
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2904 - 2924

May 22-27, 2022 c©2022 Association for Computational Linguistics

Leveraging Relaxed Equilibrium by Lazy Transition for Sequence
Modeling

Xi Ai
College of Computer Science

Chongqing University
barid.x.ai@gmail.com

Bin Fang
College of Computer Science

Chongqing University
fb@cqu.edu.cn

Abstract
In sequence modeling, certain tokens are usu-
ally less ambiguous than others, and represen-
tations of these tokens require fewer refine-
ments for disambiguation. However, given the
nature of attention-based models like Trans-
former and UT (universal transformer), all to-
kens are equally processed towards depth. In-
spired by the equilibrium phenomenon, we
present a lazy transition, a mechanism to ad-
just the significance of iterative refinements for
each token representation. Our lazy transition
is deployed on top of UT to build LT (lazy
transformer), where all tokens are processed
unequally towards depth. Eventually, LT is en-
couraged to oscillate around a relaxed equilib-
rium. Our experiments show that LT outper-
forms baseline models on several tasks of ma-
chine translation, pre-training, Learning to Ex-
ecute, and LAMBADA.

1 Introduction

Attention-based models like Transformer (Vaswani
et al., 2017) underly two core concepts: layer and
refinement. With layer-stacked structure, the model
entirely relies on attention mechanisms (Parikh
et al., 2016; Lin et al., 2017) to refine token
representations (e.g.,vectors) layer-by-layer from
context-informed representations by using residual
connections (He et al., 2016; Ebski et al., 2018).
However, layer is not necessary. UT (universal
transformer) (Dehghani et al., 2019) and its vari-
ants (Bai et al., 2019; Lan et al., 2020) iteratively
run single-layer but wide Transformer for sequence
modeling that token representations are refined at
each step by attending to the sequence represen-
tation of the previous step, showing higher per-
formance than layer-stacked Transformer does on
NMT (Dehghani et al., 2019), pre-training (Lan
et al., 2020), language modeling (Bai et al., 2019),
and other tasks of varying complexity (Dehghani
et al., 2019) with the same number of parameters.
The computational bound of recurrence is not the

number of tokens in the sequence (like RNN) or
the number of stacked layers in the model but is
the maximum number of refinements made to to-
ken representations, e.g., a pre-defined maximum
number of iteration steps.

We follow this line but further ponder refine-
ment. Concretely, the model refines token represen-
tations iteratively that tokens are equally processed
towards depth for disambiguation. Essentially, dif-
ferent token representations are refined at a step
equally and concurrently. Thus, regardless of the
ambiguous state, a step shows the same importance
for all the tokens. However, certain tokens are less
ambiguous than others in sequence modeling, es-
pecially in NMT. It raises two questions: 1) do
deep representations have to be learned for less-
ambiguous tokens; 2) do tokens must consider the
contributions or importance of a step equally?

Meanwhile, our work derives its motivation from
the combination of UT and ACT (adaptive compu-
tation time) (Graves, 2016) that can dynamically
estimate the importance of iteration steps for un-
derstanding different sentences in the bAbI task
(Weston et al., 2016). However, we consider the
importance of every iteration step for all the tokens
in the same sequence, sharing a similar motivation
with depth-adaptive Transformer (Elbayad et al.,
2020). On the other hand, these methods learn
a halting probability for each step without con-
sidering the correspondence and interdependence
throughout the iteration and the model’s conver-
gence. We attempt a mechanism like the reset
gate in GRU (Chung et al., 2014) that the model
is allowed to dynamically forget some information
based on the correspondence and interdependence,
where in our case, this information is the further
refinement at the current step for the corresponding
token representation. In this way, we weaken the
importance of an iteration step for less-ambiguous
token representations to prevent over-refining but
retain the significance for more-ambiguous token

2904

representations to avoid under-refining, refining
token representations at the same step unequally.

To this end, we present a lazy transition that per-
forms between two consecutive steps when running
UT iteratively. It forms iterative refinements (Eb-
ski et al., 2018) for token representations with a
residual structure:

htii = hti−1i + (1− σtii)UT (h
ti−1
i) (1)

where htii is the representation for the i-th token in
the sequence at step ti (token-wise), UT yields the
deep refinement UT (hti−1i) for htii by consuming
hti−1i , and (1− σtii) is a refining rate for adjusting
the contribution of UT (hti−1i). In this way, we
model an equilibrium (Bai et al., 2019; Lan et al.,
2020) between two representations of the same to-
ken from consecutive steps. Significantly, when off
(1− σtii) = 0, the model is allowed to dismiss the
further refinement UT (hti−1i) for htii at the step ti.
Then, the model reaches a local equilibrium for the
corresponding token that the input hti−1i is similar
to the output htii . In other words, the model ponders
the significance of the further refinement via our
lazy transition that a token representation is lazy to
absorb the information if the further refinement is
trivial. In sequence modeling, all the equilibrium
token representations are learned and concatenated
for the required sequence representation that the
model oscillates around a relaxed equilibrium.

