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Abstract
Representations of events described in text
are important for various tasks. In this
work, we present SWCC: a Simultaneous
Weakly supervised Contrastive learning and
Clustering framework for event representation
learning. SWCC learns event representations
by making better use of co-occurrence in-
formation of events. Specifically, we intro-
duce a weakly supervised contrastive learn-
ing method that allows us to consider mul-
tiple positives and multiple negatives, and a
prototype-based clustering method that avoids
semantically related events being pulled apart.
For model training, SWCC learns represen-
tations by simultaneously performing weakly
supervised contrastive learning and prototype-
based clustering. Experimental results show
that SWCC outperforms other baselines
on Hard Similarity and Transitive
Sentence Similarity tasks. In addi-
tion, a thorough analysis of the prototype-
based clustering method demonstrates that the
learned prototype vectors are able to implicitly
capture various relations between events. Our
code will be available at https://github.
com/gaojun4ever/SWCC4Event.

1 Introduction

Distributed representations of events, are a com-
mon way to represent events in a machine-readable
form and have shown to provide meaningful fea-
tures for various tasks (Lee and Goldwasser, 2018;
Rezaee and Ferraro, 2021; Deng et al., 2021; Mar-
tin et al., 2018; Chen et al., 2021). Obtaining ef-
fective event representations is challenging, as it
requires representations to capture various relations
between events. Figure 1 presents four pairs of
events with different relations. Two events may
share the same event attributes (e.g. event types
and sentiments), and there may also be a causal or
temporal relation between two events.
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PersonX wanted a new career
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Figure 1: Four pairs of events with different relations.
Stars represent prototypes and circles represent events.

Early works (Weber et al., 2018) exploit eas-
ily accessible co-occurrence relation of events to
learn event representations. Although the use of co-
occurrence relation works well, it is too coarse for
deep understanding of events, which requires fine-
grained knowledge (Lee and Goldwasser, 2019).
Recent works focus on fine-grained knowledge,
such as discourse relations (Lee and Goldwasser,
2019; Zheng et al., 2020) and commonsense knowl-
edge (e.g. sentiments and intents) (Sap et al., 2019;
Ding et al., 2019). Concretely, Lee and Goldwasser
(2019) and Zheng et al. (2020) leverage 11 dis-
course relation types to model event script knowl-
edge. Ding et al. (2019) incorporate manually la-
beled commonsense knowledge (intents and sen-
timents) into event representation learning. How-
ever, the types of fine-grained event knowledge are
so diverse that we cannot enumerate all of them
and currently adopted fine-grained knowledge fall
under a small set of event knowledge. In addi-
tion, some manually labeled knowledge (Sap et al.,
2019; Hwang et al., 2021) is costly and difficult to
apply on large datasets.

In our work, we observe that there is a rich
amount of information in co-occurring events, but
previous works did not make good use of such infor-
mation. Based on existing works on event relation
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extraction (Xue et al., 2016; Lee and Goldwasser,
2019; Zhang et al., 2020; Wang et al., 2020), we
find that the co-occurrence relation, which refers
to two events appearing in the same document,
can be seen as a superset of currently defined ex-
plicit discourse relations. To be specific, these re-
lations are often indicated by discourse markers
(e.g., “because”, capturing the casual relation) (Lee
and Goldwasser, 2019). Therefore, two related
events must exist in the same sentence or document.
More than that, the co-occurrence relation also in-
cludes other implicit event knowledge. For exam-
ple, events that occur in the same document may
share the same topic and event type. To learn event
representations, previous works (Granroth-Wilding
and Clark, 2016; Weber et al., 2018) based on co-
occurrence information usually exploit instance-
wise contrastive learning approaches related to the
margin loss, which consists of an anchor, positive,
and negative sample, where the anchor is more sim-
ilar to the positive than the negative. However, they
share two common limitations: (1) such margin-
based approaches struggle to capture the essential
differences between events with different seman-
tics, as they only consider one positive and one
negative per anchor. (2) Randomly sampled neg-
ative samples may contain samples semantically
related to the anchor, but are undesirably pushed
apart in embedding space. This problem arises be-
cause these instance-wise contrastive learning ap-
proaches treat randomly selected events as negative
samples, regardless of their semantic relevance.

