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Abstract

When pre-trained contextualized embedding-
based models developed for unstructured data
are adapted for structured tabular data, they
perform admirably. However, recent probing
studies show that these models use spurious
correlations, and often predict inference labels
by focusing on false evidence or ignoring it al-
together. To study this issue, we introduce the
task of Trustworthy Tabular Reasoning, where
a model needs to extract evidence to be used
for reasoning, in addition to predicting the
label. As a case study, we propose a two-
stage sequential prediction approach, which
includes an evidence extraction and an infer-
ence stage. First, we crowdsource evidence
row labels and develop several unsupervised
and supervised evidence extraction strategies
for INFOTABS, a tabular NLI benchmark. Our
evidence extraction strategy outperforms ear-
lier baselines. On the downstream tabular in-
ference task, using only the automatically ex-
tracted evidence as the premise, our approach
outperforms prior benchmarks.

1 Introduction

Reasoning on tabular or semi-structured knowledge
is a fundamental challenge for today’s natural lan-
guage processing (NLP) systems. Two recently
created tabular Natural language Inference (NLI)
datasets, TabFact (Chen et al., 2020b) on Wikipedia
relational tables and INFOTABS (Gupta et al., 2020)
on Wikipedia Infoboxes help study the question of
inferential reasoning over semi-structured tables.
Today’s state-of-the-art for NLI over unstructured
text uses contextualized embeddings (e.g., Devlin
et al., 2019; Liu et al., 2019b). When adapted
for tabular NLI by flattening tables into synthetic
sentences using heuristics, these models achieve
remarkable performance on the datasets.

However, a recent study (Gupta et al., 2021)
demonstrates that these models fail to reason prop-
∗Work done during an internship at Bloomberg

Breakfast in America Relevant
Released4 29 March 19794 H3
Recorded3,4 May-December 19783,4 H2, H3
Studio The Village Recorder in

Los Angeles3

Genre Pop, Art Rock, Soft Rock
Length2 46:062 H1
Label A&M
Producer1 Peter Henderson, Super-

tramp1
H1

H1: Supertramp produced1 an album that was less than
an hour long2.

H2: Most of Breakfast in America was recorded3 in the
last month of 19783.

H3: Breakfast in America was released4 the same month
recording ended 4.

Figure 1: A semi-structured premise (the table
‘Breakfast in America’) example from (Gupta et al.,
2020). Hypotheses H1 are entailed by it, H2 is nei-
ther entailed nor contradictory, and H3 is a contra-
diction. The Relevant column shows the hypotheses
that use the corresponding row. The colored text (and
superscripts) in the table and hypothesis highlights
relevance token level alignment.

erly on the semi-structured inputs in many cases.
For example, they can ignore relevant rows, and
(a) focus on the irrelevant rows (Neeraja et al.,
2021), (b) use only the hypothesis sentence (Poliak
et al., 2018; Gururangan et al., 2018), or (c) knowl-
edge acquired during pre-training (Jain et al., 2021;
Gupta et al., 2021) . In essence, they use spurious
correlations between irrelevant rows, the hypothe-
sis, and the inference label to predict labels.

This paper argues that existing NLI systems opti-
mized solely for label prediction cannot be trusted.
It is not sufficient for a model to be merely Right
but also Right for the Right Reasons. In particular,
at least identifying the relevant elements of inputs
as the ‘Right Reasons’ is essential for trustworthy
reasoning1. We address this issue by introducing

1 We argue that a reasoning system can be deemed trustworthy
only if it exposes how its decisions are made, thus admitting
verification of the reasons for its decisions.

3268



the task of Trustworthy Tabular Inference, where
the goal is to extract relevant rows as evidence and
predict inference labels.

To illustrate this task, consider an example from
the INFOTABS dataset in Figure 1, which shows a
premise table and three hypotheses. The figure also
marks the rows needed to make decisions about
each hypothesis, and also indicates the relevant
tokens for each hypothesis. For trustworthy tab-
ular reasoning, in addition to predicting the label
ENTAIL for H1, CONTRADICT for H2 and NEU-
TRAL for H3, the model should also identify the
evidence rows—namely, the rows Producer and
Length for hypothesis H1, Recorded for hypothesis
H2, Released and Recorded for hypothesis H3.

As a first step, we propose a two-stage sequential
prediction approach for the task, comprising of an
evidence extraction stage, followed by an inference
stage. In the evidence extraction stage, the model
extracts the necessary information needed for the
second stage. In the inference stage, the NLI model
uses only the extracted evidence as the premise for
the label prediction task.

We explore several unsupervised evidence ex-
traction approaches for INFOTABS. Our best unsu-
pervised evidence extraction method outperforms
a previously developed baseline by 4.3%, 2.5%
and 5.4% absolute score on the three test sets. For
supervised evidence extraction, we annotate the IN-
FOTABS training set (17K table-hypothesis pairs
with 1740 unique tables) with relevant rows fol-
lowing the methodology of Gupta et al. (2021),
and then train a RoBERTaLARGE classifier. The
supervised model improves the evidence extrac-
tion performance by 8.7%, 10.8%, and 4.2% abso-
lute scores on the three test sets over the unsuper-
vised approach. Finally, for the full inference task,
we demonstrate that our two-stage approach with
best extraction, outperforms the earlier baseline by
1.6%, 3.8%, and 4.2% on the three test sets.

In summary, our contributions are as follows2:
• We introduce the problem of trustworthy tabu-

lar reasoning and study a two-stage prediction
approach that first extracts evidence and then
predicts the NLI label.

• We investigate a variety of unsupervised ev-
idence extraction techniques. Our unsuper-
vised approach for evidence extraction outper-
forms the previous methods.

