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Abstract

The ability to sequence unordered events is ev-
idence of comprehension and reasoning about
real world tasks/procedures. It is essential
for applications such as task planning and
multi-source instruction summarization. It of-
ten requires thorough understanding of tem-
poral common sense and multimodal infor-
mation, since these procedures are often con-
veyed by a combination of texts and im-
ages. While humans are capable of reason-
ing about and sequencing unordered procedu-
ral instructions, the extent to which the cur-
rent machine learning methods possess such
capability is still an open question. In this
work, we benchmark models’ capability of rea-
soning over and sequencing unordered multi-
modal instructions by curating datasets from
online instructional manuals and collecting
comprehensive human annotations. We find
current state-of-the-art models not only per-
form significantly worse than humans but also
seem incapable of efficiently utilizing multi-
modal information. To improve machines’
performance on multimodal event sequenc-
ing, we propose sequence-aware pretraining
techniques exploiting the sequential alignment
properties of both texts and images, resulting
in >5% improvements on perfect match ratio.

1 Introduction

Instructions are essential sources for agents to learn
how to complete complex tasks composed of multi-
ple steps (e.g., “making a wood sign from scratch”).
However, instructions do not always come in a
proper sequential order, for example, when instruc-
tions must be combined across sources (e.g., to
accomplish a complex task there might be multi-
ple useful resources for certain task-steps come
out from a single Google search). Therefore, se-
quencing unordered task-steps is crucial for com-
prehending and inferring task procedures, which
requires thorough understanding of event causal
and temporal common sense. It is essential for
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Figure 1: Multimodal task procedure sequencing: The
left column shows unordered instruction steps from the man-
ual How To Make Wood Signs. Each step is a text description
and its associated image. Without the complementary infor-
mation from the visuals, a novice may have difficulty inferring
the proper task order. Considering multimodal information,
the proper order can be correctly inferred (right column).

applications such as multi-source instruction sum-
marization and robot task planning (Garattoni and
Birattari, 2018).

Existing work has studied sequencing unordered
texts from paper abstracts or short stories (Chen
et al., 2016; Cui et al., 2018). However, real-life
tasks are often complex, and multimodal informa-
tion is usually provided to supplement textual de-
scriptions to avoid ambiguity or illustrate details
that are hard to narrate, as illustrated in Figure 1.

To investigate whether current AI techniques can
efficiently leverage multimodal information to se-
quence unordered task instructions, we curate two
datasets from online instructional manuals (Hadley
et al.; Yagcioglu et al., 2018). We consider two rep-
resentative instruction domains: cooking recipes
and “How-To" instructions (WikiHow). We estab-
lish human performance for the sequencing task
on a subset of each data resource. As certain steps
to perform a task can potentially be interchange-
able,1 we collect annotations of possible orders

1For example, without special requirements, preparing cer-
tain ingredients of a dish, such as slicing carrots or cucumbers,
does not necessarily need to follow a specific order.
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alternative to the originally authored ones to cre-
ate multiple references. Such additional annotation
provides not only better measurement of human
and model performance by alleviating unintended
biases from content creators, but also a useful re-
source for future research of models that are aware
of task-step dependencies and interchangeability.

To measure the ability of state-of-the-art AI tech-
niques to sequence instruction steps, we construct
models consisting of: (1) an input encoder which
encodes image, text, or multimodal inputs, and (2)
an order decoder which predicts step order us-
ing the encoded representations. They are jointly
trained with the order supervisions.

Our preliminary studies show that multimodal
information is consistently helpful for the sequenc-
ing task. However, compared to humans, current
models are less efficient in utilizing multimodal
information. We hypothesize that it is because the
models do not effectively capture the sequential
information in the vision modality nor the sequen-
tial alignment between multimodal contents. To ad-
dress this, we propose to equip models with capabil-
ities of performing sequential aware multimodal
grounding. Specifically, we propose several self-
supervised objectives, including sequence-based
masked language modeling, image region model-
ing, and content swapped prediction, to pretrain the
models before finetuning them on the downstream
sequencing task.

The proposed pretraining techniques are shown
to be effective in improving multimodal perfor-
mance, enjoying a >5% improvement on the per-
fect match ratio metric. However, it is still sig-
nificantly behind human performance (∼ 15% in
perfect match ratio metric). The same trend is ob-
served when alternative orders are considered.

Our key contributions are two-fold: (1) We pro-
pose a multimodal sequencing task with two cu-
rated instructional manuals, and comprehensive
human annotations. (2) We investigate model per-
formance on sequencing unordered manuals, and
propose sequence-aware pretraining techniques to
more effectively use the multimodal information.
Our experiments and extensive analysis provide
insights on which task categories are most chal-
lenging for the state-of-the-art models. They also
shed the light that more sophisticated sequential
multimodal grounding are required to further im-
prove the performance for the proposed multimodal
sequencing task.

2 Problem Definition

Given a task procedure S consisting of N steps,
where each step Si ∈ S can consist of two types
of contents: a textual description Ti of tokens
{Ti,k}nT

k=1 and/or image(s) Ii = {Ii,k}nI
k=1.2 A

model is required to take as inputs a random per-
mutation of S, i.e. Sp = {Sp1 , ..., SpN }, where p
is a permutation (Spj can take one of the follow-
ing three modalities: Tpj , Ipj , and {Tpj , Ipj}), and
predict the correct order of Sp, i.e. argsort(Sp).

3 Datasets and Human Annotation

We are interested in understanding the current state-
of-the-art models’ performance on this multimodal
instruction sequencing task. To this end, we curate
instruction datasets to support our study.

3.1 Instruction Manual Datasets

There are three major features we require for the
target datasets: (1) It is multimodal. (2) It con-
sists of task procedures as sequences of steps. (3)
Different modalities are used intentionally to com-
plement each other. In light of these, we consider
the following two datasets:

RecipeQA. We start from a popular as well as intu-
itive choice of instruction manuals, recipes, which
fully fulfill the aforementioned criteria. RecipeQA
is a multimodal question answering dataset consist-
ing of recipes scraped from Instructables.com (Yag-
cioglu et al., 2018). We utilize the recipes collected
in RecipeQA and convert each unique recipe into
sequential multimodal steps for our task.

WikiHow. To expand the types of instruction man-
uals for our task beyond recipes, we also consider a
popular “How To ..." type of instructions, WikiHow,
which is an online knowledge base that consists of
human-created articles describing procedures to
accomplish a desired task. Each article contains
a high level goal of a task, a short summary of
the task procedures, and several multimodal steps
where each step consists of a description paired
with one or a few corresponding images.

We scrape the entire WikiHow knowledge re-
source, containing more than 100k unique articles
(mostly) with multimodal contents , as well as the
hierarchically structured category for each article.
Table 1 presents the essential statistics of the two
datasets (more details are in Append. Sec. A).

2For computational concerns, we set nI = 1 in this work.
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Type Counts

Total Unique Articles 109486
Total Unique Images 1521909

Train / Dev / Golden-Test 98268 / 11218 / 300
Type-Token Ratio 216434 / 82396591 = 0.0026

Type Mean Std Min Max

Tokens in a Step Text 52.95 26.25 0 5339
Sentences in a Step Text 3.36 1.3 0 50
Number of Steps of a Task 5.27 2.62 0 75

(a) WikiHow

Type Counts

Total Unique Articles 10063
Total Unique Images 87840

Train / Dev / Golden-Test 8032 / 2031 / 100
Type-Token Ratio 91443 / 5324859 = 0.017

Type Mean Std Min Max

Tokens in a Step Text 82.08 84.72 0 998
Sentences in a Step Text 4.19 4.22 0 73
Number of Steps of a Task 6.45 2.57 4 20

(b) RecipeQA

Table 1: General statistics of the two datasets: We provide
the detailed component counts of the datasets used in this
work, including the statistics of tokens and sentences from the
instruction steps (lower half of the two tables).