We are motivated to address the above is-
sues with the goal of making better use of co-
occurrence information of events. To this end,
we present SWCC: a Simultaneous Weakly super-
vised Contrastive learning and Clustering frame-
work for event representation learning, where
we exploit document-level co-occurrence infor-
mation of events as weak supervision and learn
event representations by simultaneously perform-
ing weakly supervised contrastive learning and
prototype-based clustering. To address the first is-
sue, we build our approach on the contrastive frame-
work with the InfoNCE objective (van den Oord
et al., 2019), which is a self-supervised contrastive
learning method that uses one positive and multi-
ple negatives. Further, we extend the InfoNCE to a
weakly supervised contrastive learning setting, al-
lowing us to consider multiple positives and multi-
ple negatives per anchor (as opposed to the previous

works which use only one positive and one nega-
tive). Co-occurring events are then incorporated
as additional positives, weighted by a normalized
co-occurrence frequency. To address the second
issue, we introduce a prototype-based clustering
method to avoid semantically related events being
pulled apart. Specifically, we impose a prototype
for each cluster, which is a representative embed-
ding for a group of semantically related events.
Then we cluster the data while enforce consistency
between cluster assignments produced for differ-
ent augmented representations of an event. Unlike
the instance-wise contrastive learning, our cluster-
ing method focuses on the cluster-level semantic
concepts by contrasting between representations of
events and clusters. Overall, we make the following
contributions:
• We propose a simple and effective frame-

work (SWCC) that learns event representations
by making better use of co-occurrence informa-
tion of events. Experimental results show that
our approach outperforms previous approaches
on several event related tasks.

• We introduce a weakly supervised contrastive
learning method that allows us to consider mul-
tiple positives and multiple negatives, and a
prototype-based clustering method that avoids
semantically related events being pulled apart.

• We provide a thorough analysis of the prototype-
based clustering method to demonstrate that the
learned prototype vectors are able to implicitly
capture various relations between events.

2 Preliminaries

Event representation model. In the early
works (Weber et al., 2018; Ding et al., 2019),
Neural Tensor Networks (NTNs) (Socher et al.,
2013b,a) are widely adopted to compose the repre-
sentation of event constitutions, i.e., (subject,
predicate, object). However, such meth-
ods introduced strong compositional inductive bias
and can not extend to events with more additional
arguments, such as time, location etc. Several re-
cent works (Zheng et al., 2020; Vijayaraghavan and
Roy, 2021) replaced static word vector composi-
tions with powerful pretrained language models,
such as BERT (Devlin et al., 2019), for flexible
event representations and achieved better perfor-
mance. Following them, we also take the BERT as
the backbone model.

The BERT encoder can take as input a free-form
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Figure 2: Architecture of the proposed framework, where the left part is the Weakly Supervised
Contrastive Learning method and the right part is the Prototype-based Clustering method.
Given an input event xi, we obtain three augmented representations zi, za1 and za2 of the same event xi us-
ing the BERT model with different dropout masks. Using the same approach, we obtain the representation set
{zk}k∈N (i) of in-batch negatives and the representation za3 of its co-occurrence event.

event text, which contains a sequence of tokens and
the input format can be represented as follows:

[CLS], pred, subj, obj, [SEP]. (1)

Define x = [x0, x1, · · · , xL] to be the input se-
quence of length L, where x0 and xL are the [CLS]
token and the [SEP] token respectively. Given x,
the BERT returns a sequence of contextualized vec-
tors:

[v[CLS],vx1 , · · · ,vxL ] = BERT(x), (2)

where v[CLS] is the representation for the [CLS]
token. In the default case, the final vector represen-
tation z of the event is the output representation of
the [CLS] token: z = v[CLS].

Instance-wise contrastive learning. Event rep-
resentation models learn representations with con-
trastive learning, which aims to pull related events
together and push apart unrelated events. Margin
loss (Schroff et al., 2015) is a widely used con-
trastive loss in most of the existing works on event
representation learning (Weber et al., 2018; Ding
et al., 2019; Zheng et al., 2020). Most recently,
an alternative contrastive loss function, called In-
foNCE (van den Oord et al., 2019), has been pro-
posed and shown effective in various contrastive
learning tasks (He et al., 2020; Hu et al., 2021; Gao
et al., 2021). Chen et al. (2020a) further demon-
strate that InfoNCE works better than the Margin
loss. In this work, we explore the use of InfoNCE
to train our event representation model.