2 The updated dataset, along with associated code, is available
at https://tabevidence.github.io/.

• We enrich the INFOTABS training set with
evidence rows, and develop a supervised ex-
tractor that has near-human performance.

• We demonstrate that our two-stage technique
with best extraction outperforms all the prior
benchmarks on the downstream NLI task.

2 Task Formulation

We begin by introducing the task and the datasets
we use.

Tabular Inference is a reasoning task that, like
conventional NLI (Dagan et al., 2013; Bowman
et al., 2015; Williams et al., 2018), asks whether a
natural language hypothesis can be inferred from a
tabular premise. Concretely, given a premise table
T with m rows {r1, r2, . . . , rm}, and a hypothesis
sentence H, the task maps them to ENTAIL (E),
CONTRADICT (C) or NEUTRAL (N ). We can de-
note the mapping as

f(T,H)→ y (1)

where, y ∈ {E, N, C}. For example, for the tabu-
lar premise in Figure 1, the model should predict
E, C, and N for the hypotheses H1, H2, and H3,
respectively.

Trustworthy Tabular Inference is a table rea-
soning problem that seeks not just the NLI label,
but also relevant evidence from the input table that
supports the label prediction. We use TR, a subset
of T, to denote the relevant rows or evidence. Then,
the task is defined as follows.

f(T,H)→ {TR, y} (2)

In our example table, this task will also indicate
the evidence rows TR of Producer and Length for
hypothesis H1, Recorded for hypothesis H2, and
Released and Recorded for hypothesis H3.

While the notion of evidence is well-defined for
the ENTAIL and CONTRADICT labels, the NEU-
TRAL label requires explanation. To decide on the
NEUTRAL label, one must first search for relevant
rows (if any), i.e., identify evidence in the premise
tables. In fact, this is a causally correct sequential
approach. Indeed, INFOTABS has multiple neutral
hypotheses that are partly entailed by the table; if
any part of a hypothesis contradicts the table, then
the inference label should be CONTRADICT. For
example, in our example table, the premise table
indicates that the album was recorded in 1978, em-
phasizing the importance of the Recorded row for
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the hypothesis H2. For NEUTRAL examples, we
refer to any such pertinent rows as evidence.

Dataset Details. There are several datasets for
tabular NLI: TabFact, INFOTABS, and the Se-
mEval’21 Task 9 (Wang et al., 2021b) and the
FEVEROUS’21 shared task (Aly et al., 2021)
datasets. We use the INFOTABS data in this work.
It contains finer-grained annotation (e.g., TabFact
lacks NEUTRAL hypotheses) and more complex
reasoning than the others3.

The dataset consists of 23, 738 premise-
hypothesis pairs collected via crowdsourcing on
Amazon MTurk. The tabular premises are based
on 2, 540 Wikipedia Infoboxes representing twelve
diverse domains, and the hypotheses are short state-
ments paired with NLI labels. All tables contain
a title followed by two columns (cf. Figure 1); the
left columns are keys and the right ones are values).

In addition to the train and development sets,
the data includes multiple test sets, some of which
are adversarial: α1 represents a standard test set
that is both topically and lexically similar to the
training data; α2 hypotheses are designed to be
lexically adversarial4; and α3 tables are drawn
from topics unavailable in the training set. The dev
and test set, comprising of 7200 table-hypothesis
pairs, were recently extended with crowdsourced
evidence rows (Gupta et al., 2021). As one of our
contributions, we describe the evidence rows anno-
tation for the training set in the next Section 3.

3 Crowdsource Evidence Extraction

This section describes the process of using Amazon
MTurk to annotate evidence rows for the 16, 538
premise-hypothesis pairs that make the training set
of INFOTABS. We followed the protocol of Gupta
et al. (2021): one table and three distinct hypothe-
ses formed a HIT. For each of the hypotheses, five
annotators would select the evidence rows. We di-
vide the tasks equally into 110 batches, each batch
having 51 HITs each having three examples. To
reduce bias induced by a link between the NLI la-
bel and row selection, we do not reveal the labels
to the annotators. The quality control details are
provided in the Appendix §B.

In total, we collected 81,282 annotations from
3 As per Gupta et al. (2020), 33% of examples in INFOTABS
involve multiple rows. The dataset covers all the reasoning
types present in the Glue (Wang et al., 2018) and SuperGlue
(Wang et al., 2019) benchmarks. 4 i.e. minimally perturb-
ing hypothesis to flipped ENTAIL to CONTRADICT label and
vice-versa.

Agreement Range Percentage (%)
Poor < 0 0.27
Slight 0.01 – 0.20 1.61
Fair 0.21 – 0.40 5.69
Moderate 0.41 - 0.60 13.89
Substantial 0.61 - 0.80 22.92
Perfect 0.81 - 1.00 55.61
Overall mean 0.79 s.t.d. 0.23

Table 1: Examples (%) for each Fleiss’ Kappa score bucket.

90 distinct annotators. Overall, twenty five annota-
tors completed over 1000 tasks, corresponding to
87.75 % of the examples, indicating a tail distribu-
tion with the annotations. Overall, 16,248 training
set table-hypothesis pairs were successfully labeled
with the evidence rows5. On average, we obtain
89.49% F1-score with equal precision and recall
for annotation agreement when compared with ma-
jority vote. Furthermore, 85% examples have an
F1-score of >80 %, and 62% examples have an
F1-score of >90 %. Around 60% examples have
either perfect (100%) precision or recall, and 42%
have both. Table 1 reports the Fleiss’ Kappa score
with annotation percentage. The average Kappa
score is 0.79 with standard deviation of 0.236.

