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Abstract

We present a direct speech-to-speech transla-
tion (S2ST) model that translates speech from
one language to speech in another language
without relying on intermediate text genera-
tion. We tackle the problem by first applying
a self-supervised discrete speech encoder on
the target speech and then training a sequence-
to-sequence speech-to-unit translation (S2UT)
model to predict the discrete representations of
the target speech. When target text transcripts
are available, we design a joint speech and
text training framework that enables the model
to generate dual modality output (speech and
text) simultaneously in the same inference
pass. Experiments on the Fisher Spanish-
English dataset show that the proposed frame-
work yields improvement of 6.7 BLEU com-
pared with a baseline direct S2ST model that
predicts spectrogram features. When trained
without any text transcripts, our model perfor-
mance is comparable to models that predict
spectrograms and are trained with text super-
vision, showing the potential of our system for
translation between unwritten languages1.

1 Introduction

Speech translation aims at converting speech from
one language into speech or text in another lan-
guage. The technology helps bridge the commu-
nication barriers between people speaking differ-
ent languages and can provide access to multime-
dia content in different languages. Conventional
speech-to-text translation (S2T) systems take a cas-
caded approach by concatenating automatic speech
recognition (ASR) and machine translation (MT).
In recent years, end-to-end S2T (Bérard et al.,
2016) is proposed to alleviate the error propagation
issue between ASR and MT. These S2T models
can be further combined with text-to-speech (TTS)

1Audio samples are available at https:
//facebookresearch.github.io/speech_
translation/direct_s2st_units/index.html

synthesis to provide both speech and text transla-
tion, which allows the technology to be adopted in
a wider range of applications.

More recently, researchers have started exploring
building direct speech-to-speech translation (S2ST)
models without relying on text generation as an in-
termediate step (Jia et al., 2019b, 2021). Direct
S2ST has the benefits of lower computational costs
and inference latency as fewer decoding steps are
needed compared to cascaded systems. In addi-
tion, direct S2ST is a natural approach for sup-
porting translation for languages without a writing
system (Tjandra et al., 2019; Zhang et al., 2020).
Jia et al. (2019b) first addresses the problem by
training an attention-based sequence-to-sequence
model that maps source speech spectrograms into
target spectrograms. Model training is challenging
as it requires the model to learn not only the align-
ment between two languages but also the acoustic
and linguistic characteristics of both languages. As
a result, there is a performance gap between the
direct S2ST system and an S2T+TTS cascaded sys-
tem.

The recent success in self-supervised learning
for speech has demonstrated that speech representa-
tions learned from a large unlabelled speech corpus
can lead to impressive performance on a variety
of downstream tasks (Yang et al., 2021) includ-
ing ASR (Baevski et al., 2020; Hsu et al., 2021),
speaker and language identification (Fan et al.,
2020), etc. Moreover, discretized speech units
obtained from the clustering of self-supervised
speech representations allow researchers to take
advantage of existing NLP modeling techniques on
speech, such as spoken generative language model-
ing (Lakhotia et al., 2021).

In this work, we tackle the challenge of model-
ing target speech in direct S2ST by predicting self-
supervised discrete representations of the target
speech instead of mel-spectrogram features. Com-
pared with spectrogram features, self-supervised
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discrete units can disentangle linguistic content
from speaker identify or prosodic information in
speech (Polyak et al., 2021). With the use of dis-
crete units, we can also apply common practice
such as beam search during inference.

We investigate direct S2ST with discrete units
in the scenarios where the source and target tran-
scripts may or may not be available, the latter case
being representative of unwritten languages. For
the written languages, we present a framework that
jointly generates speech and text output by com-
bining S2ST and S2T tasks through a shared en-
coder and a partially shared decoder. We resolve
the length mismatch issue between the speech and
text output during decoding with connectionist tem-
poral classification (CTC) (Graves et al., 2006).
Experiments show that with the combination of dis-
crete units prediction, speech and text joint training
and beam search, our direct S2ST system matches
the performance of a cascaded S2T+TTS system.
For the unwritten target languages, we first extend
the use of discrete units to text-to-speech transla-
tion (Zhang et al., 2020) when there are source text
transcripts available. Then we show that with mul-
titask learning using both discrete representations
for the source and the target speech, it is possible
to train a direct S2ST system without the use of any
text transcripts. In addition, we measure the sys-
tem runtime and memory usage during inference
and empirically show that the proposed framework
is the most efficient compared to the direct S2ST
system that predicts spectrogram features or other
cascaded systems.

The rest of this paper is organized as follows.
After introducing background and related work in
the next section, we describe our system in detail
in Sec. 3. Following this, we present experimental
results including objective evaluation on translation
quality, subjective evaluation on speech quality, and
system benchmark in Sec. 4. Finally Sec. 5 con-
cludes with a discussion of potential future work.

2 Related work

Conventional S2ST systems are built by combin-
ing either cascaded or end-to-end S2T models with
TTS (Lavie et al., 1997; Nakamura et al., 2006).
The majority of the speech translation research has
focused on the S2T setup. Studies on ASR+MT sys-
tems explore better ways to integrate ASR output
lattice to MT models (Matusov et al., 2005) in order
to alleviate the error propagation issue between the

two. End-to-end S2T (Bérard et al., 2016) has the
potential to resolve the issue, as long as it is prop-
erly trained with multitask learning (Weiss et al.,
2017), model pre-training (Bahar et al., 2019; Li
et al., 2021) or data augmentation (Jia et al., 2019a)
to overcome the data scarcity problem. Studies on
TTS for S2ST focus more on synthesizing the para-
linguistic information transferred from the source
speech, such as prosody (Aguero et al., 2006; Anu-
manchipalli et al., 2012) and word-level empha-
sis (Do et al., 2017).