Formally, given a set of N paired events D =
{xi,x+

i }Ni=1, where x+
i is a positive sample for xi,

the InfoNCE objective for (xi,x+
i ) is presented in

a softmax form with in-batch negatives (Chen et al.,
2020a; Gao et al., 2021):

L = −log
g(zi, z

+
i )

g(zi, z
+
i ) +

∑
k∈N (i) g(zi, zk)

, (3)

where zi and z+i are the augmented representations
of xi and x+

i obtained through a representation
model , k ∈ N (i) is the index of in-batch negatives.
and g is a function: g(zi, zk) = exp(z>i zk/τ),
where τ ∈ R+ is a positive value of temperature.

Data augmentation. One critical question in
contrastive learning is how to obtain z+i . In lan-
guage representation, z+i are often obtained by first
applying data augmentation in the form of word
deletion, reordering, or substitution on xi and then
feeding it into the event representation model. Sev-
eral recent works (Gao et al., 2021; Liang et al.,
2021) exploit dropout noise as data augmentation
for NLP tasks and find that this data augmentation
technique performs much better than common data
augmentation techniques. Specifically, given an
input event xi, we obtain zi and z+i by feeding
the same input to the BERT encoder with the para-
metric weights θ twice, and each time we apply a
different dropout mask:

zi = fθ(xi,φ1), z
+
i = fθ(xi,φ2), (4)

where φ1 and φ2 are two different random masks
for dropout. As described in Sec.3.1, given an
anchor event zi , we generate 3 positive samples
za1 , za2 and za3 with different dropout masks.

3 The Proposed Approach

In this section, we will present technical details
of our proposed approach and our goal is to learn
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event representations by making better use of co-
occurrence information of events. Figure 2 presents
an overview of our proposed approach, which con-
tains two parts: the weakly-supervised contrastive
learning method (left) and the prototype-based clus-
tering method (right). In the following sections, we
will introduce both methods separately.

3.1 Weakly Supervised Contrastive Learning
We build our approach on the contrastive frame-
work with the InfoNCE objective (Eq.3) instead
of the margin loss. To incorporate co-occurrence
information into event representation learning, a
straightforward way is to consider the co-occurring
event of each input event as an additional positive
sample, that is, the positive augmented representa-
tions of xi come not only from itself but also from
its co-occurring event denoted as xp. However,
The original InfoNCE objective cannot handle the
case where there exists multiple positive samples.
Inspired by Khosla et al. (2020), we take a similar
formulation to tackle this problem. More than that,
we also introduce a weighting mechanism to con-
sider co-occurrence frequency of two events, which
indicates the strength of the connection between
two events.

Co-occurrence as weak supervision. Formally,
for each input pair (xi,xp), where xi and xp re-
fer to the input event and one of its co-occurring
events, we first compute an augmented representa-
tion zi of xi as an anchor event, through the event
representation model mentioned in § 2. How the
method differs from InfoNCE is in the construction
of the positive set A(i) for xi. In InfoNCE, A(i)
only contains one positive. In our method, we gen-
eralize Eq. 3 to support multiple positives learning:

L =
∑
a∈A(i)

−log g(zi, za)

g(zi, za) +
∑

k∈N (i) g(zi, zk)
,

(5)
where A(i) and N (i) refer to the positive set and
the negative set for the event xi. Note that we
support arbitrary number of positives here. In our
work, considering the limited GPU memory, we
useA(i) = {za1 , za2 , za3}, where za1 and za2 are
two augmented representations of the same event
xi, obtained with different dropout masks, and za3
is an augmented representation of its co-occurring
event. Here za1 and za2 will then be used in the
prototype-based clustering method (See Fig. 2 for
example) as detailed later (§ 3.2).

Incorporating co-occurrence frequency. The
co-occurrence frequency indicates the strength of
the connection between two events. To make better
use of data, we introduce a weighting mechanism
to exploit the co-occurrence frequency between
events as instance weights and rewrite the Eq. 5:

Lcl =
∑
a∈A(i)

−log εa · g(zi, za)
g(zi, za) +

∑
k∈N (i) g(zi, zk)

.