Choice of Semi-structured Data. The rows of
an Infobox table are semantically distinct, though
all connected to the title entity. Each row can be
considered a separate and uniquely distinct source
of information about the title entity. Because of
this property, the problem of evidence extraction is
well-formed as relevant row selection. The same is
not valid for unstructured text, whose units of infor-
mation may be tokens, phrases, sentences or entire
paragraphs, and is typically unavailable (Ribeiro
et al., 2020; Goel et al., 2021; Mishra et al., 2021;
Yin et al., 2021).

4 Trustworthy Tabular Inference

Trustworthy inference has an intrinsic sequential
causal structure: extract evidence first, then predict
the inference label using the extracted evidence
data, knowledge/common sense, and perhaps for-
mal reasoning (Herzig et al., 2021; Paranjape et al.,
2020)7. To operationalize this intuition, we chose
a two-stage sequential approach which consists of
an evidence extraction followed by the NLI classi-

5 We exclude certain example pairings from our training
sets since they could not achieve satisfactory agreement after
adding more annotators or have label imbalance issues i.e.
more the required number of neutrals. 6 We also manually
examined hypothesis phrases that signal relevant rows. See
Appendix D for details. 7 See more details discussion in $7.
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Figure 2: High level flowchart showing our approach for
evidence extraction and trustworthy tabular inference.

fication, as shown in Figure 2.

Notation. The function f in Eq. 2 can be rewrit-
ten with functions g and h, f(.) = g(.), h ◦ g(.), as

f(T,H) = {g(T,H) , h (g(T,H),H)} (3)

Here, g extracts the evidence rows TR subset of
T, and h uses the extracted evidence TR and the
hypothesis H to predict the inference label y, as

g(T,H)→ TR

h(TR,H)→ y
(4)

To obtain f , we need to define the functions g and
h, and a flexible representation of a semi-structured
table T. To represent a table T, we use the Better
Paragraph Representation (BPR) heuristic of Neer-
aja et al. (2021). BPR uses hand-crafted rules based
on the table category and entity type’s of the row
values (e.g., boolean and date) to convert each row
to a sentence, consisting of table title, key and
values. This representation outperforms the origi-
nal “para” representation technique of Gupta et al.
(2020).

We explore unsupervised ($4.1) and supervised
($4.2) methods for the evidence row extractor g.

4.1 Unsupervised Evidence Extraction

The unsupervised approaches extract Top-K rows
are based on relevance scores, where K is a hyper-
parameter. We use the cosine similarity between
the row and the hypothesis sentence representa-
tions to score rows. We study three ways to define
relevance described next.

4.1.1 Using Static Embeddings
Inspired by the Distracting Row Removal (DRR)
heuristic of Neeraja et al. (2021), we propose DRR
(Re-Rank + Top-Sτ ), which uses fastText (Joulin

et al., 2016; Mikolov et al., 2018) based static em-
beddings to measure sentence similarity. We em-
ploy three modifications to improve DRR.

Re-Rank (δ): We observed that the raw similar-
ity scores (i.e., using only fastText) for some valid
evidence rows could be low, despite exact word-
level lexical matching with the row’s key and values.
We augmented the scores by δ for each exact match
to incentivize precise matches.

Sparse Extraction (S): For most instances, the
number of relevant rows (K) is much lower than
the total number of rows (m); most examples have
only one or two relevant rows. We constrained the
sparsity in the extraction by capping the value of K
to S� m.

Dynamic Selection (τ ): We use a threshold τ
to select rows dynamically Top-Kτ based on the
hypothesis, rather than always selecting fixed K
rows. We only select rows whose similarity (after
Re-Ranking) to the hypothesis sentence represen-
tations is greater than a threshold τ . We adopt
this strategy because (a) the number of rows in the
premise table can vary across examples, and (b) dif-
ferent hypotheses may require a differing number
of evidence rows.

4.1.2 Using Word Alignments
This approach consists of two parts (a) aligning
rows and hypothesis words, and (b) then comput-
ing cosine similarity between the aligned words.
Specifically, we use the SimAlign (Jalili Sabet et al.,
2020) method for word-level alignment. SimA-
lign uses static and contextualized embeddings
without parallel training data to get word align-
ments. Among the approaches explored by SimA-
lign, we use the Match (mwmf) method, which
uses maximum-weight maximal matching in the bi-
partite weighted network formed by the word level
similarity matrix. Our choice of this approach over
the other greedy methods (Itermax and Argmax) is
motivated by the fact that it finds the global opti-
mum matching, while the other two do not. After
alignment, we normalize the sum of cosine simi-
larities of RoBERTaLARGE token embeddings8 to
derive the relevance score. Furthermore, because
all rows use the same title, we assign title matching
terms zero weight. This paper refers to this method
as SimAlign (Match (mwmf)).
8 We use the average BPE token embeddings as the word
embeddings.
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4.1.3 Using Contextualised Embeddings
The approach we saw in $4.1.2 defines row-
hypothesis similarity using word alignments. As
an alternative, we can directly compute similarities
between the contextualised sentence embeddings
of rows and the hypothesis. We explore two options
here.

Sentence Transformer: We use Sentence-BERT
(Reimers and Gurevych, 2019) and its variants
(Reimers and Gurevych, 2020; Thakur et al., 2021;
Wang et al., 2021a), which use Siamese neural
networks (Koch et al., 2015; Chicco, 2021). We
explore several pre-trained sentence transformers
models9 for sentence representation. These models
differ in (a) the data used for pre-training, (b) the
main model type and it size, and (c) the maximum
sequence length.

SimCSE: SimCSE (Gao et al., 2021) uses a con-
trastive learning to train sentence embeddings in
both unsupervised and supervised settings. The
former is trained to take an input sentence and re-
construct it using standard dropout as noise. The
latter uses example pairs from the MNLI dataset
(Williams et al., 2018) with entailments serving
as positive examples and contradiction serving as
hard negatives for contrastive learning.

