
attention (Vaswani et al., 2017), which allows the
summary tokens to be generated from the vocabu-
lary or copied from the input source code tokens
and ASTs. To validate the effectiveness of our pro-
posed CODESCRIBE, we conduct experiments on
two real-world datasets in Java and Python.

Overall, the primary contributions of this paper
are as follows.

• It is the first time that we put forward a simple
yet effective approach of triplet position to
preserve the hierarchical syntax structure of
source code accurately. We also incorporate
the triplet position into an adapted GNN (i.e.,
GraphSAGE) for source code summarization.

• We conduct comprehensive experiments on
two real-world datasets in Java and Python
to evaluate the effectiveness of our pro-
posed CODESCRIBE. Experimental results
on both datasets demonstrate the superior-
ity of CODESCRIBE when comparing with
several state-of-the-art baselines. For exam-
ple, we get 3.70/5.10/4.77% absolute gain on
BLEU/METEOR/ROUGE-L metrics on the
Java dataset, when comparing with the most
recent mAST+GCN (Choi et al., 2021).

2 Hierarchical Syntax in Triplet Position

Recent studies have showed promising results by
using AST context for tasks based on code repre-
sentation learning (Yao et al., 2019; Zhang et al.,
2019; Choi et al., 2021). Therefore, our work also
relies on AST information besides source code to-
kens. As a type of intermediate representation,
AST represents the hierarchical syntactic structure
for source code, which is an ordered tree with la-
beled nodes (cf. Figure 1). In this work, we divide
the nodes into two categories: (1) function node
that controls the structure of AST and function re-
alization, e.g., Module and Assign in Figure 1,
and (2) attribute node that provides the value or
name of its parent function node, which is always
visualized as leaf node, such as ‘a’ and ‘b’ in dot-
ted boxes of Figure 1.

Due to the strict construction rules of AST, po-
sitions are crucial for AST nodes. For example in
Figure 1, the node BinOp has two children with
the same label Name. If the positions of the two
siblings are swapped, the source code will become
a=c/b, which is totally different from the intent
of the code a=b/c. However, GNNs are insensi-
tive to the positions of neighbouring nodes when
encoding such tree structures. Based on this obser-
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Figure 2: The architecture of CODESCRIBE model.
Att., Res., and Norm. denote attention, residual con-
nection, and layer normalization, respectively.

vation, we specify triplet positions for AST nodes
to retain accurate structural information in AST
learning. The triplet position of a node includes:
(1) the depth of the node in the AST, (2) the width
position of its parent node in the layer, and (3) the
node’s width position among its siblings, which
can also distinguish function node from attribute
node. That is, the width position of a function node
is a non-negative integer starting from 0, while the
width position of an attribute node is a negative in-
teger counting from -1. Note that, width positions
are estimated in a breadth traversal from left to
right. With such triplet indices specified, all nodes
can be marked with unique positions in a given
AST.

Taking a Python code snippet a=b/c as an
example, Figure 1 illustrates its AST structure
with triplet positions of nodes. Specifically, by
traversing the tree, we can represent the function
node (Name,{2,0,0}) as the first child node
of node (Assign,{1,0,0}): the depth posi-
tion 2 means the third level (counting from the
top to bottom starting with 0); the second width
position 0 means that the parent node Assign
is the first function node at this level (counting
from the left to right); and the third position 0

indicates that the node is the first (counting from
left to right) among its siblings (i.e., all children
nodes of node Assign). Another example is
the node (‘a’,{3,0,-1}). The difference lies
in the third position that represents it is an at-
tribute node and it is the first among the siblings.
In particular, we set the position of root node
Module to {0,0,0} as it has no parent node.
This triplet positioning is very precise and unique,
allowing to track and discriminate among the Name
nodes which also include (Name,{3,1,0}) and
(Name,{3,1,2}).

3 CODESCRIBE Approach

3.1 Notations and Framework Overview

Given a code snippet with lc tokens
Tc = (c1, c2, . . . , clc) and sequential positions
Pc = (1, 2, . . . , lc), and its AST with ln nodes
Tn = (n1, n2, . . . , nln) and triplet positions Pn =
({x1, y1, z1}, {x2, y2, z2}, . . . , {xln , yln , zln}),
CODESCRIBE predicts the next summary
token sm based on the existing tokens
Ts = (</s>, s1, s2, . . . , sm−1, . . .) with the
sequential positions Ps = (1, 2, . . . , ls), where
</s> is a special starting tag for summary input.
Note that Ts is padded to a maximum length of ls
with special padding tags (e.g., <pad>s).

