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Abstract
We present a word-sense induction method
based on pre-trained masked language mod-
els (MLMs), which can cheaply scale to large
vocabularies and large corpora. The result
is a corpus which is sense-tagged accord-
ing to a corpus-derived sense inventory and
where each sense is associated with indicative
words. Evaluation on English Wikipedia that
was sense-tagged using our method shows that
both the induced senses, and the per-instance
sense assignment, are of high quality even
compared to WSD methods, such as Babelfy.
Furthermore, by training a static word embed-
dings algorithm on the sense-tagged corpus,
we obtain high-quality static senseful embed-
dings. These outperform existing senseful em-
beddings methods on the WiC dataset and on
a new outlier detection dataset we developed.
The data driven nature of the algorithm allows
to induce corpora-specific senses, which may
not appear in standard sense inventories, as we
demonstrate using a case study on the scien-
tific domain.

1 Introduction

Word forms are ambiguous, and derive meaning
from the context in which they appear. For example,
the form “bass” can refer to a musical instrument,
a low-frequency sound, a type of voice, or a kind
of fish. The correct reference is determined by the
surrounding linguistic context. Traditionally, this
kind of ambiguity was dealt via word sense disam-
biguation (WSD), a task that disambiguates word
forms in context between symbolic sense-ids from
a sense inventory such as WordNet (Miller, 1992)
or, more recently, BabelNet (Navigli and Ponzetto,
2010). Such sense inventories rely heavily on man-
ual curation, are labor intensive to produce, are
not available in specialized domains and inherently
unsuitable for words with emerging senses.1 This

1For example, in current WordNet version, Corona has 6
synsets, none of them relates to the novel Coronavirus.

can be remedied by word sense induction (WSI),
a task where the input is a given word-type and a
corpus, and the output is a derived sense inventory
for that word. Then, sense disambiguation can be
performed over the WSI-derived senses.

The introduction of large-scale pre-trained
LMs and Masked LMs (MLM) seemingly made
WSI/WSD tasks obsolete: instead of representing
tokens with symbols that encode sense informa-
tion, each token is associated with a contextualized
vector embeddings that captures various aspects of
its in-context semantics, including the word-sense.
These contextualized vectors proved to be very ef-
fective as features for downstream NLP tasks. How-
ever, contextualized embeddings also have some
major shortcomings: most notably for our case,
they are expensive to store (e.g. BERT embeddings
are 768 or 1024 floating point numbers for each
token), and are hard to index and query at scale.
Even if we do manage to store and query them,
they are not interpretable, making it impossible for
a user to query for a particular sense of a word
without providing a full disambiguating context for
that word. For example, consider a user wishing to
query a dataset for sentences discussing Oracle in
the mythology-prophet sense, rather than the tech
company sense. It is not clear how to formulate
such a query to an index of contextualized word
vectors. However, it is trivial to do for an index that
annotates each token with its derived sense-id (in
terms of UI, after a user issues a query such as “Or-
acle”, the system may show a prompt such as “did
you mean Oracle related to IBM; Sun; Microsoft,
or to Prophet; Temple; Queen”, allowing to narrow
the search in the right direction).

Amrami and Goldberg (2018, 2019) show how
contextualized embeddings can be used for achiev-
ing state-of-the-art WSI results. The core idea of
their WSI algorithm is based on the intuition, first
proposed by Başkaya et al. (2013), that occurrences
of a word that share a sense, also share in-context
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bug
Representatives Neighbours
bug0 bug1 bug2 bug3 bug4 bug0 bug1 bug2 bug3 bug4

insect problem feature bomb virus bugs0 vulnerability2 bugs1 bugs3 flu2

fly flaws fix device infection beetle0 glitch patches2 dumpster staph
beetle hole code bite crisis spider0 rootkit bug1 laptop1 hangover
Bugs patch dog screen disease snake1 bugs1 updates1 footage1 nosebleed
worm mistake software tag surprise worm0 virus2 patch2 cruiser3 pain4

Java chair
Representatives Neighbours Representatives Neighbours
Java0 Java1 Java0 Java1 chair0 chair1 chair0 chair1
Jakarta Eclipse Timor0 Python0 head seat Chair0 stool0
Indonesia Jo Sumatra1 JavaScript chairman position chairperson podium2

Bali Apache Sulawesi Pascal2 president wheelchair chairman0 desk0

Indies software Sumatra0 SQL presided professor president0 professorship
Holland Ruby Kalimantan library3 lead table Chairman0 throne1

pound train
Representatives Neighbours Representatives Neighbours
pound0 pound1 pound2 pound0 pound1 pound2 train0 train1 train0 train1

lb dollar beat lb0 rupee smash2 training railway recruit0 bus0
foot marks punch pounds0 shilling kick1 prepare track equip tram1

weight coin pump lbs0 dollar1 stomp educate rail recruit1 trains1
ton Mark crush ton2 franc slash0 practice line volunteer2 carriage0
kilograms mile attack lbs1 penny0 throw4 qualified railroad retrain coach3

Figure 1: Examples of induced word-senses for various words. For each sense we list the top-5 representatives, as
well as the 5 closest neighbours in the static embeddings space.

substitutes. An MLM is then used to derive top-k
word substitutes for each word, and these substitute-
vectors are clustered to derive word senses.

Our main contribution in this work is propos-
ing a method that scales up Amrami and Gold-
berg (2018)’s work to efficiently annotate all to-
kens in a large corpus (e.g. Wikipedia) with auto-
matically derived word-senses. This combines the
high-accuracy of the MLM-based approach, with
the symbolic representation provided by discrete
sense annotations. The discrete annotations are in-
terpretable (each sense is represented as a set of
words), editable, indexable and searchable using
standard IR techniques. We show two applications
of the discrete annotations, the first one is sense-
aware information retrieval (§7), and the second is
high-quality senseful static word embeddings we
can derive by training a static embeddings model
on the large sense annotated corpus (§8).