Our contributions are: 1) we present a lazy tran-
sition that is placed on top of UT to build LT
(lazy transformer). Our lazy transition dynamically
forms a refinement path for a token at each step by
pondering the step importance and the local equi-
librium. Eventually, LT is encouraged to oscillate
around a relaxed equilibrium in sequence model-
ing; 2) we provide an empirical study to quantita-
tively analyze how the relaxed equilibrium impacts
NMT in performance, deep models, and zero-shot
inferring; 3) we show our model can consistently
improve the performance of pre-training and two
tasks of varying complexity, where standard Trans-
former fails; 4) our empirical study shows that sta-
ble and smooth refinements at the early iteration
steps are significant, which results in a strong equi-
librium and a stable oscillation.

2 Related Work

Iterative Refinement in Transformer, Tied
Transformer, and Universal Transformer One
core backbend of Transformer (Vaswani et al.,

2017) is iterative refinements (Ebski et al., 2018)
that are finished by forming a residual structure
around each sub-layer: hli = hl−1i + f l(hl−1i),
where l denotes depth and f(·) represents a sub-
layer (e.g., an attention layer (Parikh et al., 2016;
Lin et al., 2017)). Following tied Transformer (Gul-
cehre et al., 2018; Xia et al., 2019; Dabre and Fujita,
2019), which share parameters across some layers,
(Dehghani et al., 2019) introduce token-wise re-
currence (Graves et al., 2014; Joulin and Mikolov,
2015; Kaiser and Sutskever, 2016) to signal-layer
but wide Transformer and then present UT, a
Turing-complete model. Theoretically, UT yields a
similar recurrent inductive bias of RNN’s because
each token representation is refined by attending
to the sequence representation of the previous step
with tied parameters. We present a comparison
in Appendix A. Significantly, the iterative refine-
ment in UT is reformed to : hti = ht−1i + f(ht−1i),
where f is the same for every iteration step t, i.e.,
a single-layer structure that the parameters are tied
throughout the iteration. In this work, we apply our
lazy transition on top of a UT block. To reform
iterative refinements, we are inspired by (Zhang
et al., 2021; Escolano et al., 2021; Bapna et al.,
2018; Wang et al., 2019) that f (or f l) could be
a more complicated network rather than a simple
sub-layer, defining f as the entire UT block and
reforming the iterative refinement as Eq.1.

Adaptive Computation While a token-wise re-
current model like UT can theoretically run in-
finitely, the model is commonly trained by setting
a maximum number of iteration steps. However,
the number of inference steps is flexible. (Graves,
2016) first introduce ACT (Adaptive Computation
Time) to compute a scalar halting probability pre-
dicted by the model at each step for each token in
RNN. Then, (Dehghani et al., 2019) adapt ACT
for UT to halt the iteration before reaching the
maximum number of training steps1 in inferring.
Furthermore, (Elbayad et al., 2020) present depth-
adaptive decoding for tokens to model the distribu-
tion of exiting with the probability of computing
each layer/step and then emitting token predictions.
Our lazy transition follows this line somewhat that
(1 − σtii) in Eq.1 dynamically approximates the
computation time for tokens. It reflects on two
characteristics: 1) (1− σtii) = 0 ≡ stop iteration;

1In some papers, training steps refer to how many batches
we use for training. In this paper, training steps mean "how
many steps we iterate a model for a training batch."

2905

2) (1− σtii) computed at each step.

3 Approach

We present LT (Lazy Transformer), a token-wise
recurrent model. LT only consists of a UT block
and our lazy transition. In training, we iteratively
run LT but constrain the computational bound to
control the training process by setting a maximum
number of iteration steps. However, iteration steps
are dynamic in inferring.