3.2 Human Performance Benchmark

To ensure the validity of our proposed multimodal
sequencing task, we establish the human perfor-
mance via Amazon Mechanical Turk. Since our
dataset is constructed from resources that are not
directly designed for the sequencing task, the qual-
ity of random samples is unverified. Specifically,
some articles in WikiHow may not have a notion
of proper order among the steps.3 As a result, to
construct a high quality test set particularly for Wik-
iHow for establishing human performance, we first
identify a set of categories which are more likely
to feature proper order, e.g. Home and Garden
and Hobbies and Crafts.4 A random proportion is
then sampled and the co-authors further downsam-
ple the subset to 300 samples with the aforemen-
tioned criteria via majority vote. For RecipeQA,
we randomly sample 100 recipes from the dataset.
And hence, the resulting two subsets serve as our
golden-test-set for performance benchmarking.

Human Performance. Prompted with a task goal
and a randomly scrambled sequence of the task-
steps (can be one of the following modalities: mul-

3No temporal or other dependencies among the task-steps,
e.g. “How to be a good person”, where each step depicts a
different aspect and tips of being a good person.

4Although the data used for training is not cleansed and
thus can be noisy, we believe models can still learn to sequence
from many of the articles designed to have proper order.

timodal or text/image-only), workers are asked to
examine the contents and decide the proper per-
forming order. Human performance are then com-
puted against the original authored orders as the
ground truths, averaged across the whole set.5

Alternative Orders. When performing a task,
some steps can be interchangeable. To take the
interchangeability into consideration in our bench-
mark task, we also collect possible alternative or-
ders to the original ones to create multiple refer-
ences. For each instance in our golden-test-set,
given the instruction steps sequenced in their orig-
inal order, we ask workers to annotate alternative
orders if the presented task-steps can be performed
following a different order.6

Although in this work we are mainly focusing on
sequential instructions and hence the interchange-
ability is also gauged in a sequential manner, we
want to point out that the nature of task-step in-
terchangeability is also highly related to parallel
(branching) steps of tasks (Sakaguchi et al., 2021).
We argue that the actions that can be performed
interchangeably imply no direct dependencies are
among these actions and thus can potentially be
parallelized, and hence our alternative order formu-
lation can help inferring these parallel actions.

More details of the two human annotation tasks
can be found in Append. Sec. B.

4 Models

To benchmark the proposed task, we construct mod-
els comprising: (1) an encoder which encodes mul-
timodal or text/image-only inputs, and (2) an order
decoder which utilizes the encoded representations
to predict the orders. To help models capture se-
quentiality in task-steps better as well as adapt to
our target task domains, we pretrain the encoders
with several self-supervised objectives on the in-
structions before integrating them with the decoder.

4.1 Input Encoders

Text-Only Encoders. We use RoBERTa (Liu et al.,
2019) for text-only inputs. Although the next-
sentence prediction in BERT (Devlin et al., 2019)

5We design an algorithm to compute the inter-annotator
agreements (IAAs), see Append. Sec. B.3 for details. The
IAAs for (multimodal, text-only, image-only) versions in Wiki-
How is: (0.84, 0.82, 0.69), and (0.92, 0.87, 0.81) in RecipeQA.

6The alternative order annotation IAAs for (multimodal,
text-only, image-only) versions in WikiHow is: (0.73, 0.71,
0.78), and (0.79, 0.76, 0.79) in RecipeQA.
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Figure 2: Sequence-aware pretraining includes: (1) masked language modeling (MLM), (2) image-swapping prediction
(ISP/PISP) which requires the model to predict if some images (image-patches) are swapped, and (3) sequential masked region
modeling (SMRM) where models are asked to reconstruct masked regions in each image within the input sequence.

can potentially be exploited for sequencing, we
empirically find that RoBERTa performs better.

Multimodal Encoders. We consider the following
two V&L models mainly due to their easy adapta-
tion to our proposed sequencing task:

VisualBERT (Li et al., 2019) grounds object de-
tected image regions (e.g. by Faster-RCNN (Ren
et al., 2016)) to language with a single transformer
model (Vaswani et al., 2017). VisualBERT is pre-
trained with: (1) multimodal masked language
modeling (MLM)7, and (2) image-text matching
prediction (ITM), where the image in an image-
caption pair is randomly replaced with another one
to create misalignment, and the model is required
to predict whether the current pair is aligned.

CLIP-ViL (Shen et al., 2021) is also a single-
stream V&L model similar to VisualBERT, while
the visual encoder is replaced by a patch-based
model inspired by the ViT (Dosovitskiy et al., 2021)
in CLIP (Radford et al., 2021), where the image fea-
tures are taken as gridded-image-patches as shown
in Figure 2. The pretraining objectives remain the
same as VisualBERT. Empirically, both Shen et al.
(2021) and this work find such patch-based model
tends to yield better downstream performance.

Image-Only Encoders. We attempt to provide an
image-only baseline on our sequencing task with
two visual encoders: (1) ResNet-based (He et al.,
2016) Faster-RCNN model (also the visual encoder
in VisualBERT) where both the detected regional
features and the whole-image-feature are used, and
(2) the aforementioned patch-based CLIP model.8

7RoBERTa is used to initialize VisualBERT and CLIP-ViL.
8Without confusion, throughout the paper we term the ViT-

and CLIP-inspired visual encoder simply as CLIP.

4.2 Sequence-Aware Pretraining

The standard multimodal grounding techniques (Li
et al., 2019; Lu et al., 2019; Su et al., 2020; Chen
et al., 2020a) do not explicitly concern the sequen-
tiality of text and associated image sequences, and
hence may fall short of effectively utilizing the
sequential properties in multimodal inputs. To en-
courage models to have better awareness of the se-
quential alignments in multimodal instruction steps,
we propose to pretrain the encoders with the fol-
lowing self-supervised objectives: (1) masked lan-
guage modeling (MLM), (2) (patch-based) image-
swapping predictions (ISP/PISP), and (3) sequen-
tial masked region modeling (SMRM). Figure 2
illustrates an overview of the pretraining paradigm.

For the proposed objectives, the inputs to the
models are generally ordered instruction step se-
quences, which can be further sub-sampled to pro-
duce length-varying subsequences. Although we
do not find this necessarily benefit the downstream
performance, it is observed that the sub-sampling
helps the model converge faster. While all of our
proposed objectives can be applied to sequence
with arbitrary length (≥ 2), without loss of gen-
erality and for simplicity, the following sections
assume the sub-sampled sequence is of length 2.

4.2.1 Masked Language Modeling

The standard MLM (Devlin et al., 2019) is em-
ployed by the text-only models to adapt a pre-
trained language model to the target domain (task
instructions). Following prior V&L works, we ap-
ply MLM to multimodal models. Specifically, we
ensure that the textual description of each step Ti
gets similar amount of tokens being masked-out
such that the models can potentially exploit the
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image sequences more.9

4.2.2 Swapping-Based Prediction
This objective concerns, with certain probability,
randomly swapping a pair of items in a sequence
and asking the model to judge whether the resulting
sequence is properly ordered or not (i.e. binary
classification). We mainly perform the swapping in
the image modality and hence it can be viewed as a
sequence-aware version of ITM objective in most
V&L models. As in ITM, the output representation
at the [CLS] token is used to make the prediction.

Standard. For an ordered sequence S, we can
randomly swap two10 items of S, {Si, Sj}, where
i < j, to {Sj , Si}, with a certain probability δ.
Our preliminary studies find that swapping the tex-
tual contents does not necessarily help the down-
stream performance for either text-only or multi-
modal models, so we only perform the swapping on
the images {Ii, Ij} in both multimodal and image-
only models. For patch-based image inputs (or
regional features), the whole patches of an image
are swapped with those of another one within the
same sequence, as illustrated in Obj2 in Figure 2.

