@inproceedings{alvarez-mellado-lignos-2022-detecting,
title = "Detecting Unassimilated Borrowings in {S}panish: {A}n Annotated Corpus and Approaches to Modeling",
author = "{\'A}lvarez-Mellado, Elena and
Lignos, Constantine",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.acl-long.268/",
doi = "10.18653/v1/2022.acl-long.268",
pages = "3868--3888",
abstract = "This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings{---}words from one language that are introduced into another without orthographic adaptation{---}and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformer-based embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model."
}
Markdown (Informal)
[Detecting Unassimilated Borrowings in Spanish: An Annotated Corpus and Approaches to Modeling](https://preview.aclanthology.org/fix-sig-urls/2022.acl-long.268/) (Álvarez-Mellado & Lignos, ACL 2022)
ACL