3.1 Relaxed Equilibrium
In sequence modeling, DEQ(Bai et al., 2019) and
ALBERT (Lan et al., 2020) report that a UT-based
model tends to oscillate around an equilibrium.
Concretely, each additional step has a smaller and
smaller contribution to the current sequence rep-
resentation until the model oscillates around a
fixed point. Formally, we have: limt→+∞ h

t
1:N =

limt→+∞ UT (h
t
1:N) ≡ hE1:N = UT (hE1:N), where

t is the step, ht1:N is the sequence representation
of a N length sequence X1:N at t, and hE1:N is the
equilibrium sequence representation. Empirically,
the equilibrium phenomenon could be observed
from the difference norm of sequence represen-
tations: ||UT (ht1:N) − ht1:N || ≈ ||UT (h

t+1
1:N) −

UT (ht1:N)|| ≡ ||UT (ht:1:N)− ht:1:N || < ε, where ε
depends on the model and t : denotes steps after t.

Intuitively, UT, DEQ, and ALBERT are encour-
aged to reach a global and sequence-level equilib-
rium2 at a specific iteration step t in a dynamic
programming style for outputting the equilibrium
sequence representation. By contrast, we attempt a
greedy strategy to independently find a local equi-
librium for a token, modeling the locally optimal
choice. Then, for an input sequence, we model all
the local equilibriums to find a relaxed equilibrium
instead of naively finding a global and sequence-
level equilibrium. Formally, in sequence modeling,
we model a relaxed equilibrium to obtain an equi-
librium sequence representation hR1:N :

∀i ∈ N : lim
ti→+∞

htii = lim
ti→+∞

UT (htii)

≡ ∀i ∈ N : hRi
i = UT (hRi

i)

≡ hR1:N = UT (hR1:N) = [hR1
1 , hR2

2 , ..., hRN
N]

(2)

where htii denotes i-th token representation at ti
(token-wise), hRi

i is the equilibrium token repre-
sentation, R stands the step of reaching the relaxed

2Our preliminary experiment confirms this intuition, which
will be further discussed in §Experiment.

equilibrium, and [·] denotes concatenation. Simi-
larly, we can evaluate the local equilibrium from
the difference norm of token representations:

||UT (hti:i)− hti:i || < ε̃ (3)

Note that, in our preliminary experiment, we find
that hE1:N 6= [hR1

1 , hR2
2 , ..., hRN

N], i.e., the equilib-
rium sequence representation is not equivalent to
the combination of all the equilibrium token repre-
sentations because tokens have different ambiguous
states. For the relaxed equilibrium, we do not have
to update tokens equally at an iteration step so that
an iteration step can show varying importance for
different tokens, subject to the ambiguous state of
the token representations. Thus, we consider ad-
justing the impact of the current step for different
tokens throughout the iteration.

3.2 Equilibrium from Linear CKA

Although we can easily and immediately ob-
serve the equilibrium or the local equilibrium
phenomenon from difference norms, we have no
prior knowledge in practice that we cannot ana-
lyze the equilibrium quantitatively throughout the
iteration. Hence, we consider the linear CKA
exam (centered kernel alignment): CKA(X,Y) =
||XTY ||2F /(||XTX||F ||Y TY ||F) ∈ (0, 1] that is
introduced by (Kornblith et al., 2019) to identify
correspondences between representations in mod-
els trained from different initializations and is in-
variant to orthogonal transform and isotropic scal-
ing but is not invariant to any linear transforms.
For this exam, we are inspired by (Wu et al., 2020),
who measure the degree of a layer’s multilinguality
with a CKA exam between two averages of out-
putted sequence representations. However, we run
the exam for two averages of sequence representa-
tions h1:N emerged from two consecutive steps3.
Precisely, we majorly rewrite the equilibrium to:

lim
t→+∞

CKA(h̃t,

∑N
i=1 UT (h

t
i)

N
) = 1

≡ CKA(h̃E ,
∑N

i=1 UT (h
E
i)

N
) = 1

(4)

3Note that, in this way, the feature space is the channel of
representations, not the representations itself in the original
CKA exam.

2906

where h̃t =
∑N

i=1 h
t
i

N . For our relaxed equilibrium
in sequence modeling, we have:

∀i ∈ N : lim
ti→+∞

CKA(htii , UT (h
ti
i)) = 1

≡ ∀i ∈ N : CKA(hRi
i , UT (hRi

i)) = 1

≡
N∑
i=1

CKA(hRi
i , UT (hRi

i)) = N

(5)

Essentially, we can dynamically evaluate the local
equilibrium by giving the exam to token represen-
tations throughout the iteration:

CKA(hti:i , UT (h
ti:
i)) ≈ 1 (6)

It reflects the correspondence and interdependence
between UT’s input and output. Note that, although
the global equilibrium does not expect the local
equilibrium, this exam also gives an intuition of
how a token representation changes throughout the
iteration.