Figure 2 illustrates the architecture of CODE-
SCRIBE model, which is mainly composed of four
modules: source code encoder, AST encoder, sum-
mary decoder and multi-source pointer-generator
network (MPG) for output. As shown in Figure 2,
the source code, AST, and summary tokens are
firstly mapped into embedding vectors E0

c ∈ Rlc×d,
E0

n ∈ Rln×d, and E0
s ∈ Rls×d where d is the em-

bedding size. In the encoding process, the em-
bedded code and AST are fed into Transformer
encoder (Vaswani et al., 2017) and GNN layers
respectively for learning the source code represen-
tation E′c ∈ Rlc×d and the AST representation
E′n ∈ Rln×d. Then, the decoding process is per-
formed to yield the decoded vector e′s ∈ Rd for
the predicted summary token by fusing the learned
source code and AST features (i.e., E′c and E′n) as
an initial state for decoding E0

s. At the decoding
stage, we build MPG stacked on the decoder and
encoders to predict the next summary token sm
by selecting from summary vocabulary or copying
from the input source code and AST tokens. The
detailed process will be further described in the
following sub-sections.
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3.2 Initial Embeddings

Before feeding code tokens, AST nodes, and sum-
mary tokens into neural networks, it is essential to
embed them into dense numerical vectors. In this
work, the source code tokens Tc, AST nodes Tn,
and summary tokens Ts are all embedded into nu-
meric vectors with their related positions Pc, Pn,
and Ps incorporated through learnable positional
embeddings (Gehring et al., 2017). In particular
for AST, we take each triplet position {xi, yi, zi} in
Pn as an individual tuple, and directly map it into a
positional embedding vector ei ∈ Rd. The embed-
ded triplet positional information is then added to
the node embeddings for initializing the AST repre-
sentation. The embedding processes are formulated
as follows:

E0
c = CNEmb(Tc) ∗

√
d+ CPEmb(Pc) ,

E0
n = CNEmb(Tn) ∗

√
d+ NPEmb(Pn) ,

E0
s = SEmb(Ts) ∗

√
d+ SPEmb(Ps) ,

(1)

where CNEmb denotes the shared embedding op-
eration for source code tokens and AST nodes;
SEmb means the token embedding operation for
summary text; CPEmb, NPEmb, and SPEmb are
the corresponding positional embedding operations.
Afterwards, the initialized representations E0

c , E0
n,

and E0
s are fed into the encoders and decoder of

CODESCRIBE for in-depth processing.

3.3 Code Representation

Source Code Encoder. As shown in Figure 2,
the code encoder is composed of two identical lay-
ers. And each layer consists of two sub-layers:
multi-head attention mechanism and fully con-
nected position-wise feed-forward network (FFN).
In addition, residual connection (He et al., 2016)
and layer normalization (Ba et al., 2016) are per-
formed in the two sub-layers for the sake of vanish-
ing gradient problem in multi-layer processing and
high offset of vectors in residual connection. For
the k-th layer, the process can be formulated as:

Hk
c = LayerNorm(Ek−1

c +Att(Ek−1
c ,Ek−1

c ,Ek−1
c )) ,

Ek
c = LayerNorm(Hk

c + FFN(Hk
c )) ,

(2)

where Ek−1
c ∈ Rlc×d is the output vectors from

the (k−1)-th layer ; LayerNorm denotes layer nor-
malization; and Att means the multi-head atten-
tion (Vaswani et al., 2017) that takes query, key,
and value vectors as inputs.

AST Encoder. Considering that AST is a kind
of graph, it can be learned by GNNs. Since Graph-
SAGE (Hamilton et al., 2017) shows high effi-
ciency and performance dealing with graphs, we
introduce the idea of GraphSAGE and improve it
by adding residual connection for AST encoding,
as shown in Figure 2. The encoding layer processes
the AST by firstly aggregating the neighbors of the
nodes with edge information and then updating the
nodes with their aggregated neighborhood infor-
mation. For a node i and its neighbors in the k-th
layer, the process can be formulated as follows:

hk
i = W1 · ek−1

i +W2 · Aggr({ek−1
j , ∀j ∈ N(i)}) , (3)

where ek−1i ∈ Rd means the vector representation
of i-th node from the (k−1)-th layer; N(i) is the
neighbors of the node i; ek−1j ∈ Rd denotes the
j-th neighbor vector for node i; W1,W2 ∈ Rd×d

are learnable weight matrices; Aggr represents ag-
gregation function.

After updating the node information, the node
vectors are put together into a ReLU activation for
non-linear transformation:

Hk
n = ReLU([hk

1 ,h
k
2 , . . . ,h

k
i , . . .]) . (4)

With the increase of the number of layers, a node
aggregates the neighborhood information from a
deeper depth. In order to achieve strong capability
of aggregation, the AST encoder is composed of
six layers. And to mitigate gradient vanishing and
high offset caused by multi-layer processing, we
adopt residual connection (He et al., 2016) and
layer normalization (Ba et al., 2016) in each layer
for improvement, which is formulated as follows:

Ek
n = LayerNorm(Hk

n +Ek−1
n ) . (5)

Note that, Ek−1
n ∈ Rln×d in this formula denotes

the output vectors of nodes from the (k−1)-th layer.