(6)
Here εa is a weight for the positive sample za.
In our work, the two weights εa1 and εa2 of the
positive samples (za1 and za2) obtained from the
input event, are set as εa1 = εa2 = 1

|A(i)|−1 , where
|A(i)| is its cardinality. To obtain the weight εa3
for the augmented representation za3 of the co-
occurring event, we create a co–occurrence ma-
trix, V with each entry corresponding to the co-
occurrence frequency of two distinct events. Then
V is normalized to V̂ with the Min-Max normal-
ization method, and we take the entry in V̂ as the
weight εa3 for the co-occurrence event. In this
way, the model draws the input events closer to
the events with higher co-occurrence frequency,
as each entry in V̂ indicates the strength of the
connection between two events.

3.2 Prototype-based Clustering

To avoid semantically related events being pulled
apart, we draw inspiration from the recent ap-
proach (Caron et al., 2020) in the computer vision
domain and introduce a prototype-based cluster-
ing method, where we impose a prototype, which
is a representative embedding for a group of se-
mantically related events for each cluster. Then
we cluster the data while enforce consistency be-
tween cluster assignments produced for different
augmented representations of an event. These pro-
totypes essentially serve as the center of data rep-
resentation clusters for a group of semantically re-
lated events (See Figure 1 for example). Unlike
the instance-wise contrastive learning, our cluster-
ing method focuses on the cluster-level semantic
concepts by contrasting between representations of
events and clusters.

Cluster prediction. This method works by com-
paring two different augmented representations of
the same event using their intermediate cluster as-
signments. The motivation is that if these two repre-
sentations capture the same information, it should
be possible to predict the cluster assignment of
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one augmented representation from another aug-
mented representation. In detail, we consider a set
of M prototypes, each associated with a learnable
vector ci, where i ∈ JMK. Given an input event,
we first transform the event into two augmented
representations with two different dropout masks.
Here we use the two augmented representations
za1 and za2 of the event xi. We compute their
cluster assignments qa1 and qa2 by matching the
two augmented representations to the set of M pro-
totypes. The cluster assignments are then swapped
between the two augmented representations: the
cluster assignment qa1 of the augmented represen-
tation za1 should be predicted from the augmented
representation za2 , and vice-versa. Formally, the
cluster prediction loss is defined as:

Lcp = `(za1 , qa2) + `(za2 , qa1), (7)

where function `(z, q) measures the fit between
the representation z and the cluster assignment q,
as defined by: `(z, q) = −qlogp. Here p is a
probability vector over the M prototypes whose
components are:

p(j) =
exp(z>cj/τ)∑M

k=1 exp(exp(z
>ck/τ)

, (8)

where τ is a temperature hyperparameter. Intu-
itively, this cluster prediction method links rep-
resentations za1 and za2 using the intermediate
cluster assignments qa1 and qa2 .

Computing cluster assignments. We compute
the cluster assignments using an Optimal Trans-
port solver. This solver ensures equal partitioning
of the prototypes or clusters across all augmented
representations, avoiding trivial solutions where all
representations are mapped to a unique prototype.
In particular, we employ the Sinkhorn-Knopp al-
gorithm (Cuturi, 2013). The algorithm first begins
with a matrix Γ ∈ RM×N with each element ini-
tialized to z>b cm, where b ∈ JNK is the index of
each column. It then iteratively produces a doubly-
normalized matrix, the columns of which comprise
q for the minibatch.

3.3 Model Training
Our approach learns event representations by si-
multaneously performing weakly supervised con-
trastive learning and prototype-based clustering.
The overall training objective has three terms:

Loverall = Lcl + βLcp + γLmlm, (9)

where β and γ are hyperparameters. The first
term is the weakly supervised contrastive learn-
ing loss that allows us to effectively incorporate
co-occurrence information into event representa-
tion learning. The second term is the prototype-
based clustering loss, whose goal is to cluster the
events while enforcing consistency between clus-
ter assignments produced for different augmented
representations of the input event. Lastly, we in-
troduce the masked language modeling (MLM) ob-
jective (Devlin et al., 2019) as an auxiliary loss to
avoid forgetting of token-level knowledge.

4 Experiments

Following common practice in event representa-
tion learning (Weber et al., 2018; Ding et al., 2019;
Zheng et al., 2020), we analyze the event repre-
sentations learned by our approach on two event
similarity tasks (§ 4.2) and one transfer task (§ 4.4).

4.1 Dataset and Implementation Details
The event triples we use for the training
data are extracted from the New York Times
Gigaword Corpus using the Open Information
Extraction system Ollie (Mausam et al., 2012). We
filtered the events with frequencies less than 3 and
ended up with 4,029,877 distinct events. We use
the MCNC dataset adopted in Lee and Goldwasser
(2019)1 for the transfer task.