On the other hand, Translatotron (Jia et al.,
2019b) is an attention-based sequence-to-sequence
framework that directly translates mel-spectrogram
of the source speech into spectrogram features of
the target speech. Multitask learning is essential in
facilitating the model to converge, though there
is still a performance gap towards a S2T+TTS
cascaded system. The follow-up and concurrent
work, Translatotron 2 (Jia et al., 2021), addresses
the over-generation issue by conditioning the spec-
trogram synthesizer directly on the output from
the auxiliary target phoneme decoder. Kano et al.
(2021) propose to build a single deep-learning
framework step-by-step by pre-training ASR, MT
and TTS models separately and connecting them
with Transcoder layers. However, the inference
process requires the ASR and MT decoders to com-
plete decoding a full sequence, and thus it loses the
latency advantage of a direct S2ST system. Tjan-
dra et al. (2019); Zhang et al. (2020) both investi-
gate direct S2ST models under the unwritten lan-
guage setup by transforming the target speech into
discrete representations through Variational Auto-
Encoder (VAE), training a sequence-to-sequence
model for translation into target discrete units, and
an inverter for converting the units to speech.

In this work, we propose to train a transformer-
based speech-to-discrete unit model for direct
S2ST. We design a text decoding task conditioned
on the intermediate representation of the discrete
unit decoder in addition to the auxiliary tasks pro-
posed in (Jia et al., 2019b). We choose to use
HuBERT (Hsu et al., 2021) to generate the tar-
get self-supervised discrete units, since Yang et al.
(2021); Lakhotia et al. (2021); Polyak et al. (2021)
have shown its superior performance across ASR,
spoken language modeling and speech synthesis,
compared to other unsupervised representations,
including VAE-based representations used in (Tjan-
dra et al., 2019; Zhang et al., 2020).
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Figure 1: An illustration of the direct S2ST model
with discrete units. The model consists of (1) a trans-
former-based speech-to-unit translation (S2UT) model
with a speech encoder and a discrete unit decoder,
(2) auxiliary tasks conditioned on the encoder, (3) a text
CTC decoder conditioned on the discrete unit decoder,
and (4) a vocoder separately trained to transform dis-
crete units into waveform.

Overall, there exists little work on direct S2ST
due to the lack of parallel S2ST training data.
While Jia et al. (2019b) performs one set of ex-
periments on in-house real-world S2ST data, Jia
et al. (2019b, 2021); Tjandra et al. (2019); Zhang
et al. (2020); Kano et al. (2021) all take advantage
of TTS services to produce synthetic target speech
for model training. We follow the same approach
and conduct our experiments with single-speaker
synthetic target speech.

3 Model

Our proposed system (Fig. 1) is a transformer-
based sequence-to-sequence model with a speech
encoder and a discrete unit decoder and incorpo-
rates auxiliary tasks (shown in dashed lines) similar
to (Jia et al., 2019b) during training to facilitate
model learning. For written target languages, we
further apply target text CTC decoding conditioned
on the intermediate representations from the dis-
crete unit decoder for joint speech and text training
and generation. Finally, a vocoder is separately
trained to convert discrete units into waveform.

3.1 Speech-to-unit translation (S2UT) model

HuBERT (Hsu et al., 2021) learns speech represen-
tations in a self-supervised manner by leveraging
k-means clustering on the model’s intermediate
representations (or the Mel-frequency cepstral co-

(a) stacked (b) reduced

Figure 2: Two strategies for generating units during de-
coding. In the stacked design ((a)), each decoding step
predicts r units by producing a K × r vector for r soft-
max computations. In the reduced design ((b)), the tar-
get unit sequence is reduced to a sequence of unique
units with consecutive duplicating units removed.

efficient features for the first iteration) to generate
discrete labels of masked audio segments. A Hu-
BERT model pre-trained on an unlabelled speech
corpus of the target language can encode the tar-
get speech into continuous representations at ev-
ery 20-ms frame. A k-means algorithm is applied
on the learned representations of the unlabelled
speech to generate K cluster centroids (Lakhotia
et al., 2021; Polyak et al., 2021), which are used
to encode target utterances into sequences of clus-
ter indices at every 20-ms. In the end, a target
utterance y is represented as [z1, z2, ..., zT ], zi ∈
{0, 1, ...,K − 1},∀1 ≤ i ≤ T , where T is the
number of frames.

We build the S2UT model by adapting from the
transformer model for MT (Vaswani et al., 2017). A
stack of 1D-convolutional layers, each with stride
2 and followed by a gated linear unit activation
function, is prepended to the transformer layers
in the encoder for downsampling the speech in-
put (Synnaeve et al., 2019). As the target sequence
is discrete, we train the S2UT model with cross-
entropy loss with label smoothing. We explore
two strategies for predicting the discrete unit se-
quence. In the first strategy (Fig. 2(a), dubbed as
“stacked”), we apply the concept of reduction fac-
tor, r, from TTS (Wang et al., 2017) and generate a
K × r vector at every decoding step for predicting
r consecutive discrete units. In the second strategy
(Fig. 2(b), dubbed as “reduced”), we collapse a
consecutive sequence of the same units into one
single unit, resulting a sequence of unique discrete
units. Both strategies help speed up training and
inference time.
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3.2 Multitask learning
We follow the design in (Jia et al., 2019b) to in-
corporate auxiliary tasks with additional attention
and decoder modules conditioned on the intermedi-
ate layers of the encoder. The target output of the
auxiliary tasks can be either phonemes, characters,
subword units or any discrete representations of the
source or target utterances. These auxiliary tasks
are only used during training and not in inference.