We first show how the method proposed by Am-
rami and Goldberg (2018) can be adapted from
deriving senses of individual lemmas to efficiently
and cheaply annotating all the corpus occurrences
of all the words in a large vocabulary (§3). Deriv-
ing word-sense clusters for all of English Wikipedia
words that appear as single-token words in BERT-
LARGE’s (Devlin et al., 2019) vocabulary, and as-
signing a sense to each occurrence in the corpus,
required 100 hours of cheap P100 GPUs (5 hours

of wall-clock time on 20 single GPU machines)
followed by roughly 4 hours on a single 96-cores
CPU machines. The whole process requires less
than 50GB of disk space, and costs less than 150$
on Google Cloud platform.

After describing the clustering algorithm (§4),
we evaluate the quality of our system and of the
automatic sense tagging using SemEval datasets
and a new manually annotated dataset we created
(§5). We show that with the produced annotated
corpora it is easy to serve sense-aware informa-
tion retrieval applications (§7). Another immediate
application is feeding the sense-annotated corpora
to a static embedding algorithm such as word2vec
(Mikolov et al., 2013), for deriving sense-aware
static embeddings (§8). This results in state-of-the-
art sense-aware embeddings, which we evaluate
both on an existing WiC benchmark (Pilehvar and
Camacho-Collados, 2019) and on a new challeng-
ing benchmark which we create (§9).

In contrast to WSD which relies on curated sense
inventories, our method is data-driven, therefore
resulting senses are corpus dependent. The method
can be applied to any domain for which a BERT-
like model is available, as we demonstrate by apply-
ing it to the PubMed Abstracts of scientific papers,
using SCIBERT (Beltagy et al., 2019). The re-
sulting senses cover scientific terms which are not
typically found in standard sense inventories (§6).
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Figure 1 shows examples of induced senses
for selected words from the English Wikipedia
corpus. For each sense we list 5 community-
based representatives (§3), as well as the 5 closest
neighbours in the sense-aware embedding space
(§8). Additional examples are available in Ap-
pendix A. Code and resources are available in
github.com/allenai/WSIatScale.

2 Related Work

Word Sense Induction and Disambiguation
Previous challenges like Jurgens and Klapaftis
(2013) focused on word sense induction for small
sized datasets. To the best of our knowledge we are
the first to perform large-scale all-words WSI. The
closest work to our method is the substitution-based
method proposed in Amrami and Goldberg (2018,
2019) which is the starting point to our paper. In
that paper, the authors suggested a WSI algorithm
designed for a small dataset (SemEval 2010, 2013)
with a predefined set of ambiguous target words
(See (§3) for more details on the algorithm). In
our work, we change Amrami and Goldberg (2019)
such that we can efficiently run sense induction on
all the words in very large corpora.

An alternative approach for sense tagging is
based on Word Sense Disambiguation (WSD). The
two main WSD methods are Supervised WSD and
Knowledge-based WSD. Supervised WSD suffers
from the difficulty of obtaining an adequate amount
of annotated data. Indeed, even SemCor, the largest
manually annotated tagged corpus, consists of only
226,036 annotated tokens. Among different super-
visied WSD methods, Zhong and Ng (2010) sug-
gested a SVM based approach and Melamud et al.
(2016); Yuan et al. (2016) suggested LSTMs paired
with nearest neighbours classification. Knowledge-
base WSD (Moro et al., 2014; Pasini and Navigli,
2017), on the other hand, avoids the reliance on
large annotated word-to-sense corpus and instead
maps words to senses from a closed sense inven-
tory (e.g. WordNet (Miller, 1992), BabelNet (Nav-
igli and Ponzetto, 2010)). As such, the quality
of knowledge-based WSD heavily depends on the
availability, quality and coverage of the associated
annotated resources.

Sense Embeddings In §8 we exploit the
sense-induced corpus to train sense embeddings.
Reisinger and Mooney (2010) were the first to sug-
gest creating multiple representations for ambigu-
ous words. Numerous recent papers (Chen et al.,

2014; Rothe and Schütze, 2015; Iacobacci et al.,
2015; Pilehvar and Collier, 2016; Mancini et al.,
2017; Iacobacci and Navigli, 2019) aim to pro-
duce similar embeddings, all of which use either
WordNet or BabelNet as semantic network. Our
method is similar to Iacobacci et al. (2015), with
the difference being that they rely on semantic net-
works (via Babelfy (Moro et al., 2014)). In contrast
and similarly to us, Pelevina et al. (2016) does not
rely on lexical resources such as WordNet. The
authors proposed splitting pretrained embeddings
(such as word2vec) to a number of prototype sense-
embeddings. Yet in our work, we directly learn the
multi-prototype sense-embeddings which is only
possible due to the large-scale corpus annotation.
When comparing both methods in §9.1 we infer
it is better to directly learn multi-prototype sense-
embeddings.

3 Large Scale Sense Induction

3.1 Definition

We define large-scale sense induction as deriving
sense clusters for all words in a large vocabulary
and assigning a sense cluster to each corpus occur-
rence of these words.2

3.2 Algorithm

Contextualized BERT vectors contain sense infor-
mation, and clustering the contextualized vectors
results in sense clusters. However, storing a 1024
dimensional vector of 32bit floats for each relevant
token in the English Wikipedia corpus requires
over 8TB of disk-space, making the approach cum-
bersome and not-scalable. However, as shown by
Amrami and Goldberg (2019), MLM based word-
substitutes also contain the relevant semantic in-
formation, and are much cheaper to store: each
word-id in BERTLARGE’s vocabulary can be repre-
sented by 2 bytes, and storing the top-5 substitutes
for each corpus position requires less than 20GB
of storage space.3

2In BERT-large-cased-whole-word-masking this corre-
sponds to 16k vocabulary items, that match to 1.59B full words
in English Wikipedia, or 92% of all word occurrences. Ana-
lyzing the remaining words, only 0.01% appear in Wikipedia
more than 100 times. We derive word senses to a substantial
chunk of the vocabulary, which also corresponds to the most
ambiguous words as less frequent words are substantially less
polysemous (Hernández-Fernández et al., 2016; Fenk-Oczlon
et al., 2010; Zipf, 1945).