3.3 Lazy Transition
To leverage the relaxed equilibrium (Eq.2 and
Eq.5), our lazy transition uses a residual structure
to form iterative refinements (Ebski et al., 2018) for
hi at each step in order to obtain hRi

i . Recall that,
UT (hti−1i) is the deep refinement we can obtain
at step ti, and CKA(·) returns (0, 1]. We form the
iterative refinement (Eq.1) to:

htii = hti−1i + (1− σtii)UT (h
ti−1
i)

σtii = CKA(hti−1i , UT (hti−1i))
(7)

Concretely, the model is based on the correspon-
dence and interdependence between UT’s input
hti−1i and output UT (hti−1i). When σtii is close
to 1 at step ti, h

ti:
i is only oscillating around htii ,

and UT cannot provide useful information for bet-
ter representations anymore. Then, the model is
encouraged to dismiss UT and then outputs hi’s
equilibrium token representation: hRi

i (≡ hti−1i ≡
htii ≡ hti:i), for the the relaxed equilibrium. It is
similar to the reset gate in GRU that dynamically
forget the previous state, but our lazy transition
attempts to dismiss the newly obtained information
UT (hti−1i) that is unimportant. Therefore, our lazy
transition provides implicit step information, sim-
ilar to GRU that can identify the current position
and handle input sentences of varying length. Since
there is no variable for identifying steps, the model
can run varying steps in inferring. On the other

hand, this could be viewed as a linear interpolation:
htii = σtii h

ti−1
i + (1 − σtii)(h

ti−1
i + UT (hti−1i)),

where σtii decides how much the model updates
hti−1i at step ti from the pre-refined representa-
tion4: hti−1i + UT (hti−1i).

Meanwhile, since htii is informed by UT (hti−1i)
without any step-specific parameter, the benefits
are twofold: 1) our lazy transition does not hurt the
global receptive field of UT, only adjusting the con-
tribution of a step; 2) the recurrent inductive bias
of UT is inherited because all the parameters are
tied throughout the iteration. Our empirical study
confirms these two benefits (see §Experiment).

3.4 Lazy Transformer

In sequence modeling, since our model does not
provide any position information, in order for the
model to make use of the order of the sequence, we
inject position information at each step. Therefore,
our LT (lazy Transformer) is formed as: ht1:N1:N =

ht1:N−11:N +(1−σt1:N1:N)UT (ht1:N−11:N +PE1:N), where
htii computed by Eq.7 is the i-th token representa-
tion of a N length sequence representation h1:N
and PE1:N is the sinusoidal position encoding for
identifying positions as defined in (Vaswani et al.,
2017). Recall that 1− σtii collapses to 0 when the
model is researching the local equilibrium of hi.
The model can simply copy the equilibrium token
representation to the next step for speed.

Instantiation LT can be instantiated, used, and
trained as the same as a vanilla Transformer block
or a UT block. Concretely, we can instantiate and
train: 1) a LT encoder with the objective of MLM
(masked language modeling) (Devlin et al., 2019;
Lan et al., 2020); 2) a LT decoder with the ob-
jective of GPT (generative pre-training) (Radford
et al., 2018; Alec Radford, 2020); 3) a LT encoder-
decoder (consisting of a LT encoder and a LT de-
coder) in a seq2seq (Graves, 2013) manner.

3.5 Comparison

Readers can refer to Appendix C for details.

Lazy Transition vs. GRU They have different
motivations. GRU aims to learn a segment-level
representation by accumulating the information
from all the tokens, whereas LT is encouraged to
ponder the importance of a step for different tokens
and then to oscillate around the relaxed equilibrium.

4In other words, we assume σti
i = 0 that all the newly

computed information UT (hti−1
i)should be added to hti−1

i .

2907

Meanwhile, compared to GRU, which forgets the
previously computed state via the reset gate, our
lazy transition is allowed to dismiss the newly com-
puted information that is trivial.

Lazy Transition vs. Adaptive Computation
Adaptive computation methods like ACT (Graves,
2016) and Adaptive-depth Transformer (Elbayad
et al., 2020) learn a generator to output a probabil-
ity of exiting based on the step output. We argue
that these methods are agonistic for the model’s
convergence because they do not consider the in-
formation flow from the input to the correspond-
ing output. By contrast, our method leverages the
model’s convergence and applies CKA to ponder
the correspondence and interdependence between
inputs and outputs, where in our case, the model’s
convergence is the relaxed equilibrium.

