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Abstract

In contrast to recent advances focusing on high-
level representation learning across modalities,
in this work we present a self-supervised learn-
ing framework that is able to learn a represen-
tation that captures finer levels of granularity
across different modalities such as concepts or
events represented by visual objects or spoken
words. Our framework relies on a discretized
embedding space created via vector quantiza-
tion that is shared across different modalities.
Beyond the shared embedding space, we pro-
pose a Cross-Modal Code Matching objective
that forces the representations from different
views (modalities) to have a similar distribution
over the discrete embedding space such that
cross-modal objects/actions localization can be
performed without direct supervision. We show
that the proposed discretized multi-modal fine-
grained representation (e.g., pixel/word/frame)
can complement high-level summary represen-
tations (e.g., video/sentence/waveform) for im-
proved performance on cross-modal retrieval
tasks. We also observe that the discretized rep-
resentation uses individual clusters to represent
the same semantic concept across modalities.

1 Introduction

Toddlers acquire much of their knowledge through
grounded learning – visual concepts can be ac-
quired through language, and language acquisition
emerges through visual interaction. Inspired by
this type of grounded learning, a rich body of rep-
resentation learning research (Harwath et al., 2018;
Miech et al., 2020; Alayrac et al., 2020; Monfort
et al., 2021; Luo et al., 2021) has been exploring
the potential to learn from multi-modal data such
as video-text, video-audio, and image-audio pairs.
These works typically focus on learning a joint
embedding space between different modalities, in
which high-level summary representations are ex-
tracted as embedding vectors. These embedding
vectors often represent entire video clips, spoken

utterances, or sentences as single vectors, and can
be useful on tasks such as cross-modal data re-
trieval, e.g., finding the most similar visual scene
according to a spoken language description. The
predominant approach to learning these embedding
vectors is to use modality-independent encoders,
and while this has been successful for downstream
retrieval tasks, it makes it difficult to compare the
activations of the encoders from different modali-
ties. Further, the space of continuous embedding
vectors is unbounded, which makes interpreting the
learned representations challenging.

To this end, we propose to jointly learn high-
level embedding vector representations with a fine-
grained discrete embedding space that is shared
across different modalities. The discrete embed-
ding space enables model interpretability since
there are a finite number of embedding vectors
which are shared across modalities. Besides the
shared embedding space, we propose a Cross-
Modal Code Matching (CMCM) objective that
guides the embedding space to capture cross-modal
correspondences of concepts, actions, and words.
This not only improves downstream performance
on retrieval, but also allows us to better interpret
what the model recognized through cross-modal
grounded learning.

To verify the effectiveness of our proposed learn-
ing framework, we conducted experiments in sev-
eral cross-modal domains, including video-text,
video-audio, and image-audio. We found consis-
tent improvements over baseline models, verifying
that the gain was not restricted to the particular
choice of network architecture, input modalities,
or dataset. We also demonstrate the interpretabil-
ity of the fine-grained discrete representations by
showing the cross-modal relations between the em-
bedding vectors and semantic concepts appearing
in the input modalities. Our approach also enables
cross-modal concept localization without requiring
any labels during training.

3013



Modality A
(e.g. Video)

Modality B 
(e.g. Audio)

Encoder
#!"#$%

…

VQ

Encoder
#!"#$& …

Shared Discrete Embedding Space

Encoder
#'"('&

$)%

$)&

H)%

H)&

Codebook

Projection

Projection

Encoder
#'"('%

&)&

&)%
High-level 

representation
Fine-grained 

representation
ℒMMSℒCMCM

Encoder
#*+,$%

Encoder
#*+,$&

Figure 1: An overview of the proposed framework. The proposed shared discrete embedding space (green region,
described in Section 2.2) is based on a cross-modal representation learning paradigm (blue/yellow regions, described
in Section 2.1). The proposed Cross-Modal Code Matching LCMCM objective is detailed in Section 2.3 and Figure 2.

2 Methodology

Figure 1 provides an overview of the proposed
framework. We begin by describing the two-branch
cross-modal representation learning paradigm in
Section 2.1 (the blue and yellow regions). Next, we
introduce our shared discrete embedding space in
Section 2.2 (the green region). Finally, in Sec-
tion 2.3 and Figure 2, we introduce the Cross-
Modal Code Matching objective which guides the
model to learn semantically meaningful representa-
tions through the shared discrete embedding space.

2.1 Cross-Modal Learning Paradigm

Given a set of data X = {(xAi , xBi )}
N
i=1 of size

N where each instance xi is instantiated in differ-
ent modalities A and B (e.g. video and its corre-
sponding caption), the goal is to derive high-level
representative vectors (zAi , z

B
i ) for each instance

(xAi , x
B
i ) that capture the cross-modal relation mea-

sured by a choice of similarity function S(·, ·).
For a specific modality M ∈ {A,B}, a com-

mon first step is to encode raw data xMi into a
sequence of “fine-grained” latent features HM

i

with a modality-specific neural network fM
fine, i.e.

HM
i = fM

fine(x
M
i ). The fine-grained representa-

tions HM
i can express different kinds of raw data,

such as video, audio, or sentences, as a sequence
of vectors {hMi,1, ..., hMi,L} of length L. In the sec-
ond step, a “high-level” representation zMi can be
derived by summarizing the fine-grained latent fea-
tures HM

i with another encoding function fM
high

that reduces the sequence into a single vector, i.e.
zMi = fM

high(H
M
i ).

For example, with modality A being video, raw
data xAi can be treated as a sequence along time
and space and encoded into fine-grained represen-

tations HA
i = {hAi,l}Ll=1 by choosing fA

fine to be a
Residual Network (He et al., 2016). For the second
step, a natural choice for fA

high to derive the high-
level representation zAi would be a mean pooling
function over the time and spatial axes (arranged
along l).

With the sets of high-level representations
{zAi }Ni=1 and {zBj }Nj=1 from different modalities,
we can measure the cross-modal relation between
any pair of representations (zAi , z

B
j ) with some

similarity function1S(·, ·). The final step in this
paradigm is to adopt an objective function that max-
imizes the similarity score between “positive” pairs
(where i = j, and thus the true pairs) and mini-
mizes the similarity score between “negative” pairs
(where i ̸= j, and thus imposter pairs).

While different objective functions, such as
Semi-Hard Negative Mining (Schroff et al., 2015)
(SHN) and Noise Constrastive Estimation (Gut-
mann and Hyvärinen, 2010) (NCE), have been
studied in prior work, we focused on the Masked
Margin Softmax (Ilharco et al., 2019) (MMS) loss

LMMS =

− 1

N

N∑
i=1

log
eS(zAi ,zBi )−M

eS(zAi ,zBi )−M +
∑N

j=1 Ii ̸=je
S(zAi ,zBj )

,

(1)

where the margin M is a hyperparameter to en-
courage a higher similarity for positive pairs. The
MMS loss LMMS can be seen as an application of
the InfoNCE (Oord et al., 2018) loss with a margin.

The effectiveness of the described cross-modal
learning paradigm has been shown by recent works
that achieved state-of-the-art results on benchmark

1While we used dot product throughtout this work, we also
found euclidean distance works well in practice.
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Figure 2: Our proposed Cross-Modal Code Matching objective (described in Section 2.3), which encourages the
model to use similar codewords for matching cross-modal pairs.

datasets in different cross-modal scenarios such as
video-text (Luo et al., 2021), video-audio (Monfort
et al., 2021; Rouditchenko et al., 2020), and image-
text (Radford et al., 2021).

2.2 Shared Discrete Embedding Space

While the high-level representations (zAi , z
B
i )

given by the cross-modal learning paradigm benefit
end tasks such as data retrieval, the representations
cannot be easily interpreted by humans. To ob-
tain fine-grained representations that are more inter-
pretable, we introduce a Vector Quantization (Oord
et al., 2017) (VQ) mechanism after obtaining the
HM

i representations. Formally, with an auxiliary
embedding table E = {e1, e2, ..., eV } of size V ,
which we refer to as the codebook, vector quan-
tization is performed on each fine-grained repre-
sentation hMi,l ∈ HM

i of modality M ∈ {A,B}
with h̄Mi,l = fM (hMi,l ) + sg(ev − fM (hMi,l )), where
fM is a modality specific projection network to
project the input to the shared embedding space,
v = argmink∈V ∥hMi,l −ek∥2, and sg(·) is the stop-
gradient operator proposed in straight-through gra-
dient estimation (Bengio et al., 2013) that treats the
input as constant during backpropagation. In other
words, each vector hMi,l will be replaced by its near-
est neighbor ev, which we refer to as the codeword,
in the codebook E. The codebook is randomly ini-
tialized and updated with the exponential moving
average (Oord et al., 2017) given the fine-grained
representations (more details in Section A of the
Appendix).

We trained the shared embedding space jointly
with the rest of the framework by modifying the
high-level representations zMi to include the dis-
cretized fine-grained representations as zMi =
fM

high(H
M
i ) + fM

code(H̄
M
i ), where fM

code is, similar
to fM

high, the encoding function for summarizing the

sequence of quantized fine-grained representations
(e.g., an average pooling function over l). Having
such a discrete embedding space allows humans to
better interpret the learned embeddings since they
are shared across modalities and there are a finite
number of them.

2.3 Cross-Modal Code Matching

Ideally, the codebook should be shared across dif-
ferent modalities since the quantization method
is independent to the input modality. However,
as we demonstrate in Section F of the Appendix,
the model will learn to partition the codebook
into modality-specific subspaces due to the signif-
icant difference between fine-grained representa-
tions from different modalities. To learn a shared
embedding space that is invariant to input modality,
we propose the Cross-Modal Code Matching ob-
jective which encourages the model to focus more
on the semantic aspect of the input, as illustrated
in Figure 2.

For each vector hMi,l in the fine-grained repre-
sentation sequence HM

i encoded from an instance
xMi of modality M , we first define the probability
of hMi,l belonging to the codeword ev as the
Softmin function of their Euclidean distance,

P (ev|hMi,l ) =
exp(−∥fM (hM

i,l)−ev∥2)∑
k∈V exp(−∥fM (hM

i,l)−ek∥2)
. Note

that this definition assigns higher a probability
to codewords that are closer to the fine-grained
representation, where the closest codeword is used
to perform vector quantization. We can then define
the sequence-level probability distribution over
the codebook as the average of the fine-grained
distribution, P (ev|HM

i ) = 1
L

∑
l P (ev|hMi,l ),

which is the normalized frequency of codeword
usage for a given sequence of fine-grained
representations. Next, for a pair of cross-modal
data (xAi , x

B
j ), we define their code similar-
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ity as the negative symmetric cross entropy
of probability distribution over the codebook
Scode(x

A
i , x

B
j ) =

∑
v P (ev|HA

i ) logP (ev|HB
j ) +∑

v P (ev|HB
j ) logP (ev|HA

i ).

