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Abstract

We study learning from user feedback for
extractive question answering by simulating
feedback using supervised data. We cast the
problem as contextual bandit learning, and an-
alyze the characteristics of several learning
scenarios with focus on reducing data annota-
tion. We show that systems initially trained on
a small number of examples can dramatically
improve given feedback from users on model-
predicted answers, and that one can use exist-
ing datasets to deploy systems in new domains
without any annotation, but instead improving
the system on-the-fly via user feedback.

1 Introduction

Explicit feedback from users of NLP systems can
be used to continually improve system perfor-
mance. For example, a user posing a question to
a question-answering (QA) system can mark if a
predicted phrase is a valid answer given the con-
text from which it was extracted. However, the
dominant paradigm in NLP separates model train-
ing from deployment, leaving models static follow-
ing learning and throughout interaction with users.
This approach misses opportunities for learning
during system usage, which beside several excep-
tions we discuss in Section 8 is understudied in
NLP. In this paper, we study the potential of learn-
ing from explicit user feedback for extractive QA
through simulation studies.

Extractive QA is a popular testbed for language
reasoning, with rich prior work on datasets (e.g.,
Rajpurkar et al., 2016), task design (Yang et al.,
2018; Choi et al., 2018), and model architecture de-
velopment (Seo et al., 2017; Yu et al., 2018). Learn-
ing from interaction with users remains relatively
understudied, even though QA is well positioned
to elicit user feedback. An extracted answer can be
clearly visualized within its supporting context, and
a language-proficient user can then easily validate

Figure 1: Illustration of an interaction setup for learn-
ing from user feedback for QA, and its potential. Given
a user question, the system outputs an answer and high-
lights it in its context. The user validates the answer
given the context with binary feedback. We show per-
formance progression from one of our online learning
experiments on SQUAD with hand-crafted illustrative
examples at two time steps.

if the answer is supported or not.1 This allows for
simple binary feedback, and creates a contextual
bandit learning scenario (Auer et al., 2002; Lang-
ford and Zhang, 2007). Figure 1 illustrates this
learning signal and its potential.

We simulate user feedback using several widely
used QA datasets, and use it as a bandit signal for
learning. We study the empirical characteristics
of the learning process, including its performance,
sensitivity to initial system performance, and trade-
offs between online and offline learning. We also
simulate zero-annotation domain adaptation, where
we deploy a QA system trained from supervised

1Answers could also come from erroneous or deceitful
contexts. This important problem is not studied by most work
in extractive QA, including ours. We leave it for future work.
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data in one domain and adapt it solely from user
feedback in a new domain.

This learning scenario can mitigate fundamental
problems in extractive QA. It reduces data collec-
tion costs, by delegating much of the learning to
interaction with users. It can avoid data collection
artifacts because the data comes from the actual
system deployment, unlike data from an annotation
effort that often involves design decisions immate-
rial to the system’s use case. For example, sharing
question- and answer-annotator roles (Rajpurkar
et al., 2016), which is detrimental to emulate in-
formation seeking behavior (Choi et al., 2018). Fi-
nally, it gives systems the potential to evolve over
time as the world changes (Lazaridou et al., 2021;
Zhang and Choi, 2021).

Our simulation experiments show that user feed-
back is an effective signal to continually improve
QA systems across multiple benchmarks. For
example, an initial system trained with a small
amount of SQUAD (Rajpurkar et al., 2016) anno-
tations (64 examples) improves from 18 to 81.6
F1 score, and adapting a SearchQA (Dunn et al.,
2017) system to SQUAD through user feedback
improves it from 45 to 84 F1 score. Our study
shows the impact of initial system performance,
trade-offs between online and offline learning, and
the impact of source domain on adaptation. These
results create the base for future work that goes be-
yond simulation to use feedback from human users
to improve extractive QA systems. Our code is
publicly available at https://github.com/
lil-lab/bandit-qa.

2 Learning and Interaction Scenario

We study a scenario where a QA model learns from
explicit user feedback. We formulate learning as a
contextual bandit problem. The input to the learner
is a question-context pair, where the context para-
graph contains the answer to the question. The
output is a single span in the context paragraph that
is the answer to the question.

Given a question-context pair, the model predicts
an answer span. The user then provides feedback
about the model’s predicted answer, which is used
to update the model parameters. We intentionally
experiment with simple binary feedback and basic
learning algorithms, to provide a baseline for what
more advanced methods could achieve with as few
assumptions as possible.