3The size can be reduced further using adaptive encoding
techniques that assign fewer bits to frequent words. We did
not implement this in this work.
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Figure 2: Scalable WSI flow. Given raw text, we annotate each word with its top-k substitutes, create inverted
word index, find best clusters for each distinct lemma and associate all corpus words with a matching cluster.

In order to perform WSI at scale, we keep the
main intuition from Amrami and Goldberg (2019),
namely to cluster sparse vectors of lemmas of the
top-k MLM-derived word substitutions. This re-
sults in vast storage saving, and also in a more inter-
pretable representations. However, for scalability,
we iterate over the corpus sentences and collect the
top-k substitutes for all words in the sentence at
once based on a single BERT call for that sentence.
This precludes us from using the dynamic-patterns
component of their method, which requires sepa-
rately running BERT for each word in each sen-
tence. However, as we show in Section §5.1 we
still obtain sufficiently high WSI results.

The steps for performing Scalable WSI are sum-
marized in Fig. 2. We elaborate on each step below,
using English Wikipedia as a running example.4

Annotation: We run BERT-large-cased-whole-
word-masking on English Wikipedia, inferring sub-
stitutes for all corpus positions. For positions that
correspond to single-token words,5 we consider the
predicted words, filter stop-words, lemmatize the
remaining words (Honnibal et al., 2020), and store
the top-5 most probable lemmas to disk. This step
takes 5 hours on 20 cloud-based GPU machines
(total of 100 GPU hours), resulting in 1.63B tokens
with their corresponding top-5 lemmas.

Inverted Word Index: We create an inverted
index mapping from each single-token word to its
corpus occurrences (and their corresponding top-5
lemmas). This takes 5 minutes on a 96 cores CPU
machine, and 10GB of disk.

Sense Induction: For each of 16,081 lemmas
corresponding to single-token words, we retrieve
random 1000 instances,6 and induce senses using

4The Wikipedia corpus is based on a dump from August
2020, with text extracted using WikiExtractor (Attardi, 2015).

5We exclude single-character tokens, stopwords and punc-
tuation.

6The clustering algorithm scales super-linearly with the
number of instances. To reduce computation cost for tokens
that appear more than 1000 times in the dataset, we sample
min(numOccur,1000) instances for each token word, and
cluster given the subset of instances. We then associate each
of the remaining instances to one of the clusters as explained

bass0 bass1 bass2 bass3 bass4
bassist double fish tenor trap
guitar second bottom baritone swing
lead tail perch voice heavy
drum steel shark soprano dub
rhythm electric add singer dance

Table 1: Top 5 representatives of the sense-specific
communities of word bass. The communities roughly
match to bass as a musical instrument, register, fish
species, voice and in the context of Drum&Bass

the community-based algorithm described in §4.
This process requires 30 minutes on the 96-core
CPU machine, and uses 100MB of disk space. The
average number of senses per lemma is 3.13. Each
sense is associated with up to 100 representative
words, which represent the highest-degree words
in the sense’s community. Table 1 shows the 5
senses found for the word bass with their top-5
representative words. See additional examples in
Fig. 1 and Appendix A.

Tagging: Each of the remaining word-
occurrences is associated with a sense cluster by
computing the Jaccard similarity between the oc-
currences’ top-5 lemmas and the cluster represen-
tatives, and choosing the cluster that maximizes
this score. For example, an occurrence of the word
bass with lemmas tenor, baritone, lead, opera, so-
prano will be associated with bass3. This takes 100
minutes on 96-core machine, and 25GB of storage.

4 Sense Clustering Algorithm

We replace the hierarchical clustering algorithm
used by Amrami and Goldberg (2018, 2019) with
a community-detection, graph-based clustering al-
gorithm. One major benefit of the community de-
tection algorithms is that they naturally produces
a dynamic number of clusters, and provide a list
of interpretable discrete representative lemmas for
each cluster. We additionally found this method to
be more stable.

Graph-based clustering for word-sense induction
typically constructs a graph from word occurrences

in the final step of the algorithm.
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or collocations, where the goal is to identify sense-
specific sub-graphs within the graph that best in-
duce different senses (Klapaftis and Manandhar,
2008, 2010). We instead construct the graph based
on word substitutes. Following Jurgens (2011), we
pose identifying sense-specific clusters as a com-
munity detection problem, where a community is
defined as a group of connected nodes that are
more connected to each other than to the rest of the
graph.

Graph construction For each word w in the vo-
cabulary, we construct a graph Gw = (Vw, Ew)
where each vertex v ∈ Vw is a substitute-word pre-
dicted by the MLM forw, and an edge (u, v) ∈ Ew

connects substitutes that are predicted for the same
instance. The edge is weighted by the number of
instances in which both u and v were predicted.
More formally, let X = {xiw}ni=1 bet the set of all
top-k substitutes for n instances of word w, and
xiw = {w′j

xi
w
}kj=1 represents the k top substitutes

for the ith instance of word w. The graph Gw is
defined as follows:

Vw = {u : ∃i u ∈ xiw}
Ew = {(u, v) : ∃i u ∈ xiw ∧ v ∈ xiw}

W (u, v) = |{i : (u, v) ∈ xiw}|

Community detection A community in a sub-
graph corresponds to a set of tokens that tend to
co-occur in top-k substitutes of many instances,
and not co-occur with top-k substitutes of other
instances. This corresponds well to senses and we
take community’s nodes as sense’s representatives.