3.4 Summary Decoder
The decoder of CODESCRIBE is designed with six
stacks of modified Transformer decoding blocks.
Given the existing summary tokens, the k-th decod-
ing block firstly encodes them by masked multi-
head attention with residual connection and layer
normalization, which is formalized as:

Hk
s =LayerNorm(Ek−1

s +MaskAtt(Ek−1
s ,Ek−1

s ,Ek−1
s )) ,

(6)

where Ek−1
s ∈ Rls×d is the output vectors from the

(k−1)-th layer and MaskAtt denotes the masked
multi-head attention (Vaswani et al., 2017).
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After that, we expand the Transformer block by
leveraging two multi-head attention modules to in-
teract with the two encoders for summary decoding.
One multi-head attention module is performed over
the AST features to get the first-stage decoded in-
formation, which will then be fed into the other
over the learned source code for the second-stage
decoding. Then the decoded summary vectors are
put into FFN for non-linear transformation. The
process can be formalized as follows:

Hk
s,n = LayerNorm(Hk

s + Att(Hk
s ,E

′
n,E

′
n)) ,

Hk
s,c = LayerNorm(Hk

s,n + Att(Hk
s,n,E

′
c,E

′
c)) ,

Ek
s = LayerNorm(Hk

s,c + FFN(Hk
s,c)) ,

(7)

where E′n and E′c are the learned features of AST
nodes and code tokens, respectively.

3.5 Multi-Source Pointer-Generator Network
We present a multi-source pointer-generator net-
work (MPG) on top of the decoder and encoders
to yield the final probability of the next summary
token. Considering that tokens such as function
names and variable names appear both in code and
summary text (Ahmad et al., 2020), MPG is de-
signed to allow CODESCRIBE to generate sum-
mary tokens both from the summary vocabulary
and from the AST and source code.

Taking the m-th output token as an example,
three probability distributions pv,pc, and pn will
be calculated from decoded summary, code, and
AST and determine the probabilities for the token.
To get the first probability distribution pv, a Linear
sub-layer with Softmax is applied over the decoded
summary token vector e′s ∈ Rd, as follows:

pv = Softmax(Linear(e′s)) . (8)

For a token w, pv(w) = 0 if w is an out-of-
vocabulary word to the summary vocabulary.

As for the distributions pc and pn, we only de-
scribe pc since the two have the similar calcula-
tion process. In detail, our model applies an ad-
ditional multi-head attention layer stacked on the
last code encoding block and summary decoding
block. It takes the decoded summary token vector
e′s ∈ Rd as query and the encoded code informa-
tion E′c ∈ Rlc×d as key and value:

δc = Att(e′s,E
′
c,E

′
c) ,

αc = Softmax(Mean(a1,a2, . . . ,ai, . . .)) ,

ai = Softmax

(
e′sW

Q
i (E′cW

K
i )T√

d

)
(E′cW

V
i ) ,

(9)

where WQ
i ,W

K
i , and WV

i are learnable param-
eters. The context vector δc ∈ Rd will be
used for the final distribution. Through the func-
tion Mean and Softmax, the attention vectors
(a1,a2, . . . ,ai, . . .) of all heads are averaged as
αc ∈ Rlc . For the token w, its probability pc(w)
is formulated as follows:

pc(w) =
∑

i:wi=w αci , (10)

where wi means the i-th token in the source code.
Similarly, we can get δn and pn corresponding

to the AST. After that, the final probability ps(w)
of the token w is defined as a mixture of the three
probabilities:

ps(w) = λv · pv(w) + λc · pc(w) + λn · pn(w) ,

[λv, λc, λn] = Softmax(Linear([e′s, δc, δn])) ,
(11)

where λv, λc, and λn are the weight values for
pv(w), pc(w), and pn(w). The higher the prob-
ability ps(w) is, the more likely the token w is
considered as the next summary token.

4 Experiments

We conduct experiments to answer the following
research questions: (1) How effective is CODE-
SCRIBE compared with the state-of-the-art base-
lines? (2) How effective is the structure design of
CODESCRIBE? (3) What is the impact of model
size on the performance of CODESCRIBE? We
also perform a qualitative analysis of two detailed
examples.

4.1 Datasets
The experiments are conducted based on two bench-
marks: (1) Java dataset (Hu et al., 2018b) and
(2) Python dataset (Wan et al., 2018). The two
datasets are split into train/valid/test sets with
69,708/8,714/8,714 and 55,538/18,505/18,502, re-
spectively. In the experiments, we follow the divi-
sions for the fairness of the results.

In the data preprocessing, NLTK package (Bird,
2006) is utilized for the tokenization of source code
and summary text. And we apply javalang 2 and
ast 3 packages to parsing Java and Python code into
ASTs. In addition, the tokens in forms of “Cammel-
Case”, “snake_case”, and “concatenatecase” are
split into sub-tokens as “Cammel Case”, “snake
case”, and “concatenate case”.

2https://github.com/c2nes/javalang
3https://github.com/python/cpython/

blob/master/Lib/ast.py
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Model Java Python
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

CODE-NN (Iyer et al., 2016) 27.60 12.61 41.10 17.36 09.29 37.81
Tree2Seq (Eriguchi et al., 2016) 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) 38.22 22.75 51.91 19.28 09.75 39.34
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 09.98 37.35
API+CODE (Hu et al., 2018b) 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
CopyTrans (Ahmad et al., 2020) 44.58 26.43 54.76 32.52 19.77 46.73
mAST+GCN (Choi et al., 2021) 45.49 27.17 54.82 32.82 20.12 46.81

CODESCRIBE 49.19 32.27 59.59 35.11 23.48 50.46

Table 1: Comparison with the baselines on the Java and Python datasets.