Background: Contextual Bandit Learning In
a stochastic (i.i.d.) contextual bandit learning prob-
lem, at each time step t, the learner independently
observes a context2 x(t) ∼ D sampled from the
data distribution D, chooses an action y(t) accord-
ing to a policy π, and observes a reward r(t) ∈ R.
The learner only observes the reward r(t) corre-
sponding to the chosen action y(t). The learner
aims to minimize the cumulative regret. Intuitively,
regret is the deficit suffered by the learner rela-
tive to the optimal policy up to a specific time
step. Formally, the cumulative regret at time T
is computed with respect to the optimal policy
π∗ ∈ arg maxπ∈Π E(x,y,r)∼(D,π)[r]:

RT :=

T∑
t=1

r∗(t) −
T∑
t=1

r(t) , (1)

where Π is the set of all policies, r(t) is the reward
observed at time t and r∗(t) is the reward that the
optimal policy π∗ would observe. Minimising the
cumulative regret is equivalent to maximising the
total reward.3 A key challenge in contextual bandit
learning is to balance exploration and exploitation
to minimize overall regret.

Scenario Formulation Let a question q̄ be a se-
quence of m tokens 〈q1, . . . , qm〉 and a context
paragraph c̄ be a sequence of n tokens 〈c1, . . . , cn〉.
An extractive QA model4 π predicts a span ŷ =
〈ci, . . . , cj〉 where i, j ∈ [1, n] and i ≤ j in the
context c̄ as an answer. When relevant, we denote
πθ as a QA model parameterized by θ.

We formalize learning as a contextual bandit
process: at each time step t, the model is given
a question-context pair (q̄(t), c̄(t)), predicts an an-
swer span ŷ, and receives a reward r(t) ∈ IR.
The learner’s goal is to maximize the total reward∑T

t=1 r
(t). This formulation reflects a setup where,

given a question-context pair, the QA system inter-
acts with a user, who validates the model-predicted
answer in context, and provides feedback which is
mapped to numerical reward.

2The term context here refers to the input to the learner
policy, and is different from the term context as we use it later
in extractive QA, where the term context refers to the evidence
document given as input to the model.

3Equivalently, the problem is often formulated as loss min-
imization (Bietti et al., 2018).

4In bandit literature, the term policy is more commonly
used. We use the term model from here on to align with the
QA literature.
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Algorithm 1 Online learning.
1: for t = 1 · · · do
2: Receive a question q̄(t) and context c̄(k)

3: Predict an answer ŷ(t) ← arg maxy πθ(y | q̄(t), c̄(t))
4: Observe a reward r(t)

5: Update the model parameters θ using the gradient
r(t)∇θ log πθ(ŷ

(t) | q̄(t), c̄(t))
6: end for

Learning Algorithm We learn using policy gra-
dient. Our learner is similar to REINFORCE (Sut-
ton and Barto, 1998; Williams, 2004), but we use
arg max to predict answers instead of Monte Carlo
sampling from the model’s output distribution.5

We study online and offline learning, also re-
ferred to as on- and off-policy. In online learning
(Algorithm 1), the model identity is maintained be-
tween prediction and update; the parameter values
that are updated are the same that were used to gen-
erate the output receiving reward. This entails that
a reward is only used once, to update the model
after observing it. In offline learning (Algorithm 2),
this relation between update and prediction does
not hold. The learner observes reward, often across
many examples, and may use it to update the model
many times, even after the parameters drifted arbi-
trarily far from these that generated the prediction.
In practice, we observe reward for the entire length
of the simulation (T steps) and then update for
E epochs. The reward is re-weighted to provide
an unbiased estimation using inverse propensity
score (IPS; Horvitz and Thompson, 1952). We clip
the debiasing coefficient to avoid amplifying exam-
ples with large coefficients (line 10, Algorithm 2).

In general, offline learning is easier to implement
because updating the model is not integrated with
its deployment. Offline learning also uses a train-
ing loop that is similar to optimization practices in
supervised learning. This allows to iterate over the
data multiple times, albeit with the same feedback
signal on each example. However, online learning
often has lower regret as the model is updated after
each interaction. It may also lead to higher overall
performance, because as the model improves early
on, it may observe more positive feedback overall,
which is generally more informative. We empiri-

5Early experiments showed that sampling is not as bene-
ficial as arg max, potentially because of the relatively large
output space of extractive QA. Yao et al. (2020) made a similar
observation for semantic parsing, and Lawrence et al. (2017)
used arg max predictions for bandit learning in statistical
machine translation. Table 4 in Appendix A provides our
experimental results with sampling.