Our event representation model is implemented
using the Texar-PyTorch package (Hu et al., 2019).
The model starts from the pre-trained checkpoint
of BERT-based-uncased (Devlin et al., 2019)
and we use the [CLS] token representation as the
event representation. We train our model with a
batch size of 256 using an Adam optimizer. The
learning rate is set as 2e-7 for the event representa-
tion model and 2e-5 for the prototype memory. We
adopt the temperature τ = 0.3 and the numbers of
prototypes used in our experiment is 10.

4.2 Event Similarity Tasks
Similarity task is a common way to measure
the quality of vector representations. Weber
et al. (2018) introduce two event related similar-
ity tasks: (1) Hard Similarity Task and (2)
Transitive Sentence Similarity.

Hard Similarity Task. The hard similarity task
tests whether the event representation model can

1https://github.com/doug919/multi_
relational_script_learning
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Model Hard similarity (Accuracy %) Transitive sentence
Original Extended similarity (ρ)

Event-comp (Weber et al., 2018)* 33.9 18.7 0.57
Predicate Tensor (Weber et al., 2018)* 41.0 25.6 0.63
Role-factor Tensor (Weber et al., 2018)* 43.5 20.7 0.64
KGEB (Ding et al., 2016)* 52.6 49.8 0.61
NTN-IntSent (Ding et al., 2019)* 77.4 62.8 0.74
SAM-Net (Lv et al., 2019)* 51.3 45.2 0.59
FEEL (Lee and Goldwasser, 2018)* 58.7 50.7 0.67
UniFA-S (Zheng et al., 2020)* 78.3 64.1 0.75
SWCC 80.9 72.1 0.82

Table 1: Evaluation performance on the similarity tasks. Best results are bold. *: results reported in the original
papers.

push away representations of dissimilar events
while pulling together those of similar events. We-
ber et al. (2018) created a dataset (denoted as
“Original”), where each sample has two types of
event pairs: one with events that should be close
to each other but have very little lexical overlap,
and another with events that should be farther apart
but have high overlap. This dataset contains 230
event pairs. After that, Ding et al. (2019) extended
this dataset to 1,000 event pairs (denoted as “Ex-
tended”). For this task, we use Accuracy as the
evaluation metric, which measures the percentage
of cases where the similar pair receives a higher
cosine value than the dissimilar pair.

Transitive Sentence Similarity. The transi-
tive sentence similarity dataset (Kartsaklis and
Sadrzadeh, 2014) contains 108 pairs of transitive
sentences that contain a single subject, object, and
verb (e.g., agent sell property) and each
pair in this dataset is manually annotated by a sim-
ilarity score from 1 to 7. A larger score indicates
that the two events are more similar. Following pre-
vious work (Weber et al., 2018; Ding et al., 2019;
Zheng et al., 2020), we evaluate using the Spear-
man’s correlation of the cosine similarity predicted
by each method and the annotated similarity score.

4.3 Comparison methods.
We compare our proposed approach with a variety
of baselines. These methods can be categorized
into three types:
(1) Co-occurrence: Event-comp (Weber et al.,
2018), Role-factor Tensor (Weber et al., 2018)
and Predicate Tensor (Weber et al., 2018) are
models that use tensors to learn the interactions
between the predicate and its arguments and are
trained using co-occurring events as supervision.
(2) Discourse Relations: This line of work
exploits discourse relations. SAM-Net (Lv

et al., 2019) explores event segment relations,
FEEL (Lee and Goldwasser, 2018) and UniFA-
S (Zheng et al., 2020) adopt discourse relations.
(3) Commonsense Knowledge: Several works
have shown the effectiveness of using common-
sense knowledge. KGEB (Ding et al., 2016) in-
corporates knowledge graph information. NTN-
IntSent (Ding et al., 2019) leverages external com-
monsense knowledge about the intent and senti-
ment of the event.

Results. Table 1 reports the performance of dif-
ferent methods on the hard similarity tasks and the
transitive sentence similarity task. The result shows
that the proposed SWCC achieves the best perfor-
mance among the compared methods. It not only
outperforms the Role-factor Tensor method that
based on co-occurrence information, but also has
better performance than the methods trained with
additional annotations and commonsense knowl-
edge, e.g. NTN-IntSent and UniFA-S. This implies
the co-occurrence information of events is effective
but underutilized by previous works, and the pro-
posed SWCC makes better use of the co-occurrence
information.