We give the row sentences directly to SimCSE to
get their embeddings. To avoid misleading matches
between the hypothesis tokens and those in the
premise title, we swap the hypothesis title tokens
with a single token title from another randomly
selected table of the same category. We then use
the cosine similarity between SimCSE sentence
embeddings to compute the final relevance score.
We again use the sparsity and dynamic selection
as earlier. In the study, we refer to this method as
SimCSE (Hypo-Title-Swap + Re-rank + Top-Kτ ).

4.2 Supervised Evidence Extraction

The supervised evidence extraction procedure con-
sists of three aspects: (a) Dataset construction,
(b) Label balancing, and (c) Classifier training.

Dataset Construction. We use the annotated rel-
evant row data ($3) to construct a supervised ex-
traction training dataset. Every row in the table,
paired with the hypothesis, is associated with a bi-
nary label signifying whether the row is relevant or
not. As before, we use the sentences from Better
9 https://www.sbert.net

Paragraph Representation (BPR) (Neeraja et al.,
2021) to represent each row.

Label Balancing. Our annotation, and the per-
turbation probing analysis of Gupta et al. (2021)10,
show that the number of irrelevant rows can be
much larger than the relevant ones for a table-
hypothesis pair. Therefore, if we use all irrelevant
rows from tables as negative examples, the result-
ing training set would be imbalanced, with about
6× more irrelevant rows than relevant rows.

We investigate several label balancing strategies
by sub-sampling irrelevant rows for training. We
explore the following schemes: (a) taking all ir-
relevant rows from the table without sub-sampling
(on average 6× more irrelevant rows) referred to as
Without Sample(6×), (b) randomly sampling un-
related rowsin the same proportion as relevant rows,
referred to as Random Negative(1×), (c) using the
unsupervised DRR (Re-Rank + Top-Sτ ) method to
pick the irrelevant rows that are most similar to the
hypothesis, in equal proportion as the relevant rows,
referred to as Hard Negative(1×), and (d) same as
(c), except picking three times as many irrelevant
rows, referred to as Hard Negative(3×)11.

Classifier Training. We train a relevant-vs-
irrelevant row classifier using RoBERTaLARGE’s
two sentence classifier. We use RoBERTaLARGE be-
cause of its superior performance over other models
in preliminary experiments, and also the fact that it
is also used for the NLI classifier.

4.3 Natural Language Inference
For the downstream NLI task, the function h is a
two-sentence classifier whose inputs are TR (the
rows selected by g) and the hypothesis H. We use
BPR to represent TR as we did for the full table T.
Since |TR|� |T|, the extraction benefits larger ta-
bles (especially inα3 set) which exceed the model’s
token limit.

5 Experimental Evaluation

Our experiments assess the efficacy of evidence
extraction ($4) and its impact on the downstream
NLI task by studying the following questions:

• RQ1: What is the efficacy of unsupervised
approaches for evidence extraction? ($5.2)

10 Tabular probing using row deletion, row-value updation,
row permutation, and row insertion. 11 We explored other
selection ratios too, take rows with rank till 5×, 2×, and 4×,
but discovered that their performance is equivalent to (a), (b),
and (c) respectively.
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Category Unsupervised Methods α1 α2 α3

Baseline WMD (Gupta et al., 2020) 29.42 30.13 28.23
DRR (Neeraja et al., 2021) 33.36 35.72 33.38

Static Embedding DRR (Re-Rank + Top-2(τ=1)) 71.49 73.28 63.41
Alignment SimAlign (Match (mwmf)) 58.98 61.53 66.33

Sentence-Transformer (paraphrase-mpnet-base-v2) 67.37 69.88 63.36
Contextualised SimCSE-Unsupervised (Hypo-Title-Swap + Re-Rank + Top-2(τ=1)) 72.93 70.88 66.33
Embedding SimCSE-Supervised (Hypo-Title-Swap + Re-Rank + Top-2(τ=1)) 75.79 75.74 68.81
Human Oracle (Gupta et al., 2021) 88.62 89.23 88.56

Table 2: F1-scores of the unsupervised evidence extraction methods.

• RQ2: Is supervision beneficial? Is it help-
ful to use hard negatives from unsupervised
approaches for supervised training? ($5.2).

• RQ3: Does evidence extraction enhance the
downstream tabular inference task? ($5.3)

5.1 Experimental Setup
First, we briefly summarize the models used in
our experiments. We investigate both unsupervised
($4.1) and supervised ($4.2) evidence extraction
methods. We use only the extracted evidence as the
premise for the tabular inference task ($4.3). We
compare both tasks against human performance.

As baselines, we use the Word Mover Distance
(WMD) of Gupta et al. (2020) and the original
DRR (Neeraja et al., 2021) with Top-4 extracted
evidence rows. For DRR (Re-Rank + Top-Sτ ),
which uses static embeddings, we set the sparsity
parameter S = 2, and the dynamic row selection
parameter τ = 1.0. Our choice of S is based on
the observation that in INFOTABS most (92%) in-
stances have only one (54%) or two (38%) relevant
rows. We set δ to 0.5 for all experiments.

For the Sentence Transformer, we used the
paraphrase-mpnet-base v2 model (Reimers and
Gurevych, 2019) which is a pre-trained with the
mpnet-base architecture using several existing para-
phrase datasets. This choice is based on perfor-
mance on the development set.

Both the supervised and unsupervised SimCSE
models use the same parameters as DRR (Re-Rank
+ Top-Kτ ). We refer to the supervised and unsuper-
vised variants as SimCSE-Supervised and SimCSE-
Unsupervised respectively.