Algorithm 2 Offline learning.
1: for t = 1 · · ·T do
2: Receive a question q̄(t) and context c̄(t)

3: Predict an answer ŷ(t) ← arg maxy πθ(y | q̄(t), c̄(t))
4: p(t) ← πθ(ŷ

(t) | q̄(t), c̄(t))

5: Observe a reward r(t)

6: end for
7: for E epochs do
8: for t = 1 · · ·T do
9: Compute clipped importance-weighted reward ac-

cording to the current model parameters:
10: r′ ← clip(πθ(ŷ(t)|q̄(t),c̄(t))

p(t)
, 0, 1)r(t)

11: Update the model parameters θ using the gradient
r′∇θ log πθ(ŷ

(t) | q̄(t), c̄(t))
12: end for
13: end for

cally study these trade-offs in Section 5 and 6.

Evaluating Performance We evaluate model
performance using token-level F1 on a held-out test
set, as commonly done in the QA literature (Ra-
jpurkar et al., 2016). We also estimate the learner
regret (Equation 1). Computing regret requires ac-
cess to the an oracle π∗. We use human annotation
as an estimate (Section 3).6

Comparison to Supervised Learning In super-
vised learning, the data distribution is not depen-
dent on the model, but on a fixed training set
{(q̄(t), c̄(t), y(t))}Tt=1. In contrast, bandit learners
are provided with reward data that depends on
the model itself: {(q̄(t), c̄(t), ŷ(t), r(t))}Tt=1 where
r is the reward for the model prediction ŷ(t) =
arg maxy πθ(y | q̄(t), c̄(t)) at time step t. Such
feedback can be freely gathered from users inter-
acting with the model, while building supervised
datasets requires costly annotation. This learning
signal can also reflect changing task properties
(e.g., world changes) to allow systems to adapt, and
its origin in the deployed system use makes it more
robust to biases introduced during annotation.

3 Simulation Setup

We initialize our model with supervised data, and
then simulate bandit feedback using supervised
data annotations. Initialization is critical so the
model does not return random answers, which are
likely to be all bad because of the large output
space. We use relatively little supervised data from
the same domain for in-domain experiments (Sec-
tion 5 and 6) to focus on the data annotation re-

6Our oracle is an estimate because of annotation noise and
ambiguity in exact span selection.
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duction potential of user feedback. For domain
adaptation, we assume access to a large amount of
training data in the source domain, and no anno-
tated data in the target domain (Section 7).

Reward We use supervised data annotations to
simulate the reward. If the predicted answer span
is an exact match index-wise to the annotated span,
the learner observes a positive reward of 1.0, and
a negative reward of -0.1 otherwise.7 This reward
signal is stricter than QA evaluation metrics (token-
level F1 or exact match after normalization).8

Noise Simulation We study robustness by simu-
lating noisy feedback via reward perturbation: ran-
domly flipping the binary reward with a fixed prob-
ability of 8% or 20% as the noise ratio.9

4 Experimental Setup

Data We use six English QA datasets that pro-
vide substantial amount of annotated training data
taken from the MRQA training portion (Fisch
et al., 2019): SQUAD (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), SearchQA (Dunn
et al., 2017), TriviaQA (Joshi et al., 2017), Hot-
potQA (Yang et al., 2018), and NaturalQues-
tions (NQ; Kwiatkowski et al., 2019). The MRQA
benchmark simplifies all datasets so that each exam-
ple has a single span answer with a limited evidence
document length (truncated at 800 tokens). Table 7
in Appendix B provides dataset details. We com-
pute performance measures and learning curves on
development sets following prior work (Rajpurkar
et al., 2016; Ram et al., 2021).

Model We conduct experiments with a pretrained
SpanBERT model (Joshi et al., 2020). We fine-
tune the pre-trained SpanBERT-base model during
initial learning and our simulations.

Implementation Details We use Hugging Face
Transformers (Wolf et al., 2020). When training
initial models with little in-domain supervised data
(Section 5; Section 6), we use a learning rate of
3e-5 with a linear schedule, batch size 10, and 10
epochs. We obtain the sets of 64, 256, or 1,024

7We experimented with other reward values, but did not
observe a significant difference in performance (Appendix A).

8Normalization includes lowercasing, modifying spacing,
removing articles and punctuation, etc. NaturalQuestions (NQ;
Kwiatkowski et al., 2019) is an exception, with an exact index
match measure that has similar strictness.

