@inproceedings{maddela-etal-2022-entsum,
title = "{E}nt{SUM}: A Data Set for Entity-Centric Extractive Summarization",
author = "Maddela, Mounica and
Kulkarni, Mayank and
Preotiuc-Pietro, Daniel",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.acl-long.237/",
doi = "10.18653/v1/2022.acl-long.237",
pages = "3355--3366",
abstract = "Controllable summarization aims to provide summaries that take into account user-specified aspects and preferences to better assist them with their information need, as opposed to the standard summarization setup which build a single generic summary of a document. We introduce a human-annotated data set EntSUM for controllable summarization with a focus on named entities as the aspects to control. We conduct an extensive quantitative analysis to motivate the task of entity-centric summarization and show that existing methods for controllable summarization fail to generate entity-centric summaries. We propose extensions to state-of-the-art summarization approaches that achieve substantially better results on our data set. Our analysis and results show the challenging nature of this task and of the proposed data set."
}
Markdown (Informal)
[EntSUM: A Data Set for Entity-Centric Extractive Summarization](https://preview.aclanthology.org/fix-sig-urls/2022.acl-long.237/) (Maddela et al., ACL 2022)
ACL
- Mounica Maddela, Mayank Kulkarni, and Daniel Preotiuc-Pietro. 2022. EntSUM: A Data Set for Entity-Centric Extractive Summarization. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3355–3366, Dublin, Ireland. Association for Computational Linguistics.