Finally, we define the Cross-Modal Code Match-
ing (CMCM) objective using code similarity as

LCMCM =

− 1

N

N∑
i=1

log
eScode(x

A
i ,xB

i )

eScode(x
A
i ,xB

i ) +
∑

j ̸=i e
Scode(x

A
i ,xB

j )
.

(2)

Intuitively, the proposed objective encourages
the model to represent the input (xAi , x

B
j ) with sim-

ilar codewords for positive pairs (i = j) and non-
matching codewords for negative pairs (i ̸= j).
As a consequence, each codeword is expected to
be a modality invariant representation of a more
fine-grained concept, action, or word that can be
discovered from cross-modal data. For example,
a codeword could correspond to both the visual
scene of a man juggling, and also the spoken word
“juggling,” as we demonstrate in our experimental
results in Table 2 and Figure 4.

The full objective of our proposed cross-modal
representation learning framework is the combina-
tion of objectives at different levels L = LMMS +
αLCMCM, where α controls the weight between the
two terms. Empirically, we found α = 0.1 worked
well across different settings. Please refer to Sec-
tion C and D in Appendix for ablation study and
comparison to possible alternatives to our method.

3 Related work

Examples of the cross-modal learning paradigm.
As described in Section 2.1, many of the
existing methods for cross-modal learning fit
into the paradigm where encoders are modality-
independent. This paradigm has been shown to be
effective by achieving state-of-the-art retrieval per-
formance on benchmark datasets with the modal-
ity pairs that we considered in this work: video-
text (Bain et al., 2021; Luo et al., 2021), video-
audio (Monfort et al., 2021; Rouditchenko et al.,
2020), and image-audio (Harwath et al., 2018,
2020). While these prior works relied on differ-
ent pre-training datasets, model architectures, and
objective functions, they all leverage modality-
independent encoders. One of the most impor-
tant features of this paradigm is the fixed inference
time for retrieval. Since the encoders are modality-
independent, embedding vectors for samples in a

given modality can be computed without using any
samples from the other modality. Thus retrieval
only involves computing the dot product between
embedding vectors from two different modalities.
As a consequence, these models are more flexible
for large-scale retrieval, and the embedding vectors
from each modality can be used independently for
other downstream tasks.

Other cross-modal learning frameworks. In
contrast to the aforementioned works, some meth-
ods leverage cross-modal relations within the en-
coders instead of using modality-independent en-
coders. This has been done with both cross-modal
encoders (Lei et al., 2021; Luo et al., 2021) and
cross-modal attention mechanisms (Miech et al.,
2018; Liu et al., 2019b,a; Gabeur et al., 2020).
However, the cross-modal interactions increase the
complexity for retrieval since every instance of a
specific modality must be used as input with ev-
ery instance of another modality to obtain the em-
bedding vectors. With m and n samples in the
modalities respectively, this increases the complex-
ity from the modality-independent approach from
O(m+ n) to O(mn). Further, it also makes anal-
ysis of the embedding vectors from any individual
modality challenging and inhibits single-modality
downstream tasks. Our proposed framework builds
on the modality-independent approach to enable
light-weight retrieval, but it also enables cross-
modal interaction through our proposed codebook
and Cross-Modal Code Matching objective.

Uncovering semantic-level correspondences.
Image-audio models have been shown to discover
spoken words and visual objects without supervi-
sion through retrieval tasks (Synnaeve et al., 2014;
Harwath and Glass, 2015; Harwath et al., 2017;
Kamper et al., 2018), and the audio embedding
vectors have been shown to cluster into word-like
speech units (Harwath and Glass, 2017; Wang and
Hasegawa-Johnson, 2019; Harwath et al., 2020).
Some work has studied the ability of video-audio
models to relate spoken words to visual objects
and actions in videos (Boggust et al., 2019; Rou-
ditchenko et al., 2020). However, none of these
models incorporated a shared embedding space that
enabled modality-invariant representations. VQ
units have been used in the audio encoder of an
image-audio model (Harwath et al., 2020), which
allowed it to capture the hierarchical structure of
spoken language. While our proposed framework is
similar in that it also discretizes the audio sequence
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Table 1: Cross-Modal retrieval results on S-MiT, Places, and MSR-VTT.

Modality A-B / Dataset Visual Retrieval Language Retrieval

Method
(B → A) (A → B)

R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓
Video-Audio / S-MiT (Monfort et al., 2021)

S-MiT (Monfort et al., 2021) 32.1 58.9 68.6 - 32.3 57.9 68.1 -
Our Baseline† 30.2 57.3 68.5 41.9 29.7 57.2 68.7 28.5
Proposed 34.3 61.3 72.0 33.5 34.0 61.6 71.7 22.5

Image-Audio / Places (Harwath et al., 2017)
ResDAVEnet (Harwath et al., 2018)* 30.9 63.6 74.2 20.2 26.4 58.5 71.2 21.6
ResDAVEnet-VQ (Harwath et al., 2020)* 34.9 70.2 79.4 15.0 32.7 65.6 77.0 18.0
Our Baseline† 43.8 74.1 82.4 15.8 40.4 73.3 82.5 10.9
Proposed 46.5 77.4 85.8 13.7 45.4 77.7 85.9 8.9

Video-Text / MSR-VTT (Xu et al., 2016)
Frozen-in-Time (Bain et al., 2021) 31.0 59.5 70.5 - - - - -
CLIP4Clip-meanP (Luo et al., 2021) 43.1 70.4 80.8 16.2 - - - -
CLIP4Clip-tightT (Luo et al., 2021) 40.2 71.5 80.5 13.4 - - - -
Our Baseline† 42.6 71.2 80.8 15.5 43.0 70.9 80.9 12.5
Proposed 43.4 72.3 81.2 14.8 42.5 71.2 81.1 12.0

† Existing model reproduced with LMMS for fair comparison, see Table 3 in the Appendix for more detail.
* Results obtained by running the official code and pre-trained models, see Appendix for more details.

with VQ units, our work differs significantly by cap-
turing the cross-modal interactions between visual
and audio inputs in the shared embedding space
rather than solely capturing the tree structure of
speech. Further, besides image-audio data, our
proposed framework can handle video-audio and
video-text data.

4 Experiments

4.1 Setup

To demonstrate the generalizability of the proposed
method, we tested our framework on different
cross-modal datasets and baseline models that fit
into the cross-modal learning paradigm. All setups
are listed below and summarized in Table 3 of the
Appendix. For training the proposed model, we
randomly initialized all the modules related to the
discrete shared embedding space and trained them
jointly with the rest of the framework (see Figure 1).
Unless otherwise specified, (1) we “warm-started”
our proposed framework by initializing it with the
modality-specific encoders (namely, fM

fine and fM
high)

from the baseline models; (2) both the projection
network fM and the encoder network fM

code are sin-
gle linear layers; (3) the codebook size is set to
1024. Please refer to Section B in the Appendix for
more implementation details.
Video-Audio: S-MiT (Monfort et al., 2021) con-
tains over 500k pairs of 3-second video and corre-

sponding spoken audio captions averaging 8 sec-
onds. We followed the official protocol to train
on the training set of 500k pairs, use the valida-
tion set of 10k pairs for development and analysis,
and report the retrieval result on a 1k search space
over 5 runs randomly sampled from a held-out test
set. We selected the same baseline model used
on the dataset (Monfort et al., 2021), which con-
tains a visual encoder composed of a ResNet-152
pre-trained on ImageNet (Deng et al., 2009) and
TSM ResNet-50 (Lin et al., 2019) pre-trained on M-
MiT (Monfort et al., 2019). The audio encoder is
a randomly initialized 1D-ResNet (Harwath et al.,
2018) designed specifically for spectrograms. The
shared embedding space has the dimension of 4096,
matching the encoders in the baseline model.

Image-Audio: Places (Harwath et al., 2017) con-
tains over 400k pairs of images from the Places
205 dataset (Zhou et al., 2014) and correspond-
ing spoken audio captions averaging 10 seconds.
We followed the previous works (Harwath et al.,
2018, 2020) to use the training set of 400k pairs
and report results on the validation set of 1k pairs.
We select ResDAVEnet (Harwath et al., 2018) as
the baseline model where the visual encoder is a
ResNet-50 pre-trained on ImageNet (Deng et al.,
2009) and the audio encoder is a randomly initial-
ized 1D-ResNet (Harwath et al., 2018) designed
specifically for spectrograms. The shared embed-
ding space has the dimension of 1024.
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Figure 3: Conditional probability matrix illustrating P (action|codeword) on the S-MiT development set. Y-axis is
action label, showing only the top 20 most frequent labels for simplicity. X-axis is the indices of the top 100 most
frequent codewords.

Video-Text: MSR-VTT (Xu et al., 2016) contains
10k video clips with length varying from 10 to 32
seconds. While each video is provided with 20
related captions for training, we followed the eval-
uation protocol from previous works (Luo et al.,
2021; Gabeur et al., 2020; Yu et al., 2018) to use
the training-9k / test 1k-A splits for train-
ing and testing respectively. CLIP4Clip (Luo et al.,
2021), the current state-of-the-art on MSR-VTT, is
selected as the baseline model. Following the cross-
modal learning paradigm described in Section 2.1,
CLIP4Clip is composed of a pair of encoders: a
Visual Transformer (Dosovitskiy et al., 2020) and
a Text Transformer (Vaswani et al., 2017). Both
encoders are initialized from the CLIP model (Rad-
ford et al., 2021), which is pre-trained on the text-
image dataset WIT (Radford et al., 2021) and op-
timized in the end-to-end manner from pixel/text
input. For training the proposed framework on
top of CLIP4Clip, we freeze the transformers from
CLIP4Clip and update only the modules related
to the discrete shared embedding space. Both
the projection network fM and the encoder net-
work fM

code are 4D-Convolutions for video with
a depth of 3 and BiLSTMs for text, also with a
depth of 3. While CLIP4Clip provided different
options for the high-level visual encoder fM

high, we
adopted the vanilla mean-pooling model. Follow-
ing CLIP4Clip, the shared embedding space has a
dimension of 512.