Ablation study. To investigate the effect of each
component in our approach, we conduct an ablation
study as reported in Table 2. We remove a certain
component of SWCC and examine the correspond-
ing performance of the incomplete SWCC on the
similarity tasks. We first explore the impact of our
prototype-based clustering method by removing the
loss term Lcp in Eq. 9. We find that this component
has a significant impact on the transitive sentence
similarity task. Removing this component causes
a 0.05 (maximum) point drop in performance on
the transitive sentence similarity task. And for the
weakly supervised contrastive learning method, we
find that it has a strong impact on both hard simi-
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Model Hard similarity (Accuracy %) Transitive sentence
Original Extended similarity (ρ)

SWCC 80.9 72.1 0.82
w/o Prototype-based Clustering 77.4 (-3.5) 67.4 (-4.7) 0.77 (-0.05)
w/o Weakly Supervised CL 75.7 (-5.2) 65.1 (-7.0) 0.78 (-0.04)
w/o MLM 77.4 (-3.5) 70.4 (-1.7) 0.80 (-0.02)

BERT (InfoNCE) 72.1 63.4 0.75
BERT (Margin) 43.5 51.4 0.67

Table 2: Ablation study for several methods evaluated on the similarity tasks.

larity tasks, especially the extended hard similarity
task. Removing this component causes an 7.0 point
drop in performance of the model. We also study
the impact of the MLM auxiliary objective. As
shown in Table 2 the token-level MLM objective
improves the performance on the extended hard
similarity task modestly, it does not help much for
the transitive sentence similarity task.

Next, we compare the InfoNCE against the mar-
gin loss in Table 2. For a fair comparison, the
BERT (InfoNCE) is trained using the InfoNCE ob-
jective only, with co-occurring events as positives
and other samples in the minibatch as negatives,
and the BERT (Margin) is trained using the mar-
gin loss, with co-occurring events as positives and
randomly sampled events as negatives. Obviously,
BERT (InfoNCE) achieves much competitive re-
sults on all tasks, suggesting that the InfoNCE with
adjustable temperature works better than the mar-
gin loss. This can be explained by the fact that
the InfoNCE weighs multiple different negatives,
and an appropriate temperature can help the model
learn from hard negatives, while the margin loss
uses only one negative and can not weigh the nega-
tives by their relative hardness.

4.4 Transfer Task

We test the generalization of the event represen-
tations by transferring to a downstream event
related tasks, the Multiple Choice Narrative
Cloze (MCNC) task (Granroth-Wilding and Clark,
2016), which was proposed to evaluate script
knowledge. In particular, given an event chain
which is a series of events, this task requires a rea-
soning system to distinguish the next event from
a small set of randomly drawn events. We eval-
uate our methods with several methods based on
unsupervised learning: (1) Random picks a can-
didate at random uniformly; (2) PPMI (Chambers
and Jurafsky, 2008) uses co-occurrence informa-
tion and calculates Positive PMI for event pairs; (3)
BiGram (Jans et al., 2012) calculates bi-gram con-

ditional probabilities based on event term frequen-
cies; (4) Word2Vec (Mikolov et al., 2013) uses
the word embeddings trained by Skipgram algo-
rithm and event representations are the summation
of word embeddings of predicates and arguments.
Note that we did not compare with supervised meth-
ods (Bai et al., 2021; Zhou et al., 2021; Lv et al.,
2020) since unsupervised ones are more suitable
for purely evaluating event representations.

Results. Table 3 reports the performance of dif-
ferent methods on the MCNC task. As shown in
the table, SWCC achieves the best accuracy on
the MCNC task under the zero-shot transfer set-
ting, suggesting the proposed SWCC has better
generalizability to the downstream tasks than other
compared methods.

Model Accuracy (%)

Random 20.00
PPMI* 30.52
BiGram* 29.67
Word2Vec* 37.39
BERT (Margin) 36.50
BERT (InfoNCE) 39.23
SWCC 44.50

Table 3: Evaluation performance on the MCNC task.
Best results are bold. *: results reported in the previous
work (Lee and Goldwasser, 2019).

5 Analysis and Visualization

In this section, we further analyze the prototype-
based clustering method.