For the NLI task, we use the BPR repre-
sentation over extracted evidence TR with the
RoBERTaLARGE two sentence classification model.
We compare the following settings: (a) WMD Top-
3 from Gupta et al. (2020), (b) No extraction i.e.
using the full premise table with the “para” repre-
sentation from Gupta et al. (2020), (c) DRR Top-4,
(d) DRR (Re-Rank + Top-2(τ=1)) for training, de-

velopment and test sets, (e) training a supervised
classifier with a human oracle i.e. annotated evi-
dence extraction as discussed in $3, and using the
best extraction model, i.e. supervised evidence ex-
traction with Hard Negative (3×) for the test sets,
and (f) the human oracle across the training, devel-
opment, and test sets.

5.2 Results of Evidence Extraction
Unsupervised evidence extraction. For RQ1,
Table 2 shows the performance of unsupervised
methods. We see that the contextual embedding
method, SimCSE-Supervised (Hypo-Title-Swap +
Re-Rank + Top-2(τ=1)), performs the best. Among
the static embedding cases, DRR (Re-Rank + Top-
2(τ=1)) sees substantial performance improvement
over the original DRR baseline. The alignment
based approach using SimAlign underperforms, es-
pecially on the α1 and α2 test sets. However, its
performance on the α3 data, with out of domain
and longer tables, is competitive to other methods.

Overall, the idea of using Top-Sτ , i.e., using the
dynamic number of rows prediction and Re-Rank
(exact-match based re-ranking) is beneficial. Pre-
viously used approaches such as DRR and WMD
have low F1-score, because of poor precision. Us-
ing Re-Rank based on exact match improves the
evidence extraction recall. Furthermore, introduc-
ing sparsity with Top-Sτ , i.e. considering only
the Top-2 rows (S=2) and dynamic row selection
(τ = 1) substantially enhances evidence extraction
precision. Furthermore, the zero weighting of ti-
tle matches using the Hypo-Title-Swap heuristic,
benefits contextualized embedding models such as
SimCSE12.

SimCSE-supervised (Hypo-Title-Swap + Re-
Rank + Top-2(τ=1) ) outperforms DRR (Re-Rank
+ Top-2(τ=1)) by 4.3% (α1), 2.5% (α2) and 5.4%
(α3) absolute score. Since the table domains and
the NLI reasoning involved for α1 and α2 are sim-
12 For static embedding models, the effect of Hypo-Ti-
tle-Swap was insignificant
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Category Evidence Extraction Train Set Evidence Extraction Test Set α1 α2 α3

WMD (Gupta et al., 2020) WMD (Gupta et al., 2020) 70.38 62.55 61.33
Baseline No Extraction (Gupta et al., 2020) No Extraction (Gupta et al., 2020) 74.88 65.55 64.94

DRR (Neeraja et al., 2021) DRR (Neeraja et al., 2021) 75.78 67.22 64.88
Unsupervised DRR (Re-Rank + Top-2(τ=1)) DRR (Re-Rank + Top-2(τ=1)) 74.66 67.38 65.83
Supervised Oracle Supervised (3× Hard Negative) 77.34 71.15 68.92
Human Oracle Oracle (Gupta et al., 2021) 78.83 71.61 71.55
Human Human NLI (Gupta et al., 2020) Human NLI (Gupta et al., 2020) 84.04 83.88 79.33

Table 3: Tabular NLI performance with the extracted relevant rows as the premise.

ilar, so is their evidence extraction performance.
However, the performance of α3, which contains
out-of-domain and longer tables (an average of
thirteen rows, versus nine rows in α1 and α2) is
relatively worse. The unsupervised approaches are
still 12.69% (α1), 13.49% (α2), and 19.81% (α3)
behind the human performance, highlighting the
challenges of the task.

Supervised evidence extraction. For RQ2, Ta-
ble 4 shows the performance of the supervised rel-
evant row extraction approaches that use binary
classifiers trained with several sampling techniques
for irrelevant rows. Overall, adding supervision
is advantageous13. Furthermore, we observe that
using the unsupervised DRR technique to extract
challenging irrelevant rows, i.e., Hard Negative,
is more effective than random sampling. Indeed,
using random negative examples as the irrelevant
rows performs the worst. Not sampling (6×) or us-
ing only one irrelevant row, namely Hard Negative
(1×), also underperforms. We see that employ-
ing moderate sampling, i.e., Hard Negative (3×),
performs best across all test sets.

The best supervised model with Hard Negative
(3×) sampling improves evidence extraction per-
formance by 8.7% (α1), 10.8% (α2), and 4.2% (α3)
absolute score over the best unsupervised model,
namely SimCSE-Supervised (Hypo-Title-Swap +
Re-Rank + Top-2(τ=1)). 14 The human oracle out-
performs the best supervised model by 4.13% (α1)
and 2.65% (α2) absolute scores—a smaller gap
than the best unsupervised approach. We also ob-
serve that the supervision does not benefit the α3

set much, where the performance gap to humans is
still about 15.95% (only 3.80% improvement over
unsupervised approach). We suspect this is because
of the distributional changes in α3 set noted earlier.
13 We investigate “How much supervision is adequate?" in
Appendix A. 14 Although α2 is adversarial owing to la-
bel flipping, rendering the NLI task more difficult, both α1

and α2 have instances with the same domain tables and hy-
potheses with similar reasoning types, making the relevant
row extraction task equally challenging.

This highlights directions for future improvement
via domain adaptation.

Sampling (Ratio) α1 α2 α3

Random Negative (1×) 69.42 71.94 54.12
Hard Negative (1×) 80.88 84.37 68.28
No Sampling (6×) 83.76 85.41 71.26
Hard Negative (3×) 84.49 86.58 72.61
Human Oracle 88.62 89.23 88.56

Table 4: F1-scores of supervised evidence extractors.