4.2 Cross-Modal Retrieval

Data retrieval is one of the most common evalua-
tions for cross-modal representation learning. For

example, in video retrieval with input query text,
videos in the search space will be ranked by the
similarity between the representation of each video
and the query. We report the standard retrieval
metrics recall at rank K (R@K) and median rank
(MdR) in Table 1. We show the performance on
both visual retrieval, where input language queries
are used to retrieve videos or images, and language
retrieval, where input visual queries are used to
retrieve spoken or text captions.

Video-Audio Retrieval. Video-Audio retrieval
on S-MiT (Monfort et al., 2021) is a challenging
task since videos are paired with raw speech au-
dio, which is untranscribed, unsegmented, and can
contain background noise and speaker variation.
However, our proposed framework that leverages
cross-modal connections between visual actions
and spoken words is able to improve the baseline
model by a margin. We further analyze our frame-
work’s ability to relate visual actions and spoken
words in Section 4.3.

Image-Audio Retrieval. Comparing the baseline
model, ResDAVEnet (Harwath et al., 2018), and
the current state-of-the-art ResDAVEnet-VQ (Har-
wath et al., 2020), the latter model introduces VQ
units into the audio encoder, allowing it to model
the hierarchical structure of speech and achieve
better retrieval results. With our framework, we
introduce our shared VQ embedding space into the
ResDAVEnet model to capture cross-modal inter-
actions. This improves the performance over both
ResDAVEnet and ResDAVEnet-VQ.

Video-Text Retrieval. On the benchmark
MSR-VTT dataset, we compared our proposed
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Table 2: Correspondence between codewords, visual actions, and spoken words. Ranking is based on the precision
(Prc.) of the top hypothesis of the visual action label. Occurrence (Occ.) indicates the number of times the codeword
was activated throughout the development set. Around 750 codewords were activated on the development set. An
extended table is available in Section G of the Appendix.

Rank Code Occ.
Visual Action Spoken word

Top Hypothesis Second Hypothesis Top Hypothesis Second Hypothesis
Label Prc. Label Prc. Word F1 Word F1

1 201 147 juggling 97.5 kicking 1.2 juggling 36.7 juggles 8.3
2 349 112 flossing 96.0 licking 0.7 floss 15.8 flossing 14.0
3 145 49 surfing 95.6 snowing 2.9 surfboard 23.7 waves 7.3
4 29 64 tattooing 94.6 injecting 2.2 tattoo 15.8 tattooed 4.2
5 233 25 ironing 93.8 hammering 6.2 ironing 20.5 iron 4.7

...
32 500 89 dialing 60.0 texting 10.0 dialing 13.8 phone 9.8
33 536 28 cheering 60.0 shouting 10.0 cheerleaders 26.8 cheerleading 10.3
34 50 203 rafting 58.6 paddling 25.7 rafting 16.7 raft 8.5
35 664 78 dunking 58.0 leaping 9.1 basketball 11.0 dunking 5.2

...
742 733 188 discussing 6.5 applauding 4.6 men 7.3 two 6.4
743 542 58 baking 6.5 peeling 5.2 cupcake 9.2 peanut 6.2

“A  man                        is slamming a   basketball     with ….“A   man     juggling                       and      laughing in amusement”

(a) codeword # 201 (b)  codeword # 664

Figure 4: Codeword cross-modal localization. Input regions that are encoded by the codeword (selected from
Table 2) are highlighted in red.

method against recent works achieving state-of-
the-art (Bain et al., 2021; Liu et al., 2021; Luo
et al., 2021) and provide a full comparison against
more prior work (Liu et al., 2019b; Rouditchenko
et al., 2020; Gabeur et al., 2020; Patrick et al., 2020;
Dzabraev et al., 2021; Croitoru et al., 2021) in Sec-
tion E of the Appendix. Frozen-in-Time (Bain
et al., 2021) and CLIP4Clip (Luo et al., 2021)
are similar methods that employ a Visual Trans-
former (Dosovitskiy et al., 2020) to encode video
as sequence of images. The key differences be-
tween them is the choice of summarizing function
(i.e. fM

high) for video and the pre-training proce-
dure. We also note that the CLIP4Clip with tight
transformer encoder (Luo et al., 2021) (CLIP4Clip-
tightT) relied on cross-modal reference via self-
attention encoders to derive representations, which
has a higher time complexity as mentioned in Sec-
tion 3. With the shared codebook and Cross-Modal

Code Matching objection, our proposed framework
also enables cross-modal reference and gives an
improvement over the baseline model without in-
creasing the time complexity.

Overall, our proposed method enables consistent
improvements regardless of the data modalities and
baseline architectures, demonstrating its effective-
ness and generalizability.

4.3 Discrete Representation Analysis

One of the important motivations of introducing
the discrete cross-modal embedding space is better
model interpretability. In this section, we take a
closer look into the codewords learned through
our proposed framework. For the evaluation, we
chose the video-audio setup on S-MiT (Monfort
et al., 2021). We used video-audio pairs from the
development set, where each pair is labeled with
an action out of 332 categories. Note that we only
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used labels for analysis, labels are never used for
training.

Conditional Probability of Action Labels Given
Codeword. First, we compute the conditional
probability distributions of action labels given the
codewords over the video inputs. Each video in-
put is fixed-length and represented by 27 code-
words (3 frames each represented by 3×3 code-
words), and we labeled all these codewords with
the video’s action label. By accumulating code-
word labels through the whole development set, we
can compute the conditional probability of each ac-
tion given any codeword, i.e. P (action|codeword).
Results are visualized in the upper part of Figure 3.
Similarly, we computed the conditional probabili-
ties based on the audio input where each utterance
is represented by up to 32 codewords depending on
the utterance length. We selected the most frequent
codewords used by the video inputs and plot the
conditional probabilities based on the audio input
in the lower part of Figure 3. We can observe that
both matrices have similar patterns, i.e., when a
codeword is activated, there is a high chance of a
specific action appearing in the input regardless if
it is video or audio. This suggests that our model
is able to learn cross-modal representations for ac-
tions grounded by either visual or spoken language
input. The codewords are not only modality in-
variant, but more importantly, they also capture the
semantic relations of the labels. e.g., codewords
with the highest chance to represent “autographing”
typically have the second highest chance of repre-
senting “signing”; codewords for “surfing” are less
likely to represent other actions as all of them are
very different from “surfing”. We also note that
without the Cross-Modal Code Matching objec-
tive, semantically related video and audio inputs no
longer use the same codewords, which we illustrate
in Section F of the Appendix.

Cross-Modal Correspondences. Next, we ana-
lyze the connections captured by the codewords
between action labels and spoken words. With
the same label accumulation method described pre-
viously, we compute the precision of action pre-
diction with codewords (i.e. code-action co-occurrence

code occurrence ).
For the audio, we used word-level transcriptions
(from Google’s speech-to-text API) to assign a spo-
ken word to each codeword when it is activated by
the input utterance. This results in a hypothesis set
including around 7k words for each codeword, and
we listed the top 2 hypotheses for each codeword

with the highest F1 score (instead of precision to
avoid domination of high-frequency words). Re-
sults are listed in Table 2. For the codewords that
have the highest precision on predicting the ac-
tion label, we found the top hypotheses for spoken
words are often the action label itself. E.g., the
codeword (rank 1st) for the visual action “juggling”
maps to the spoken word “juggling” perfectly. As
precision on visual action prediction decreases, we
observed fewer perfect mappings, but the spoken
word hypotheses remained semantically related to
the visual action hypotheses. E.g., the codeword
(rank 35th) for the visual action “dunking” with
lower precision now maps to the spoken word “bas-
ketball.” Surprisingly, even the codewords with
the lowest precision capture relationships between
visual actions and spoken words to some extent.
E.g., codeword (rank 743th) that is most related to
the action “baking” has the top and second word
hypotheses “cupcake” and “peanut.”

Codeword Localization. Finally, to visualize the
relation between codewords and the input data, we
localize the segments of both the video and audio
input that are assigned to certain codewords. This is
possible because quantization in our shared embed-
ding space is done at the fine-grained level, so that
the time and spatial axes are preserved. Examples
are shown in Figure 4, where the regions assigned
to the given code are highlighted. Interestingly, we
see the codewords being aligned to both the visual
actions and the corresponding spoken words. This
supports our claim of having a more interpretable
representation at the fine-grained level.

5 Conclusion

In this paper, we proposed a framework for cross-
modal representation learning with a discrete em-
bedding space that is shared amongst different
modalities and enables model interpretability. We
also propose a Cross-Modal Code Matching ob-
jective that encourages models to represent cross-
model semantic concepts in the embedding space.
Combining our discrete embedding space and ob-
jective with existing cross-modal representation
learning models improves retrieval performance on
video-text, video-audio, and image-audio datasets.
We also analyze the shared embedding space and
find that semantically related video and audio in-
puts tend to use the same codewords.
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Appendix

A Codebook Update Policy

The codebook with d-dimensional codewords is
initialized with

N (0)
v = 1

m(0)
v ∼ Nd(0, 1)

e(0)v = m(0)
v ,

(3)

and updated with each codeword ev being
the exponential moving average (EMA) of
all the fine-grained representations H ={
fM (hMi,l )

∣∣∣ h̄Mi,l = ev

}
that was replaced by ev

for every training step t:

N (t)
v ← γ N (t−1)

v + (1− γ) |H|

m(t)
v ← γ m(t−1)

v + (1− γ)
∑
h∈H

h

e(t)v ←
m

(t)
v

N
(t)
v

,

(4)

where the decay factor γ is set to 0.99 throughout
this work. To improve the overall usage of the
codebook, the input fine-grained representations
are modality-wise batch normalized. In addition,
codewords that are not activated (i.e. |H| = 0) for
100 consecutive steps are re-initialized during code-
book update. The reset value is randomly chosen
from activated codewords.