Patch-Based. We can perform the aforementioned
swapping prediction with a finer granularity, di-
rectly on the image patches. Assuming each im-
age Ii is cropped into w patches (or w detected
regions), i.e. {ii,k}wk=1 = {ii,1, ..., ii,w}, we ran-
domly select M (ranging from 1 to w) number
of patches each from the two images Ii, Ij (i.e.
{ii,p}, {ii,q}, p, q ∈ M -sized sampled indices) to
be swapped with probability δ. Specifically, for
each image patch ii,m ∈ Ii, a randomly selected
image patch ij,n ∈ Ij is sampled to be swapped
with. The sampled M -sized indices do not need
to be the same set of integers for each image. The
Obj3 in Figure 2 illustrates the patch-based swap-
ping prediction with w = 4 and M = 2.

4.2.3 Sequential Masked Region Modeling
Prior works extend the masked learning to the vi-
sual modality, where the masked target is either a
predefined discrete visual vocabulary (Sun et al.,
2019; Bao et al., 2021) or (soft) object class la-
bels (Lu et al., 2019; Su et al., 2020; Chen et al.,
2020a). In this work, we construct a feature-based
target vocabulary dynamically in each training
batch. We first randomly select the same amount

9As higher chances that the complementary textual infor-
mation is also masked out from different steps.

10Two is our minimum number for a valid subsequence.

of X% (X = 15) patches for each image to be
masked out (replaced with 0-tensor), and then con-
struct a target vocabulary from the original output
representations (before masking) of these patches.

Concretely, denote the output representation
of an input image-patch ii,m as h(i)i,m and the
masked positions of Ii as Di, we can construct a
candidate list from all the output representations of
the patches at the masked positions of each image,
i.e.C = {h(i)i,m}∪{h(i)j,n},m, n ∈ Di, Dj . De-
note the masked image patches (the gray-colored
image patches in Figure 2) as mask(i)i,m, for
each output masked representation h(mask(i))i,m,
we concatenate it with all the candidates, i.e.
h(mask(i))i,m||h(i’),∀i’ ∈ C, which results in |C|
concatenated representations for each masked po-
sition. A |C|-way multi-class classification can
then be performed by maximizing the probability
of p(ii,m|h(mask(i))i,m;C). For robust training,
we additionally: (1) shuffle the candidate set C for
each masked position to prevent overfitting, and
(2) ensure the overlapping of masked positions in
each pair of images, Di ∩Dj , is < 50%, allowing
the models to utilize information of similar regions
from other images in the sequence.

4.2.4 Overall Training Objective
As the mechanism in some objectives cannot guar-
antee mutually exclusive impacts (e.g. performing
ISP and PISP simultaneously may create confusing
swapped patches), we employ a turn-taking fash-
ion, with uniform probability, one of the objectives
(Obj) is sampled for each training mini-batch. The
overall pretraining objective is defined as below:

L = LMLM + LObj,Obj ∼ {ISP, PISP, SMRM} (1)

4.3 Order Decoder – BERSON
BERSON is a recently proposed state-of-the-art
neural sentence ordering framework (Cui et al.,
2020), where a pointer network (Vinyals et al.,
2016) exploits both the local (relative pairwise or-
der) and global (self-attentions on top of the entire
input sequence) information of the inputs to decode
the predicted order. BERSON mainly exploits the
[CLS] output representations for relational under-
standing, which aligns well with how our encoders
are pretrained (Figure 2). We integrate our en-
coders (with or without sequence-aware pretrain-
ing) into BERSON, replacing its original BERT en-
coder. The BERSON-module-specific components
are freshly initialized and then the entire integrated
module is finetuned on our sequencing task.
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5 Experiments and Analysis

Our experiments seek to answer these questions:
(1) How valid is the proposed task for humans to
complete? (2) Is multimodality helpful? (3) Can
the proposed sequence-aware pretraining utilize
multimodality more effectively? (4) How would re-
sults differ when alternative orders are considered?

5.1 Evaluation Metrics

We adopt metrics from sentence ordering works:

Position-Based metrics concern the correctness of
the absolute position of each item in a sequence, in-
cluding: (1) Accuracy (Acc) which computes the
ratio of absolute positions in the ground truth or-
der that are correctly predicted; (2) Perfect Match
Ratio (PMR) which measures the percentage of
predicted orders exactly matching the ground truth
orders; and (3) Distance (Dist.) which measures
the average distance11 between the predicted and
ground truth positions for each item.

Longest Common Subsequence computes the av-
erage longest subsequences in common (Gong
et al., 2016) between the predicted and ground
truth orders (Lq). We also consider a stricter ver-
sion, longest common substring, which requires
the consecutiveness for the comparisons (Lr).

Kendall’s Tau (τ ) (Lapata, 2003) is defined as
1 − 2 × (# inversions)/(# pairs), where the
inversion denotes that the predicted relative or-
der of a pair of items is inverted compared to
the corresponding ground truth relative order, and
# pairs =

(
N
2

)
for N -length sequence.

Each metric focuses on different perspectives of the
predictions, i.e. position metrics concern the abso-
lute correctness, while common subsequence and
τ metrics measure if general sequential tendency is
preserved despite incorrect absolute positions.

5.2 Implementation Details

We use the original data splits for RecipeQA. For
WikiHow, to prevent models’ exploiting knowledge
from similar articles, we split the data so that cer-
tain (sub)categories do not overlap in each split. We
use only the train splits in each dataset to perform
their respective pretraining. More details of the
data splits are in Append. Sec. A. Preliminary stud-
ies show that joint training with both RecipeQA
and WikiHow data does not necessarily improve

11Except for distance metric, higher scores are better.

the downstream performance, thus the models eval-
uated in the two datasets are trained simply using
their respective training sets for faster convergence.

We cap the overall sequence length at 5 and each
step description with maximally 5 sentences for
both models and humans. The maximum input
length per step is 60 tokens (overall maximum
length = 300) for training and GPU memory effi-
ciency. δ = 0.5 for both ISP and PISP. All images
are resized to 224× 224, and 32× 32 patch is used
for CLIP-based models, resulting in 7 × 7 = 49
patches per image. Aside from standard positional
embedding, we only supplement a modality token
type embedding (text:=0, image:=1) to the multi-
modal models. Pretrained weights for each encoder
is obtained either from their corresponding code
bases or by running their codes on our setup.12

5.3 Standard Benchmark Results

Table 2 summarizes both the human and model per-
formance for each input modality evaluated using
the original ground truth orders on the golden-test-
set, whereas Table 3 summarizes a more detailed
breakdown of the model performance when incre-
menting combinations of pretraining objectives.

As is shown, multimodal information is veri-
fied consistently helpful for humans. Compared
under same scenario with or without the sequence-
aware pretraining, the two multimodal models
consistently outperform their text-only counter-
parts, where the proposed pretraining technique
is shown particularly effective for the patch-based
multimodal model (CLIP-ViL). However, our top-
performing models still exhibit significant gaps be-
low human performance, especially in PMR.

Additionally, we observe a different trend in the
two datasets where the multimodality benefits more
in RecipeQA than WikiHow. The gap between
the multimodal human and model performance is
larger than the text-only counterparts in WikiHow,
while a reversed trend is shown in RecipeQA. We
hypothesize that recipes may contain more domain-
specific language usages and/or less words for
the pretrained language models and hence bene-
fits more from the our in-domain sequence-aware
pretraining. Humans, on the other hand, benefit
more from the images in WikiHow as its texts are
hypothesized to contain more ambiguities.