5.3 Results of Natural Language Inference

For RQ3, we investigate how using only extracted
evidence as a premise impacts the performance of
the tabular NLI task. Table 3 shows the results.
Compared to the baseline DRR, our unsupervised
DRR (Re-Rank + Top-2(τ=1)) performs similarly
for α2, worse by 1.12% on α1, and outperforms by
0.95% on α3.

Using evidence extraction with the best su-
pervised model, Hard Negative (3×), trained on
human-extracted (Oracle) rows results in 2.68%
(α1), 3.93% (α2), and 4.04% (α3) improvements
against DRR. Furthermore, using human extracted
(Oracle) rows for both training and testing sets out-
performs all models-based extraction methods. The
human oracle based evidence extraction leads to
largest performance improvements of 3.05% (α1),
4.39% (α2), and 6.67% (α3) over DRR. Overall,
these findings indicate that extracting evidence is
beneficial for reasoning in tabular inference task.

Despite using human extracted (Oracle) rows
for both training and testing, the NLI model still
falls far behind human reasoning (Human NLI)
(Gupta et al., 2020). This gap exists because, in
addition to extracting evidence, the INFOTABS hy-
potheses require inference with the evidence in-
volving common-sense and knowledge, which the
NLI component does not adequately perform.
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6 Evidence Extraction: Human versus
Model

We perform an error analysis of how well our pro-
posed supervised extraction model (Hard Nega-
tive(3x)) performs compared to the human annota-
tors. The model makes two types of errors: a Type
I error occurs when an evidence row is marked as
irrelevant, whereas Type II error occurs when an ir-
relevant row is marked as evidence. A Type I error
will reduce the model’s precision for the extraction
model, whereas a Type II error will decrease the
model’s recall. Type I errors are especially concern-
ing for the downstream NLI task. Since mislabeled
evidence rows will be absent from the extracted
premise, necessary evidence will be omitted, lead-
ing to inaccurate entailment labels. On the other
hand, with Type II errors, when an irrelevant row
is labeled as evidence, the model has to deal with
from extra noise in the premise. However, all the
required evidence remains.

Table 5 shows a comparison of the supervised
extraction (Hard Negative (3x)) approach with the
ground truth human labels on all the three test sets
for both error types. On the α3 set, Type-I and
Type-II errors are substantially higher than α1 and
α2. This highlights the fact that on the α3 set, the
model disagrees with with humans the most. Fur-
thermore, the ratio of Type-II over Type-I errors is
much higher for α3. This indicates that the super-

Test Set Type-I Type-II Ratio (II/I) Total
α1 312 430 1.38 742
α2 286 358 1.25 644
α3 508 1053 2.07 1561

Table 5: Type-I and Type-II error of best supervised evidence
extraction model.

vised extraction model marks many irrelevant rows
as evidence (Type-II error) for α3 set. The out-of-
domain origin of α3 tables, as well as their larger
size, might be one explanation for this poor perfor-
mance. Appendix §C provides several examples of
both types of errors.

7 Discussion

Why Sequential Prediction? Our choice of the
sequential paradigm is motivated by the observa-
tion that it enforces a causal structure. Of course,
a joint or a multi-task model may make better pre-
dictions. However, these models ignore the causal
relationship between evidence selection and label
prediction (Herzig et al., 2021; Paranjape et al.,

2020). Ideally, each row is independent and, its
relevance to the hypothesis can be determined on
its own. In a joint or a multi-task model that ex-
ploits correlations across rows and the final label,
irrelevant rows and the NLI label, can erroneously
influence row selection.

Future Directions. Based on the observations
and discussions, we identify the future directions
as follows. (1) Joint Causal Model. To build a
joint or a multi-task model that follows the causal
reasoning structure, significant changes in model
architecture are required. Such a model would first
identify important rows and then use them for NLI
predictions, but without risking spurious correla-
tions. (2) How much Supervision is Needed? As
evident from our experiments, relevant row super-
vision improves the evidence extraction, especially
on α1 and α2 sets compared to unsupervised ex-
traction. But do we need full supervision for all
examples? Is there any lower limit to supervision?
We partially answered this question in the affirma-
tive by training the evidence extraction model with
limited supervision (semi-supervised setting), but
a deeper analysis is needed to understand the lim-
its. See Appendix A for details. (3) Improving
Zero-shot Domain Performance. As evident from
§5.2, the evidence extraction performance of out-
of-domain tables in α3 needs further improvements,
setting up a domain adaptation research question as
future work. (4) Finally, inspired by Neeraja et al.
(2021), we may be able to add explicit knowledge
to improve evidence extraction.

8 Comparison with Related Work

Tabular Reasoning Many recent studies inves-
tigate various NLP tasks on semi-structured tab-
ular data, including tabular NLI and fact verifica-
tion (Chen et al., 2020b; Gupta et al., 2020; Zhang
and Balog, 2019), various question answering and
semantic parsing tasks (Zhang and Balog, 2020;
Zhang et al., 2020b; Pasupat and Liang, 2015; Kr-
ishnamurthy et al., 2017; Abbas et al., 2016; Sun
et al., 2016; Chen et al., 2020c; Lin et al., 2020;
Zayats et al., 2021; Oguz et al., 2020; Chen et al.,
2021, inter alia), and table-to-text generation (e.g.,
Parikh et al., 2020; Li et al., 2021; Nan et al., 2021;
Yoran et al., 2021; Chen et al., 2020a).