We identify communities using the fast “Louvain”
method (Blondel et al., 2008). Briefly, Louvain
searches for an assignment of nodes to clusters
such that the modularity scoreQ—which measures
the density of edges inside communities compared
to edges between communities—is maximized:

Q =
1

2m

∑
u v

[
W (u, v)− kukv

2m

]
δ(cu, cv)

m is the sum of all edge weights in the graph, ku =∑
vW (u, v) is the sum of the weights of the edges

attached to node u, cu is the community to which u
is assigned, and δ is Kronecker delta function. This
objective is optimized using an iterative heuristic
process. For details, see Blondel et al. (2008).

5 Intrinsic Evaluation of Clustering
Algorithm

We start by intrinsically evaluating the WSI clus-
tering method on: (a) SemEval 2010 and SemEval
2013; and (b) a new test set we develop for large-
scale WSI. In section 9, we additionally extrinsi-
cally evaluate the accuracy of static embeddings
derived from a sense-induced Wikipedia dataset.

When collecting word-substitutes, we lemmatize
the top-k list, join equivalent lemmas, remove stop-
words and the target word from the list, and keep
the top-5 remaining lemmas.

5.1 SemEval Evaluation
We evaluate the community-based WSI algorithm
on two WSI datasets: SemEval 2010 Task 14 (Man-
andhar et al., 2010) and SemEval 2013 Task 13
(Jurgens and Klapaftis, 2013). Table 2 compares
our method to Amrami and Goldberg (2018, 2019)
and AutoSense (Amplayo et al., 2019), which is the
second-best available WSI method. Bert-noDP/DP
are taken from Amrami and Goldberg (2019). Bert-
DP uses “dynamic patterns” which precludes wide-
scale application. We follow previous work (Man-
andhar et al., 2010; Komninos and Manandhar,
2016; Amrami and Goldberg, 2019) and evaluate
SemEval 2010 using F-Score and V-Measure and
SemEval 2013 using Fuzzy Normalized Mutual In-
formation (FNMI) and Fuzzy B-Cubed (FBC) as
well as their geometric mean (AVG). Our method
performs best on SemEval 2010 and comparable to
state-of-the-art results on SemEval 2013. The algo-
rithm performs on-par with the Bert-noDP method,
and does not fall far behind the Bert-DP method.
We now turn to assess the end-to-end induction and
tagging over Wikipedia.

5.2 Large Scale Manual Evaluation
We evaluate our method on large corpora by ran-
domly sampling 2000 instances from the sense-
induced Wikipedia, focusing on frequent words
with many senses. We manually annotate the sam-
ples’ senses without access to the automatically
induced senses, and then compare our annotations
to the system’s sense assignments. We publicly
release our manual sense annotations.

Sampling and Manual Annotation We used a
list of 20 ambiguous words from CoarseWSD-20
(Loureiro et al., 2021). The full list and per-word
results can be found in Appendix C. For each word
we sampled 100 passages from English Wikipedia
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Model F-S V-M AVG
AutoSense 61.7 9.8 24.59
Bert-noDP 70.9 (0.4) 37.8 (1.5) 51.7 (1.2)
Ours 70.95 (0.63) 40.79 (0.19) 53.79 (0.31)
Bert-DP 71.3 (0.1) 40.4 (1.8) 53.6 (1.2)

Model FNMI FBC AVG
AutoSense 7.96 61.7 22.16
Bert-noDP 19.3 (0.7) 63.6 (0.2) 35.1 (0.6)
Ours 19.42 (0.39) 61.98 (0.12) 34.69 (0.33)
Bert-DP 21.4 (0.5) 64.0 (0.5) 37.0 (0.5)

Table 2: Evaluation on the SemEval 2010 (top) and Se-
mEval 2013 (bottom) datasets. We report mean (STD)
scores over 10 runs.

with the target word, including inflected forms
(case insensitive). Unlike CoarseWSD-20, we sam-
pled examples without any respect to a predefined
set of senses. For example, the only two senses that
appear in CoarseWSD-20 for the target word arm
are arm (anatomy), and arm (computing), leaving
out instances matching senses reflecting weapons,
subdivisions, mechanical arms etc.

With the notion that word sense induction sys-
tems should be robust to different annotations
schemes, we gave two fluent English speakers 100
sentences for each of the 20 ambiguous words from
CoarseWSD-20. Annotators were not given a sense
inventory. Each annotator was asked to label each
instance with the matching sense according to their
judgment. For example, for the target word apple in
the sentence “The iPhone was announced by Apple
CEO.", annotators can label the target sense with
Apple Inc., Apple The Company etc. Annotation
Guidelines are available in Appendix B.

On average annotators labeled 6.65 senses per
word (5.85 and 7.45 average clusters per word for
the two annotators). This is more than the 2.65
average senses according to CoarseWSD-20 and
less than WordNet’s 9.85.

Results We report our system’s performance
alongside two additional methods: A strong base-
line of the most frequent sense (MFS), and Babelfy
(Moro et al., 2014)—the sense disambiguation sys-
tem used in BabelNet (Tested using Babelfy live
version April 2021). Differently from the latter,
our system does not disambiguates but induces
senses, therefore, clusters are not labeled with a
sense tag from a sense inventory. Instead, we rep-
resent senses to annotators using a list of common
substitute words and a few examples. Thus, after
annotating the Wikipedia passages, we additionally
asked annotators to name the system’s clusters with
the same naming convention as in their annotations.

MFS Babelfy Ours
Ann #1 49.55 41.5 89.05
Ann #2 49.9 41.95 85.95
average 49.72 41.72 87.50

Table 3: Classification F1 scores for MFS, Babelfy and
our proposed system by annotator on our manually an-
notated dataset.