WikiHow Category Analysis. We are interested
in knowing on which categories of WikiHow our

12We initialize CLIP-ViL with our pretrained CLIP.
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Modality Encoders Sequence-aware WikiHow Golden-Test-Set RecipeQA Golden-Test-Set
Pretraining Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓ Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓

Image-Only

ResNet N 21.73 2.00 2.81 1.73 0.01 7.87 31.20 5.00 3.27 2.07 0.27 6.10
CLIP N 24.92 3.33 2.95 1.84 0.08 7.32 38.40 8.00 3.39 2.02 0.35 5.44
CLIP Y 28.24 5.00 3.09 1.96 0.16 6.80 47.20 16.00 3.68 2.40 0.52 4.12
Human Performance 68.16 47.49 4.27 3.51 0.72 2.43 80.40 64.50 4.54 4.02 0.86 1.29

Text-Only
RoBERTa N 74.75 56.67 4.47 3.78 0.82 1.71 74.00 52.00 4.45 3.68 0.83 1.64
RoBERTa Y 75.68 58.67 4.50 3.87 0.82 1.69 77.00 57.00 4.49 3.81 0.84 1.48

Human Performance 83.35 66.91 4.63 4.11 0.89 1.06 88.92 78.56 4.76 4.41 0.93 0.70

Multimodal

VisualBERT N 75.30 57.33 4.45 3.83 0.81 1.65 76.20 58.00 4.49 3.85 0.83 1.58
VisualBERT Y 77.30 59.67 4.50 3.86 0.83 1.58 78.20 60.00 4.56 3.91 0.85 1.44

CLIP-ViL N 76.15 59.00 4.49 3.87 0.82 1.68 79.20 60.00 4.57 3.93 0.85 1.29
CLIP-ViL Y 79.87 65.67 4.57 4.05 0.85 1.44 82.60 68.00 4.61 4.10 0.88 1.10

Human Performance 91.03 79.61 4.78 4.46 0.94 0.52 92.12 83.13 4.82 4.53 0.95 0.45

Table 2: Golden-test-set performance: Models which take multimodal inputs (for both VisualBERT and CLIP-ViL encoders)
consistently outperform the ones that only take unimodal inputs. Our proposed sequence-aware pretraining is shown consistently
helpful throughout the three modality variants. Humans show larger performance gain when both modalities of inputs are
provided, and are more robust to the local ordering as implied by the smaller gaps between Lq and Lr .

Modality Pretrain WikiHow Golden-Test-Set RecipeQA Golden-Test-Set
Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓ Acc↑ PMR↑ Lq ↑ Lr ↑ τ ↑ Dist↓

Image-Only ISP 27.31 4.00 3.02 1.82 0.12 7.00 43.20 9.00 3.49 2.05 0.47 4.46
ISP + PISP 27.57 4.67 3.07 1.93 0.16 6.85 43.40 12.00 3.57 2.24 0.48 4.46

Multimodal

MLM 77.08 61.33 4.52 3.96 0.83 1.65 79.60 61.00 4.55 3.93 0.86 1.29
MLM + ISP 77.61 62.00 4.54 3.97 0.83 1.60 80.00 61.00 4.56 3.93 0.86 1.26

MLM + SMRM 77.94 62.33 4.54 3.98 0.84 1.60 80.00 59.00 4.53 3.89 0.87 1.26
MLM + ISP + PISP 78.14 63.33 4.55 4.03 0.84 1.56 80.80 63.00 4.57 3.99 0.87 1.24

MLM + ISP + SMRM 79.47 63.67 4.57 4.03 0.85 1.54 81.40 63.00 4.57 4.00 0.87 1.20

Table 3: Model ablation studies: We provide a performance breakdown for incremental combinations of the pretraining
objectives, ablated on the best performing models (CLIP and CLIP-ViL) from Table 2 for each dataset and modality.

models perform closer to humans, and on which the
multimodal information is most efficiently utilized.
In Figure 3 we select categories with the top and
least performance gaps (with PMR metric, top=3,
least=2) between the human and our best perform-
ing models. We observe that the categories on
which multimodal models outperform the text-only
ones the most are also the categories the models
perform closest to humans, e.g. Home and Garden.
We hypothesize that the images in these categories
are well complementary to the texts and that our
sequence-aware grounding performs effectively. In
contrast, in categories such as Arts and Entertain-
ment and Hobbies and Crafts where humans still
enjoy benefits from multimodal information, our
models have difficulty utilizing the multimodal in-
formation. We hypothesize that better visual under-
standing may alleviate the potentially suboptimal
grounding as images of these categories can con-
tain many non-common objects.

5.4 Evaluating with Alternative Orders

For each instance where alternative ground truth
orders exist, the performance is computed by the
best each predicted order can obtain against all the
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Figure 3: Top-3 and least-2 categories of human-model
performance difference (in PMR): The selected categories
have >10 samples. The difference bars on the multimodal
model series are compared against the text-only model series.

ground truth orders13, denoted by multi-reference
performance, and the subset containing these in-
stances is denoted as the multi-reference subset.14

Statistics. Table 5 lists the essential statistics of
the multi-reference subsets, including the counts of
the multi-reference instance for each dataset and
modality, as well as the per-instance statistics.

Multi-Reference Performance. The noticeable
main competitors in Table 2 are multimodal and
text-only models, and hence for conciseness, in Ta-
ble 4 we mainly report the multi-reference version

13Jointly considered from all the evaluation metrics.
14The overall average number of ground truth references

becomes 1.19, 1.23, 1.09 for multimodal, text-only, and image-
only versions in WikiHow; and 1.10, 1.17, 1.14 in RecipeQA.
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Modality Subset
WikiHow Golden-Test-Set (Size: 300) RecipeQA Golden-Test-Set (Size: 100)

Acc↑ PMR↑ Lr ↑ Acc↑ PMR↑ Lr ↑
single multi single multi single multi single multi single multi single multi

Text-Only

Single 77.30 — 61.75 — 3.98 — 79.32 — 60.23 — 3.90 —

Multi. 67.35 80.00 40.82 59.18 3.35 3.86 60.00 75.00 33.33 58.33 3.17 3.92
(% of instances benefit w. multi-reference: 34.7%) (% of instances benefit w. multi-reference: 50.0%)

All 75.68 77.74 58.67 61.67 3.87 3.96 77.00 78.80 57.00 60.00 3.81 3.90
Single† 85.57 — 71.41 — 4.24 — 90.27 — 80.41 — 4.47 —

Multi.† 72.03 85.51 43.84 71.38 3.46 4.14 79.00 87.00 65.00 80.00 3.95 4.40
(% of instances benefit w. multi-reference: 42.9%) (% of instances benefit w. multi-reference: 41.6%)

All† 83.35 85.56 66.91 71.40 4.11 4.22 88.92 89.88 78.56 80.36 4.41 4.46

Multimodal

Single 81.68 — 69.90 — 4.15 — 83.71 — 69.07 — 4.12 —

Multi. 70.98 78.82 47.05 61.22 3.59 3.90 46.67 60.00 33.33 33.33 3.67 3.78
(% of instances benefit w. multi-reference: 21.6%) (% of instances benefit w. multi-reference: 66.6%)

All 79.87 81.19 65.67 68.00 4.05 4.11 82.60 83.00 68.00 68.00 4.10 4.11
Single† 92.86 — 83.67 — 4.56 — 91.88 — 82.61 — 4.52 —

Multi.† 82.09 92.22 59.80 83.33 3.99 4.54 100.00 100.00 100.00 100.00 5.00 5.00
(% of instances benefit w. multi-reference: 41.18%) (% of instances benefit w. multi-reference: 0.0%)

All† 91.03 92.75 79.61 83.61 4.46 4.55 92.12 92.12 83.13 83.13 4.53 4.53

∗ The size of the Multi. subsets in (text-only, multimodal) are: (49, 51)/300 in WikiHow and (12, 3)/100 in RecipeQA.