9Even without our noise simulation, the simulated feed-
back inherits the noise from the annotation, either from crowd-
sourcing or distant supervision.

examples from prior work (Ram et al., 2021).10

For models initially trained on complete datasets
(Section 7), we use a learning rate 2e-5 with a linear
schedule, batch size 40, and 4 epochs.

In simulation experiments, we use batch size
40. We turn off dropout to simulate interaction
with users in deployment. For single-pass online
learning experiments (Section 5; Section 7), we use
a constant learning rate of 1e-5. For offline learning
experiments (Section 6), we train the model for
3 epochs on the collected feedback with a linear
schedule learning rate of 3e-5.

Online experiments with SQUAD, HotpotQA,
NQ, and NewsQA take 2–4h each on one NVIDIA
GeForce RTX 2080 Ti; 2.5–6h for offline. For
TriviaQA and SearchQA, each online simulation
experiment on one NVIDIA TITAN RTX takes
4–9.5h; 9–20h for offline.

5 Online Learning

We simulate a scenario where only a limited
amount of supervised data is available, and the
model mainly learns from explicit user feedback
on predicted answers. We use 64, 256, or 1,024
in-domain annotated examples to train an initial
model. This section focuses on online learning,
where the learner updates the model parameters
after each feedback is observed (Algorithm 1).

Figure 2 presents the performance of in-domain
simulation with online learning. The performance
pattern varies across different datasets. Bandit
learning consistently improves performance on
SQUAD, HotpotQA, and NQ across different
amounts of supervised data used to train the initial
model. The performance gain is larger with weaker
initial models (i.e., trained on 64 supervised exam-
ples): 63.6 on SQUAD, 42.7 on HotpotQA, and
40.0 on NQ. Bandit learning is not always effective
on NewsQA, TriviaQA, and SearchQA, especially
with weaker initial models. This may be attributed
to the quality of training set annotations, which
determines the accuracy of reward in our setup.
SearchQA and TriviaQA use distant supervision
to match questions and relevant contexts from the
web, likely decreasing reward quality in our setup.
While NewsQA is crowdsourced, Trischler et al.
(2017) report relatively low human performance
(69.4 F1), possibly indicating data challenges that
also decrease our reward quality. Learning progres-

10We use the seed 46 sets publicly available at https:
//github.com/oriram/splinter.
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Figure 2: Online in-domain simulation development F1 performance. Horizontal grey lines represent the super-
vised training performance on each dataset. Data labels in red are performance of initial models trained on 64, 256,
or 1024 examples (i.e., lighter bars). Darker bars and black data labels represent simulation performance. Lower
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Figure 3: Online in-domain simulation development F1 learning curves. X-axis is the number of examples with
feedback observed. “x w y” denotes initially training with x supervised in-domain examples and simulating with
y amount of feedback noise.

Setup

64+sim
256+sim
1024+sim

SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

78.2(-3.4) 66.3(-1.2) 51.3(-10.5) 3.1(+2.0) 0.4(-17.1) 1.3(-1.8)

86.2(+4.2) 70.9(+3.3) 65.2(+0.7) 54.3(+1.2) 12.3(-8.3) 0.3(-68.1)

86.5(+1.3) 73.2(+2.7) 71.8(+3.9) 55.7(-0.6) 7.5(-54.6) 4.1(-66.2)

Table 1: Offline in-domain simulation development F1 performance. Numbers in parenthesis show the perfor-
mance gain (green) or decrease (red) of offline learning compared to online learning (Figure 2).

Setup

64+sim
256+sim
1024+sim

SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

0.63 / 1.04 0.51 / 0.94 0.74 / 0.91 1.07 / 0.86 0.77 / 0.77 1.09 / 0.77

0.56 / 0.75 0.36 / 0.58 0.71 / 0.83 0.84 / 0.85 0.76 / 0.72 0.73 / 0.69

0.48 / 0.55 0.27 / 0.33 0.65 / 0.67 0.73 / 0.71 0.71 / 0.64 0.69 / 0.65

Table 2: Regret averaged by the number of feedback observations in online/offline in-domain simulations.
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sion across datasets (Figure 3) shows that initial
models trained with 1,024 examples can achieve
peak performance with one third or even one quar-
ter of feedback provided.

Feedback Noise Simulation Figure 3 shows
learning curves with simulated noise via differ-
ent amounts of feedback perturbation (0%, 8%,
or 20%). When perturbation-free simulation is ef-
fective, models remain robust to noise: 8% noise re-
sults in small fluctuations of the learning curve, but
the final performance degrades minimally. Start-
ing with weaker initial models and learning with a
higher noise ratio may cause learning to fail (e.g.,
simulation on SQUAD with 64 initial examples
and 20% noise). When online perturbation-free
simulation fails, online learning with noisy feed-
back fails too.