For written target languages, we add target text
CTC decoding conditioned on an intermediate
layer from the discrete unit decoder for the model to
generate dual modality output. The use of CTC can
mitigate the length mismatch between the speech
and text output. However, since it only allows
monotonic alignment, we rely on the transformer
layers that the CTC decoder conditioned on to take
care of the reordering from source to target. Dur-
ing training, we do teacher-forcing with the ground
truth target discrete unit sequence and compute
CTC loss using the teacher-forced intermediate rep-
resentations from the decoder. During inference,
we can perform discrete unit decoding and CTC de-
coding for text at each decode step simultaneously.

3.3 Unit-based vocoder
We adopt the modified version of the HiFi-GAN
neural vocoder (Kong et al., 2020) proposed
in (Polyak et al., 2021) for unit-to-waveform con-
version. For the stacked discrete unit output, we
train the vocoder with only discrete unit sequence
and without extra pitch information as the input.
For the reduced discrete unit output, we enhance
the vocoder with a lightweight duration prediction
module from Fastspeech 2 (Ren et al., 2020), which
consists of two 1D-convolutional layers, each with
ReLU activation and followed by layer normaliza-
tion and dropout, and a linear layer. We train the
enhanced vocoder by minimizing the mean square
error (MSE) between the module prediction and
the ground truth duration of each unit segment in
logarithmic domain, together with the generator-
discriminator loss from HiFi-GAN.

4 Experiments

4.1 Data
We perform our experiments using the Fisher
Spanish-English speech translation corpus (Post
et al., 2014) as in (Jia et al., 2019b; Zhang et al.,
2020). The dataset consists of 139k sentences (ap-
proximately 170 hours) from telephone conversa-

train dev dev2 test
# samples 126k 4k 4k 3.6k

source (hrs) 162.5 4.6 4.7 4.5
target (hrs) 139.3 4.0 3.8 3.9

Table 1: Statistics (number of samples and duration)
of the Fisher Spanish-English dataset (Post et al., 2014)
after pre-processing

tions in Spanish, the corresponding Spanish text
transcriptions and their English text translation. As
in previous studies on direct S2ST (Jia et al., 2019b,
2021; Zhang et al., 2020), we use a high-quality
in-house TTS engine to prepare synthetic target
speech with a single female voice as the training
targets. We perform all experiments, including the
baselines, with the synthetic target speech and do
not rely on the TTS engine for other uses. We ap-
ply the ASR model described in Sec. 4.4 on the
synthetic speech and filter out samples with word
error rate (WER) greater than 80. Table 1 lists
the statistics of the resulting training set, the two
development sets and the test set.

4.2 System setup
S2UT model We use the pre-trained HuBERT
Base model2 trained on Librispeech (Panayotov
et al., 2015) for two iterations and follow (Hsu
et al., 2021; Lakhotia et al., 2021) to perform k-
means with K = 100 on representations from
the sixth layer of the model for extracting discrete
units for all target English speech. We compute
80-dimensional mel-filterbank features at every 10-
ms for the source speech as input to the speech
encoder and apply cepstral mean and variance nor-
malization and SpecAugment (Park et al., 2019)
with the Librispeech basic policy. The downsam-
pling stack in the speech encoder contains two 1D-
convolutional layers with kernel size 5 and 1024
channels, resulting in a downsampling factor of
4 on the input speech. The encoder contains 12
transformer layers with embedding size 256, feed-
forward network (FFN) embedding size 2048 and
4 attention heads. The decoder consists of 6 trans-
former layers with the same embedding size and
FFN embedding size as the encoder and 8 attention
heads.

We explore four targets for the auxiliary tasks:
source phonemes (sp), target phonemes (tp), source
characters (sc) and target characters (tc). For sp

2https://github.com/pytorch/fairseq/
tree/master/examples/hubert
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or sc, we append an attention module and a de-
coder to the sixth layer of the encoder based on pre-
liminary experimentation. For tp or tc, we attach
the attention and the decoder to the eighth layer
of the encoder. All multihead attention modules
have 4 heads and the decoders have 2 transformer
layers, 256-dimensional embeddings and a FFN
embedding size of 2048. Each auxiliary loss has a
constant weight of 8.0 during training.

For written target languages, we condition the
CTC decoding on the third layer of the discrete
unit decoder. The target text for CTC is encoded
as 1k unigram subword units (Kudo, 2018) to guar-
antee that the text sequence length is shorter than
the length of the stacked or reduced discrete unit
sequence. The weight on the CTC loss is set to 1.6
during training. We train the models for 400k steps
using Adam with β1 = 0.9, β2 = 0.98, ε = 10−8,
label smoothing 0.2, and apply an inverse square
root learning rate decay schedule with 10k warmup
steps. All other hyper-parameters, such as dropout
and learning rate, are tuned on the development
set. All models are implemented using FAIRSEQ

S2T (Ott et al., 2019; Wang et al., 2020b)3.

Unit-based vocoder We follow the same
vocoder design and training procedure in (Polyak
et al., 2021) and incorporate a duration prediction
module from Fastspeech 2 (Ren et al., 2020). The
two 1D-convolutional layers in the module have a
filter size of 128 and a kernel size of 3. We apply
a dropout of 0.5, and the weight on the MSE loss
from the duration prediction module is set to 1.0
during training4. The vocoder is trained on the
synthetic target speech from the Fisher training set.

4.3 Baselines
We build two cascaded baselines, ASR+MT+TTS
and S2T+TTS, and one direct S2ST baseline that
predicts spectrogram features. All models in the
cascaded baselines are trained with character input
or output.