4.2 Implementation Details

We leverage PyTorch 1.9 for CODESCRIBE imple-
mentation. The model runs under the development
environment of Python 3.9 with NVIDIA 2080 Ti
GPUs and CUDA 10.2 supported.

We follow the previous works (Ahmad et al.,
2020; Choi et al., 2021) and set all the embedding
sizes of code tokens, AST nodes, and summary
tokens to 512, and the number of attention headers
to 8. As described in Section 3, the numbers of
layers of code encoder, AST encoder, and summary
decoder are 2, 6, and 6, respectively.

The model is trained with Adam opti-
mizer (Kingma and Ba, 2015). We initialize the
learning rate as 5e−4 that will be decreased by
5% after each training epoch until to 2.5e−5. The
dropout rate is set to 0.2. We set the batch size
to 96 and 160 for the Java and Python datasets, re-
spectively. The training process will terminate after
100 epochs or stop early if the performance does
not improve for 10 epochs. In addition, we lever-
age beam search (Koehn, 2004) during the model
inference and set the beam width to 5.

4.3 Baselines

We introduce eight state-of-the-art works as base-
lines for comparison, including six RNN-based
models and two Transformer-based models.

RNN-based Models. Among these baselines,
CODE-NN (Iyer et al., 2016), API+CODE (Hu
et al., 2018b), and Dual Model (Wei et al.,
2019) learn source code for summarization.
Tree2Seq (Eriguchi et al., 2016) and DeepCom (Hu
et al., 2018a) generate summaries from AST fea-
tures. RL+Hybrid2Seq (Wan et al., 2018) combines
source code and AST based on LSTM.

Transformer-based Models. The two base-

lines include CopyTrans (Ahmad et al., 2020) and
mAST+GCN (Choi et al., 2021), both of which
leverage Transformer for code summary genera-
tion. The main difference is that CopyTrans learns
sequential source code, and mAST+GCN is built
based on AST.

For the model evaluation, three metrics are
introduced: BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), and
ROUGE (Lin, 2004). All the scores are presented
in percentage.

4.4 Comparison with the Baselines (RQ1)

We first evaluate the performance of CODESCRIBE

by comparing it with eight state-of-the-art base-
lines. The results of baselines are all from Choi
et al. (2021) and are shown in Table 1.

The overall results in Table 1 illustrate that
the recent Transformer-based models (Ahmad
et al., 2020; Choi et al., 2021) are superior to
the previous works based on RNNs (Iyer et al.,
2016; Eriguchi et al., 2016; Wan et al., 2018; Hu
et al., 2018a,b; Wei et al., 2019). Although the
two models CopyTrans and mAST+GCN have
high performance in code summarization, our
approach CODESCRIBE performs much better
than them both on the two datasets. Intuitively,
CODESCRIBE improves the performance (i.e.,
BLEU/METEOR/ROUGE-L) by 4.46/5.84/4.83%
on the Java dataset and 2.59/3.71/3.73% on the
Python dataset compared to CopyTrans. In compar-
ison with mAST+GCN, the performance of CODE-
SCRIBE improves by 3.70/5.10/4.77% on the Java
dataset and 2.29/3.36/3.65% on the Python dataset.

The comparison demonstrates the outperfor-
mance of CODESCRIBE. It indicates that: (1)
Transformer-like models are more effective than
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RNN-based models in code summarization task;
(2) AST information contributes significantly to
code comprehension; and (3) by incorporating both
AST and source code into CODESCRIBE based on
GraphSAGE and Transformer, the performance can
be greatly improved due to its more comprehensive
learning capacity for code and better decoding for
summary generation.

4.5 Ablation Study (RQ2)

This section validates the effectiveness of CODE-
SCRIBE’s structure to by performing an ablation
study on the Java dataset. We firstly design five
models for comparison that remove one of impor-
tant components in CODESCRIBE including: (1)
the AST encoder (R-AST), (2) the source code
encoder (R-Code), (3) the triplet positions (R-
ASTPos), (4) the MPG (R-Copy), and (5) the resid-
ual connection in the AST encoder (R-ASTRes).
We further investigate the rationality of CODE-
SCRIBE’s structure by comparison with five vari-
ants: (1) V-Copy that replaces MPG with the copy-
ing mechanism (See et al., 2017) used in Ahmad
et al. (2020), (2) V-GCN that replaces GraphSAGE
with GCN (Kipf and Welling, 2017), (3) V-GAT
that replaces GraphSAGE with GAT (Kipf and
Welling, 2017), (4) V-Emb that replaces the shared
embedding layer for code tokens and AST nodes
with two independent embedding layers, and (5) V-
Dec that reverses the decoding order for the source
code and AST features.