Sensitivity Analysis Training Transformer-
based models has been shown to have stability
issues, especially when training with limited
amount of data (Zhang et al., 2021). Our non-
standard training procedure (i.e., one epoch with a
fixed learning rate) may further increase instability.
We study the stability of the learning process
using initial models trained on only 64 in-domain
supervised examples on HotpotQA and TriviaQA:
the former shows significant performance gain
while the latter shows the opposite. We experiment
with five initial models trained on different sets of
64 supervised examples, each used to initiate a
separate simulation experiment. Four out of five
experiments on HotpotQA show performance gains
similar to what we observed so far, except one
experiment that starts with very low initialization
performance. In contrast, nearly all experiments
on TriviaQA collapse (mean F1 of 7.3). We also
conduct sensitivity analysis with stronger initial
models trained with 1,024 examples, and observe
that the final performance is stable across runs on
both HotpotQA and TriviaQA (standard deviations
are 0.5 and 2.6). Table 5 in Appendix B provides
detailed performance numbers.

6 Offline Learning

We simulate offline bandit learning (Algorithm 2),
where feedback is collected all at once with the
initial model. The learning scenario follows the
previous section: only a limited amount of super-
vised data is available (64, 256, or 1,024 in-domain
examples) to train initial models.

Table 1 shows the performance of offline simu-
lation experiments compared to online simulations.
We observe mixed results. On SQUAD, HotpotQA,
NQ, and NewsQA, offline learning outperforms
online learning when using stronger initial mod-
els (i.e., models trained on 256 and 1,024 exam-
ples). This illustrates the benefit of the more stan-
dard training loop, especially with our Transformer-
based model that is better optimized with a linear
learning rate schedule and multiple epochs, both
incompatible with the online setup. On TriviaQA
and SearchQA, offline simulation is ineffective re-
gardless of the performance of initial models. This
result echoes the learning challenges in the online
counterparts on these two datasets.

Online vs. Offline Regret Table 2 compares on-
line and offline regret. Regret numbers are aver-
aged over the number of feedback observations.11

Online learning generally displays lower regret for
similar initial models on SQUAD, HotpotQA, and
NQ. This is expected because later interactions in
the simulation can benefit from early feedback in
online learning. In contrast, in our offline scenario,
we only update after seeing all examples, so regret
numbers depend on the initial model only. Re-
gret results on NewsQA, TriviaQA, and SearchQA
are counterintuitive, generally showing that online
learning has similar or higher regret. The cases
showing significantly higher online regret (64+sim
on NewsQA and SearchQA) can be explained by
the learning failing, which impacts online regret,
but not our offline regret. The others are more com-
plex, and we hypothesize that they may be because
of combination of (a) inherent noise in the data;
and (b) in cases where online learning is effective,
the gap between the strictly-defined reward that is
used to compute regret and the relaxed F1 evalua-
tion metric. Further analysis is required for a more
conclusive conclusion.

7 Domain Adaptation

Learning from user feedback creates a compelling
avenue to deploy systems that target new domains
not addressed by existing datasets. The scenario we
simulate in this section starts with training a QA
model on a complete existing annotated dataset,
and deploying it to interact with users and learn
from their feedback in a new domain. We do not
assume access to any annotated training data in

11Table 8 in Appendix B lists the percentage of positive
feedback in online and offline in-domain simulation.
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Figure 5: Online domain adaptation simulation development F1 learning curves. X-axis is the number of examples
with feedback observed. Colors denote the source domain.

the target domain. We report experiments with
online learning. Offline adaptation experiments are
discussed in Appendix B.3.

Figure 4 shows online domain adaptation perfor-
mance. On 22/30 configurations, online adaptation
introduces significant performance gains (>2 F1
score). For example, adapting from TriviaQA and
SearchQA to the other four domains improves per-
formance by 27–72.8 F1. On HotpotQA, the model
initially trained on TriviaQA shows an impressive

adaptation, improving from 0.2 F1 to 73 F1.12

Our simulations show reduced effectiveness
when the target domain is either TriviaQA or
SearchQA, likely because the simulated feedback
is based on noisy distantly supervised data. For
SearchQA, the low performance of initial mod-
els from other domains may also contribute to the
adaptation failure. As expected, this indicates the
effectiveness of the process depends on the relation