B Implementation Details

For each dataset and modality pair considered in
this work, we selected baseline models that follow
the cross-modal learning paradigm (as described in
Section 2.1). Baseline models with different fine-
grained and high-level encoders (fM

fine and fM
high) are

summarized in Table 3. The links to the official
implementation of these baseline models are also
provided in the table. For a fair comparison, we
retrained the models with the LMMS (margin set to
1e-3) as our baseline models.
S-MiT. The input audio feature is a 40 dimensional
mel-spectrogram with a window size of 25 ms and
a hop size of 10 ms. The baseline is trained with
a batch size of 2048 and a learning rate of 1e-3.
To train the shared discrete embedding space, we
warm-started from the baseline model with a learn-
ing rate of 1e-4. Each video is encoded into 27
codewords (3× 3× 3 for time, height, width) and

every 16 consecutive frames from the spectrogram
is encoded into 1 codeword. The baseline model is
trained for 4 hours on 4 V100 GPUs; and it takes
an additional 1 hour to train the proposed frame-
work. For both baseline model and our proposed
model, we followed the previous work (Monfort
et al., 2021) to perform a second round training
with a learning rate of 1e-5 and a batch size of
128. The second round training fine-tunes the TSM
video encoder (which is frozen in the first round
training) on S-MiT jointly with the rest of the com-
ponents, which takes 2 days on 8 Titan RTX GPUs.
Places. The input audio feature is a 40 dimen-
tional mel-spectrogram with a window size of 25
ms and a hop size of 10 ms. The baseline is trained
with a batch size of 256 and a learning rate of 1e-
3. To train the shared discrete embedding space,
we warm-started from the baseline model with a
learning rate of 1e-4. Each image is encoded into
49 codewords (7 × 7 for height, width) and ev-
ery 16 consecutive frames from the spectrogram is
encoded into 1 codeword. The baseline model is
trained for 36 hours on 1 V100 GPU; and it takes an
additional 4 hours to train the proposed framework.
MSR-VTT. For our baseline model, we did
not reproduce CLIP4Clip’s post-pretraining stage,
which trained CLIP4Clip on the subset of
HowTo100M (Miech et al., 2019) before adapt-
ing to MSR-VTT, since this stage is not necessary
for the best results on MSR-VTT and the subset is
not released. We used all of the hyper-parameters
of the official implementation except the batch size
is reduced from 128 to 64 to meet our hardware
restriction. To train the shared discrete embedding
space, we warm-started from the baseline model
with a learning rate of 1e-5. Each video is encoded
into 8 codewords (2×2×2 for time, height, width)
and each subword unit in the sentence is encoded
into 1 codeword. The baseline model is trained
for 12 hours on 8 2080Ti GPUs; and it takes an
additional 6 hours to train the proposed framework.

C Ablation Study

To justify our framework design and choice of hy-
perparameters, we conducted an ablation study on
the image-audio setting and report the results in
Table 4.
Impact of the shared embedding space. For the
codebook size, 1024 codewords worked well across
different datasets. Halving and doubling the num-
ber of codewords (row(b) & (c)) both decreased
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Table 3: Experiment setup on S-MiT, Places, and MSR-VTT.

Setup Modality Encoders from baseline model

Dataset A fA
fine fA

high

- Baseline model B fB
fine fB

high

S-MiT (Monfort et al., 2021) video ResNet-1524 (He et al., 2016) + TSM5 (Lin et al., 2019) Max Pooling + GLU (Dauphin et al., 2017)

- AVLnet (Rouditchenko et al., 2020) audio Spectrogram+1D-ResNet (Harwath et al., 2018) Avg. Pooling + GLU (Dauphin et al., 2017)

Places (Harwath et al., 2017) image ResNet-504 (He et al., 2016) Avg. Pooling + GLU (Dauphin et al., 2017)

- ResDAVEnet2 (Harwath et al., 2018) audio Spectrogram+1D-ResNet (Harwath et al., 2018) Avg. Pooling + GLU (Dauphin et al., 2017)

MSR-VTT (Xu et al., 2016) video Vision Transformer3 (Dosovitskiy et al., 2020) Avg. Pooling + Linear

- CLIP4Clip1 (Luo et al., 2021) text Transformer3 (Vaswani et al., 2017; Radford et al., 2019) [EOT] token + Linear

1 https://github.com/ArrowLuo/CLIP4Clip
2 https://github.com/wnhsu/ResDAVEnet-VQ (under BSD license)
3 Initialized from CLIP model pretrained on WebImageText dataset (Radford et al., 2021).
4 Pretrained on ImageNet (Deng et al., 2009).
5 Pretrained on Multi-MiT (Monfort et al., 2019).

Table 4: Ablation study on Places (Harwath et al., 2017),
scores are averaged over audio and image retrieval.

Method
Averaged 2-way Retrieval

R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓
(a) Proposed 46.0 77.6 85.9 11.3
(b) codebook size = 512 46.2 77.4 85.2 11.5
(c) codebook size = 2048 46.1 76.6 84.7 12.1
(d) α = 1.0 45.6 76.6 85.5 11.6
(e) α = 0.0 (w/o CMCM) 45.2 75.5 84.2 12.8
(f) w/o VQ & w/o CMCM 45.7 75.9 84.7 12.6
(g) w/o warm-start 41.6 73.4 82.5 16.0
(h) w/o cont. repr. (fM

high(H
M
i )) 29.0 63.0 74.7 19.4

(i) Our Baseline 42.1 73.7 82.5 13.4

the performance slightly. For the weight α of the
proposed Cross-Modal Code Matching objective,
we found that values in the range (0, 1] generally
work while 0.1 works the best (row(a) v.s. row(d)).
Removing the proposed Cross-Modal Code Match-
ing objective (setting α = 0, row(e)), however,
hurts the performance. Furthermore, without the
objective, the codebook no longer captures cross-
modal correspondences, as illustrated in Section F
of the Appendix. We also observed that disabling
the VQ layer together with the Cross-Modal Code
Matching objective slightly recovers performance
(row(f) v.s. row(e)). All of these observations serve
as evidence that the proposed discrete embedding
space is most beneficial to the retrieval task with
the guidance from the Cross-Modal Code Match-
ing objective.
Importance of baseline models in the cross-
modal learning paradigm. As mentioned in
Section 4.1, the discrete shared embedding space
is learned with “warm-starting” from a baseline
model. We note that warm-starting is important
for getting more refined representations that yield
better retrieval results (row(a) v.s. row(g)). With-
out warm-starting, our framework can only per-
form similar to the baseline (row(g) v.s. row(i)).

This finding aligns with previous work (Harwath
et al., 2020) that used VQ layers in the audio en-
coder and used warm-starting to learn acoustic
units. Moreover, removing the continuous represen-
tations (row(h)) originally used in the cross-modal
learning paradigm and using only the codeword rep-
resentations significantly decreases performance.
This exposes the trade-off between interpretability
and end-task performance by imposing a discrete
embedding space. Hence, we choose to integrate
both discrete and continuous embedding space for
retrieval.

D Failure Attempts with Possible
Alternatives

As shown in our experiments and ablation study,
the key to improve model interpretability and high-
level retrieval performance by our proposed method
is learning domain-invariant discrete representa-
tion. To show the necessity of the proposed Cross-
Modal Code Matching, we also provide a list of
methods we already tried but failed that eventually
helped us derive domain-invariant representation
with the proposed Cross-Modal Code Matching:

1. Domain adversarial training over continuous
representation

Domain adversarial training is a common tech-
nique to learn domain-invariant representa-
tion. The method introduces an auxiliary clas-
sifier to classify the source domain of the
representation in the latent space. To train
domain-invariant encoders (fM

fine), a gradient
reversal layer (Ganin and Lempitsky, 2015)
is introduced between the classifier and the
encoder and the whole system is trained in an
end-to-end manner. In practice, this method
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results in mode collapse at the fine-grained
representation level, i.e., the model neglects
input and produces a constant vector. This
leads to adding noise with small variance to
the high-level representation and results in
slightly worse retrieval scores.

2. Domain adversarial training over distribution
over codebook

As an alternative, domain adversarial training
can also be performed in the discrete embed-
ding space. In practice, we observed code col-
lapse at the fine-grained representation level,
i.e., only 1 codeword is active out of the entire
codebook. This leads to adding constant noise
to the high-level representation.

3. VAE-like prior distribution regularization over
continuous representation

Another common technique to enforce
domain-invariant latent space is to adapt iden-
tical prior distributions over representation
from different domains. This can be imple-
mented by adding a regularization term during
training which minimizes the KL-divergence
between representation from model and the
desired prior distribution as shown in Varia-
tional Auto-Encoder (Kingma and Welling,
2013). In practice, we tried both Gaussian
and uniform prior, and both resulted in mode
collapse, similar to method 1.

4. VAE-like Prior distribution regularization
over distribution over codebook

With the distribution over codebook defined in
Section 2.3, we can also adapt prior distribu-
tion regularization in the discrete latent space
instead of the continuous space. However,
we observed code collapse where only certain
codewords will be utilized by the model in our
experiments, similar to method 2.

5. Minimizing the cross-entropy/JSD/KLD be-
tween distribution over codebook of each pos-
itive pair (i.e. no negative sampling in the
CMCM loss)

Besides the proposed Cross-Modal Code
Matching , we also experimented with dif-
ferent substitutes that might be able to en-
courage codeword sharing across domains, in-
cluding cross-entropy, JS-divergence, and KL-
divergence. While cross-entropy leads to code

collapse similar to method 2., JSD and KLD
lead to uniform code distribution for each in-
put instance, making fine-grained representa-
tion uninformative. A possible explanation is
that both measurements include the negative
entropy term. Minimizing them encourages
uniform distribution over the codebook.

Note that unlike all the objectives above,
the proposed Cross-Modal Code Matching loss
not only enforces the model to learn domain-
invariant representation but also introduces con-
trastive learning simultaneously. To be more spe-
cific, different view (modality) of the same instance
is encouraged to share similar codeword combina-
tions while different instance should be encoded
into different codeword combinations. This key
difference allows our method to learn informative
discrete codewords that align to the goal of the
high-level objective function.

E MSR-VTT Video Retreival Full
Comparison

In addition to the comparison against recent state-
of-the-art methods in Table 1 for video retrieval
on MSR-VTT, in Table 5 we show the complete
comparison to prior work and summarize the mod-
els here. Collaborative Experts (Liu et al., 2019b)
leverages “expert” features that can be obtained
from the raw video from different off-the-shelf
models (such as object detection, scene classifi-
cation, and speech recognition models) to build
representations. Instead of summarizing the ex-
pert features into a compact video representation
and computing similarity with the text representa-
tion, the Multi-Modal Transformer (Gabeur et al.,
2020) computes similarity between different ex-
pert features and the text representation with a pro-
posed variation of the Transformer (Vaswani et al.,
2017). Based on the Multi-Modal Transformer,
Multidomain Multi-Modal Transformer (Dzabraev
et al., 2021) explored an additional motion feature
and the combination of different training datasets
to further improve the result. Support-Set Bottle-
necks (Patrick et al., 2020) studies the benefit that
cross-instance captioning can bring by generating
text based on the combination of all representa-
tions of similar videos. Similar to our framework,
Hierarchical Transformer with Momentum Con-
trast (Liu et al., 2021) divided representations from
different layer of the encoders into fine-grained
(which they referred to feature-level) and high-level
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Table 5: Full comparison against prior works on MSR-VTT text-to-video retrieval.