Given a similar naming convention between sys-
tems and annotators, we report F1 scores of sys-
tems’ tagging accuracy with respect to the manual
annotations. We report F1 averaged over words in
Table 3. Our system outperforms both baselines,
despite Babelfy having access to a list of predefined
word senses. A full by-word table and comprehen-
sive results analysis are in Appendix C.

While a 1-to-1 mapping between system clusters
and manual senses is optimal, our system some-
times splits senses into smaller clusters, thus anno-
tators will name two system clusters with the same
label. Therefore it is also important to report the
number of clusters produced by the system com-
paring to the number of senses after the annotators
merged similar clusters. Our system produced 7.25
clusters with 2.25 clusters on average merged by
the annotators.7 Additionally, in rare cases our sys-
tem encapsulates a few senses in a single cluster:
this happened 3 and 5 times for both annotators
across all the dataset.

6 Application to Scientific Corpora

A benefit of a WSI approach compared to WSD
methods is that it does not rely on a pre-specified
sense inventory, and can be applied to any corpus
for which a BERT-like model is available. Thus, in
addition to the Wikipedia dataset that has been pre-
sented throughout the paper, we also automatically
induce senses over a corpus of 31 million PubMed
Abstracts,8 using SciBERT (Beltagy et al., 2019).
As this dataset is larger than the Wikipedia dump,
the process required roughly 145 GPU hours and
resulting in 14, 225 sense-annotated lemmas, with
an average number of 2.89 senses per lemma.

This dataset highlights the data-driven advan-
tages of sense-induction: the algorithm recovers
many senses that are science specific and are not
represented in the Wikipedia corpora. While per-
forming a wide-scale evaluation of the scientific
WSI is beyond our scope in this work, we do show

7This is partially due to using clusters from two casing (e.g.
bank and Bank), some of the merges share sense meaning but
of different casing.

8www.nlm.nih.gov/databases/download/pubmed_medline
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a few examples to qualitatively demonstrate the
kinds of induced senses we get for scientific texts.

For each of the words mosaic, race and swine
we show the induced clusters and the top-5 cluster
representatives for each cluster.

mosaic0 mosaic1 mosaic2 mosaic3
virus partial mixture mixed
dwarf chimeric landscape genetic
mild congenital combination spatial
cmv heterozygous pattern functional
stripe mutant matrix cellular

While senses mosaic0 (the common mosaic
virus of plants) and mosaic2 (“something resem-
bling a mosaic", “mosaic of..") are represented in
Wikipedia, senses mosaic1 (the mosaic genetic dis-
order) and mosaic3 (mosaic is a quality, e.g., “mo-
saic border”, “mosaic pattern”) are specific to the
scientific corpora (The Wikipedia corpora, on the
other hand, includes a sense of mosaic as a decora-
tive art-form, which is not represented in Pubmed).

race0 race1 race2 race3
racial exercise class pcr
ethnicity run group clone
black training state sequence
rac competition population rt
gender sport genotype ra

Senses race0 (ethnic group), race1 (competition)
and race2 (population/civilization) are shared with
wikipedia, while the sense race3 (“Rapid amplifica-
tion of cDNA ends”, a technique for obtaining the
sequence length of an RNA transcript using reverse
transcription (RT) and PCR) is Pubmed-specific.

swine0 swine1 swine2
pig seasonal patient
porcine avian infant
animal influenza group
livestock pandemic case
goat bird myocardium

Here swine1 captures the Swine Influenza pan-
demic, while swine2 refers to swine as experimen-
tal Pigs.

7 Sense-aware Information Retrieval

An immediate application of a high quality sense-
tagged corpus is sense-aware retrieval. We incorpo-
rate the sense information in the SPIKE extractive
search system (Shlain et al., 2020)9 for Wikipedia
and Pubmed datasets. When entering a search term,
suffixing it with @ triggers sense selection allowing

9spike.apps.allenai.org

to narrow the search for the specific sense. Con-
sider a scientist looking for PubMed occurrences
of the word “swine" in its influenza meaning. As
shown in Figure 3, this can be easily done by writ-
ing “swine@” and choosing the second item in the
resulting popup window. The outputs are sentences
with the word “swine" in the matching sense. As
far as we know, SPIKE is the first system with
such WSI capabilities for IR. Similarly, Blloshmi
et al. (2021) suggested to enhance IR with sense
information, but differently from us, this is done
by automatically tagging words with senses from a
predefined inventory.

8 Sense-aware Static Embeddings

Learning static word embeddings of sense-
ambiguous words is a long standing research
goal (Reisinger and Mooney, 2010; Huang et al.,
2012). There are numerous real-world tasks where
context is not available, precluding the use of
contextualized-embeddings. These include Outlier
Detection (Camacho-Collados and Navigli, 2016;
Blair et al., 2016), Term Set Expansion (Roark and
Charniak, 2000) the Hypernymy task (Breit et al.,
2021), etc. Additionally, static embeddings are
substantially more efficient to use, can accommo-
date larger vocabulary sizes, and can accommodate
efficient indexing and retrieval. Yet, despite their
flexibility and success, common word embedding
methods still represent ambiguous words as a single
vector, and suffer from the inability to distinguish
between different meanings of a word (Camacho-
Collados and Pilehvar, 2018).

Using our sense-tagged corpus we suggest a sim-
ple and effective method for deriving sense-aware
static embeddings: We run an off-the-shelf embed-
ding algorithm,10 on the corpus where single-token
words are replaced with a concatenation of the
word and its induced sense (e.g. “I caught a bass."
becomes “I caught@0 a bass@2."). This makes
the embedding algorithm learn embeddings for all
senses of each word out-of-the-box.11 An integral
property of the embedding algorithm is that it repre-
sents both the sense-annotated tokens and the other
vocabulary items in the same embedding space —

10We use the CBOW variant of the word2vec algorithm
(Mikolov et al., 2013) as implemented in Gensim (Řehůřek
and Sojka, 2010). We derive 100-dimensional embeddings
using the negative-sampling algorithm and a window size of
5.