Number of prototypes. Figure 3 displays the im-
pact of the number of prototypes in training. As
shown in the figure, the performance increases as
the number M increases, but it will not further in-
crease after 10. We speculate that because these
evaluation data are too small and contain too few
types of relations, a larger number of prototypes
would not help much in performance improvement.
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Figure 3: Impact of # of Prototypes

Visualization of learned representation. We
randomly sample 3000 events and embed the event
representations learned by BERT (InfoNCE) and
SWCC in 2D using the PCA method. The cluster la-
bel of each event is determined by matching its rep-
resentation to the set of M prototypes. The result-
ing visualizations are given in Figure 4. It shows
that the proposed SWCC yields significantly better
clustering performance than the BERT (InfoNCE),
which means, to a certain extent, the prototype-
based clustering method can help the event repre-
sentation model capture various relations of events.
Overall, the class separation in the visualizations
qualitatively agrees with the performance in Ta-
ble 1.

Figure 4: 2D visualizations of the event representa-
tion spaces learned by BERT (InfoNCE) (left) and
SWCC (right), respectively. Each event is denoted by a
color indicating a prototype.

Case study. We also present sampled events
from two different prototypes in Table 4 (see Ap-
pendix for more examples), to further demonstrate
the ability of SWCC to capture various relations
of events. We can see that the events belonging
to “Prototype1” mainly describe financial stuff, for
example, “earnings be reduced”, while the events
belonging to “Prototype2” are mainly related to pol-
itics. Clearly, the events in the same cluster have
the same topic. And we also find that there are
also causal and temporal relations between some
of these events. For example, “earnings be reduced”
led to “company cut costs”.

Prototype1 Prototype2

loans be sell in market president asked senate
earnings be reduced he deal with congress
company cut costs senate reject it
earnings be flat council gave approval
banks earn fees council rejected bill

Table 4: Example events of two different prototypes.

6 Related Work

Event representation learning. Effectively rep-
resenting events and their relations (casual, tempo-
ral, entailment (Ning et al., 2018; Yu et al., 2020))
becomes important for various downstream tasks,
such as event schema induction (Li et al., 2020),
event narrative modeling (Chambers and Jurafsky,
2008; Li et al., 2018; Lee and Goldwasser, 2019),
event knowledge graph construction (Sap et al.,
2019; Zhang et al., 2020) etc. Many efforts have
been devoted into learning distributed event repre-
sentation. Though driven by various motivations,
the main idea of these methods is to exploit explicit
relations of events as supervision signals and these
supervision signals can be roughly categorized into
three types: (1) discourse relations (e.g. casual
and temporal relations) obtained with automatic
annotation tools (Zheng et al., 2020); (2) manually
annotated external knowledge (e.g. sentiments and
intents) (Lee and Goldwasser, 2018; Ding et al.,
2019) and (3) co-occurrence information (Weber
et al., 2018). Existing work has focused on the
first two supervision signals, with less research on
how to better utilize co-occurrence information.
Though, discourse relations and external knowl-
edge are fine-grained relations that can provide
more accurate knowledge, the current explicitly
defined fine-grained relations fall under a small
set of event relations. Co-occurrence information
is easily accessible but underutilized. Our work
focus on exploiting document-level co-occurrence
information of events to learn event representations,
without any additional annotations.

Instance-wise contrastive learning. Recently, a
number of instance-wise contrastive learning meth-
ods have emerged to greatly improve the perfor-
mance of unsupervised visual and text representa-
tions (He et al., 2020; Chen et al., 2020b,a; Chen
and He, 2021; Grill et al., 2020; Zbontar et al.,
2021; Chen et al., 2020a; Hu et al., 2021; Gao
et al., 2021; Yang et al., 2021). This line of work
aims at learning an embedding space where sam-
ples from the same instance are pulled closer and
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samples from different instances are pushed apart,
and usually adopt InfoNCE (van den Oord et al.,
2019) objective for training their models. Unlike
the margin loss using one positive example and
one negative example, the InfoNCE can handle the
case where there exists multiple negative samples.
In our work, we extend the InfoNCE, which is a
self-supervised contrastive learning approach, to
a weakly supervised contrastive learning setting,
allowing us to effectively leverage co-occurrence
information.