Method
Video Retrieval
(Text → Video)

R@1 ↑ R@5 ↑ R@10 ↑ MnR ↓
Collaborative Experts (Liu et al., 2019b) 20.9 48.8 62.4 28.2
Multi-Modal Transformer (Gabeur et al., 2020) 26.6 57.1 69.6 24.0
Support-Set Bottlenecks (Patrick et al., 2020) 30.1 58.5 69.3 -
Multidomain Multimodal Transformer (Dzabraev et al., 2021) 38.9 69.0 79.7 16.5
Frozen-in-Time (Bain et al., 2021) 31.0 59.5 70.5 -
Hierarchical Transformer with Momentum Contrast (Liu et al., 2021) 30.7 60.9 73.2 -
TeachText (Croitoru et al., 2021) 29.6 61.6 74.2 -
CLIP4Clip-meanPooling (Luo et al., 2021) 43.1 70.4 80.8 16.2
CLIP4Clip-seqLSTM (Luo et al., 2021) 42.5 70.8 80.7 16.7
CLIP4Clip-seqTransformer (Luo et al., 2021) 44.5 71.4 81.6 15.3
CLIP4Clip-tightTransformer (Luo et al., 2021) 40.2 71.5 80.5 13.4
Our Baseline (based on CLIP4Clip-meanPooling) 42.6 71.2 80.8 15.5
Proposed 43.4 72.3 81.2 14.8

(which they reffered to semantic-level) represen-
tations. While our work focused on learning dis-
crete representations in the fine-grained embedding
space, they performed momentum-based represen-
tation matching across the two levels that encour-
ages the two embedding spaces to be more sim-
ilar. TeachText (Croitoru et al., 2021) leverages
distillation learning where multiple captions de-
scribing the same video can be considered by dif-
ferent teacher models that jointly guide the student
network. Frozen-in-Time (Bain et al., 2021) and
CLIP4Clip (Luo et al., 2021) both found the recent
proposed Visual Transformer (Dosovitskiy et al.,
2020) can significantly improve retrieval results
while they differ in the choice of summarizing func-
tion for video (i.e. fM

high) and the pre-training proce-
dure. Moreover, CLIP4Clip also introduces differ-
ent choice of the summarizing function fM

high includ-
ing RNNs (CLIP4Clip-seqLSTM) and Transform-
ers (CLIP4Clip-seqTransformer) that replaces the
mean-pooling function (CLIP4Clip-meanPooling)
at the cost of higher time complexity and compu-
tational cost. Note that while our work is based
on the vanilla mean-pooling function, we achieved
comparable or better performance with the pro-
posed discrete embedding representations. As de-
scribed in Section 3, CLIP4Clip also introduced
a cross-modal transformer network (CLIP4Clip-
tightTransformer) that allows cross-modal refer-
ence for deriving representations.

F Results Without Cross-Modal Code
Matching

To demonstrate the importance of our proposed
Cross-Modal Code Matching objective, Figure 5
illustrates the conditional probability matrix (de-
scribed in Section 4.3 and Figure 3) when the pro-
posed objective is deactived (setting α = 0). Unsur-
prisingly, we see that the correlation between code-
words and action labels are gone, indicating that
the assignment of codewords are now dominated
by the input modality instead of the underlying ac-
tion label. This can also be verified by visualizing
the discrete embedding space in a lower dimen-
sion as plotted in Figure 6. This evidence suggests
that the proposed Cross-Modal Code Matching Ob-
jective is effective for learning modality-invariant
representations.

G Additional Codeword Correspondence
and Localization Examples

An extension of Table 2 showing the correspon-
dence between codewords, visual actions, and spo-
ken words are provided in Table 6. We also provide
more examples for codeword localization in Fig-
ure 7.
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Figure 5: Conditional probability matrix between codewords and action labels learned by our proposed method
when the Cross-Modal Code Matching objective is excluded.

(a) With Cross-modal Code Matching (b)  Without Cross-modal Code Matching

Figure 6: T-SNE visualization of the codebook with and without the proposed Cross-Modal Code Matching Objective.
Each point corresponds to a codeword colored with respect to the input modality that utilized it the most. Codewords
without high (> 90%) usage from single modality are labeled as “jointly used”.
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“A  man  is     singing       into   a     microphone     in  front  of   him”

(d)  codeword # 36

(a) codeword # 687

“… young boy behind a    drum set       being   taught …”

(b)  codeword # 327

“The   small  child  laying  on     his      back   is      crying    and  upset”

Figure 7: More examples for codeword cross-modal localization.
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Table 6: Correspondence between codewords, visual actions, and spoken words (Extended Table 2). The second
hypothesis and the occurrence are omitted for simplicity. All codewords activated on S-MiT’s development set are
listed.

Rank Code
Visual Action Spoken word

Rank Code
Visual Action Spoken word

Top Hypothesis Top Hypothesis Top Hypothesis Top Hypothesis
label Prc. word F1 label Prc. word F1

1 201 juggling 97.5 juggling 36.7 61 940 landing 44.9 airplane 19.6
2 349 flossing 96.0 floss 15.8 62 262 sewing 44.7 sewing 13.2
3 145 surfing 95.6 surfboard 23.7 63 532 autographing 44.4 selfie 22.2
4 29 tattooing 94.6 tattoo 15.8 64 928 stirring 44.1 boiling 27.3
5 233 ironing 93.8 ironing 20.5 65 747 applauding 43.8 clapping 23.8
6 766 surfing 93.2 surfing 22.1 66 447 paddling 43.1 boat 8.3
7 191 juggling 90.2 juggling 29.1 67 823 skipping 43.0 jump 17.1
8 753 autographing 85.0 autographs 26.4 68 308 shaving 42.5 comb 10.0
9 606 autographing 83.7 signing 16.2 69 518 skiing 41.8 skiing 11.4
10 640 drumming 81.6 drums 19.5 70 860 bulldozing 41.7 bulldozer 25.7
11 436 injecting 81.6 injected 13.2 71 61 extinguishing 41.3 sting 9.1
12 109 peeling 80.9 peeling 21.2 72 296 combing 40.9 brushes 5.9
13 551 shaving 80.2 shaving 18.0 73 435 screwing 40.8 drill 25.0
14 137 paddling 80.0 canoe 25.8 74 705 surfing 40.6 ocean 27.0
15 327 crying 78.8 crying 29.5 75 760 hammering 40.0 hammering 23.3
16 593 surfing 77.7 surfboard 10.9 76 926 paddling 40.0 lake 6.8
17 687 drumming 77.3 drums 14.4 77 888 paddling 39.6 lake 7.4
18 883 tattooing 77.2 tattoo 13.6 78 169 dunking 39.3 nba 7.5
19 1000 inflating 74.5 inflatable 12.8 79 681 manicuring 38.7 nails 13.2
20 222 boxing 71.3 boxing 13.2 80 685 signing 38.6 writing 8.3
21 243 shredding 70.0 shredding 28.6 81 631 paddling 38.5 clouds 12.2
22 157 paddling 69.9 kayak 21.3 82 800 dropping 38.3 beans 12.9
23 427 boxing 69.8 boxers 16.2 83 556 drumming 38.3 marching 11.6
24 774 surfing 69.2 waves 23.0 84 758 wrapping 38.1 wrapping 22.2
25 613 manicuring 67.9 nails 24.5 85 368 texting 38.0 texting 16.7
26 952 leaping 66.0 dolphins 10.7 86 625 combing 37.9 hair 4.9
27 196 boxing 64.1 boxer 13.9 87 166 boxing 37.8 boxing 7.2
28 706 sailing 63.4 sailboat 18.8 88 539 paddling 37.5 helmet 13.0
29 58 shaving 62.8 shaving 10.9 89 139 leaping 37.5 jumping 16.6
30 759 paddling 60.7 paddling 12.4 90 123 drumming 37.1 playing 8.7
31 868 boxing 60.0 boxer 11.2 91 577 drumming 37.0 musical 8.1
32 500 dialing 60.0 dialing 13.8 92 780 screwing 36.9 drill 15.8
33 536 cheering 60.0 cheerleaders 26.8 93 621 leaping 36.6 jumps 9.7
34 50 rafting 58.6 rafting 16.7 94 154 boxing 36.0 referee 14.7
35 664 dunking 58.0 basketball 11.0 95 415 grilling 35.7 grill 15.7
36 103 autographing 57.8 carpet 8.2 96 345 autographing 35.5 pictures 19.3
37 990 wrestling 56.1 wrestling 25.9 97 694 sailing 34.9 sailing 7.0
38 880 sleeping 56.0 sleeping 21.1 98 973 leaping 34.4 tale 8.0
39 48 paddling 55.1 rowing 18.2 99 957 shrugging 34.4 lifting 10.3
40 292 skiing 54.2 skiing 20.0 100 713 paddling 34.3 sunset 25.3
41 602 ironing 52.5 ironing 7.1 101 697 injecting 34.1 doctor 18.8
42 954 dropping 52.4 dropped 8.2 102 431 peeling 33.9 apple 20.0
43 735 applauding 52.1 clapping 23.4 103 164 typing 33.8 laptop 20.6
44 816 autographing 51.0 carpet 22.5 104 776 juggling 33.6 balls 16.5
45 516 swinging 50.0 swing 20.4 105 73 shrugging 32.9 weight 14.6
46 421 carving 50.0 carving 27.2 106 846 injecting 32.8 gloves 7.8
47 168 drumming 49.3 marching 17.5 107 395 juggling 32.7 balls 10.1
48 561 flossing 48.0 mouse 10.0 108 273 dusting 32.6 clean 11.5
49 970 marrying 47.8 bride 22.2 109 737 paddling 32.5 mountains 14.0
50 610 dunking 47.4 basketball 19.5 110 291 coughing 32.4 sneezes 15.6
51 105 paddling 47.2 river 23.7 111 375 colliding 32.4 crashing 14.5
52 150 waxing 47.2 wax 20.3 112 693 sleeping 32.3 baby 28.9
53 92 howling 46.7 barking 15.1 113 111 baking 32.3 baker 13.8
54 929 typing 46.3 typing 22.4 114 805 massaging 32.0 squatted 8.7
55 844 drumming 46.2 band 14.5 115 134 autographing 31.7 obama 7.5
56 497 cheering 45.8 cheerleaders 34.8 116 923 wrapping 31.6 tape 16.7
57 322 paddling 45.8 kayak 7.2 117 698 surfing 31.5 beach 9.8
58 672 boxing 45.6 fighting 28.8 118 362 paddling 31.5 water 8.2
59 97 barbecuing 45.6 grill 26.4 119 505 drumming 31.0 guitar 13.1
60 216 inflating 45.3 balloon 10.3 120 215 shaving 31.0 vent 12.1
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Table 6: continued