ASR We train the transformer-based Spanish
ASR system with the default hyper-parameters and
s2t_transformer_s architecture in FAIRSEQ

S2T (Wang et al., 2020b).
3Code is available at https://github.com/

pytorch/fairseq/tree/main/examples/
speech_to_speech.

4Code for vocoder training is available at
https://github.com/facebookresearch/
speech-resynthesis/tree/main/examples/
speech_to_speech_translation

MT As the input to the MT model is characters,
we follow the default gru_transformer setup
in FAIRSEQ (Ott et al., 2019) to prepend a bidi-
rectional recurrent layer with gated recurrent units
(GRU) to the transformer encoder to incorporate a
larger context (Wang et al., 2020a).

S2T We explore both LSTM-based (Weiss et al.,
2017) and transformer-based end-to-end S2T sys-
tems. The former consists of 8 bidirectional LSTM
layers for the encoder and 4 LSTM layers for the
decoder. Embedding and hidden state sizes are all
256. The latter has the same model architecture as
the S2UT model except that it predicts characters
as output. We do not apply pre-training or multi-
task learning and find that the LSTM-based model
works better.

TTS The transformer-based TTS model (Li et al.,
2019) has 6 transformer layers, 4 attention heads,
embedding size 512 and FFN embedding size 2048
for both the encoder and the decoder. We use
32-dimensional layer for the decoder prenet. The
model is trained on the English text and the syn-
thetic target speech with a reduction factor of 5 on
the output feature frames. The vocoder is a HiFi-
GAN model (Kong et al., 2020) fine-tuned on the
mel-spectrogram features from teacher-forcing.

Transformer Translatotron We implement a
transformer-based Translatotron instead of the
LSTM architecture in (Jia et al., 2019b) to speed
up model training. The model predicts mel-
spectrogram features of the target speech and con-
sists of the same speech encoder design as in the
S2UT model, the same speech decoder design as
in the TTS model for the cascaded baselines, and a
fine-tuned HiFi-GAN vocoder (Kong et al., 2020).
We use the same auxiliary task setup as in the S2UT
model with a constant weight of 0.1 on each auxil-
iary loss, apply a reduction factor of 5 on the output
feature frames and tune the hyper-parameters on
the development sets. Preliminary studies show no
performance degradation for the transformer-based
model compared with our implementation of the
LSTM version of the model.

4.4 Evaluation

We evaluate both the translation quality and the
speech quality of the system output. To evaluate
the translation quality, we follow the setup in (Jia
et al., 2019b; Zhang et al., 2020) to apply ASR
on the speech output and compute BLEU scores
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BLEU MOS
dev dev2 test test

ID speech text speech text speech text
1 Synthetic target 88.5 100.0 89.4 100.0 90.5 100.0 3.49 ± 0.14

Cascaded systems:
2 ASR (beam=10) + MT (beam=5) + TTS 42.1 45.1 43.5 46.1 43.9 46.3 3.37 ± 0.15
3 S2T (beam=10) + TTS 38.5 41.1 39.9 42.4 40.2 42.1 3.43 ± 0.14

Direct systems:
4 Transformer Translatotron (r = 5, w/ sp, tp) 25.0 - 26.3 - 26.2 - -
5 Transformer Translatotron (r = 5, w/ sc, tc) 32.9 - 34.1 - 33.2 - 3.31 ± 0.11
6 S2UT, no reduction (r = 1, w/ sc, tc) 33.4 - 34.6 - 34.1 - 3.35 ± 0.14
7 S2UT stacked (r = 5, w/ sc, tc) 34.0 - 34.5 - 34.4 - -

Direct systems with dual modality output:
8 S2UT stacked + CTC (r = 5, w/ sc, tc) 34.4 36.4 36.4 37.9 34.4 35.8 3.32 ± 0.14
9 S2UT reduced + CTC (w/ sc, tc), beam=1 36.8 40.0 38.4 41.5 38.5 40.7 -
10 S2UT reduced + CTC (w/ sc, tc), beam=10 38.2 41.3 39.5 42.2 39.9 41.9 3.41 ± 0.14

From the literature∗:
11 Translatotron (Jia et al., 2019b) 24.8 - 26.5 - 25.6 - 3.69 ± 0.07
12 + pre-trained encoder (Jia et al., 2019b) 30.1 - 31.5 - 31.1 - -
13 Translatotron 2 (Jia et al., 2021) - - - - 37.0 - 3.98 ± 0.08
14 + data augmentation (Jia et al., 2021) - - - - 40.3 - 3.79 ± 0.09

Table 2: Results from systems using target transcripts during training. Translation content quality is evaluated via
BLEU scores with respect to four references from the Fisher Spanish-English dataset. For systems generating dual
modality output (cascaded and S2UT + CTC), we evaluate both the text output directly from the system and the
ASR decoded text from the speech output. We only evaluate the latter for systems generating speech-only output.
Speech naturalness is evaluated via a subjective MOS test, and we report MOS results with 95% confidence interval.
(∗: results are not directly comparable due to different ASR models and MOS protocols used for evaluation.)

of the ASR decoded text with respect to the ref-
erence translations. We adopt an open-sourced
English ASR model5 built with the combination
of wav2vec 2.0 pre-training and self-training (Xu
et al., 2021). The model, which is pre-trained on
Libri-Light (Kahn et al., 2020) and fine-tuned on
full Librispeech (Panayotov et al., 2015), achieves
WER of 1.9 and 3.9 on the Librispeech test-clean
and other sets, respectively. As the ASR output is in
lowercase and without punctuation except apostro-
phes, we normalize the reference text before com-
puting BLEU using SACREBLEU (Post, 2018)6.