Model BLEU METEOR ROUGE-L

R-AST 46.45 29.37 56.42
R-Code 47.06 30.06 57.03
R-ASTPos 48.53 31.62 58.84
R-Copy 48.64 31.71 58.68
R-ASTRes 13.03 2.59 5.89

V-Copy 48.59 31.82 58.73
V-GCN 48.84 31.96 58.95
V-GAT 48.84 32.03 59.23
V-Emb 49.05 31.93 58.95
V-Dec 48.99 32.11 59.31

CODESCRIBE 49.19 32.27 59.59

Table 2: Ablation study on the Java dataset.

As shown in Table 2, the performance of CODE-
SCRIBE is affected if the components are removed.
The results of R-AST and R-Code show that the
two encoders are the most significant learning com-
ponents to CODESCRIBE. Moreover, the AST en-

coder is more important than the code encoder as
R-Code performs better than R-AST. The perfor-
mances of R-ASTPos and R-Copy indicate that the
triplet positions for nodes and copying mechanism
(MPG) we proposed are effective for CODESCRIBE

in code summarization. In addition, we find that
R-ASTRes suffers from under-fitting on the Java
dataset, which indicates that the residual connec-
tion in AST encoder has a powerful influence on
CODESCRIBE.

As illustrated in Table 2, CODESCRIBE im-
proves the performance by 0.26/0.22/0.30% on the
Java dataset compared with V-Copy. It indicates
that our proposed MPG is more effective than the
copying mechanism in Ahmad et al. (2020). As
for the GNN module in AST encoding, it can be
observed that CODESCRIBE still has the higher
performance than V-GCN and V-GAT. This demon-
strates the superiority of GrahpSAGE for the ar-
chitecture of CODESCRIBE compared to GCN and
GAT. Compared with V-Emb, it shows that the
shared embedding layer works better than two sep-
arated embedding layers for AST and source code.
The result of V-Dec turns out that the performance
will not be affected sinificantly if the order of de-
coding over AST and code features is reversed.
The results on the Python dataset are presented in
Table 7 in Appendix A.

4.6 Study on the Model Size (RQ3)

This section studies the performance of CODE-
SCRIBE with the change of model size 4 on the
Java dataset. To that end, we modify the number of
layers of the encoders and the decoder respectively
for performance observation and comparison.

AST Model BLEU METEOR ROUGE-LLayers Size(×106)

2 38.89 48.68 31.76 58.77
4 39.94 48.76 31.99 59.10
6 40.99 49.19 32.27 59.59
8 42.05 49.11 32.20 59.49
10 43.10 48.97 32.12 59.23
12 44.15 48.84 32.06 59.10

Table 3: Performance of CODESCRIBE with different
numbers of AST encoding layers on the Java dataset.

Table 3 presents the performance of CODE-
SCRIBE when the number of AST encoding layers

4This work considers the number of trainable parameters
in the encoders and decoder of CODESCRIBE as the model
size to facilitate observation.
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varies from 2 to 12. The results show that the per-
formance improves as the number of AST encoding
layers increases from 2 to 6. With the increase of
the number from 6 to 12, the performance does not
improve any more and is even impacted slightly.
As illustrated in Table 4, CODESCRIBE has the best
performance with 2 code encoding layers. With the
number of code layers growing from 4 to 12, there
is a trend of gradual decrease of the performance.
For the model size concerned with summary decod-
ing layers, as shown in Table 5, the performance
is getting better when the number of layers ranges
from 2 to 6, and can not be improved as the number
continues to increase. The overall results show that
it the performance of CODESCRIBE will not be
improved if the encoders and the decoder become
too deep (i.e. with more layers), especially for the
source code encoder. More experimental results
are provided in Table 8 - 11 in Appendix B.

4.7 Case Study

Table 6 shows the qualitative examples of R-AST,
R-Copy, V-GCN, V-Dec, and CODESCRIBE on the
two datasets. From the table, it can be observed
that CODESCRIBE with the whole architecture gen-
erates better code summaries compared with the
four variants. In the case on the Java dataset, only
R-Copy and CODESCRIBE get the right intent of
the code. The other variants miss out the key word
“history”. In the case on the Python dataset, CODE-

Code Model BLEU METEOR ROUGE-LLayers Size(×106)

2 40.99 49.19 32.27 59.59
4 47.30 48.80 32.15 59.32
6 53.60 48.92 32.10 59.30
8 59.91 48.73 31.95 58.95
10 66.21 49.11 31.97 59.09
12 72.52 48.36 31.59 58.59

Table 4: Performance of CODESCRIBE with different
numbers of code encoding layers on the Java dataset.

Summary Model BLEU METEOR ROUGE-LLayers Size(×106)

2 19.97 47.99 31.21 58.50
4 30.48 48.80 32.02 59.32
6 40.99 49.19 32.27 59.59
8 51.51 49.16 32.20 59.33

10 62.02 49.16 32.33 59.56
12 72.53 49.24 32.31 59.41

Table 5: Performance of CODESCRIBE with different
numbers of decoding layers on the Java dataset.