Rank Code
Visual Action Spoken word

Rank Code
Visual Action Spoken word

Top Hypothesis Top Hypothesis Top Hypothesis Top Hypothesis
label Prc. word F1 label Prc. word F1

121 642 autographing 30.8 sign 9.9 181 646 autographing 23.5 taking 11.6
122 828 paddling 30.6 river 3.6 182 423 applauding 23.5 crowd 11.1
123 6 leaping 30.3 monkey 31.4 183 699 racing 23.4 motorcycle 16.5
124 974 sprinkling 30.0 sprinkler 26.7 184 651 paddling 23.4 sky 4.5
125 44 flossing 29.9 teeth 3.0 185 414 drenching 23.3 rain 16.9
126 342 drumming 29.9 playing 7.7 186 55 racing 23.3 race 12.0
127 108 boxing 29.8 practicing 24.1 187 718 drumming 23.2 costume 9.2
128 784 pedaling 29.7 bikes 13.1 188 439 pedaling 23.1 cyclist 12.6
129 266 barbecuing 29.7 meat 22.5 189 19 clipping 23.1 tractor 22.2
130 991 drumming 29.6 guitar 11.0 190 255 paddling 23.1 water 3.6
131 597 signing 29.3 writing 4.7 191 701 lecturing 23.0 preacher 16.3
132 817 welding 29.1 steel 11.6 192 444 autographing 22.9 protesters 7.4
133 673 typing 29.1 laptop 12.3 193 859 singing 22.9 performer 5.6
134 113 dialing 29.0 telephone 11.7 194 18 applauding 22.9 cheering 16.2
135 470 sawing 28.9 saw 10.5 195 371 barbecuing 22.9 fire 10.1
136 657 landing 28.7 airplane 11.7 196 315 peeling 22.8 orange 19.9
137 440 surfing 28.6 cap 6.1 197 271 racing 22.7 race 11.1
138 404 rinsing 28.6 scrubbing 13.3 198 955 leaping 22.6 seagulls 24.2
139 0 applauding 28.6 protesting 13.8 199 584 boxing 22.6 bag 23.7
140 950 paddling 28.2 water 9.7 200 555 pitching 22.5 baseball 19.6
141 430 hiking 27.8 hikers 13.8 201 286 piloting 22.5 helicopter 12.5
142 762 leaping 27.8 diving 12.0 202 569 paddling 22.3 down 17.6
143 504 bowing 27.3 praying 19.0 203 692 paddling 22.2 train 31.4
144 295 paddling 27.2 bridge 26.4 204 682 paddling 22.1 trees 16.3
145 579 dunking 27.2 ball 10.5 205 116 slicing 22.0 cutting 22.4
146 380 leaping 26.7 deer 29.3 206 442 dropping 22.0 wipers 16.3
147 152 sleeping 26.7 laying 14.3 207 324 skiing 22.0 skis 4.1
148 603 leaping 26.5 slipping 4.7 208 924 flooding 21.9 flooded 16.3
149 838 dusting 26.5 vacuum 14.3 209 826 bulldozing 21.6 tractor 7.0
150 825 scooping 25.9 spilled 16.7 210 422 falling 21.4 waterfall 19.4
151 64 pedaling 25.9 bicycles 8.5 211 931 bulldozing 21.4 bulldozer 18.2
152 455 erupting 25.6 smoke 20.6 212 259 wrestling 21.3 cuddling 8.0
153 429 competing 25.5 field 13.0 213 475 leaping 21.2 dance 6.1
154 989 competing 25.5 football 19.0 214 905 jumping 21.2 horse 29.1
155 223 competing 25.4 soccer 25.0 215 806 jogging 21.2 jogging 14.3
156 51 bowling 25.4 dome 8.2 216 813 applauding 21.1 waving 15.9
157 379 slicing 25.4 slicing 12.2 217 538 paddling 21.0 water 6.7
158 911 paddling 25.4 aerial 28.0 218 101 massaging 20.9 dog 13.5
159 364 leaping 25.4 bed 18.6 219 482 swinging 20.9 swinging 7.9
160 483 paddling 25.3 flowing 5.7 220 680 leaping 20.9 air 24.1
161 634 autographing 25.0 graduation 4.4 221 1018 dialing 20.7 tapping 44.4
162 884 leaping 25.0 trampoline 8.8 222 665 shaving 20.7 hair 4.1
163 485 stirring 25.0 pan 20.3 223 417 drumming 20.6 stage 8.1
164 540 boxing 25.0 jacks 6.7 224 165 mowing 20.6 lawn 16.5
165 13 paddling 25.0 boat 18.1 225 194 flossing 20.6 scoop 6.9
166 873 paddling 25.0 mountains 8.9 226 200 smashing 20.5 smashed 12.2
167 909 autographing 24.3 book 14.0 227 453 carving 20.4 wood 17.5
168 638 autographing 24.3 either 3.3 228 57 child+singing 20.2 singing 18.5
169 963 plugging 24.3 plug 11.8 229 420 paddling 20.0 forest 13.3
170 131 paddling 24.2 yellow 26.5 230 918 massaging 19.8 laying 13.5
171 799 welding 24.2 construction 27.9 231 810 paddling 19.8 dolphin 2.9
172 486 hammering 24.1 hammering 6.0 232 520 sailing 19.7 boats 5.8
173 465 competing 24.0 teams 11.9 233 190 knitting 19.6 string 10.9
174 67 lecturing 24.0 conference 9.8 234 1016 mopping 19.6 mopping 15.1
175 325 texting 24.0 phone 12.7 235 317 dunking 19.4 basket 18.9
176 1001 competing 23.9 soccer 8.1 236 827 paddling 19.3 ski 8.7
177 242 competing 23.9 football 6.7 237 24 leaping 19.2 dancing 10.2
178 714 calling 23.7 telephone 6.7 238 1019 dropping 19.1 falls 12.1
179 89 competing 23.6 soccer 17.7 239 997 sleeping 19.0 baby 8.3
180 1013 paddling 23.5 forest 19.1 240 77 peeling 19.0 makeup 17.0
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Table 6: continued

Rank Code
Visual Action Spoken word

Rank Code
Visual Action Spoken word

Top Hypothesis Top Hypothesis Top Hypothesis Top Hypothesis
label Prc. word F1 label Prc. word F1

241 126 leaping 18.9 exercising 18.8 301 459 paddling 16.3 view 9.1
242 449 leaping 18.9 tree 17.6 302 323 shaving 16.3 head 19.8
243 187 surfing 18.9 riding 12.3 303 522 dunking 16.3 court 12.5
244 117 raining 18.8 traffic 21.7 304 773 storming 16.2 storm 9.8
245 671 paddling 18.8 city 13.8 305 748 autographing 16.2 sidewalk 14.3
246 736 autographing 18.7 howling 4.9 306 299 punting 16.2 kicks 7.3
247 251 surfing 18.5 scuba 7.0 307 981 paddling 16.2 jacket 14.1
248 491 raining 18.4 simpsons 8.5 308 627 singing 16.2 dark 14.4
249 1 burying 18.4 dirt 19.3 309 239 fishing 16.2 fishing 21.5
250 188 autographing 18.4 beard 8.8 310 41 leaping 16.1 slow 26.0
251 742 pedaling 18.3 bike 22.0 311 479 leaping 16.1 kids 6.8
252 531 chewing 18.2 eats 12.5 312 348 reaching 16.0 slipping 7.7
253 130 applauding 18.1 crowd 7.4 313 63 dropping 16.0 leaves 18.2
254 246 clinging 18.0 bird 31.2 314 892 applauding 16.0 flag 13.6
255 318 dialing 17.9 phone 6.8 315 558 stirring 16.0 cooking 9.9
256 329 extinguishing 17.9 fire 14.5 316 691 paddling 16.0 background 19.0
257 387 barbecuing 17.9 sausages 10.7 317 319 leaping 15.9 up 3.8
258 993 autographing 17.9 movie 7.6 318 845 stirring 15.8 blade 6.7
259 961 paddling 17.9 rushing 8.3 319 801 paddling 15.8 mask 14.7
260 921 surfing 17.8 beach 15.0 320 726 swimming 15.8 swimming 12.2
261 208 cheering 17.8 stadium 15.0 321 458 shrugging 15.8 karate 3.5
262 650 leaping 17.8 jumps 6.4 322 912 applauding 15.7 old 11.0
263 388 dropping 17.8 float 5.6 323 648 peeling 15.7 kitchen 13.8
264 78 paddling 17.8 walnut 6.5 324 572 dialing 15.5 block 3.2
265 332 dropping 17.7 falling 8.8 325 330 paddling 15.5 waterfall 3.3
266 244 lecturing 17.6 giving 7.3 326 211 leaping 15.5 cat 17.9
267 948 paddling 17.6 across 8.9 327 752 paddling 15.5 trail 6.7
268 1008 surfing 17.6 scuba 4.1 328 34 sleeping 15.5 bed 8.6
269 554 sewing 17.6 machine 12.2 329 792 autographing 15.5 sitting 3.5
270 604 leaping 17.6 fish 25.2 330 588 sowing 15.4 farmer 10.5
271 587 saluting 17.5 soldier 12.0 331 869 pouring 15.4 poured 20.5
272 509 discussing 17.5 office 23.5 332 840 leaping 15.4 pool 11.3
273 720 competing 17.5 track 24.2 333 407 measuring 15.4 drawing 8.5
274 1022 shrugging 17.5 gym 18.1 334 667 welding 15.4 metal 17.6
275 987 autographing 17.4 baseball 21.3 335 661 colliding 15.4 hockey 25.0
276 294 drumming 17.4 stick 16.9 336 560 flossing 15.4 animation 14.0
277 552 applauding 17.4 crowd 18.4 337 149 lecturing 15.4 graphs 8.7
278 995 draining 17.4 waterfall 14.3 338 175 autographing 15.3 walking 7.1
279 284 drumming 17.3 concert 29.3 339 815 sleeping 15.3 baby 17.5
280 808 draining 17.3 water 5.8 340 608 autographing 15.3 people 6.1
281 977 snowing 17.2 snowy 10.3 341 795 leaping 15.2 animals 13.6
282 495 unloading 17.1 time-lapse 21.7 342 755 peeling 15.2 kitchen 12.0
283 184 autographing 17.1 hat 16.8 343 138 juggling 15.2 shirtless 18.2
284 210 paddling 17.1 rocks 14.1 344 496 hanging 15.2 hanging 17.9
285 120 boxing 17.0 shorts 13.7 345 641 competing 15.1 marching 4.4
286 914 paddling 17.0 two 8.3 346 2 drumming 15.0 stage 16.7
287 263 dropping 16.9 fruits 8.1 347 916 paddling 15.0 sunny 3.4
288 245 competing 16.9 kicking 7.6 348 393 chewing 15.0 eating 15.4
289 639 autographing 16.8 dress 8.8 349 609 autographing 15.0 talking 2.5
290 739 autographing 16.7 greenfield 9.8 350 269 draining 15.0 water 12.2
291 704 leaping 16.7 dance 15.0 351 731 flossing 15.0 demonstrating 9.0
292 562 splashing 16.7 splashes 19.0 352 513 dialing 14.9 finger 10.0
293 658 splashing 16.7 bottle 24.6 353 382 paddling 14.9 sky 7.0
294 629 sleeping 16.7 reports 14.8 354 645 autographing 14.8 people 3.3
295 1014 massaging 16.6 getting 10.3 355 553 juggling 14.8 spinning 13.8
296 503 pedaling 16.5 jogging 7.2 356 490 spitting 14.8 drink 19.5
297 686 paddling 16.4 nuts 3.6 357 807 crushing 14.7 crushed 13.6
298 734 singing 16.4 singing 15.9 358 412 autographing 14.7 player 9.1
299 334 autographing 16.3 papers 6.8 359 900 leaping 14.7 branch 23.8
300 788 signing 16.3 reading 8.7 360 622 paddling 14.5 rocks 15.9
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Table 6: continued