11A similar approach was used by Iacobacci et al. (2015)
over a corpus which was labeled with BabelNet and WordNet
senses.
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Figure 3: User interaction in SPIKE when looking for the word “swine" in its “swine flu" sense. (Unlike the
animal/experimental pig senses)

this helps sense inferring about words that are rep-
resented in the MLM as multi-tokens words (Even
though these correspond to less-frequent and often
less ambiguous words (Hernández-Fernández et al.,
2016; Fenk-Oczlon et al., 2010; Zipf, 1945)). For
example, in the top-5 nearest neighbours for the dif-
ferent bass senses as shown below, smallmouth and
pumpkinseed, multi-token words in BERTLARGE’s
vocabulary, are close neighbours the bass instances
that correspond to the fish sense.

bass0 bass1 bass2 bass3 bass4
guitar0 tuba crappie baritone0 synth
drums0 trombone0 smallmouth tenor0 drum1

guitar3 horn0 pumpkinseed alto0 synths
keyboards0 flute0 sunfish bassoon breakbeats
keyboard0 trumpet0 perch0 flute0 trap4

Note that some neighbours are sense annotated
(single-token words that were tagged by our sys-
tem), while others are not (multi-token words).

For English Wikipedia, we obtain a total vocab-
ulary of 1.4M forms, 90, 023 of which are sense-
annotated. Compared to the community-based rep-
resentative words, the top neighbours in the embed-
ding space tend to capture members of the same
semantic class rather than direct potential replace-
ments.

9 Sense-aware Embeddings Evaluation

9.1 WiC Evaluation

Pilehvar and Camacho-Collados (2019) introduced
the WiC dataset for the task of classifying word
meaning in context. Each instance in WiC has a
target word and two contexts in which it appears.
The goal is to classify whether the word in the
different contexts share the same meaning. e.g.
given two contexts: There’s a lot of trash on the
bed of the river and I keep a glass of water next
to my bed when I sleep, our method should return
False as the sense of the target word bed is different.

Method Acc.
JBT (Pelevina et al., 2016) 53.6
Sense-aware Embeddings (this work) 58.3
SW2V* (Mancini et al., 2017) 58.1
DeConf* (Pilehvar and Collier, 2016) 58.7
LessLex* (Colla et al., 2020) 59.2

Table 4: Accuracy scores on the WiC dataset. Systems
marked with * make use of external lexical resources.

Word Embeddings OPP Acc.
GloVe 93.31 65
word2vec 93.31 68
DeConf 93.37 73
Ours (Skip-gram) 96.31 83.5
Ours (CBOW) 96.68 86

Table 5: OPP and Accuracy on the 25-7-1-8 dataset.

Our method is the following: Given the sense-
aware embeddings, a target word w and two con-
texts, we calculate the context vector as the average
of the context words. The matching sense vector
is the closest out of all w embeddings. We then
classify the contexts as corresponding to the same
meaning if the cosine distance of the found sense
embedding is more than threshold apart. We do not
use the train set. The threshold is optimized over
the development set and fixed to 0.68.

This task has a few tracks, we compare our em-
beddings systems to the best performing methods
from the Sense Representations track. Of these,
JBT (Pelevina et al., 2016), a lexical embedding
method, is the only one that does not use an ex-
ternal lexical resource (induction). The results in
Table 4 show accuracy on this task. We outper-
form the induction method, and are on-par with
the lexicon-based methods, despite not using any
external lexical resource.

9.2 Evaluation via Outlier Detection

Another setup for evaluating word embeddings is
that of outlier detection: given a set of words, iden-
tify which one does not belong to the set (Blair
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et al., 2016). Outlier detection instances are com-
posed of in-group elements and a set of outliers
from a related semantic space. In each evalua-
tion round, one outlier is added to the in-group
items, and the algorithm is tasked with finding the
outlier. Existing outlier detection datasets either
did not explicitly target sense-ambiguous words
(8-8-8 (Camacho-Collados and Navigli, 2016),
WikiSem500 (Blair et al., 2016)) or explicitly re-
moved ambiguous words altogether (25-8-8-sem
(Brink Andersen et al., 2020)).

Ambiguity-driven Outlier Detection. We con-
struct a challenge set for outlier detection that
specifically targets ambiguous cases. In order to
account for sense ambiguity, we add a distractor to
each of the in-group sets: the distractor is an item
which has multiple senses, where the most salient
sense does not belong to the group, while another
sense does belong to the group. For example:

In-group: zeus, hades, poseidon, aphrodite,
ares, athena, artemis
Outliers: mercury, odysseus, jesus, sparta, delphi,
rome, wrath, atlanta
Distractor: nike

Here, a model which does not explicitly repre-
sent the greek-god sense of nike is likely to place it
far away from the in-group instances, causing it to
be mistakenly marked as the outlier.

The starting point for our dataset is 25-8-8-Sem
(Brink Andersen et al., 2020). This dataset contains
25 test groups, each with 8 in-group elements and 8
outliers, resulting in 200 unique test cases. The out-
liers are sorted in a decreasing degree of relatedness
to the in-group elements. In our dataset we replace
one of the in-group elements with an ambiguous
distractor. For example, in the Greek-gods case
above, we replaced the original 8th item (“hera")
with the ambiguous distractor nike. 12 The dataset
consists of 25 groups of 7 non ambiguous group
elements, 1 distractor and 8 outliers (25-7-1-8),
similarly resulting 200 unique test cases.
Method Following Camacho-Collados and Nav-
igli (2016), we rank each word likelihood of being
the outlier by the average of all pair-wise seman-
tic similarities of the words in W\{w}. Therefore
if w is an outlier, this score should be low. See
Appendix D for additional details.
Metrics Camacho-Collados and Navigli (2016)

12We additionally changed terms that are debatably ambigu-
ous and changed the “African animals" group to the more
general “animals" as no distractors were found.