SCRIBE generates the most accurate summary com-
pared to the other variants. In contrast, although
the four variants output the first half of the sum-
mary (i.e., “create an image”), the rest information
“from the value dictionary .” can not be generated
correctly. More qualitative examples are referred
to Table 12 and 13 in Appendix C.

5 Related Work

With the development of deep learning, most works
have considered code summarization as a sequence
generation task. In many of the recent approaches,
source code snippets are modeled as plain texts
based on RNNs (Iyer et al., 2016; Hu et al., 2018b;
Wei et al., 2019; Ye et al., 2020). For example,
Hu et al. (2018b) proposed an RNN-based model
that learns API knowledge from a different but re-
lated task and incorporates the knowledge into code
summarization. Wei et al. (2019) presented a dual
learning framework based on LSTMs to train code
generation and code summarization and improve
the performances of both tasks. Ye et al. (2020)
combined code summarization and code genera-
tion to train the code retrieval task via multi-task
learning, which achieved competitive performance
for the code summarization task. Most recently,
Ahmad et al. (2020) applied Transformer to en-
coding the source code sequence to improve the
summarization performance.

Since considering source code as plain text ig-
nores the structural information in code, recent
works have explored the AST of code and modeled
the tree-based structure for code summarization.
Typically, Hu et al. (2018a) proposed a structure-
based traversal (SBT) method to traverse ASTs into
node sequences and used a sequence-to-sequence
model based on LSTMs to generate code com-
ments. Alon et al. (2019) represented a code snip-
pet as a set of compositional paths in its AST
and used LSTMs to encode these paths. Shido
et al. (2019) extended Tree-LSTM (Tai et al., 2015)
to Multi-way Tree-LSTM to learn the representa-
tion of AST for code summary generation. Liu
et al. (2020) built code property graph (CPG) (Ya-
maguchi et al., 2014) based on AST and combined
retrieval method and GNNs for describing C pro-
gramming language. The latest work (Choi et al.,
2021) performed graph convolutional networks
(GCNs) (Kipf and Welling, 2017) before Trans-
former framework to learn AST representation for
summary generation.
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Java Python

Code

public void addMessage(String
message){↪→

messages.addLast(message);
if (messages.size() >

MAX_HISTORY) {↪→
messages.removeFirst();}

pointer=messages.size();}

@_get_client
def image_create(client, values,

v1_mode=False):↪→
return client.image_create(values=values,

v1_mode=v1_mode)↪→

Summary

Gold: add a message to the history
R-AST: add a message to the end of the list
R-Copy: add a message to the history .
V-GCN: add a message to the list
V-Dec: add a message to the list
CODESCRIBE: add a message to the history .

Gold: create an image from the value dictionary .
R-AST: create an image cli example : .
R-Copy: create an image mode that can exist from the give value .
V-GCN: create an image from a v <number> image .
V-Dec: create an image object .
CODESCRIBE: create an image from the value dictionary .

Table 6: Qualitative examples on the Java and Python datasets.

To represent the code comprehensively, more
and more works have paid attention to both the
source code and the AST for code summarization.
For example, Hu et al. (2020) integrated both AST
node sequence and source code into a hybrid learn-
ing framework based on GRUs. Wei et al. (2020)
and Zhang et al. (2020) both utilized the informa-
tion retrieval techniques to improve the quality of
code summaries that are generated from the code
snippets and ASTs. Wan et al. (2018) incorporated
AST as well as sequential content of code snip-
pet into a deep reinforcement learning framework
based on LSTM and AST-based LSTM. LeClair
et al. (2020) proposed a graph-based neural archi-
tecture for code summarization, which uses GRUs
and GCN to encode AST and GRUs to learn source
code sequence. Wang et al. (2022) presented the
first hierarchical-attention based learning approach
for code summarization by integrating source code,
type-augmented AST, and control-flow graphs.

Recently, several pre-trained models, e.g., Code-
BERT (Feng et al., 2020), CodeT5 (Wang et al.,
2021), PLBART (Ahmad et al., 2021) and Co-
TexT (Phan et al., 2021), have been proposed to bet-
ter represent the source code, and verified on code
summarization. For example, CodeBERT (Feng
et al., 2020) is a pre-trained model based on ELEC-
TRA (Clark et al., 2020), which has achieved
promising performance on downstream tasks in-
cluding code summarization. CodeT5 (Wang et al.,
2021) considers the token type information in code
and builds on the T5 architecture (Raffel et al.,
2020) that utilizes denoising sequence-to-sequence
pre-training. PLBART (Ahmad et al., 2021) is
another start-of-the-art pre-trained model on an ex-
tensive collection of Python and Java functions,

as well as their natural language summaries via
denoising auto-encoding. Note that, our work is
aim to introduce an encoder network with a novel
triplet position to better represent the hierarchical
structure of programs, rather than pre-training a
language model for source code. We think that
our introduced encoder can be easily incorporated
into the pre-training models through masking and
predicting code tokens or code graphs. We leave
the comparison between our model and those men-
tioned pre-trained code models to future work.