Rank Code
Visual Action Spoken word

Rank Code
Visual Action Spoken word

Top Hypothesis Top Hypothesis Top Hypothesis Top Hypothesis
label Prc. word F1 label Prc. word F1

361 623 paddling 14.5 yellow 8.7 421 282 dropping 12.7 backdrop 8.9
362 462 leaping 14.5 dancing 18.5 422 443 frying 12.7 food 15.1
363 65 autographing 14.5 pen 5.0 423 676 rinsing 12.7 bath 28.6
364 480 leaping 14.5 greetings 7.5 424 578 grilling 12.6 meat 3.8
365 376 paddling 14.5 large 22.9 425 994 autographing 12.5 bitter 7.7
366 730 paddling 14.4 camera 7.2 426 391 locking 12.5 staircase 8.0
367 213 paddling 14.4 red 16.0 427 155 massaging 12.5 brown 18.1
368 460 trimming 14.3 tomatoes 15.8 428 920 competing 12.5 player 14.6
369 861 dusting 14.3 swiffer 10.0 429 204 autographing 12.5 conference 3.4
370 537 leaping 14.3 daughter 15.4 430 959 manicuring 12.5 purplish 13.8
371 933 towing 14.3 truck 26.5 431 896 bandaging 12.5 tape 4.8
372 636 paddling 14.3 trees 15.9 432 820 peeling 12.4 cutting 5.6
373 336 juggling 14.2 fire 15.2 433 835 drumming 12.4 circle 12.5
374 794 juggling 14.2 boy 3.2 434 202 dropping 12.4 surface 3.7
375 283 piloting 14.1 statue 9.4 435 983 rinsing 12.3 scrubbing 5.6
376 20 singing 14.1 camera 5.8 436 519 autographing 12.3 camera 7.4
377 419 leaping 14.0 flying 13.2 437 945 lecturing 12.3 talking 6.2
378 507 racing 14.0 track 10.1 438 754 paddling 12.3 man 8.6
379 445 driving 14.0 cars 8.8 439 601 dropping 12.2 coffee 17.9
380 11 crouching 14.0 kneeling 28.1 440 140 lecturing 12.2 suit 12.1
381 74 autographing 13.9 blond 26.1 441 87 fueling 12.2 pickup 8.3
382 901 singing 13.9 girl 13.1 442 408 paddling 12.2 blue 7.0
383 313 leaping 13.9 toys 21.6 443 333 draining 12.2 coming 17.4
384 346 packing 13.8 conveyor 18.2 444 979 lecturing 12.1 podium 8.4
385 508 paddling 13.8 person 15.3 445 871 falling 12.1 waterfall 10.7
386 267 saluting 13.8 soldiers 12.8 446 53 paddling 12.1 seen 7.5
387 452 drumming 13.8 stage 18.0 447 32 paddling 12.1 jeans 1.7
388 944 massaging 13.8 back 6.0 448 488 pedaling 12.1 bike 5.3
389 595 juggling 13.8 throws 6.3 449 839 pushing 12.1 pushing 20.8
390 224 paddling 13.8 day 4.3 450 378 dunking 12.1 court 3.7
391 619 shredding 13.8 machinery 7.0 451 489 applauding 12.1 crowd 4.0
392 512 juggling 13.7 t-shirt 7.2 452 999 leaping 12.1 children 4.6
393 160 autographing 13.7 paper 11.7 453 339 skating 12.1 skateboarding 22.0
394 390 pouring 13.7 liquid 21.1 454 653 dropping 12.1 slow 6.0
395 394 paddling 13.7 car 5.3 455 225 autographing 12.1 city 6.3
396 541 flossing 13.6 fancy 8.9 456 30 leaping 12.0 dog 19.8
397 396 massaging 13.6 electronical 6.6 457 654 applauding 12.0 old 12.1
398 321 standing 13.4 performing 9.8 458 102 tattooing 12.0 drawing 10.9
399 432 weeding 13.4 garden 16.3 459 662 autographing 12.0 older 14.0
400 71 bulldozing 13.3 tractor 13.7 460 219 talking 12.0 turned 5.5
401 596 drenching 13.3 window 30.0 461 99 dropping 12.0 cartoon 13.3
402 177 autographing 13.3 broadcast 2.3 462 669 shaving 11.9 legs 11.4
403 10 dialing 13.3 jack 13.6 463 962 dropping 11.9 winds 7.4
404 527 autographing 13.3 street 5.2 464 205 sleeping 11.9 child 10.5
405 837 drenching 13.3 rain 9.6 465 936 dropping 11.9 image 15.2
406 293 leaping 13.3 fly 5.8 466 728 applauding 11.9 rally 12.5
407 867 dropping 13.3 bunch 3.7 467 804 leaping 11.9 field 12.0
408 426 weeding 13.3 gardening 11.1 468 529 leaping 11.9 dog 4.9
409 280 leaping 13.3 dog 20.5 469 971 hitchhiking 11.8 road 19.4
410 331 autographing 13.1 contract 4.4 470 666 applauding 11.8 smiling 13.7
411 523 leaping 13.1 dancing 8.8 471 797 applauding 11.7 black-n-white 11.6
412 741 singing 13.0 microphone 12.5 472 425 drumming 11.7 filming 3.1
413 744 barbecuing 13.0 chef 19.5 473 663 peeling 11.6 waist 5.3
414 724 sawing 13.0 tree 5.6 474 471 applauding 11.6 hands 10.8
415 277 juggling 13.0 motion 3.9 475 711 leaping 11.5 children 7.8
416 16 dialing 12.9 device 4.9 476 611 sleeping 11.5 dog 8.1
417 984 destroying 12.9 tower 11.4 477 715 paddling 11.5 blue 7.8
418 917 dragging 12.9 pulling 20.1 478 36 singing 11.5 microphone 24.7
419 729 leaping 12.8 running 7.2 479 700 tattooing 11.4 someone’s 3.2
420 365 autographing 12.8 walk 7.5 480 1017 applauding 11.4 standing 6.1
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Table 6: continued

Rank Code
Visual Action Spoken word

Rank Code
Visual Action Spoken word

Top Hypothesis Top Hypothesis Top Hypothesis Top Hypothesis
label Prc. word F1 label Prc. word F1