Table 4: Multi-reference performance: († denotes human performance) Our golden-test-set can be decomposed into two
subsets: Single where each instance in this subset only has one single originally authored ground truth, and Multi. where
each instance features multiple ground truths from alternative orders. For the Multi. subset, two types of performance can be
computed: single considers only the originally authored ground truth and multi computes the multi-reference performance.
All denotes the entire test-set combining the results from Single and Multi. subsets. Results are reported on the two main
competitors: multimodal and text-only using the best performing models from Table 2 in each modality. % of instances benefit
w. multi-reference indicates that of what percentage of instances in each multi-reference subset humans and the models benefit
(for each instance if its performance improves in any of the metrics) from alternative ground truth orders.

of their best performing variants with the selected
metrics. Several trends still hold: (1) Multimodal
models still outperform the text-only counterparts.
(2) Human performance is still well above mod-
els’ even under multi-reference setups. Addition-
ally, both humans and models perform significantly
worse in the multi-reference subset when single
(original) ground truth is enforced, implying the
validity of our alternative order annotations.

We originally hypothesize that enforcing the
original authored order to be the only ground truth
would be unfair to the text-only models, as im-
ages can often better represent the detailed scene
changes omitted by the texts, while in reality cer-
tain steps may not need to strictly follow the au-
thored order. Judging from the number of instances
that improve after evaluating with alternative or-
ders, the text-only model indeed benefits more from
the multi-reference setup. Examining the general
trends in Table 4, one can conclude that the textual
contents indeed posses certain levels of ambigu-
ities where images can help to alleviate. How-
ever, as the performance gaps between multimodal
and text-only models are still significant under the
multi-reference settings, advantages of multimodal-
ity. Note that humans achieve perfect performance
on the multi-reference subset in RecipeQA, though
unlikely it may seem, it is mainly due to recipes
tend to have rarer possible alternative orders.

Modality WikiHow (300) RecipeQA (100)
Cnt Min/Max Avg/Std Cnt Min/Max Avg/Std

Image-Only 24 2/4 2.1/1.4 13 2/3 2.1/0.3

Text-Only 49 2/6 2.4/0.9 12 2/6 2.4/1.1

Multimodal 51 2/4 2.1/0.5 3 2/6 4/1.6

Table 5: Multi-reference subset statistics: We report the
count (cnt) of multi-reference instances in each dataset across
the three modalities, and their basic statistics.

Categories Mean Per-Instance Refs. (Cnt)
Multimodal Text Image

Home and Garden 2.00 (7) 2.14 (7) 2.00 (3)
Hobbies and Crafts 2.00 (5) 2.73 (11) 2.00 (2)

Food and Entertaining 2.20 (15) 2.22 (14) 2.17 (12)
Others 2.28 (7) 2.67 (5) 2.00 (4)

Personal Care and Style 2.33 (3) 2.00 (1) 2.00 (1)

Table 6: Top-5 mean alternative orders by categories: We
list top-5 categories in WikiHow according to the number of
average ground truth references in their multi-reference subset.
We again only list the categories with total instance count >10.

WikiHow Categories. Table 6 lists the WikiHow
categories with the most (top-5) annotated multi-
reference ground truths. Note that the categories
with more annotated alternative ground truths are
also among the worse performance from both hu-
mans and models (Figure 3). We provide sample
qualitative inspections in Append. Sec. C.1.

6 Related Work

Sequence Ordering. Story sequencing test is a
popular way of examining children’s abilities on
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sequential reasoning which is shown evident for
procedural understanding (Tomkins, 1952; Baron-
Cohen et al., 1986; Loucks et al., 2017). In NLP,
existing works attempt the sequencing task as sort-
ing a series of unordered sentences (Chen et al.,
2016; Cui et al., 2018; Logeswaran et al., 2018;
Oh et al., 2019; Lee et al., 2020; Calizzano et al.,
2021) from paper abstracts or short paragraphs.
While certain prior work also attempts to extend it
to incorporate multimodality (Agrawal et al., 2016),
the dataset used, Visual StoryTelling (Huang et al.,
2016), features album images that were not in-
tended to be procedural nor supply unstated details
to complement the texts. In computer vision, ex-
isting work leverages shuffle frame prediction for
learning video representations (Lee et al., 2017; Xu
et al., 2019; Wang et al., 2020; Li et al., 2020) as
well as cycle consistency constraints for learning
temporal dynamics (Epstein et al., 2021). Zellers
et al. (2021) also features a pairwise relative frame
re-ordering objective to learn temporal common
sense from scripted videos, however, as their down-
stream tasks mainly concern visual reasoning and
ordering by frame-text-matching (also on Visual
StoryTelling), the re-ordering objective is more
focused on the visual modality. Our work takes
a different perspective to tackle a comprehensive
multimodal sequencing task with a focus on the
procedural task-solving knowledge and gauging
the helpfulness of complementary information in
different modalities.

Task/Procedure Understanding. Other works
have utilized WikiHow for learning task knowledge.
In NLP, textual descriptions of WikiHow have
been used for abstractive summarization (Koupaee
and Wang, 2018), procedural understanding (Zhou
et al., 2019; Tandon et al., 2020), and intent esti-
mation (Zhang et al., 2020a). Prior work (Zhang
et al., 2020b) considers WikiHow for learning event
temporal ordering, but limited to only pairwise re-
lations. A concurrent work uses WikiHow to infer
visual goals (Yang et al., 2021). We hope our cura-
tion can help advancing the goal of comprehensive
multimodal procedural understanding.

Another popular form of comprehending given
procedures is through a multiple choice machine
comprehension task. Prior work has utilized text
book figures (Kembhavi et al., 2017) as a holistic
"reading reference" for models to select the correct
order of certain (textually described) events from
given multiple choices. Another work attempts

the original visual ordering task of RecipeQA (Liu
et al., 2020) (also an multiple choice task). How-
ever, we argue that our task tackles a more com-
plex task as the desired orders need to be directly
derived and the event-wise complementary multi-
modal understanding is not an essential component
in these existing works.

Multimodality. Beside models used in this work,
there are several recent advanced multimodal
grounding techniques (Tan and Bansal, 2019; Li
et al., 2019; Lu et al., 2019; Su et al., 2020; Chen
et al., 2020b; Huang et al., 2020; Wen et al., 2021).
We utilize VisualBERT and CLIP-ViL for their
simplicity to be adapted to our task and easier in-
tegration to our proposed pretraining techniques,
however, our framework is able to incorporate any
of the aforementioned multimodal models.

7 Conclusions

In this work we present studies of language and
multimodal models on procedure sequencing, lever-
aging popular online instructional manuals. Our
experiments show that both multimodality and our
proposed sequence-aware pretraining are helpful
for multimodal sequencing, however, the results
also highlight significant gaps below human perfor-
mance (∼ 15% on PMR).

We provide insights as well as resources, such
as the multi-reference annotations of the sequenc-
ing task, to spur future relevant research. We also
anticipate that the alternative orders defined and
annotated in our work can benefit more comprehen-
sive task-procedure understanding. Future work
such as predicting task steps which can be parallel
or interchangeable, and understanding step depen-
dencies can be explored.
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Ethics and Broader Impacts

We hereby acknowledge that all of the co-authors
of this work are aware of the provided ACM Code
of Ethics and honor the code of conduct. This
work is mainly about sequencing a given series of
multimodal task procedures, represented by text de-
scriptions along with their images. The followings
give the aspects of both our ethical considerations
and our potential impacts to the community.

Dataset. We collect the human performance on
our sequencing task (both the standard human per-
formance and the alternative order annotations) via
Amazon Mechanical Turk (MTurk) and ensure that
all the personal information of the workers involved
(e.g., usernames, emails, urls, demographic infor-
mation, etc.) is discarded in our dataset. While
the sequence orders either from the original author
intended ones or those annotated by the workers for
the standard performance may possess unintended
biases against certain population group of people
(e.g. due to cultural differences or educational dif-
ferences, some tasks may be performed differently
from the original intended orders), we anticipate
the additional multi-reference annotation can allevi-
ate such an issue as well as provide a broader view
to approach procedural understanding, i.e. certain
task-steps can be interchanged.