6 Conclusion

This paper has presented CODESCRIBE, an
encoder-decoder-based neural network for source
code summarization. CODESCRIBE designs a
triplet position to model the hierarchical syntax
structure of code, which is then incorporated into
the Transformer and GNN based framework for
better representation of lexical and syntax infor-
mation of code, respectively. The performance
of CODESCRIBE is further enhanced by the in-
troduced multi-source pointer generator in decod-
ing. Experiments on two benchmarks reveal that
the summaries generated by CODESCRIBE are of
higher quality when compared with several recent
state-of-the-art works.
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A Results of Ablation Study

Table 7 shows the results of ablation study on the
Python dataset. It can be observed that CODE-
SCRIBE has the best performance in contrast
with all the variants except V-Dec. Although
there is no under-fitting for R-ASTRes on the
Python dataset, we can find that the performance
(i.e., BLEU/METEOR/ROUGE-L) is reduced by
1.02/0.89/1.51 if the residual connection in AST
encoder is excluded. So it also demonstrates the
effectiveness of this component to the AST encoder.
In addition, the result of V-Dec still confirms the
conclusion that the order of decoding over AST and
source code features won’t impact the performance
of CODESCRIBE.

Model BLEU METEOR ROUGE-L

R-AST 32.97 21.24 47.70
R-Code 33.54 21.91 48.61
R-ASTPos 34.50 22.91 49.79
R-Copy 34.55 23.16 49.88
R-ASTRes 34.09 22.59 48.95

V-Copy 34.85 23.26 50.16
V-GCN 34.73 23.24 50.11
V-GAT 34.88 23.27 50.25
V-Emb 34.55 22.80 49.16
V-Dec 35.04 23.41 50.40

CODESCRIBE 35.11 23.48 50.46

Table 7: Ablation study on the Python dataset.

B Results of Study on the Model Size

The additional results of study on the model size on
the Python dataset are described in the Table 8, 9,
and 10. The performances show the similar change

trends with that on the Java dataset. For exam-
ple, Table 9 shows that the performance of CODE-
SCRIBE does not improve with the number increas-
ing from 2 to 12.

AST Model BLEU METEOR ROUGE-LLayers Size(×106)

2 38.89 34.81 23.27 50.12
4 39.94 34.76 23.26 50.25
6 40.99 35.11 23.48 50.46
8 42.05 35.02 23.38 50.34
10 43.10 34.88 23.35 50.22
12 44.15 34.97 23.26 50.14

Table 8: Performance of CODESCRIBE with different
numbers of AST encoding layers on the Python dataset.

Code Model BLEU METEOR ROUGE-LLayers Size(×106)

2 40.99 35.11 23.48 50.46
4 47.30 34.99 23.43 50.37
6 53.60 34.86 23.32 50.33
8 59.91 35.08 23.58 50.61
10 66.21 35.16 23.41 50.18
12 72.52 34.94 23.21 49.87

Table 9: Performance of CODESCRIBE with different
numbers of code encoding layers on the Python dataset.

Summary Model BLEU METEOR ROUGE-LLayers Size(×106)

2 19.97 34.16 22.92 49.70
4 30.48 34.75 23.32 50.29
6 40.99 35.11 23.48 50.46
8 51.51 34.90 23.43 50.37
10 62.02 35.08 23.49 50.56
12 72.53 35.19 23.59 50.58

Table 10: Performance of CODESCRIBE with different
numbers of summary decoding layers on the Python
dataset.

We further provide the results of CODESCRIBE

by varying the embedding size from 128 to 1024
with the interval of 128. As depicted in Table 11,
CODESCRIBE has the worst performance with the
embedding size 128, and performs much better
when the size becomes 256. Then the performance
improves steadily as the embedding size increases
until to 512. After that, although CODESCRIBE

can be boosted with the growth of embedding size
(from 512 to 1024), the improvement is not so ob-
vious. These observations suggest that expanding
the embedding size properly is indeed effective to
CODESCRIBE. However, excessive expansion will
not help much for the improvement.
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Emb. Model Java Python
Size Size(×106) S-BLEU METEOR ROUGE-L S-BLEU METEOR ROUGE-L

128 2.58 33.55 22.31 47.89 26.83 18.53 43.68
256 10.27 44.24 28.62 55.36 32.19 21.50 47.54
384 23.08 48.16 31.56 58.67 34.34 22.99 49.73
512 40.99 49.19 32.27 59.59 35.11 23.48 50.46
640 64.02 49.17 32.29 59.45 35.31 23.62 50.59
768 92.16 49.20 32.32 59.28 35.35 23.69 50.59
896 125.41 49.19 32.26 59.34 35.55 23.75 50.56
1024 163.78 49.32 32.29 59.35 35.20 23.56 50.29

Table 11: Performance of CODESCRIBE with different embedding sizes on the Java and Python datasets.