Lazy Transformer vs. UT, DEQ, and ALBERT
LT is parallel to UT (Dehghani et al., 2019), DEQ
(Bai et al., 2019), and ALBERT (Lan et al., 2020).
We share the idea of recurrence over depth, but we
have three main differences: 1) previous methods
require an explicit step encoding for each iteration,
whereas we let our lazy transition handle iterations
implicitly; 2) we ponder the significance of a step
for different tokens, whereas previous methods re-
fine tokens equally at a step; 3) we consider the
local and token-level equilibrium in addition to the
sequence-level equilibrium.

4 Experiment

We divide our empirical studies and experiments
into two genres: 1) we experiment with NMT (our
main task) to confirm the effectiveness of our meth-
ods for large-scale sequence modeling and further
quantitatively justify our hypotheses and assump-
tions; 2) we attempt pre-training tasks and two
somewhat rare but challenging tasks: the Learn-
ing to Execute task (Zaremba and Sutskever, 2014)
and the LAMBADA (Paperno et al., 2016) task, to
observe the performance on tasks of varying com-
plexity. All the links of datasets, libraries, scripts,
and tools marked with � are listed in Appendix H.
We open source code on GitHub.

Training Our code is implemented on Tensor-
flow 2.6 (Abadi et al., 2016) with 4 NVIDIA TI-
TAN Xp 12G GPU. We implement our model
based on the codebase of official UT from

tensor2tensor�5 and official CKA�. We use the
default setting: universal_transformer_base from
tensor2tensor. Concretely, we use Adam optimizer
(Kingma and Ba, 2015) with parameters β1 =
0.9,β2 = 0.997 and ε = 10−9, and a dynamic
learning rate with warm_up = 8000 (Vaswani
et al., 2017) (learning_rate ∈ (0, 7e−4]) is em-
ployed. We set dropout regularization with a
drop rate rate = 0.1 and label smoothing with
gamma = 0.1 (Mezzini, 2018). For data feeding
efficiency, each batch of similar-length sequences
are padded to the same length and may have a dif-
ferent number of elements in each batch.

Reimplementation and Reconfiguration We
reimplement some models on our machine with the
same batch size. We compare the reimplemented
results to the reported results on the same test set
to ensure the difference is less than 5% (or 1 in
BLEU). Then, we can confirm the reimplementa-
tion and reconfiguration.

4.1 Neural Machine Translation

Dataset and Preprocessing We train a LT
encoder-decoder model for machine translation.
To be comparable, we share two NMT tasks: 1)
English→ German of WMT 2014� (Bojar et al.,
2014); 2)English→ Romanian of WMT 2016�
(Bojar et al., 2016). Following the standard eval-
uation, the model is evaluated on newstest2014
for English → German and newstest2016 for
English → Romanian. We use the Moses
tokenizer� developed by (Koehn et al., 2007) for
tokenization and use fastBPE� to learn shared 32K
BPE (Sennrich et al., 2016) for a language pair.
Data filtering is finished by FAIR tool� (Ng et al.,
2019). We use sacreBleu� (Post, 2018) with stan-
dard settings6 to evaluate the quality of translation.

Model Configuration The model configurations
are identical to base-UT (Dehghani et al., 2019).
Specifically, we set model dimension, word em-
bedding, head, and FFN filter to 1024, 1024,
16, and 4096, which results in the same num-
ber of parameters (62M) as base-Transformer

5Note that, the newest UT implementation uses pre-
normalization y = x + f(ln(x)) instead of reported post-
normalization y = ln(x+ f(x)). UT with pre-normalization
shows slight degradation in performance (≈ 1%) but improves
stability in training, initialization, and scalability, where x
denotes the input, f(.) stands for a sub-layer, and ln is a
layer-normalization unit.

6{nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.0.0}

2908

newstest2014 newstest2016
Model En→ De En→ Ro

base model:{6, 6} =⇒ {6, 6}
1 base-Transformer (Vaswani et al., 2017) 27.50 32.31
2 ?base-UT w/o SE 27.85
3 ?base-UT 28.73 33.97
4 base-UT (Dehghani et al., 2019) 28.90
5 ?base-UT + ACT 29.11
6 ?base-UT + GRU 26.59
7 OURS: base-LT 29.81 35.02

deep model: {20/40, 6} =⇒ {20/40, 6}
9 ? 20-Transformer (Bapna et al., 2018) 28.72 33.59
10 20-Transformer (Wang et al., 2019) 28.90
11 ?20-UT 29.69 34.32
12 OURS: 20-LT 30.54 35.62
13 OURS: 40-LT 31.05 36.04

Table 1: Performance of translation. ? denotes the
baseline models that are reimplemented.. SE denotes
step encodings.