12We replicate this result with different model initializations
to confirm it is not random.
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Dataset In-domain SQUAD-initialized

HotpotQA 66.2→ 70.5 66.7→ 75.9
NQ 61.8→ 67.9 61.0→ 71.8
NewsQA 55.1→ 56.3 60.4→ 62.0
TriviaQA 34.2→ 62.1 67.6→ 67.9
SearchQA 65.0→ 70.3 23.5→ 4.2

Table 3: Online learning development F1 Comparison
between in-domain with initial models trained on 1,024
supervised examples, and adaptation with SQUAD as
the source domain. Each entry provide performance be-
fore (right-side of arrow) and after (left-side) feedback
simulation. Higher before/after performance is in bold.

between the source and target domains. SearchQA
seems farthest from the other domains, mirroring
observations from prior work (Su et al., 2019).

Figure 5 shows learning curves for our simula-
tion experiments. Generally, we observe the choice
of source and target domains influences adapta-
tion rates. Models quickly adapt to SQUAD, Hot-
potQA, and NQ, reaching near final performance
with a quarter of the total feedback provided. On
NewsQA, models initially trained on TriviaQA
and SearchQA adapt slower than those initially
trained on other three datasets. On TriviaQA, we
observe little change in performance throughout
simulation. On SearchQA, only the model initially
trained on TriviaQA shows a performance gain.
Both SearchQA and TriviaQA include context para-
graphs from the web, potentially making domain
adaptation from one to the other easier.

Lastly, we compare bandit learning with initial
models trained on a small amount of in-domain
data (Section 5) and initial models trained on a
large amount of out-of-domain data. Table 3 com-
pares online learning with initial models trained
on 1,024 in-domain supervised examples and on-
line domain adaptation with a SQUAD-initialized
model. SQUAD initialization provides a robust
starting point for all datasets except SearchQA. On
four out of five datasets, the final performance is
better with SQUAD-initialized model. This is po-
tentially because the model is exposed to different
signals from two datasets and overall sees more
data, either as supervised examples or through
feedback. However, on SearchQA, learning with
SQUAD-initialized model performs much worse
than learning with the initial model trained on 1,024
in-domain examples, potentially because of the gap
in initial model performance (23.5 vs. 65 F1).

8 Related Work

Bandit learning has been applied to a variety of
NLP problems including neural machine transla-
tion (NMT; Sokolov et al., 2017; Kreutzer et al.,
2018a,b; Mendoncca et al., 2021), structured pre-
diction (Sokolov et al., 2016), semantic pars-
ing (Lawrence and Riezler, 2018), intent recog-
nition (Falke and Lehnen, 2021), and summariza-
tion (Gunasekara et al., 2021). Explicit human
feedback has been studied as a direct learning sig-
nal for NMT (Kreutzer et al., 2018b; Mendoncca
et al., 2021), semantic parsing (Artzi and Zettle-
moyer, 2011; Lawrence and Riezler, 2018), and
summarization (Stiennon et al., 2020). Nguyen
et al. (2017) simulates bandit feedback to improve
an MT system fully trained on a large annotated
dataset, including analyzing robustness to feedback
perturbations. Our work shows that simulated ban-
dit feedback is an effective learning signal for ex-
tractive question answering tasks. Our work differs
in focus on reducing annotation costs by relying
on few annotated examples only to train the initial
model, or by eliminating the need for in-domain
annotation completely by relying on data in other
domains to train initial models. Implicit human
feedback, where feedback is derived from human
behavior rather than explicitly requested, has also
been studied, including for dialogue (Jaques et al.,
2020) and instruction generation (Kojima et al.,
2021). We focus on explicit feedback, but implicit
signals also hold promise to improve QA systems.

Alternative forms of supervision for QA have
been explored in prior work, such as explicitly pro-
viding fine-grained information (Dua et al., 2020;
Khashabi et al., 2020a). Kratzwald et al. (2020)
resembles our setting in seeking binary feedback to
replace span annotation, but their goal is to create
supervised data more economically. Campos et al.
(2020) proposes feedback-weighted learning to im-
proves conversational QA using simulated binary
feedback. Their approach relies on multiple sam-
ples (i.e., feedback signals) per example, training
for multiple epochs online by re-visiting the same
questions repeatedly, and tuning two additional hy-
perparameters. In contrast, we study improving QA
systems via feedback as a bandit learning problem.
In both online and offline setups, we assume only
one feedback sample per example. We also provide
extensive sensitivity studies to the amount of anno-
tations available, different model initialization, and
noisy feedback across various datasets.
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Domain adaptation for QA has been widely stud-
ied (Fisch et al., 2019; Khashabi et al., 2020b), in-
cluding using data augmentation (Yue et al., 2021),
adversarial training (Lee et al., 2019), contrastive
method (Yue et al., 2021), back-training (Kul-
shreshtha et al., 2021), and exploiting small lottery
subnetworks (Zhu et al., 2021).