Several strategies for representing Wikipedia
relational tables are proposed, such as Ta-
ble2vec (Deng et al., 2019), TAPAS (Herzig et al.,
2020), TaBERT (Yin et al., 2020), TabStruc (Zhang
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et al., 2020a), TABBIE (Iida et al., 2021), TabGCN
(Pramanick and Bhattacharya, 2021) and RCI
(Glass et al., 2021). Yu et al. (2018, 2021); Eisen-
schlos et al. (2020) and Neeraja et al. (2021) study
pre-training for improving tabular inference.

Interpretability and Explainability Model in-
terpretability can either be through explanations
or by identifying the evidence for the predictions
(Feng et al., 2018; Serrano and Smith, 2019; Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019;
DeYoung et al., 2020; Paranjape et al., 2020). Ad-
ditionally, NLI models (e.g. Ribeiro et al., 2016,
2018a,b; Zhao et al., 2018; Iyyer et al., 2018;
Glockner et al., 2018; Naik et al., 2018; McCoy
et al., 2019; Nie et al., 2019; Liu et al., 2019a) must
be subjected to numerous test sets with adversar-
ial settings. These settings can focus on various
aspects of reasoning, such as perturbed premises
for evidence selection (Gupta et al., 2021), zero-
shot transferability (α3), counterfactual premises
(Jain et al., 2021), and contrasting hypotheses α2.
Recently, Kumar and Talukdar (2020) introduced
Natural-language Inference over Label-specific Ex-
planations (NILE), an NLI approach for generating
labels and accompanying faithful explanations us-
ing auto-generated label-specific natural language
explanations. Our work focuses on the extraction
of label-independent evidence for correct inference,
rather than on the generation of abstractive expla-
nations for a given label.

Comparison with Shared Tasks The Se-
mEval’21 Task 9 (Wang et al., 2021b) and
FEVEROUS’21 shared task (Aly et al., 2021) are
conceptually close to this work.

The SemEval task focuses on statement veri-
fication and evidence extraction using relational
tables from scientific articles. In this work, we fo-
cus on item evidence extraction for non-scientific
Wikipedia Infobox entity tables, proposed a two-
stage sequential approach, and used the INFOTABS
dataset which has complex reasoning and multiple
adversarial tests for robust evaluation.

The FEVEROUS’21 shared task focuses on ver-
ifying information using unstructured and struc-
tured evidence from open-domain Wikipedia. Our
approach concerns evidence extraction from a sin-
gle table rather than open-domain document, table
or paragraph retrieval. Furthermore, we are only
concerned with entity tables rather than relational
tables or unstructured text, while the FEVEROUS

data has relational tables, unstructured text, and
fewer entity tables.

9 Conclusion and Future Work

In this paper, we introduced the problem of Trust-
worthy Tabular Inference, where a reasoning model
both extracts evidence from a table and predicts an
inference label. We studied a two-stage approach,
comprising an evidence extraction and an inference
stage. We explored several unsupervised and su-
pervised strategies for evidence extraction, several
of which outperformed prior benchmarks. Finally,
we showed that by using only extracted evidence
as the premise, our approach outperforms previous
baselines on the downstream tabular inference task.
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A How Much Supervision is Enough for
Evidence Extraction?

To investigate this, we use Hard Negative (3x) with
RoBERTaLARGE model as our evidence extraction
classifier, which is similar to the full supervision
method. To simulate semi-supervision settings, we
randomly sample 10%, 20%, 30%, 40%, and 50%
example instances of the train set in an incremental
fashion for model training, where we repeat the
random samplings three times. Figure 3, 4, and 5
compare the average F1-score over three runs on
the three test sets α1, α2 and α3 respectively.
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Figure 3: Extraction performance with limited supervision
for α1. All results are average of three random splits runs.
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Figure 4: Extraction performance with limited supervision
for α2. All results are average of three random splits runs.
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Figure 5: Extraction performance with limited supervision
for α3. All results are average of three random splits runs.

We discovered that adding some supervision had
advantages over not having any supervision. How-
ever, we also find that 20% supervision is adequate
for reasonably good evidence extraction with only
< 5% F1-score gap with full supervision. One key
issue we observe is the lack of a visible trend due
to significant variation produced by random data
sub-sampling. It would be worthwhile to explore
if this volatility could be reduced by strategic sam-
pling using an unsupervised extraction model, an
active learning framework, and strategic diversity
maximizing sampling, which is left as future work.

B Human Annotation Quality Control

Since many hypothesis sentences (especially those
with neutral labels) require out-of-table informa-
tion for inference, we introduced the option to
choose out-of-table (OOT) pseudo rows, which are
highlighted only when the hypothesis requires in-
formation that is not common (i.e. common sense)
and missing from the table. To reduce any possible
bias due to unintended associations between the
NLI label and the row selections (e.g., using OOT
for neutral examples), we avoid showing inference
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labels to the annotators15.

To assess an annotator, we compare their annota-
tions with the majority consensus of other annota-
tors’ (four) annotations. We perform this compari-
son at two levels: (a) local-consensus-score on the
most recent batch, and (b) cumulative-consensus-
score on all batches annotated thus far.

We use these consensus scores to temporarily
(local-consensus-score) or permanently (cumula-
tive score) block the poor annotators from the task.
We also review the annotations manually and pro-
vide feedback with more detailed instructions and
personalized examples for annotators who were
making mistakes due to ambiguity in the task. We
give incentives to annotators who received high
consensus scores. As in previous work, we re-
moved certain annotators’ annotations that have a
poor consensus score (cumulative score) and pub-
lished a second validation HIT to double-check
each data point if necessary.

C Human vs Models Qualitative
Examples

We manually inspect the Type I and Type II error
instances for the supervised model and human an-
notation for the development set. Below, we show
some of these examples where models conflict with
ground-truth human annotation. We also provide a
possible reason behind the model mistakes.