In addition to measuring the translation quality
via an objective metric, we conduct human listen-
ing tests to collect mean opinion scores (MOS) to
evaluate the naturalness of the speech output. We
randomly sample 200 utterances from the test set,
and each sample is rated by 8 raters on a scale of
1–5, with 1 being the worst and 5 being the best.

5https://github.com/pytorch/fairseq/
tree/master/examples/wav2vec

6SACREBLEU signature:
nrefs:4|case:lc|eff:no|tok:13a|smooth:exp|version:2.0.0

4.5 Results

We explore model training under both written and
unwritten language scenarios. For the former, we
take advantage of text transcriptions of source and
target speech during S2UT model training. For the
latter, we focus on the cases where the source is in
either a written or unwritten language, while the
target language is without a writing system.

Source & Target Written Table 2 summarizes
the experimental results under the written language
setup. In the following discussion, we first focus on
the translation content quality evaluated by BLEU.
We include the results from (Jia et al., 2019b, 2021)
as references (11-14). However, as different ASR
models are used for evaluation, we should not di-
rectly compare the BLEU scores with our experi-
ments. We also list the BLEU scores evaluated on
the synthetic target speech (1) to show the impact
of the ASR errors on the evaluation metric.

First, we explore using different targets for the
auxiliary tasks with transformer Translatotron and
see that using characters as targets for the auxiliary
tasks gives 7 BLEU gain on the test set compared
to phonemes (4 vs. 5). In all following experiments,
we use characters as the auxiliary task targets.
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Second, we compare the proposed S2UT model
to transformer Translatotron. We start with the
stacked strategy as both models have the same re-
duction ratio of 5. We can see that “S2UT stacked”
outperforms the transformer Translatotron by 1.2
BLEU on the test set (5 vs. 7), indicating that dis-
crete units are easier to model than continuous-
valued mel-spectrogram features. We also experi-
ment with S2UT training using the full discrete unit
sequence (r = 1) and see that a larger reduction
factor can speed up training and inference and does
not hurt the performance (6 vs. 7).

Third, we incorporate target text CTC decoding
to the S2UT model and evaluate both speech and
text output. Joint training with discrete unit loss
and text CTC loss brings an average gain of 1.2
BLEU on the dev sets for “S2UT stacked” (7 vs. 8),
while the performance on the test set remains the
same. Moreover, we see that the reduced strategy is
more effective than stacked. When decoding with a
beam size of 1, we see 1.4 BLEU improvement on
speech output and 1.2 BLEU gain on text output
on the test set (8 vs. 9).

Finally, we apply beam search on the best setup
we find, “S2UT reduced” with joint speech and
text training and auxiliary tasks, and the result-
ing direct S2ST system performs on par with the
S2T+TTS system (3 vs. 10) and bridges 63% of
the gap between transformer Translatotron (5) and
the three-stage ASR+MT+TTS cascaded system
(2). Compared with the cascaded system, the pro-
posed framework has the advantage of being able
to generate consistent speech and text output in
one inference pass. We also examine the output
from the tc auxiliary task, which can serve as an-
other way to generate translated text from the direct
S2ST system. By using ASR decoded text from
the speech output as reference, we see a character
error rate (CER) of 4.5 for the CTC decoded text
and 30.3 for the tc decoded text on the dev set, in-
dicating that the former is more aligned with the
generated audio.

From the MOS results in Table 2, we see that
direct S2ST systems that predict all frames, such
as Translatotron and S2UT stacked models, tend to
have slightly lower MOS than others. The proposed
S2UT reduced system has an MOS close to that for
synthetic target (1 vs. 10). The latter can be viewed
as the upper bound of the best MOS we can get,
since the model is trained with the synthetic speech
as target.

ID BLEU dev dev2 test
source written
Cascaded systems:

15 ASR + T2ST (r = 2) 25.3 25.5 25.9
16 ASR + T2UT reduced 39.9 40.6 41.0

Direct system:
17 S2UT reduced (w/ sc) 34.4 35.4 35.2

From the literature∗:
18 Translatotron (w/ sp) (Jia et al., 2019b) 7.4 8.0 7.2

source unwritten
Direct systems:

19 S2UT reduced, no auxiliary task 7.8 8.0 7.4
20 S2UT reduced (w/ su) 31.1 32.2 31.8

From the literature∗:

21
Translatotron, no auxiliary task

0.4 0.6 0.6
(Jia et al., 2019b)

22 UWSpeech (Zhang et al., 2020) - - 9.4

Table 3: Results from systems trained without us-
ing any target text transcripts. BLEU scores are eval-
uated on the ASR decoded text of the speech output
with respect to four references from the Fisher Spanish-
English dataset. We use beam size 10 when decoding
all S2UT systems. (∗: results are not directly compara-
ble due to different ASR models used for evaluation.)

Source Written, Target Unwritten We explore
the unwritten target language setup by starting from
the scenario where the source speech has a text
writing system. Table 3 summarizes the results.

First, we build cascaded systems by combining
ASR and text-to-speech translation (Zhang et al.,
2020). The latter can be built by either training
a TTS model that predicts spectrogram features
or a text-to-unit model with source text and target
speech in two languages. We refer to the first ap-
proach as text-to-spectrogram translation (T2ST)
and the second as text-to-unit translation (T2UT).
We use the same architecture as the transformer
TTS model to train the T2ST model with reduction
ratio 2, and the same setup as the MT model to
train the T2UT model with reduced unit sequences.
From Table 3, we see that the model that predicts
discrete units outperforms the one that predicts
spectrogram features by 15.1 BLEU on the test
set (15 vs. 16), which is another evidence showing
that discrete units are easier to model as translation
targets than continuous spectrogram features. In
fact, ASR+T2UT also outperforms S2T+TTS by
0.8 BLEU on the test set (3 vs. 16), which provides
another option for building two-stage cascaded sys-
tems.