This research has been reviewed by the IRB
board and granted the status of an IRB exempt.
The detailed annotation process (pay per amount of
work, guidelines) is included in the appendix; and
overall, we ensure our pay per task is above the the
annotator’s local minimum wage (approximately
$12 USD / Hour). We primarily consider English
speaking regions for our annotations as the task
requires certain level of English proficiency.

Techniques. We benchmark the proposed sequenc-
ing task with the state-of-the-art large-scale pre-
trained language and multimodal models with our
novel sequence-aware pretraining techniques. As
commonsense and task procedure understanding
are of our main focus, we do not anticipate pro-
duction of harmful outputs, especially towards vul-
nerable populations, after training models on our
proposed task.
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A Details of Datasets

A.1 Image Contents

For simplicity and computational concerns, in this
work we only pair one image to each of its asso-
ciated task-step textual descriptions. However, in
both WikiHow and RecipeQA, each task-step can
have more than one associated images or visual
contents represented by short clips or GIFs. We
simply select the first image, which is supposed to
be the most representative, for those step featuring
multiple images; and sample the frame in the mid-
dle of time interval for clips or GIFs. Nevertheless,
our framework does not assume any limitation on
how many images per step to be processed.

A.2 WikiHow Categories

The category in WikiHow generally forms a hier-
archical directed acyclic graph. Each category can
have its relevant subcategory, which usually spans
finer-granularity of category types. For example, a
possible category traversal path is: Cars and Vehi-
cles →Public Transport →Air Travel, which can
lead to the article How to Overcome the Fear of Fly-
ing. We attach these full category traversal paths
as an additional feature to each of the article in our
dataset, and we also will provide a complete list
of the taxonomy composed by all the categories
and subcategories in WikiHow. We include the
category-data counts in Table 7 for a reference,
where we only show the top-level category here.
The more in-depth categories can be referred to in
the full released version of the dataset.

A.3 Train-Dev Splits

For RecipeQA we use the original data splits which
ensure no identical recipe appears in more than one
set (each recipe has its unique recipe-id), as this
dataset only has one category and the data quality
is much more uniform than that of WikiHow, i.e.
most recipes fulfill our target dataset criteria.

For WikiHow, we split the data according to
the third level category to prevent models from ex-
ploiting too similar task knowledge in the same
category, where the level (three) is empirically de-
cided. Specifically, we ensure that the third-level
categories where the articles in our golden-test-set
belong to, do not appear in the train set. We first
split the WikiHow dataset into train, development,
and test set following this strategy, and then con-
struct our golden-test-set by sub-sampling a subset

Categories Counts

Arts and Entertainment 4675
Cars and Other Vehicles 2044

Computers and Electronics 15023
Education and Communications 7406

Family Life 1747
Finance and Business 6228

Food and Entertaining 7670
Health 8800

Hobbies and Crafts 9217
Holidays and Traditions 736

Home and Garden 9460
Personal Care and Style 6523

Pets and Animals 5281
Philosophy and Religion 828

Relationships 2877
Sports and Fitness 3271

Travel 746
Work World 1579

Youth 2389
Others 21

Table 7: Top-Level Categories of WikiHow: Number of
unique articles in each top-level category of the WikiHow
dataset. The categories are sorted by alphabetical order. In to-
tal there are 19 top-level categories (same as what this page in-
dicates: https://www.wikihow.com/Special:CategoryListing),
and one "others" category for standalone leaf nodes without
real linkages to these top-level categories.

of this (larger) test set followed by manual inspec-
tions, to ensure its quality. And then, we simply
join the remaining test set samples to the develop-
ment set. Refer to Table 1 in the main paper for
detailed statistics.

B Details of Human Annotation

B.1 Golden-Test-Set Selections

In order to construct a high-quality test set for hu-
mans to evaluate, we manually select the samples
which meet our general criteria: (1) the tasks are
procedural in both texts and images (2) the task’s
images are designed to complement the textual de-
scriptions or provide a more illustrative informa-
tion for some unstated implicit knowledge. We ask
three of our internal members (co-authors) to per-
form such manual selection, and preserve ones that
have majority votes. In total, we select 300 samples
for WikiHow and 100 samples for RecipeQA.

B.2 General Annotation Procedure

B.2.1 Standard Performance Benchmark

We collect the human performance via Amazon
Mechanical Turk (MTurk). Each MTurk worker is
required to read the provided instruction carefully,
as shown in Figure 5a, and then perform the task,
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which is designed to be done in an intuitive drag-n-
drop (illustrated in Figure 5b) fashion.

Each MTurk HIT is designed to have five sets
of sequencing tasks followed by a few additional
questions such as confidence level of the worker
when inferring the order, and whether different
modalities are helpful in a particular task. For each
unique sample in the selected golden-test-set, we
construct three annotation sets each for one modal-
ity version: multimodal, text-only, and image-only.
We launch the HITs containing the same sample
but with different modalities with a week gap to
prevent potential memorization if the same worker
happens to annotate the exactly identical data sam-
ple. We estimate the time required to complete
each of our HITs to be 10-15 minutes, and adjust
our pay rate accordingly to $2 or $3 USD depend-
ing on the length of the task. This roughly equates
to a $12 to $15 USD per hour wage, which is above
the local minimum wage for the workers. In total
we receive annotated HITs from around 80 workers
for WikiHow, and 14 workers for RecipeQA.

In order to ensure annotation quality and filter
potential MTurk spammers, we design a few sets to
be our qualification rounds for later on worker pool
selection. The Pearson correlation between the
performance of the qualification samples and the
overall HIT performance is 0.6 with p-value < 0.05.
Since it is positive correlated and significant, we
censor assignments with substantially low overall
performance (<20% on accuracy metric), and re-
launch the HITs containing those samples for a few
more rounds for higher quality annotations.

Finally, since the agreement is sufficiently high
(see Section 3.2), we simply compute the human
performance using all of the collected annotated
orders from all the participated workers, which
result in reasonably high human performance upper
bound for our proposed sequencing task.

B.2.2 Annotating Alternative Orders
We deliberately ask a different set of MTurk work-
ers than those participated in the standard per-
formance benchmark round for annotating the al-
ternative orders. In total we receive HITs from
around 70 workers for WikiHow, and 40 workers
for RecipeQA. The monetary rewards and other
general settings follow the same procedure as in
the standard performance collection. We compute
pairwise IAAs for each worker against every other
workers, using the method described in Append.
Sec. B.3, and then we place a threshold to filter out

workers that tend to have too low IAAs (which is a
likely indicator that a worker is either a spammer or
not understanding our task well). As the final IAAs
among the selected pool of workers are sufficiently
high (see Section 3.2), for each instance we per-
form a majority vote on the annotated alternative
orders to serve as the final multi-references.

B.3 Inter-Annotator Agreements (IAA)

B.3.1 Standard Performance

As orders concern not only positioning of the
items but also more complicated relative informa-
tion among the items in a sequence, we propose
to measure the agreements among orders center-
ing around the concept of pairwise relationship.
Specifically, we transform an integer sequence or-
der to an one-hot encoded representation of the(
N
2

)
pairs of relative relations. Consider an ex-

ample: suppose three items (1, 2, 3) are to be
ordered, and all the pairwise relations are {12, 13,
21, 23, 31, 32}. The transformed one-hot rep-
resentation is defined as: R123 = {12: 1, 13: 1,
21: 0, 23: 1, 31: 0, 32: 0} = {110100}, i.e. ,
R(ij) = 1 iff ij is a valid relatively ordered pair.
Similarly, R231 = {001110}.