proposed evaluating outlier detection using the ac-
curacy (The fraction of correctly classified outliers
among the total cases) and Outlier Position Per-
centage (OPP) metric. OPP indicates how close
outliers are to being classified correctly:

OPP =

∑
W∈D

OP (W )
|W |−1

|D|
× 100

where OP (W ) is the position of the outlier accord-
ing to the algorithm.
Results In Table 5 we report performance of on
the 25-7-1-8 set. Word2vec and GloVe accuracy
scores are low while having high OPP scores. This
is the expected behaviour for embeddings without
sense awareness. These will position the distrac-
tor and the outlier furthest away from the group
items while not designed to make the hard decision
required for high Accuracy. Our sense-aware em-
beddings strongly outperform GloVe and word2vec
which do not include senses. Our embeddings also
outperform the word embeddings proposed in De-
Conf (Pilehvar and Collier, 2016), which are the
best performing sense embeddings on WiC which
are also publicly available.

10 Conclusion

We show that substitution-based word-sense induc-
tion algorithms based on word-substitutions de-
rived from MLMs are easily scalable to large cor-
pora and vocabulary sizes, allowing to efficiently
obtain high-quality sense annotated corpora. We
demonstrate the utility of such large-scale sense an-
notation, both in the context of a scientific search
application, and for deriving high-quality sense-
aware static word embeddings.

As a secondary contribution, we also develop
a new variant of the Outlier Detection evaluation
task, which explicitly targets ambiguous words.
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A Additional Examples

Due to limit of space we provide additional exam-
ples in the appendix. We start with the senses found
for the word face:

Representatives
face0 face1 face2 face3
confront head look side
meet front address line
encounter name point wall
suffer cheek serve surface
experience body toward slope
Neighbours
face0 face1 face2 face3
meet3 hand0 faced2 slope0
challenge3 forehead0 sit1 rim0

suffer0 hands0 hang1 flank2

confront0 nose0 facing2 ridge4
lose1 eyes3 rotate0 slope1

The face senses refer to meeting/confronting, the
body part, turn/look and side, respectively.

Here we present two senses of the word orange,
corresponding to the color and fruit:

Representatives Neighbours
orange0 orange1 orange0 orange1
yellow apple yellow0 apple0
red lemon purple0 avocado
amber lime amber0 almond
pink fruit blue0 apple1
olive banana orangish apricot

Finally we present the senses for Jordan:
Representatives
Jordan0 Jordan1 Jordan2 Jordan3

Johnson Jerusalem David River
Jones Palestine Jason Zion
Jackson Israel Joel Water
Murray Yemen Justin City
Mason Turkey Jonathan water
Neighbours
Jordan0 Jordan1 Jordan2 Jordan3

Jones1 Kuwait1 Jeremy1 Huleh
Kramer1 Lebanon0 Aaron0 Yarkon
Allen0 Syria0 Justin0 Arabah
Mack0 Iraq0 Brandon0 Khabur
Robinson0 Sudan1 Josh0 Tyropoeon

Here the clusters correspond to Jordan the sur-
name, the country, first name and the Jordan River,
respectively.

B Annotation Guidelines for Manual
Evaluation

The objective of this task is to annotate word-
meanings of 20 ambiguous words in a total of 2000
different contexts.

What is word-meaning? Words have different
meanings in different contexts, for example, in the
sentence: “there is a light that never goes out",
the word “light" refers to any device serving as a

source of illumination. While “light" in the sen-
tence “light as a feather" refers to the compara-
tively little physical weight or density of an object.

Step 1:
In this dataset we examine 20 ambiguous words

as targets. For each of these words we collected
100 sentences in which the target word appears.
For every sentence in the 100 set per target word,
you will be asked to write a short label expressing
the meaning of the target word in that particular
context.

For example, here are three sentences with the
target word “light", each with its possible annota-
tion.

1. “there is a light that never goes out"→ visible
light.

2. “light as a feather"→ light as in weight.
3. “magnesium is a light metal" → light as in

weight.
Note that in this example the annotator found

the second and third meanings of the word “light"
to be the same and therefore labeled them with the
same label.13

While some annotations are indeed intuitive, la-
beling word-meanings when the target word is part
of a name can be challenging. Here are a few guide-
lines for such use case:

Whenever a target word appeared as part of
a name (Person, Organization etc.), one of three
heuristics should be used14:

1. If the target word is the surname of a person,
the example should be tagged surname.15

2. If the entity (as a whole) refers to one of the
word-meanings, it should be labeled as such. For
example, Quitobaquito Springs label should refer
to a natural source of water.

3. If the target word is part of a name differ-
ent from the original word-meaning, it should be
tagged as Part of Name. This includes song names,
companies (Cold Spring Ice), restaurants etc. Pos-
sible exceptions for this case are when a specific
named entity is significantly frequent.

Step 2: 16

13For ease of use for future evaluators, at the end of this
step, both annotators picked a single naming convention when
two labels referred to the same sense. Names of labels that
were used only by one annotator were not changed.

14Some of the dissimilarities between the annotations are
with respect the tension between the second and third guide-
lines.

15As opposed to Babelfy, there was no attempt for entity
linking, so all persons were tagged the same.

16This step is presented to annotators once step 1 is done
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For each of the target words you labeled, you
will now receive a short list of indirect word-
meaning definitions. Indirect word-meanings are
composed of:

(a) A list of 10 words that may appear instead of
the target word in specific contexts

(b) A list of 5 sentences in which the target word
has this specific word-meaning.

For example, this is a possible indirect word-
meaning for the target word “Apple", representing
the fruit, as opposed to the tech company:

Alternatives: orange, olive, cherry, lime, ba-
nana, emerald, lemon, tomato, oak, arrow,

Sentences in which Apple appears in this
word-meaning:

“He and his new bride planted apple trees to
celebrate their marriage."