Next, we focus on “S2UT reduced” based on
the findings from the written language setup for
direct S2ST. We find that training an S2UT model
with sc auxiliary task can already achieve 88% of
the performance from a system trained with both
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(a) Runtime in seconds (b) FLOPs in Millions (c) Max Memory in MiB

Figure 3: Benchmarking results for two direct S2ST systems (proposed S2UT reduced and transformer Transla-
totron), one two-stage (S2T+TTS), and one three-stage cascaded system (ASR+MT+TTS). We examine runtime,
FLOPs and max memory usage on three subsets sampled randomly or from either the shortest or the longest
samples from the Fisher dev set.

source and target text (10 vs. 17). This is in contrary
to the findings in (Jia et al., 2019b) where training
Translatotron with only source transcripts attains
28% of the performance of a system trained with
both source and target text.

Source & Target Unwritten We extend our ex-
periments to a fully unwritten language setup by
training models without using any text transcripts
(Table 3). Jia et al. (2019b) has pointed out that
the model has difficulty in learning to attend to
the input speech when trained without auxiliary
tasks. Zhang et al. (2020) addresses the challenge
by training with discrete unit targets and shows
potential, while it uses labelled speech from lan-
guages other than the source or the target to guide
the VAE learning for the discrete units.

When “S2UT reduced” is trained without aux-
iliary tasks, the performance greatly deteriorates
(19). We notice that the model can still generate
meaningful text. However, the generated speech
does not reflect the content in the source speech,
and the 7.4 BLEU score is mostly contributed by
the function words. This shows that the discrete
unit decoder can learn a language model over the
unit sequence, while the challenge is in the atten-
tion on the encoder output.

To facilitate the S2UT model training, we ap-
ply the HuBERT model pre-trained on English
to extract discrete representations for the source
Spanish speech, and the source units (su) are used
as an auxiliary task target. The resulting S2UT
model achieves only a 1.4 BLEU difference on the
test set compared with transformer Translatotron
trained with both source and target text supervision
(5 vs. 20). This shows that source units are effective

in guiding the model to properly learn the attention,
and the self-supervised discrete representations can
capture basic pronunciations that are transferable
across languages.

4.6 System benchmark
In addition to evaluating the quality of the system
output, we examine the efficiency of the models
during inference by benchmarking the runtime, to-
tal number of floating point operations (FLOPs)
and max memory on an Intel® Xeon® Gold 6230
CPU. We conduct the study with three subsets of
500 samples from the Fisher dev set, one with ran-
dom samples, one with the shortest and the other
one with the longest utterances.

Fig. 3 shows the comparison of two direct S2ST
systems, the proposed S2UT reduced and trans-
former Translatotron, one two-stage cascaded sys-
tem (S2T+TTS) and one three-stage cascaded sys-
tem (ASR+MT+TTS). For each system, we re-
port the runtime and FLOPs measured by timeit
and PyPAPI from all stages, and the maxi-
mum memory from any single stage measured by
memory-profiler. All metrics are averaged
by the total number of samples. For cascaded mod-
els we only consider the metrics for model infer-
ence at different stages and ignore any intermediate
data/IO processing overhead.

First, we see that TTS is the bottleneck for cas-
caded systems, as it takes up the largest percent-
age of runtime (>89% in S2T+TTS and >81% in
ASR+MT+TTS) and contributes to the maximum
memory used. The runtime may be improved with
the use of non-autoregressive TTS systems. We
leave the investigation to future work, as it is also
possible to apply non-autoregressive translation
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with discrete units.
Next, the proposed S2UT reduced model is the

most efficient among the four systems across all
subsets. Compared to S2T+TTS, our direct system
runs 1.5X faster and reduces 47% FLOPs and 55%
max memory, while maintaining the same level of
translation quality (Table 2). This verifies one of
the benefits of direct S2ST systems, which is lower
computational costs and inference latency.

Lastly, the proposed S2UT reduced can not only
produce better translation than transformer Trans-
latotron but also run 1.3X faster and reduce 39%
FLOPs and 51% max memory. This demonstrates
an addition advantage of modeling discrete units
instead of spectrogram features.

5 Conclusion

We investigate training direct S2ST models with
the use of self-supervised discrete representations
as targets. We examine model training under both
the written and unwritten language scenarios. For
the former, we propose a framework with joint
speech and text training that performs on par with
an S2T+TTS baseline, yet it can run more effi-
ciently. We demonstrate the possibility of trans-
lating between two unwritten languages by taking
advantage of discrete representations of both the
source and the target speech for model training.
Our empirical benchmark shows that the proposed
direct S2ST system with discrete units is the most
efficient during inference compared with a direct
S2ST model that predicts spectrogram features or
other cascaded systems.

With the recent release of large-scale S2S
dataset (Wang et al., 2021), we plan to investigate
the proposed framework with real data in the future.
Another important aspect in generating speech out-
put is the voice and prosody. In our work, we focus
on content translation and leave the para-linguistic
aspect of speech translation to future work.

We use an open-sourced ASR model for evalua-
tion, so the results should be comparable with all
future research in the field that follows the same
evaluation protocol. We will also release the code
for reproducing the experiments.

Acknowledgement

We would like to thank Jade Copet, Emmanuel
Dupoux, Evgeny Kharitonov, Kushal Lakhotia, Ab-
delrahman Mohamed, Tu Anh Nguyen and Mor-
gane Rivière for helpful discussions on discrete

representations.

References
PD Aguero, Jordi Adell, and Antonio Bonafonte. 2006.