Using the aforementioned definition of R, we
can compute Cohen’s Kappa inter-annotator agree-
ment score for a pair of annotated order per each
instance. The overall scores can be computed by
firstly taking the average of pairwise Kappa scores
of annotations for each instance, and then taking
the average across the entire dataset.

B.3.2 Alternative Orders

To evaluate the agreements for the alternative or-
ders, we focus on the differences between an order
and the ground truth in their transformed represen-
tations. We first compute the one-hot difference be-
tween an alternative order to the ground truth order,
e.g. suppose ground truth order is simply og =123,
and an alternative order is o1 =132, then Rdiff

og ,o1 =
abs|{110100} - {110001}| = {000101}. To focus
on the agreements of the differences to the original
ground truth, we apply the Kappa score on a pair of
orders by retaining the union of the positions where
each order differ from the ground truth in their one-
hot representations. For example, if o2 =213, then
Rdiff

og ,o2 = abs|{110100} - {011100}| = {101000},
and hence the differences to the ground truth are
at positions 4, 6 from o1 and 1, 3 from o2, i.e. the
union is {1, 3, 4, 6}. Computing the Kappa scores
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Algorithm 1 Alternative Order IAA Per Instance

Require: {An}Nn=1: A list of annotation series,
where An = {an,k}Kn

k=1 denotes Kn orders
annotated by nth worker for an instance.

Require: f(x, y): IAA scoring function.
1: Initialize S: empty score list
2: for i = 1 to N do
3: for j = i+ 1 to N do
4: One-hot encode {ai,k}, and {aj,k}
5: Assume Ki < Kj // otherwise swap
6: while {ai,k} not empty do
7: Find best match according to Rdiff

8: m̂, n̂ = arg max
m,n

f(Rdiff
og ,oi,m , R

diff
og ,oj,n)

9: {ai,k}.pop(m̂); {aj,k}.pop(n̂)
10: S = S ∪ score
11: end while
12: while {aj,k} not empty do
13: S = S ∪ f(og, oj,m); {aj,k}.pop(m)
14: end while
15: end for
16: end for
17: return mean(S)

on Rdiff
og ,o1 and Rdiff

og ,o2 at these positions leads to
computing the scores on lists {0011} and {0110}.

To compute the agreements of two series of al-
ternative orders from two annotators (the series can
have different lengths), we first iteratively find all
the best matching pair of orders from the two series
(each order in a series can only be matched once).
When one series contain more orders than the other,
the remaining unmatched orders will be compared
to the ground truth to serve as the penalty. For
a particular instance, we take the mean of all the
Kappa scores (the best-matching-pair and penalty
scores) as the IAA for the two annotators, as de-
tailed in Algorithm 1. The overall IAA is computed
similarly to the standard case.

B.4 Additional Statistics

Apart from the main sequencing task, we also ask
the annotators for their confidence of predictions
and if multimodality is helpful for deciding the or-
der in the standard benchmark round. We hereby
provide two more statistics obtained from the work-
ers: the percentages of confidence levels and which
modality (modalities) helps for deciding the order.

Modality Helps. As which modality is potentially
more helpful, we include the percentages of each

Dataset Both Text-Only Image-Only Neither

RecipeQA 90.4 1.0 8.6 0.0
WikiHow 62.9 33.7 2.4 1.0

Table 8: Which modality helps? We compute the percent-
age of each answer category. In both datasets, majority of
the annotations indicate that both modality are helpful for
deciding the orders.

Confidence Level WikiHow RecipeQA

5 (Very) 54.61 64.75
4 (Fairly) 27.38 23.00
3 (Moderately) 12.24 7.00
2 (Somewhat) 5.21 4.75
1 (Not-At-All) 0.56 0.50

Table 9: Confidence Level Statistics (%): In both datasets,
majority (> 80%) of the annotators indicate at least > 4 (fairly)
confidence level, which can help justify the validity of the
human performance.

answer category in Table 8. It can be noticed that
majority of workers (> 60%) think that multimodal
(both modalities) is helpful, and especially in the
recipe data, there are > 90% of workers indicating
the effectiveness of utilizing multimodal inputs.

Confidence Levels. As shown in Table 9, majority
of workers feel at least fairly confident (score of
4) about their predictions, which can justify the
validity of our selection of golden-test-set.

C Additional Results

C.1 Qualitative Inspections

Figure 4 shows a few qualitative examples in dif-
ferent categories. Figure 4a shows that while step
1 and 3 may seem confusing if only looking at
the texts, the images can help deciding the proper
order, whereas models may fail to grasp such mul-
timodal information in Figure 4b. In Figure 4c we
show an example where multi-reference benefits
both humans and the models, although in reality
it should be more commonsensical to stir before
refrigerating the mixtures.

C.2 Image-Only Multi-References

We also provide the detailed multi-reference per-
formance break down on the image-only modality
using the best performing models in Table 2, CLIP,
in Table 10 for references.

D More Model Details

Multimodal Model Considerations. Bugliarello
et al. (2020) suggests that many V&L models can
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How To Clean Platinum

Line a pan with tin foil. 
A cookie sheet should 
work as long as it is 
deep enough to fit your 
platinum…

Mix your base solution. 
Combine one cup of 
boiling water with one 
tablespoon of salt and 
one tbsp of soda…

Add vinegar to the pan. 
Pour half a cup of white 
vinegar to into the pan. 
The vinegar will activate
the base solution…

Pour the solution over 
your platinum. Carefully 
pour the the baking 
soda, salt and water 
solution into the pan…

Rinse and dry your 
platinum. Remove your 
jewelry from the pan. 
Run some lukewarm 
water and rinse…

1 2 3 4 5

(Multimodal, Text-Only, Image-Only) Human Performance = (1.0/1.0, 0.8/0.8, 0.2/0.2)

Multimodal Alt. GTs: [N/A]
Multimodal Model: 1⇢2⇢3⇢4⇢5 (1.0/1.0)

Text-Only Alt. GTs: [32145]
Text-Only Model: 3⇢2⇢1⇢4⇢5 (0.6/1.0)

Image-Only Alt. GTs: [15342]
Image-Only Model: 3⇢5⇢2⇢4⇢1 (0.2/0.4)

Best Model Predictions

(a) Home and Garden Sample
How To Make a Yarn Pumpkin

Find a small, plastic 
pumpkin to use as your
base. If you can't find 
one, you can use a 
Styrofoam ball instead…

Secure the end of your 
yarn to the base of your 
pumpkin with a drop of 
hot glue…

Consider wrapping 
brown or green yarn 
around the stem…

Start wrapping the yarn 
around your pumpkin, 
gluing as you wrap…

Neaten your pumpkin 
up. Trim off any loose 
bits of yarn, and glue 
down any bits that stick 
up…

1 2 3 4 5

(Multimodal, Text-Only, Image-Only) Human Performance = (1.0/1.0, 0.6/0.6, 0.5/0.5)

Multimodal Alt. GTs: [N/A]
Multimodal Model: 4⇢2⇢3⇢1⇢5 (0.6/0.6)

Text-Only Alt. GTs: [N/A]
Text-Only Model: 4⇢2⇢3⇢1⇢5 (0.6/0.6)

Image-Only Alt. GTs: [N/A]
Image-Only Model: 5⇢2⇢4⇢1⇢3 (0.2/0.2)

Best Model Predictions

(b) Hobbies and Crafts Sample
How To Make a Candy Cake

Melt the marshmallows. 
In a saucepan, melt one 
package of miniature 
marshmallows, ¾ cup of 
canola oil…

Combine the candy, 
peanuts, and popcorn. 
In a large bowl, 
combine 20 cups (5 
quarts) of popped 
popcorn…

Refrigerate the mixture. 
Press the mixture into a 
greased 10-inch tube 
pan…

Stir in the marshmallow 
mixture. Pour the 
melted marshmallow 
mixture into popcorn…

Take the cake out of the 
pan. Dip the pan in hot 
water for 5-10 
seconds...