Type I. Below, we show Type I error examples.

Example I
Row: Colorado Springs, Colorado is a poor training
location for endurance athletes.

Hypothesis: The elevation of Colorado Springs,
Colorado is 6,035 ft (1,839 m).

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the con-

cept of elevation with the perfect high elevation training

ground requirement of endurance athletes. Requires com-

mon sense and knowledge.

15 Because of the random sequence and unbalanced nature,
each of the three hypothesis sentences can have any NLI label,
i.e., in total 33 = 27 possibilities.

Example II
Row: The number of number of employees of
International Fund for Animal Welfare - ifaw is 300+
(worldwide).

Hypothesis: International Fund for Animal Welfare -
ifaw is a national organization focused on only North
America.

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the clue

(‘worldwide’) in the table row with the phrase ‘focused

on only north America’.

Example III
Row: The equipment of Combined driving are horse,
carriage, horse harness equipment.

Hypothesis: Combined driving is a horse racing event
style.

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the horse

related equipment i.e. ‘horse carriage, horse harness’

with the event time i.e. ‘horse racing’.

Type II. Below, we show Type II error examples.

Example I Row: Dazed and Confused was directed
by Richard Linklater.

Hypothesis: Dazed and Confused was directed in 1993.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model focuses on lexical match token

‘directed’ instead using entity type where premise refer

for ‘Person’ who directed rather than ‘Date’ of direction.

Example II Row: The spouse(s) of Celine Dion
(CC OQ ChLD) is René Angélil, ( m. 1994; died 2016).

Hypothesis: Thérèse Tanguay Dion had a child that
became a widow.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model was unable to connect widow

concept in hypothesis with it relation to Spouse and the

marriage date René Angélil, ( m. 1994; died 2016).
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Example III Row: The trainer of Caveat is Woody
Stephens.

Hypothesis: Caveat won more in winnings than it took
to raise and train him.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model connects the ‘raise and train’

term with the trainer name which is unrelated and has no

connection to overall, winning races money vs spending

for animal.

Discussion Based on the observation from the
above examples as also stated in $5.3, the model
fails on many examples due to its lack of knowl-
edge and common-sense reasoning ability. One
possible solution to mitigate this is by the addition
of implicit and explicit knowledge on-the-fly for
evidence extraction, as done for inference task by
Neeraja et al. (2021).

D Implicit Relevance Indication

We manually examine the human-annotated evi-
dence in the development set. We discovered the
existence of several relevant phrases/tokens which
implicitly indicate the presence of evidence rows.
E.g. The existence of tokens such as married, hus-
band, lesbian, and wife in hypothesis (H) is very
suggestive of the row Spouse being the relevant
evidence. Learning such implicit relevance-based
phrases and tokens connection is easy for humans
and large pre-trained supervision models. It is a
challenging task for similarity-based unsupervised
extraction methods. Below, we show implicit rele-
vance, indicating token and the corresponding rele-
vant evidence rows.

Relevance Indicating Phrase (H) → Rele-
vant Evidence Rows Key(T)
‘broked’, ‘started from’, ‘doesn’t anymore’, ‘still per-

form’, ‘over a decade’, ‘began performing’, ‘started wrap-

ping’, ’first started’→ year active

age related term, ‘were of <age>’, ‘after <age>’, ’fall’,

’spring’,’birthday’→ born

’several years’, ’one month’, century art→ years

‘co-wrote’, ‘written’, ‘writer’, ‘original written’→ writ-

ten by (novel and book)

‘married’, ‘husband’, ‘lesbian’, ‘wives’→ Spouse

‘no-reward’, ‘monetary value’, ‘prize’→ rewards

‘earlier’, ‘debut’, ‘21st century’, ‘early 90s’, ‘record-

ing’,‘product of years’→ recorded

‘lost’, ’won’, ’races’,’competition’ → records (horse

races, car races etc) ’sea level’ → ’lowest elevation’,

’highest elevation’, ’elevation’

multi-lingual, multi-faith→ ’regional languages’, ’offi-

cial languages’, ’religion’, ’,’race or faith’

‘acting’, ‘rapping’, ‘politics’→ occupation

‘over an’, ‘shortest’, ‘longest’, ‘run-time’→ length ‘is

form <country>’, ’originate’, ‘are an <nationality>’,

‘formed on <location>’, ’moved to <Country>’, ‘de-

scended from’→ origin, descendant, parenthood etc

’city’ with ’x’ peoples→ ’metropolitan municipality’ or

’metro’

‘was painted with’, ‘mosaic’, ‘oil’, ‘water’→ medium

‘hung in’ , ‘museum’, ‘is stored in/at’, ‘wall’, ‘mural’→
’location’

‘was discontinued’, ‘awards’→ ‘last awarded’

’playing bass’→ ’instruments’

‘served’, ‘term’, ‘current charge’ , ‘in-charge’→ ’in of-

fice’

‘is controlled by’, ‘under control’→ ’government’

‘classical’, ‘pop’, ‘rock’, ‘hip-hop’, ‘sufi’→ genre

‘won more’, ‘in winning (race)’, ‘earned more than’→
earnings

‘Register of’, ‘Cultural Properties’→ designated

‘urban area’, ‘less dense’ -> urban density, density

‘founded by’, ‘has been around’, ‘years’ → founded ,

introduce

‘was started’, ‘century’, ‘was formed’, ’100 years’ →
founded, formation

‘daughters’, ‘sons’→ children spouse(s), partner(s)

‘lost money’, ‘net profit’, ‘budget’, ‘unprofitable’, ’not

popular’(common sense)

‘owned’ or ‘company’→ manufacturer

‘bigger than an average’→ dimension
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