Prosody generation for speech-to-speech translation.
In 2006 IEEE International Conference on Acous-
tics Speech and Signal Processing Proceedings, vol-
ume 1, pages I–I. IEEE.

Gopala Krishna Anumanchipalli, Luis C Oliveira, and
Alan W Black. 2012. Intent transfer in speech-to-
speech machine translation. In 2012 IEEE Spoken
Language Technology Workshop (SLT), pages 153–
158. IEEE.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech represen-
tations. Advances in Neural Information Processing
Systems, 33.

Parnia Bahar, Tobias Bieschke, and Hermann Ney.
2019. A comparative study on end-to-end speech
to text translation. In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU),
pages 792–799. IEEE.

Alexandre Bérard, Olivier Pietquin, Christophe Servan,
and Laurent Besacier. 2016. Listen and translate: A
proof of concept for end-to-end speech-to-text trans-
lation. arXiv preprint arXiv:1612.01744.

Quoc Truong Do, Sakriani Sakti, and Satoshi Naka-
mura. 2017. Toward expressive speech translation:
A unified sequence-to-sequence LSTMs approach
for translating words and emphasis. In INTER-
SPEECH, pages 2640–2644.

Zhiyun Fan, Meng Li, Shiyu Zhou, and Bo Xu.
2020. Exploring wav2vec 2.0 on speaker verifi-
cation and language identification. arXiv preprint
arXiv:2012.06185.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the 23rd international conference on Ma-
chine learning, pages 369–376.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hu-
bert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. 2021. HuBERT:
Self-supervised speech representation learning by
masked prediction of hidden units. arXiv preprint
arXiv:2106.07447.

Ye Jia, Melvin Johnson, Wolfgang Macherey, Ron J
Weiss, Yuan Cao, Chung-Cheng Chiu, Naveen Ari,
Stella Laurenzo, and Yonghui Wu. 2019a. Lever-
aging weakly supervised data to improve end-to-
end speech-to-text translation. In ICASSP 2019-
2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
7180–7184. IEEE.

3335



Ye Jia, Michelle Tadmor Ramanovich, Tal Remez, and
Roi Pomerantz. 2021. Translatotron 2: Robust di-
rect speech-to-speech translation. arXiv preprint
arXiv:2107.08661.

Ye Jia, Ron J Weiss, Fadi Biadsy, Wolfgang Macherey,
Melvin Johnson, Zhifeng Chen, and Yonghui Wu.
2019b. Direct speech-to-speech translation with
a sequence-to-sequence model. Proc. Interspeech
2019, pages 1123–1127.

Jacob Kahn, Morgane Rivière, Weiyi Zheng, Evgeny
Kharitonov, Qiantong Xu, Pierre-Emmanuel
Mazaré, Julien Karadayi, Vitaliy Liptchinsky,
Ronan Collobert, Christian Fuegen, et al. 2020.
Libri-light: A benchmark for ASR with limited
or no supervision. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 7669–7673.
IEEE.

Takatomo Kano, Sakriani Sakti, and Satoshi Nakamura.
2021. Transformer-based direct speech-to-speech
translation with transcoder. In 2021 IEEE Spoken
Language Technology Workshop (SLT), pages 958–
965. IEEE.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
HiFi-GAN: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. Advances
in Neural Information Processing Systems, 33.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 66–75.

Kushal Lakhotia, Evgeny Kharitonov, Wei-Ning Hsu,
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Adelrahman
Mohamed, et al. 2021. Generative spoken lan-
guage modeling from raw audio. arXiv preprint
arXiv:2102.01192.

Alon Lavie, Alex Waibel, Lori Levin, Michael Finke,
Donna Gates, Marsal Gavalda, Torsten Zeppen-
feld, and Puming Zhan. 1997. JANUS-III: Speech-
to-speech translation in multiple languages. In
1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 1, pages 99–
102. IEEE.

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and
Ming Liu. 2019. Neural speech synthesis with trans-
former network. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6706–6713.

Xian Li, Changhan Wang, Yun Tang, Chau Tran,
Yuqing Tang, Juan Pino, Alexei Baevski, Alexis
Conneau, and Michael Auli. 2021. Multilingual
speech translation from efficient finetuning of pre-
trained models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long
Papers), pages 827–838.

Evgeny Matusov, Stephan Kanthak, and Hermann Ney.
2005. On the integration of speech recognition and
statistical machine translation. In Ninth European
Conference on Speech Communication and Technol-
ogy.

Satoshi Nakamura, Konstantin Markov, Hiromi
Nakaiwa, Gen-ichiro Kikui, Hisashi Kawai,
Takatoshi Jitsuhiro, J-S Zhang, Hirofumi Ya-
mamoto, Eiichiro Sumita, and Seiichi Yamamoto.
2006. The ATR multilingual speech-to-speech
translation system. IEEE Transactions on Audio,
Speech, and Language Processing, 14(2):365–376.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an ASR cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. SpecAugment: A simple data augmentation
method for automatic speech recognition. Proc. In-
terspeech 2019, pages 2613–2617.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux.
2021. Speech resynthesis from discrete disentan-
gled self-supervised representations. arXiv preprint
arXiv:2104.00355.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Matt Post, Gaurav Kumar, Adam Lopez, Damianos
Karakos, Chris Callison-Burch, and Sanjeev Khu-
danpur. 2014. Fisher and CALLHOME Spanish–
English speech translation. LDC2014T23. Web
Download. Philadelphia: Linguistic Data Consor-
tium.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech
2: Fast and high-quality end-to-end text to speech.
arXiv preprint arXiv:2006.04558.

Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Ta-
tiana Likhomanenko, Edouard Grave, Vineel Pratap,
Anuroop Sriram, Vitaliy Liptchinsky, and Ronan
Collobert. 2019. End-to-end ASR: from supervised
to semi-supervised learning with modern architec-
tures. arXiv preprint arXiv:1911.08460.

3336



Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2019. Speech-to-speech translation between untran-
scribed unknown languages. In 2019 IEEE Auto-
matic Speech Recognition and Understanding Work-
shop (ASRU), pages 593–600. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Changhan Wang, Kyunghyun Cho, and Jiatao Gu.
2020a. Neural machine translation with byte-level
subwords. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9154–
9160.

Changhan Wang, Morgane Rivière, Ann Lee, Anne
Wu, Chaitanya Talnikar, Daniel Haziza, Mary
Williamson, Juan Pino, and Emmanuel Dupoux.
2021. VoxPopuli: A large-scale multilingual
speech corpus for representation learning, semi-
supervised learning and interpretation. arXiv
preprint arXiv:2101.00390.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020b. fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of the 2020 Conference of the Asian
Chapter of the Association for Computational Lin-
guistics (AACL): System Demonstrations.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton,
Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy
Bengio, et al. 2017. Tacotron: Towards end-to-end
speech synthesis. Proc. Interspeech 2017, pages
4006–4010.

Ron J Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Zhifeng Chen. 2017. Sequence-to-
sequence models can directly translate foreign
speech. Proc. Interspeech 2017, pages 2625–2629.

Qiantong Xu, Alexei Baevski, Tatiana Likhomanenko,
Paden Tomasello, Alexis Conneau, Ronan Collobert,
Gabriel Synnaeve, and Michael Auli. 2021. Self-
training and pre-training are complementary for
speech recognition. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3030–3034.
IEEE.

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang,
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin,
Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-
Ting Lin, et al. 2021. SUPERB: Speech processing
universal performance benchmark. arXiv preprint
arXiv:2105.01051.

Chen Zhang, Xu Tan, Yi Ren, Tao Qin, Kejun Zhang,
and Tie-Yan Liu. 2020. UWSpeech: Speech to
speech translation for unwritten languages. arXiv
preprint arXiv:2006.07926.

3337



A Model training details

Table 4 lists the hyper-parameters used in train-
ing direct S2ST models reported in Table 2 and 3.
Model configurations are described in Sec. 4.2
and 4.3.

ID learning rate dropout max tokens per GPU # GPUs
4 0.001 0.3 80k 16
5 0.0005 0.1 80k 16
6-10 0.0005 0.1 20k 4
17 0.0005 0.1 20k 4
19 0.0001 0.1 20k 4
20 0.0005 0.1 20k 4

Table 4: Training hyper-parameters for the direct S2ST
models reported in Table 2 and 3.

B Examples of model output

Table 5 shows examples of the ASR decoded text
on the speech output and the text output from CTC
decoding. As shown in Table 5, the generated
speech and the CTC decoded text are consistent
with each other, while the auxiliary task may gen-
erate inconsistent text output due to a separate at-
tention module. The small mismatch between the
model’s speech output and the CTC decoded text is
due to a combination of ASR errors and misspelling
from CTC decoding.

C Significance test

Table 6 shows the p-values from paired significance
tests between the nine systems (ID 2-10) in Table 2.
We conduct the tests with the paired bootstrap re-
sampling method supported in the SACREBLEU
tool (Post, 2018).
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human i’ve been living here for twenty six years
ASR i’ve been living here for twenty six years
CTC i’ve been living here for twentysix years
tc i’m twentysix years living here
ref i’ve been living here twenty six years
human but but i don’t go to puerto rico because i have two kids here
ASR but ∗ i don’t go to porto rico because i have two kids here
CTC but but i don’t go to puerto rico because i have two kids here
tc but but i’m not going to live there puerto rico because i have thousand two kids here
ref but but i’m not going to live there in puerto rico because i have my two children here
human oh yeah that was that what do you think about interracial marriage
ASR oh yes that was that what do you think about inter ratial marriage
CTC oh yeah that was that what do you think about interracial marriage
tc oh yeah that’s ∗ ∗ ∗ ∗ ∗ the interracial marriage
ref oh yeah that was that was today’s subject so what do you think about interracial marriage

Table 5: Examples of output from our best model under the written language setup, “S2UT reduced + CTC (w/ sc,
tc)“. We compare text from (1) human: human transcription of the generated audio, (2) ASR: ASR decoded text on
the generated audio, (3) CTC: the model’s text output from CTC decoding, (4) tc: output from the model’s auxiliary
task trained with target characters as targets, and (5) ref : ground truth reference translation. The differences with
respect to human are highlighted in bold for the text from ASR, CTC and tc, and ∗ denotes word deletion.

ID 2 3 4 5 6 7 8 9
3 0.0010∗ - - - - - - -
4 0.0010∗ 0.0010∗ - - - - - -
5 0.0010∗ 0.0010∗ 0.0010∗ - - - - -
6 0.0010∗ 0.0010∗ 0.0010∗ 0.0150∗ - - - -
7 0.0010∗ 0.0010∗ 0.0010∗ 0.0060∗ 0.2218 - - -
8 0.0010∗ 0.0010∗ 0.0010∗ 0.0090∗ 0.2018 0.4206 - -
9 0.0010∗ 0.0010∗ 0.0010∗ 0.0010∗ 0.0010∗ 0.0010∗ 0.0010∗ -
10 0.0010∗ 0.1798 0.0010∗ 0.0010∗ 0.0010∗ 0.0010∗ 0.0010∗ 0.0010∗

Table 6: p-values from paired significance tests between nine systems (ID 2-10) in Table 2 on the Fisher test set.
p-values < 0.05 are marked with “∗”.
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