481 887 autographing 11.4 sidewalk 4.7 541 982 mopping 9.8 floor 16.7
482 829 leaping 11.4 cat 14.5 542 115 autographing 9.7 yelling 7.6
483 162 lecturing 11.4 speaking 7.3 543 179 sleeping 9.7 tiger 13.2
484 852 swimming 11.3 pool 15.4 544 877 autographing 9.7 at 1.6
485 353 paddling 11.2 trickling 2.1 545 84 paddling 9.7 going 7.8
486 998 paddling 11.2 green 22.4 546 132 autographing 9.7 people 2.7
487 565 manicuring 11.2 painting 8.6 547 902 autographing 9.7 another 2.6
488 129 drumming 11.2 night 25.9 548 383 paddling 9.6 buildings 4.8
489 21 paddling 11.2 going 7.6 549 124 drumming 9.6 silhouette 3.7
490 690 autographing 11.2 blond 7.2 550 986 paddling 9.6 sliding 14.0
491 214 slipping 11.1 snow 11.0 551 253 applauding 9.5 tennis 5.7
492 454 paddling 11.1 bridge 5.6 552 761 autographing 9.5 ground 5.4
493 320 unpacking 11.1 boxes 18.2 553 925 rafting 9.5 group 13.9
494 261 paddling 11.1 down 3.4 554 90 drumming 9.4 wearing 10.2
495 864 sleeping 11.1 father 7.1 555 583 autographing 9.4 standing 7.9
496 411 burying 11.0 hole 16.0 556 725 hammering 9.4 blacksmith 11.1
497 127 competing 11.0 field 5.2 557 976 peeling 9.4 closing 12.9
498 580 child+singing 10.8 girl 10.7 558 922 drenching 9.4 driving 16.8
499 849 paddling 10.8 slowly 8.4 559 198 singing 9.4 tide 9.1
500 285 autographing 10.7 dress 8.1 560 144 screwing 9.4 machine 7.3
501 721 autographing 10.7 middle-aged 2.6 561 607 extinguishing 9.4 spraying 22.7
502 88 leaping 10.7 wall 10.1 562 195 racing 9.4 cars 23.0
503 769 autographing 10.6 table 10.2 563 913 drumming 9.3 sitting 6.6
504 91 autographing 10.6 she 8.1 564 366 bulldozing 9.3 trainer 2.6
505 119 jumping 10.6 rope 8.8 565 703 leaping 9.3 cats 4.3
506 448 paddling 10.6 hat 8.3 566 367 autographing 9.3 holding 6.8
507 831 skating 10.5 park 20.6 567 377 autographing 9.3 hallway 11.8
508 906 leaping 10.5 store 9.6 568 173 raining 9.2 cartoon 25.4
509 344 discussing 10.5 restaurant 25.7 569 86 competing 9.2 field 13.1
510 847 cheering 10.5 competition 4.3 570 328 autographing 9.2 walking 13.2
511 357 shaving 10.4 his 5.3 571 258 leaping 9.2 kids 7.1
512 904 running 10.4 running 13.1 572 487 autographing 9.2 giving 1.5
513 193 paddling 10.4 someone 16.2 573 385 ironing 9.2 clothes 15.8
514 192 applauding 10.3 motocross 6.2 574 598 raining 9.1 cartoon 17.6
515 230 autographing 10.3 looking 10.8 575 128 surfing 9.1 standstill 9.8
516 534 sleeping 10.3 bag 4.5 576 851 lecturing 9.1 upside 12.5
517 550 peeling 10.2 bowl 15.7 577 649 pouring 9.1 concrete 11.1
518 159 autographing 10.2 ward 4.3 578 695 sleeping 9.1 couch 12.8
519 314 leaping 10.2 mixed-race 4.0 579 70 autographing 9.1 people 4.4
520 709 leaping 10.1 animals 4.8 580 197 yawning 9.1 couch 30.6
521 95 sprinkling 10.1 sprinkler 10.8 581 446 applauding 9.0 many 8.8
522 227 sleeping 10.1 oh 2.7 582 351 singing 9.0 bright 3.2
523 935 applauding 10.1 perch 12.5 583 287 paddling 9.0 bird 15.2
524 176 typing 10.1 office 5.3 584 821 drumming 9.0 kayakers 3.8
525 1011 drumming 10.0 boy 17.0 585 310 applauding 9.0 smiling 12.9
526 683 competing 10.0 game 7.1 586 203 paddling 8.9 video 3.7
527 185 knitting 10.0 stitching 8.2 587 624 crushing 8.9 greenfield 20.3
528 289 dropping 10.0 ground 16.5 588 696 autographing 8.9 man 9.7
529 899 reaching 10.0 church 20.8 589 514 paddling 8.9 behind 2.8
530 767 playing 10.0 overwatch 6.7 590 886 falling 8.9 shine 5.6
531 796 paddling 10.0 base 3.7 591 451 peeling 8.9 carrots 5.2
532 161 discussing 9.9 family 10.8 592 953 autographing 8.8 outside 12.5
533 782 leaping 9.9 doing 12.9 593 975 paddling 8.8 building 1.8
534 850 autographing 9.9 american 1.9 594 643 carving 8.8 working 12.4
535 620 leaping 9.8 bridge 4.1 595 418 autographing 8.8 suit 13.1
536 992 leaping 9.8 point-of-view 6.9 596 481 autographing 8.7 woman 9.1
537 547 grilling 9.8 crawling 17.3 597 756 paddling 8.7 wearing 3.2
538 891 paddling 9.8 on 2.5 598 670 signing 8.7 table 7.2
539 340 dusting 9.8 clean. 5.2 599 785 autographing 8.7 standing 2.1
540 659 storming 9.8 yard 18.2 600 787 drumming 8.7 sitting 7.5
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Top Hypothesis Top Hypothesis Top Hypothesis Top Hypothesis
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601 723 autographing 8.7 something 6.1 661 980 kicking 7.7 shooting 12.5
602 719 talking 8.7 toddler 17.9 662 238 sleeping 7.7 squirrel 12.8
603 209 autographing 8.7 hair 8.4 663 360 injecting 7.7 person 2.9
604 521 rafting 8.7 people 8.4 664 853 camping 7.7 tent 8.9
605 98 applauding 8.6 stand 6.2 665 652 autographing 7.6 single 1.5
606 969 leaping 8.6 kids 7.2 666 893 watering 7.6 watering 8.4
607 770 flossing 8.6 explaining 7.5 667 546 piloting 7.6 lyrics 3.4
608 616 leaping 8.5 snow 20.0 668 674 applauding 7.6 night 8.4
609 410 erupting 8.5 explodes 7.5 669 881 autographing 7.5 table 7.6
610 12 paddling 8.5 distance 13.6 670 236 hammering 7.5 wooden 9.5
611 750 flossing 8.5 drinking 8.5 671 778 leaping 7.5 house 8.7
612 1009 autographing 8.5 street 17.1 672 260 flossing 7.5 smiling 19.2
613 463 slicing 8.5 pieces 11.7 673 399 paddling 7.5 of 6.5
614 843 autographing 8.5 speaking 4.8 674 146 autographing 7.5 language 4.9
615 772 paddling 8.5 workers 12.7 675 745 autographing 7.5 sitting 10.0
616 781 leaping 8.5 involving 7.4 676 207 paddling 7.5 man 12.5
617 757 flossing 8.4 caption 10.4 677 732 smelling 7.5 flowers 36.6
618 793 pointing 8.3 gameplay 16.7 678 647 autographing 7.4 smashes 3.3
619 403 racing 8.3 car 5.3 679 894 splashing 7.4 plastic 9.2
620 988 clipping 8.3 shoe 8.3 680 416 drumming 7.4 group 9.8
621 502 paddling 8.3 going 1.5 681 492 autographing 7.4 fans 1.4
622 343 paddling 8.3 over 2.7 682 467 drumming 7.4 child 8.0
623 450 shaving 8.3 chef 5.2 683 573 wrapping 7.4 box 9.8
624 765 paddling 8.2 gymnast 4.8 684 381 autographing 7.4 he 3.0
625 476 paddling 8.2 trees 8.4 685 855 autographing 7.3 gentleman 2.6
626 818 autographing 8.2 vest 3.3 686 939 peeling 7.3 close 7.0
627 746 autographing 8.2 street 13.7 687 494 peeling 7.3 hands 4.9
628 122 applauding 8.2 people 7.8 688 575 paddling 7.3 a 6.0
629 275 leaping 8.2 workout 4.2 689 581 smashing 7.3 building 21.9
630 592 hammering 8.2 piles 3.9 690 142 stopping 7.3 characters 11.4
631 1003 leaping 8.2 around 5.9 691 599 autographing 7.3 two 5.6
632 7 paddling 8.1 and 3.2 692 309 paddling 7.2 shooting 4.8
633 257 raining 8.1 blown 20.7 693 264 drumming 7.2 bedroom 3.6
634 170 leaping 8.1 running 5.5 694 919 autographing 7.2 hands 12.4
635 341 flossing 8.1 how 6.1 695 47 autographing 7.2 woman 6.4
636 354 sewing 8.1 machine 14.2 696 570 paddling 7.1 we 2.0
637 600 paddling 8.1 each 6.1 697 965 paddling 7.1 red 3.4
638 677 rolling 8.1 cooks 6.9 698 361 autographing 7.1 upright 3.6
639 133 sleeping 8.1 string 7.3 699 934 peeling 7.1 putting 7.9
640 678 leaping 8.0 tree 7.5 700 594 sitting 7.1 inject 8.0
641 466 injecting 8.0 close 18.2 701 186 draining 7.1 house 20.9
642 1006 stirring 8.0 pot 5.2 702 809 paddling 7.1 man 11.0
643 212 crying 8.0 helping 7.0 703 783 paddling 7.1 with 1.6
644 889 autographing 8.0 young 4.0 704 151 autographing 7.0 store 6.5
645 437 manicuring 7.9 fingers 8.3 705 474 paddling 7.0 person 9.2
646 468 jumping 7.9 motorcycle 9.9 706 1021 paddling 7.0 decorated 8.9
647 633 applauding 7.9 show 7.9 707 359 paddling 7.0 picture 5.7
648 59 drumming 7.9 watching 14.2 708 740 applauding 6.9 people 6.1
649 814 peeling 7.9 someone 4.7 709 614 autographing 6.9 knick-knack 5.3
650 441 leaping 7.9 jeans 14.1 710 237 leaping 6.9 inflating 6.7
651 775 inflating 7.9 chair 16.5 711 567 autographing 6.9 and 2.8
652 46 autographing 7.9 woman 23.8 712 135 signing 6.9 sitting 6.6
653 824 autographing 7.9 field 2.3 713 506 drumming 6.9 guys 7.3
654 968 dusting 7.9 floor 5.4 714 28 autographing 6.9 hey 7.0
655 544 reaching 7.8 climbing 13.0 715 456 applauding 6.9 animated 4.9
656 389 autographing 7.8 front 14.3 716 768 autographing 6.9 holding 7.4
657 819 lecturing 7.8 laughing 18.1 717 879 leaping 6.9 exercising 5.1
658 498 shaving 7.8 pink 18.5 718 628 drumming 6.9 men 10.4
659 9 paddling 7.7 green 5.2 719 80 discussing 6.9 women 8.6
660 927 singing 7.7 saying 13.9 720 586 applauding 6.8 haired 7.7
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721 1004 pouring 6.8 color 6.8 734 167 peeling 6.7 into 3.5
722 72 injecting 6.8 mixing 4.7 735 428 leaping 6.7 doing 2.2
723 876 autographing 6.8 arena 3.8 736 300 paddling 6.6 is 2.3
724 878 gambling 6.8 game 9.4 737 786 paddling 6.6 background 1.7
725 114 paddling 6.8 man 15.7 738 272 leaping 6.6 truck 8.5
726 764 raising 6.8 trash 10.0 739 297 applauding 6.6 rustic 4.5
727 326 leaping 6.8 zooming 3.1 740 303 paddling 6.6 down 1.0
728 217 surfing 6.8 surfer 2.0 741 93 paddling 6.5 car 3.3
729 107 pouring 6.8 bottle 5.8 742 542 baking 6.5 cupcake 9.2
730 749 injecting 6.7 person’s 2.2 743 733 discussing 6.5 men 7.3
731 612 autographing 6.7 disgust 4.8 744 23 leaping 6.5 cross 5.5
732 834 autographing 6.7 outside 12.7 745 104 injecting 6.5 beard 2.6
733 655 marrying 6.7 couple 7.5 746 279 leaping 6.5 garden 4.4

3035