1 2 3 4 5

(Multimodal, Text-Only, Image-Only) Human Performance = (0.6/1.0, 0.6/1.0, 0.5/0.5)

Multimodal Alt. GTs: [12435]
Multimodal Model: 1⇢2⇢4⇢3⇢5 (0.6/1.0)

Text-Only Alt. GTs: [12435]
Text-Only Model: 1⇢2⇢4⇢3⇢5 (0.6/1.0)

Image-Only Alt. GTs: [12435]
Image-Only Model: 2⇢3⇢5⇢1⇢4 (0.0/0.0)

Best Model Predictions

(c) Recipe Sample

Figure 4: Qualitative examples: We show some qualitative samples of our dataset associated with human and model
predictions, and the annotated multi-reference ground truths. The texts are truncated to fit into the box shown in each sample.
The performance are: (single-reference, multi-reference) accuracy metric respectively.

Modality Subset
WikiHow Golden-Test-Set (Size: 300) RecipeQA Golden-Test-Set (Size: 100)

Acc↑ PMR↑ Lr ↑ Acc↑ PMR↑ Lr ↑
single multi single multi single multi single multi single multi single multi

Image-Only

Single 28.38 — 5.07 — 1.97 — 49.89 — 17.24 — 2.47 —
Multi. 26.67 39.17 4.17 8.33 1.83 1.92 29.23 40.00 7.69 7.69 1.92 2.31

All 28.24 29.24 5.00 5.33 1.96 1.97 47.2 48.60 16.00 16.00 2.40 2.45
Single† 68.47 — 48.36 — 3.54 — 81.61 — 66.67 — 4.10 —
Multi.† 64.58 75.83 37.50 56.25 3.19 3.71 72.31 79.23 50.00 61.54 3.50 3.88

All† 68.16 69.06 47.49 48.99 3.51 3.55 80.40 81.30 64.50 66.00 4.02 4.07

∗ The size of the Multi. subsets are: 24/300 in WikiHow and 13/100 in RecipeQA.

Table 10: Multi-reference performance on image-only modality: † denotes human performance. The denotations are same
as the Table 4. Results are reported using the best performing image-only models from Table 2.

achieve similar downstream performance if well
trained, and thus we consider the models presented
in this work, VisualBERT and CLIP-ViL, due to
their simplicity of adapting to our sequencing task,
as well as their main differences being how the
visual inputs are encoded (via standard object de-
tector networks or patch-based models like CLIP),
which suits our proposed objectives well.

Swapping-Based Predictions. In Section 4.2.2
we mention that we do not observe necessary im-
provements when swapping the textual contents.
Our hypothesis is that the pairwise loss function
applied in the BERSON module already takes care
of this especially for the textual contents. And
that the stronger discourse-level hints inherent in

the textual descriptions may make this operation
unnecessary. On the other hand, both image and
multimodal alignment does not share this similar
property with the texts, and hence this reasons why
swapping the visual modality suffices this particu-
larly pretraining objective.

D.1 Training & Implementation Details

Training Details. All the models in this work
are trained on a single Nvidia A100 GPU15 on
a Ubuntu 20.04.2 operating system. The hyperpa-
rameters for each model are manually tuned against
different datasets, and the checkpoints used for test-
ing are selected by the best performing ones on

15https://www.nvidia.com/en-us/data-center/a100/
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Modalities Models Batch Size Initial LR # Training Epochs Gradient Accu- # Paramsmulation Steps

Image-Only ResNet 4 5× 10−6 5 1 112.98M
CLIP 4 5× 10−6 5 1 88.08M

Text-Only RoBERTa 4 5× 10−6 5 1 393.16M

Multimodal VisualBERT 4 5× 10−6 10 1 421.32M
CLIP-ViL 4 5× 10−6 10 1 497.40M

Image-Only Pretrain CLIP 4 1× 10−5 5 1 68.09M
Text-Only Pretrain RoBERTa 4 1× 10−5 5 1 355.36M

Multimodal Pretrain VisualBERT 4 1× 10−5 5 1 383.52M
CLIP-ViL 4 1× 10−5 5 1 465.50M

Table 11: Hyperparameters in this work: Initial LR denotes the initial learning rate. All the models are trained with Adam
optimizers (Kingma and Ba, 2015). We include number of learnable parameters of each model in the column of # params.

Type Batch Size Initial LR # Training Epochs Gradient Accumulation Steps

Bound (lower–upper) 2–8 1× 10−5–1× 10−6 3–10 1–2

Number of Trials 2–4 2–3 2–4 1–2

Table 12: Search bounds for the hyperparameters of all the models.

the held-out development set, which is constructed
using the method described in Append. Sec. A.3.

Implementation Details. The implementations of
the transformer-based models are extended from
the HuggingFace16 code base (Wolf et al., 2020),
and our entire code-base is implemented in Py-
Torch.17 The computer vision detector model used
in one of our image-only encoders, ResNet-based
Faster-RCNN (Ren et al., 2016), adopts the detec-
tron2 open sourced module, and their pretrained
weights are obtained from the official implemen-
tation from Facebook AI Research.18 Implemen-
tation of BERSON modules are adapted from the
original author’s implementation, where more de-
tails can be found in their paper. Implementation
of the VisualBERT is obtained from the MMF19

framework from Facebook AI Research, and CLIP-
ViL model is obtained and adapted from the origi-
nal author’s released code repository.20 We use this
same repository for the image-only encoder CLIP.

D.2 Hyperparameters
For the sequencing task, we train all the models
for 5 or 10 (for multimodal models) epochs for all
the model variants, where the training time varies
from 2-4 hours for the text-only models and 6-8
hours for the multimodal models. We list all the
hyperparameters used in Table 11. We also include

16https://github.com/huggingface/transformers
17https://pytorch.org/
18https://github.com/facebookresearch/detectron2
19https://github.com/facebookresearch/mmf
20https://github.com/clip-vil/CLIP-ViL

the search bounds and number of trials in Table
12, that all of our models adopt the same search
bounds and ranges of trials.

D.3 WikiHow Images
Although the images in WikiHow can often be syn-
thetic or "cartoon-ish", we observe that modern
object detectors can still propose meaningful re-
gions, regardless of whether the object class predic-
tion is sensible or not. We include some predicted
bounding boxes in Figure 6 for references. And
hence, although there may be concerns on subop-
timal visual understanding from these images, we
do believe both of our ResNet and CLIP visual
encoders can extract reasonably useful features.

E Releases & Codes

The scraped WikiHow dataset will be released upon
acceptance, along with a clearly stated documenta-
tion for usages. We will also release the code for
processing the RecipeQA dataset particularly for
our procedure sequencing task, where the original
dataset can be obtained from their project web-
site.21 If permitted by the authors of the BERSON
model, we will also release the cleaned code repos-
itory which encompasses the majority of the im-
plementations in this work upon acceptance. We
hope that by sharing the datasets and their essential
tools, more interest could be drawn into research on
multimodal procedure understanding and its future
research directions.

21https://hucvl.github.io/recipeqa/
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(a) Human Annotation Instruction

(b) Sample Annotation Interface

Figure 5: MTurk Annotation User Interface: (a) We ask the annotator to follow the indicated instruction, and perform the
sequencing task. (b) The annotation task is designed for an intuitive drag-and-drop usage, followed by a few additional questions
such as confidence level and whether each modality helps. (This example is obtained from RecipeQA dataset.)

(a) Detected Image Regions 1 (b) Detected Image Regions 2

Figure 6: Proposed image regions by Detectron2: We show some examples that even these synthetic and cartoon-ish images
in the WikiHow dataset can provide meaningful representations which can be utilized by strong pretrained object detection
modules. We show few top-detected objects with their bounding boxes and predicted classes. Note that while the classes may be
wrongly predicted, the proposed regions are all meaningful.
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