C Qualitative Examples

Table 12 and 13 provide qualitative examples of
R-AST, R-Copy, V-GCN, V-Dec, and our CODE-
SCRIBE on the Java and Python datasets for case
study. The overall results show that CODESCRIBE

generates better summaries for the given code snip-
pets. For instance, in the first case in Table 12, only
R-Copy and CODESCRIBE get the right intent of
the code. In the third case in Table 12, only CODE-
SCRIBE grasps the key information, i.e., “status
panel”. In the first case in Table 13, CODESCRIBE

generates the most accurate summary compared to
the other variants, which is the same in the second
case.
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Code

public void addMessage(String message){
messages.addLast(message);
if (messages.size() > MAX_HISTORY) {
messages.removeFirst();

}
pointer=messages.size();

}

Summary

Gold: add a message to the history
R-AST: add a message to the end of the list
R-Copy: add a message to the history .
V-GCN: add a message to the list
V-Dec: add a message to the list
CODESCRIBE: add a message to the history .

Code

public void hspan(double start,double end,Paint color,String legend){
LegendText legendText=new LegendText(color,legend);
comments.add(legendText);
plotElements.add(new HSpan(start,end,color,legendText));

}

Summary

Gold: draw a horizontal span into the graph and optionally add a legend .
R-AST: plot request data a a vertical and optionally add a legend .
R-Copy: draw a vertical span into the graph and optionally add a legend .
V-GCN: draw the current legend .
V-Dec: plot request data a a line , use the color and the line width specify .
CODESCRIBE: draw a vertical span into the graph and optionally add a legend .

Code

public CStatusPanel(final BackEndDebuggerProvider debuggerProvider){
super(new BorderLayout());
Preconditions.checkNotNull(debuggerProvider,"IE1094: Debugger provider argument can not be

null");↪→
m_label.setForeground(Color.BLACK);
add(m_label);
m_synchronizer=new CStatusLabelSynchronizer(m_label,debuggerProvider);

}

Summary

Gold: create a new status panel .
R-AST: create a new panel .
R-Copy: create a new panel object .
V-GCN: create a new debugger panel .
V-Dec: create a new panel object .
CODESCRIBE: create a new status panel object .

Code

private Spannable highlightHashtags(Spannable text){
if (text == null) {
return null;

}
final Matcher matcher=PATTERN_HASHTAGS.matcher(text);
while (matcher.find()) {
final int start=matcher.start(1);
final int end=matcher.end(1);
text.setSpan(new

ForegroundColorSpan(mHighlightColor),start,end,Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);↪→
text.setSpan(new

StyleSpan(android.graphics.Typeface.BOLD),start,end,Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);↪→
}
return text;

}

Summary

Gold: highlight all the hash tag in the pass text .
R-AST: highlight all the text in the pass text .
R-Copy: highlight all the hash text in the pass text .
V-GCN: highlight all the span of the text .
V-Dec: highlight all the occurrence of a match tag in the pass text .
CODESCRIBE: highlight all the hash line in the pass text .

Table 12: Qualitative examples on the Java dataset.
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Code
@_get_client
def image_create(client, values, v1_mode=False):
return client.image_create(values=values, v1_mode=v1_mode)

Summary

Gold: create an image from the value dictionary .
R-AST: create an image cli example : .
R-Copy: create an image mode that can exist from the give value .
V-GCN: create an image from a v <number> image .
V-Dec: create an image object .
CODESCRIBE: create an image from the value dictionary .

Code
def test_help_command_should_exit_status_ok_when_no_cmd_is_specified(script):
result = script.pip('help')
assert (result.returncode == SUCCESS)

Summary

Gold: test help command for no command .
R-AST: test help command for exist command .
R-Copy: test help command for exist command .
V-GCN: test help command for exist command .
V-Dec: test help command for exist command .
CODESCRIBE: test help command for no command .

Code

def all_editable_exts():
exts = []
for (language, extensions) in sourcecode.ALL_LANGUAGES.items():
exts.extend(list(extensions))

return [('.' + ext) for ext in exts])

Summary

Gold: return a list of all editable extension .
R-AST: return a list of all python extension .
R-Copy: return a list of tuples extension for all editable s .
V-GCN: return a list of all file extension that be editable by the extension .
V-Dec: return a list of all available extension .
CODESCRIBE: return a list of all editable s extension .

Code

def update_featured_activity_references(featured_activity_references):
for activity_reference in featured_activity_references:
activity_reference.validate()

activity_hashes = [reference.get_hash() for reference in featured_activity_references]
if (len(activity_hashes) != len(set(activity_hashes))):
raise Exception('The activity reference list should not have duplicates.')

featured_model_instance =
activity_models.ActivityReferencesModel.get_or_create(activity_models. \↪→

ACTIVITY_REFERENCE_LIST_FEATURED)
featured_model_instance.activity_references = [reference.to_dict() for reference in

featured_activity_references]↪→
featured_model_instance.put()

Summary

Gold: update the current list of feature activity reference .
R-AST: add the specify activity reference to the list of feature activity reference .
R-Copy: update the specify activity reference from the list of feature activity reference .
V-GCN: update the specify activity reference from the list of feature activity reference .
V-Dec: update the specify activity reference from the list of feature activity reference .
CODESCRIBE: update the list of feature activity reference .

Table 13: Qualitative examples on the Python dataset.
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