9 Conclusion

We present a simulation study of learning from
user feedback for extractive QA. We formulate the
problem as contextual bandit learning. We con-
duct experiments to show the effectiveness of such
feedback, the robustness to feedback noise, the im-
pact of initial model performance, the trade-offs
between online and offline learning, and the po-
tential for domain adaptation. Our study design
emphasizes the potential for reducing annotation
costs by annotating few examples or by utilizing
existing datasets for new domains.

We intentionally adopt a basic setup, including
a simple binary reward and vanilla learning algo-
rithms, to illustrate what can be achieved with a rel-
atively simple variant of the contextual bandit learn-
ing scenario. Our results already indicate the strong
potential of learning from feedback, which more ad-
vanced methods are likely to further improve. For
example, the balance between online and offline
learning can be further explored using proximal
policy optimization (PPO; Schulman et al., 2017)
or replay memory (Mnih et al., 2015). With well-
designed interface, human users may be able to
provide more sophisticated feedback (Lamm et al.,
2021), which will provide a stronger signal com-
pared to our binary reward.

Our aim in this study is to lay the foundation for
future work, by formalizing the setup and show-
ing its potential. This is a critical step in enabling
future research, especially going beyond simula-
tion to study using real human feedback for QA
systems. Another important direction for future
work is studying user feedback for QA systems
that do both context retrieval and answer genera-
tion (Lewis et al., 2020), where assigning the feed-
back to the appropriate stage in the process poses
a challenge. Beyond extractive QA, we hope our
work will inspire research of user feedback as a
signal to improve other types of NLP systems.

Legal and Ethical Considerations

Our work’s limitations are discussed in Sec-
tion 1 and Section 9. All six datasets we use
are from prior work, are publicly available, and
are commonly used for the study of extractive
QA. Section 4 reports our computational bud-
get and experimental setup in detail. Our code-
base is available at https://github.com/
lil-lab/bandit-qa.
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Dataset arg max Sampling

SQUAD 80.0 73.6
HotpotQA 65.7 56.8
NQ 64.8 62.9

Table 4: Comparison of final F1 development scores
between arg max and sampling in online simulation
with initial models trained on 256 supervised in-
domain examples.

A Additional Discussion

Reward Function Intuitively, partial credit re-
ward may improve learning over binary rewards.
We experiment with using F1 score of the predicted
answer span as a more refined feedback.13 In prac-
tice, this does not introduce a stronger learning
signal, potentially because the distribution over
F1 scores is bimodal and focused on extreme val-
ues: around 85 % F1 scores are either 0 or 1 for
predicted spans from a SQUAD-trained model on
8% NQ training data. We observe similar trends
on all six datasets across all setups. Experiments
with BLEU score (Papineni et al., 2002) as feed-
back show similar conclusion and distribution to
F1 score.

Perturbation In practice, noise in feedback is
likely to be more systematic than the statistical
simplification which defines noise as the random
percentage of wrong feedback. For example, prior
work (Nguyen et al., 2017) on bandit neural ma-
chine translation (NMT) proposes that noisy human
feedback is granular, high-variance, and skewed,
which can be approximated by mathematical func-
tions and shows to significantly impact the bandit
NMT learning. We experiment with the three per-
turbation functions from Nguyen et al. (2017) on
F1 reward. Our experiments show that the effect
of adding these perturbation functions is negligi-
ble. We hypothesize that the reward distribution for
NMT is likely to be closer to a normal distribution,
rather than a bimodal one like QA.

B Additional Experiments

B.1 Method of Sampling
While arg max can bias towards exploitation, sam-
pling can encourage more exploration. We exper-
iment with prediction via arg max and sampling

13We set the reward as -0.1 if receiving a 0 F1 score. In
general, updating with negative rewards consistently shows a
slightly higher performance across different setups for both
binary and F1 reward.

from the output distribution over spans. Table 4
shows that arg max performs better than random
sampling on three datasets. This set of experiments
is conducted with batch size 80.