“While visiting, Luther offers Alice an apple."
“When she picks the apple up, it is revealed that

Luther has stolen a swipe card and given it to Alice
to help her escape."

You will be asked to label the indirect word-
meanings with one of the labels you used in step
1. If no label matches the indirect word-meaning
you are allowed to propose a new label or define it
to be “Unknown". Additionally, if you find several
indirect word-meanings too close in meaning, label
them the same.

C Analysis of Manual Evaluation

In table 6 we report a by-word analysis of our man-
ual evaluation results. For each word we detail F1
scores of the most frequent sense (MFS), Babelfy,
and our proposed system. Similarly to Loureiro
et al. (2021), we report the ratio of the first sense
with respect to the rest (F2R) and normalized en-
tropy17 to reflect sense balance. All of which are
reported per annotator.

Analysis Analysis of our system’s error shows
that for some words the system could not create
a matching cluster for specific senses (to name a
few examples, "yard" as a ship identifier and "im-
pound/enclosure" sense for the word "pound"). It
appears that a matching cluster was not created
due to the low tally of these senses in the English
Wikipedia, and indeed the two senses appeared
only two and three times respectively in the 100

for all words
17Computed as −

∑k
i=1

ci
n

log
ci
n

log(k)
, where k is the number of

annotated senses, each of size ci and n is the size of annotated
examples per word, in our case n = 100.

passages sample. Additionally, annotator 2 anno-
tated in a more fine-grained manner that does not
correspond to our system tendency to merge capi-
talized instances of the target word into a sense that
corresponds to "part of named entity".

As described above, in rare cases our system
merged two senses into a single cluster. For ex-
ample, the same cluster of the word "trunk" con-
tained occurrences which annotator 1 tagged either
"human torso" or "tube-like organs" (like the pul-
monary trunk). While such annotation was uncom-
mon (3 out of 117 senses for annotator 1 and 5
out of 149 senses for annotator 2), it does affect
our system’s micro F1 score for the better. In case
we do not allow such annotation our overall score
drops from 87.52 to 86.65.

A comparison between Babelfy and our gold an-
notation shows a common mistake in its labeling
where Babelfy attributes the vast majority of sen-
tences to the same non-salient sense. For example,
Babelfy attributes 77 out of 100 instances of hood
to "An aggressive and violent young criminal" - a
sense that was not found even once in the manual
annotation. While in a number of cases Babelfy
used finer-grained sysnset groups than in our anno-
tations we took into account any senses that are a
subset of our annotated senses. For examples, Ba-
belfy’s "United States writer who lived in Europe;
strongly influenced the development of modern lit-
erature (1885-1972)" synset was attribute any in-
stances from the senses surname that refer to the
writer Ezra Pound.

D Outlier Detection Method

When using a single-prototype vector-space mod-
els, Camacho-Collados and Navigli (2016) pro-
posed a procedure for detecting outliers based on
semantic similarity using compactness score:

c(w) =
1

n2 − n
∑

wi∈W\{w}

∑
wj∈W\{w}

wi 6=wj

sim(wi, wj)

Where D is the entire dataset and W is de-
fined as {w1, w2, · · · , wn, wn+1} where w.l.o.g.
{w1, w2, · · · , wn} are the group elements (includ-
ing the distractor) and wn+1 is the outlier. We use
the same procedure with an additional nuance, we
expanded the procedure to receive more than a sin-
gle vector representation per word such that it will
fit multi-prototype embeddings (e.g. our embed-
dings and DeConf) and case sensitive embeddings
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Annotator #1 Annotator #2
Word MFS Babelfy Ours F2R Ent. MFS Babelfy Ours F2R Ent.
Apple 48 69 94 0.92 0.71 47 66 86 0.89 0.05
Arm 34 31 89 0.52 0.87 34 33 85 0.52 0.83
Bank 48 61 94 0.92 0.78 46 61 85 0.85 0.69
Bass 61 6 82 1.56 0.64 65 17 83 1.86 0.62
Bow 31 14 80 0.45 0.80 32 16 80 0.47 0.83
Chair 66 29 90 1.94 0.66 67 31 86 2.03 0.63
Club 49 45 80 0.96 0.78 53 50 77 1.13 0.72
Crane 39 36 86 0.64 0.90 39 35 83 0.64 0.69
Deck 45 49 72 0.82 0.80 48 52 71 0.92 0.68
Digit 87 96 99 6.69 0.56 87 96 98 6.69 0.38
Hood 27 6 82 0.37 0.88 28 5 82 0.39 0.83
Java 63 32 98 1.70 0.67 63 31 97 1.70 0.69
Mole 37 32 90 0.59 0.81 39 32 88 0.64 0.73
Pitcher 95 97 97 19.00 0.20 95 97 97 19.00 0.20
Pound 46 58 91 0.85 0.75 46 58 91 0.85 0.72
Seal 30 48 88 0.43 0.91 27 40 74 0.37 0.80
Spring 57 0 90 1.33 0.63 56 0 88 1.27 0.64
Square 37 15 88 0.59 0.86 36 15 85 0.56 0.82
Trunk 33 46 98 0.49 0.90 33 46 92 0.49 0.86
Yard 58 60 93 1.38 0.63 57 58 91 1.33 0.59
Average 49.55 41.5 89.05 2.11 0.74 49.9 41.95 85.95 2.13 0.65

Table 6: Manually annotated set scores by annotator. The first three columns for each annotator reflect disambigua-
tion and induction scores with respect to the most frequent sense, Babelfy and our proposed system. We also report
F2R and normalized entropy (Ent).

(e.g. word2vec). When given as set of words (like
W \ {w} when calculating c(w)) we first find the
relevant sense for each element before inferring the
outlier. Camacho-Collados and Navigli (2016) sug-
gested calculating c(w) using the pseudo inverted
compactness score.
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