Deep unsupervised clustering. Clustering
based methods have been proposed for repre-
sentation learning (Caron et al., 2018; Zhan
et al., 2020; Caron et al., 2020; Li et al., 2021;
Zhang et al., 2021). Caron et al. (2018) use
k-means assignments pseudo-labels to learn
visual representations. Later, Asano et al. (2020)
and Caron et al. (2020) cast the pseudo-label
assignment problem as an instance of the optimal
transport problem. Inspired by Caron et al. (2020),
we leverage a similar formulation to map event
representations to prototype vectors. Different
from Caron et al. (2020), we simultaneously
perform weakly supervised contrastive learning
and prototype-based clustering.

7 Conclusion

In this work, we propose a simple and effective
framework (SWCC) that learns event representa-
tions by making better use of co-occurrence infor-
mation of events, without any addition annotations.
In particular, we introduce a weakly supervised
contrastive learning method that allows us to con-
sider multiple positives and multiple negatives, and
a prototype-based clustering method that avoids
semantically related events being pulled apart. Our
experiments indicate that our approach not only
outperforms other baselines on several event re-
lated tasks, but has a good clustering performance
on events. We also provide a thorough analysis of
the prototype-based clustering method to demon-
strate that the learned prototype vectors are able to
implicitly capture various relations between events.
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A Appendix

A.1 Model Analysis

Impact of Temperature. We study the impact of
the temperature by trying out different temperature
rates in Table 5 and observe that all the variants
underperform the τ = 0.3.

SWCC Hard similarity (Acc. %) Transitive sentence
Original Extended similarity (ρ)

with Temperature
τ = 0.2 80.0 71.0 0.80
τ = 0.3 80.9 71.3 0.82
τ = 0.5 77.4 68.7 0.78
τ = 0.7 72.2 50.5 0.75
τ = 1.0 48.7 22.9 0.67

Table 5: Impact of Temperature (τ ).

Impact of the MLM objective with different γ.
Table 6 presents the results obtained with different
γ. As can be seen in the table, larger or smaller
values of gamma can harm the performance of the
model. γ = 1.0 gives a better overall performance
of the model.

SWCC Hard similarity (Acc. %) Transitive sentence
Original Extended similarity (ρ)

with MLM
γ = 0.1 76.5 70.9 0.80
γ = 0.5 79.1 71.1 0.81
γ = 1.0 80.9 72.1 0.82
γ = 1.5 80.9 71.9 0.81
γ = 2.0 80.9 72.1 0.80

Table 6: Impact of the MLM objective with different γ.

Impact of the prototype-based clustering objec-
tive with different β. Finally, we study the im-
pact of the prototype-based clustering objective
with different β. As can be seen in the Table 7, the
larger the beta, the better the performance of the
model on the hard similarity task.

SWCC Hard similarity (Acc. %) Transitive sentence
Original Extended similarity (ρ)

with Lpc

β = 0.01 78.3 71.6 0.80
β = 0.05 76.5 71.6 0.80
β = 0.1 80.9 72.1 0.82
β = 0.3 80.9 71.3 0.82
β = 0.5 80.9 73.1 0.80
β = 0.7 80.9 72.8 0.80
β = 1.0 80.9 72.1 0.80

Table 7: Impact of the prototype-based clustering ob-
jective with different β.

A.2 Case Study
Case study. We present sampled events from six
different prototypes in Table 8 to further demon-
strate the ability of SWCC to capture various re-
lations of events. We can see that the events be-
longing to “Prototype1” mainly describe financial
stuff, for example, “earnings be reduced”, while
the events belonging to “Prototype2” are mainly re-
lated to politics. Clearly, the events in the same
cluster have the same topic. And we also find
that there are also causal and temporal relations
between some of these events. For example, “earn-
ings be reduced” leads to “company cut costs”.
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Prototype1 Prototype2 Prototype3

loans be sell in market president asked senate he be known as director
earnings be reduced he deal with congress Wright be president of NBC
company cut costs senate reject it Cook be chairman of ARCO
earnings be flat council gave approval Bernardo be manager for Chamber
banks earn fees council rejected bill Philbin be manager of Board

Prototype4 Prototype5 Prototype6

he be encouraged by things kind is essential Dorsey said to James
I be content it be approach to life Gephardt said to Richard
they be motivated by part we respect desire Pherson said to Kathy
they be meaningful thing be do for ourselves Stone said to Professor
he be ideal it be goal of people Stiles said to Thomas

Table 8: Example events of different prototypes.
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