B.2 Sensitivity Analysis
Table 5 shows the sensitivity analysis results for
online in-domain simulation on HotpotQA and
TriviaQA. We experiment with five initial models
trained on different sets of 64 or 1,024 supervised
examples, each used to initiate a separate simula-
tion experiment. For weaker initial models trained
on 64 supervised examples, four out of five experi-
ments on HotpotQA show performance gains simi-
lar to our main results, except one experiment that
starts with a very low initialization performance.
Nearly all experiments on TriviaQA collapse (mean
F1 of 7.3). Our sensitivity analysis with stronger
initial models trained on 1,024 examples shows
that the final performance is stable across runs on
both HotpotQA and TriviaQA (standard deviations
are 0.5 and 2.6).

B.3 Offline Adaptation
We perform domain adaptation with offline learn-
ing, and compare its performance with online adap-
tation. Table 6 shows the performance gain of of-
fline adaptation simulation compared to the online
setup. In most settings, online learning proves to be
more effective, possibly because it observes feed-
back from partially adapted model predictions. In
a few settings (4/30), we observe better adaptation
with offline settings (+1.1 to +4.6). Overall, we
observe that online learning is more effective on
domain adaptation, while offline adaption performs
slightly better when both domains are related (e.g.,
same source domain).
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Setup 64 + sim 1,024 + sim
HotpotQA TriviaQA HotpotQA TriviaQA

42 16.4→ 66.8 16.6→ 3.3 66.1→ 71.5 55.1→ 58.9
43 15.9→ 69.7 24.0→ 3.4 65.3→ 71.6 63.0→ 65.0
44 18.1→ 68.8 23.3→ 2.4 66.4→ 71.3 58.0→ 65.1
45 6.7→ 1.4 22.8→ 9.9 65.1→ 71.9 60.8→ 64.2
46 24.8→ 67.5 16.2→ 17.4 66.2→ 70.5 34.2→ 62.1

µσ 16.46.5 → 54.829.9 20.63.8 → 7.36.4 65.80.6 → 71.40.5 54.011.4 → 63.12.6

Table 5: Sensitivity analysis: development F1 scores of online in-domain simulation on HotpotQA and TriviaQA
with initial models trained on 64 or 1,024 examples. Each row corresponds to a different random seed and a
different set of initial model training examples. x→ y denotes that the performance changes from x to y after the
model learns from feedback. Bottom row reports the mean and standard deviation across the five runs.

Sim+Eval\Pre-Train SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

SQuAD 88.1(+1.3) 89.0(+1.1) 85.9(-2.8) 78.2(-8.5) 81.3(-3.1)
HotpotQA 75.1(-0.8) 73.7(-1.1) 69.6(-3.6) 56.6(-16.4) 68.1(-4.2)
NQ 69.1(-2.7) 67.3(+4.6) 64.7(-7.6) 42.2(-25.6) 52.6(-14.6)
NewsQA 59.3(-2.7) 48.4(-10.9) 48.5(-12.5) 0.1(-57.5) 45.6(0.3)
TriviaQA 62.5(-5.4) 66.6(-3.1) 9.5(-58.4) 3.2(-61.9) 70.2(-2.0)

Table 6: Offline domain adaptation simulation development F1 performance. Numbers in parenthesis show the
performance gain (green) or decrease (red) of offline learning compared to online learning (Figure 4). We omit
offline adaptation to SearchQA because of our previous observation that all online adaptations to SearchQA fail.

Dataset Train Dev Question (Q) Context (C) Q ⊥⊥ C

SQuAD 86,588 10,507 Crowdsourced Wikipedia 7
HotpotQA 72,928 5,904 Crowdsourced Wikipedia 7
NQ 104,071 12,836 Search logs Wikipedia 3
NewsQA 74,160 4,212 Crowdsourced News articles 3

TriviaQA♠ 61,688 7,785 Trivia Web snippets 3

SearchQA♠ 117,384 16,980 Jeopardy Web snippets 3

Table 7: Dataset statistics. ♠-marked datasets use distant supervision to match questions and contexts. Q ⊥⊥ C is
true if the question was written independently from the passage used for context.

Setup

64+sim
256+sim
1024+sim

SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

0.43/0.05 0.54/0.14 0.32/0.18 0.03/0.22 0.30/0.30 0.01/0.30

0.49/0.32 0.67/0.48 0.36/0.25 0.23/0.23 0.31/0.34 0.34/0.37

0.56/0.50 0.75/0.70 0.41/0.39 0.34/0.36 0.35/0.42 0.38/0.41

Table 8: Percentage of positive examples in online/offline in-domain simulation in one pass on the training set.
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