(Vaswani et al., 2017). Beam search is con-
figured with beam size 4 and length penalty
0.6. We train the model for 100k itera-
tions. We use {T_enc_step, T_dec_step} =⇒
{I_enc_step, I_dec_step} to denote a model that
runs the maximum T_enc_step and T_dec_step
steps in the encoder and decoder respectively for
training and runs the maximum I_enc_step and
I_dec_step steps in the encoder and decoder re-
spectively for inferring. For instance, {6, 6} =⇒
{6, 6} means we set the maximum step to 6 both in
the encoder and decoder for training and inferring.

4.1.1 Base Model
In this experiment, we set {6, 6} =⇒ {6, 6}
(base-LT), which is identical to the baseline model:
base-UT. Also, it is equivalent to base-Transformer
that has 6 layers in both the encoder and decoder.
For comparison, we place GRU 7 on top of the UT
block for evaluation (base-UT + GRU), similar to
that we use our lazy transition, and we also train an-
other UT with ACT (base-UT + ACT). All of these
models require step encodings for the identification
of steps. For the evaluation of how our lazy transi-
tion handles iterations without explicit encodings,
we instantiate another UT without step encodings
(base-UT w/o SE), a similar model that naively re-
peats one layer without step identifications (Dabre
and Fujita, 2019).

Table 1 shows the results on NMT tasks. base-
LT outperforms base-UT (row 3&7) by 4%. By
observing row 2&3, the performance of UT sig-
nificantly degrades without using step encodings,
which indicates a mechanism for step identifica-
tion is beneficial for UT. Meanwhile, we find that
applying ACT to UT (row 5) can improve the per-

7We use orthogonal kernels for GRU to solve an optimiza-
tion problem. See Appendix B for details.

formance on NMT, but GRU (row 6) seems to have
no effect.

We observe the equilibrium phenomena in mod-
els by giving the CKA exam (Eq.6) in the encoder
and decoder. Visualizations are presented in Ap-
pendix E. In our case study, all the tokens in base-
UT (Appendix E.1 (c,d)) run to an equilibrium
synchronously because every step shows similar
importance to all the tokens, i.e., all the tokens
have similar CKA scores at every step throughout
the iteration. It confirms that base-UT tends to
find a global equilibrium (Eq.4) for all the tokens,
as discussed before. Furthermore, this process is
unstable that CKA scores change dramatically at
the early steps8, resulting in unstable refinements
(under-refining or over-refining) for some tokens
and hurting tokens’ local equilibrium. Meanwhile,
we are aware that base-UT + ACT (Appendix E.3),
base-UT w/o SE (Appendix E.2), and base-UT +
GRU (Appendix E.4) show a similar behavior to
base-UT throughout the iteration. base-UT + GRU
is even more irregular than base-UT at the early
steps. Also, we suspect that ACT and GRU have no
power to adjust the importance of a step for each
token throughout the iteration in NMT.

Compared to that, base-LT (Appendix E.1 (a,b))
enables each token to smoothly find its local equi-
librium independently and then turns to oscillate
around the relaxed equilibrium (Eq.2) together.
Specifically, we observe that CKA scores of a step
(σtii in Eq.7) differ from one token to the others
at every step in the early 4 iterations, which an-
swers our question in §Introduction that a step can
show varying importance for all the tokens. Then,
base-LT tends to refine token representations based
on the sequence-level characteristics at the late 2
steps to oscillate around the relaxed equilibrium,
resulting in similar CKA scores.

4.1.2 Deep model
Given the nature of the iteration-based model, we
can run infinite steps in the encoder and decoder.
Therefore, we test the performance beyond 6 steps.
In this experiment, we share a challenge with
(Bapna et al., 2018; Wang et al., 2019) to train
deep models. According to their works, NMT can
get significant benefits from many layers in the
encoder but not in the decoder. Similarly, we as-
sume we can obtain benefits from running many
steps in the encoder. For comparison, we config-

8e.g., from step 1 to step 2, the average of absolute differ-
ence is 0.221, which is only 0.105 in base-LT.

2909

ure models with {20, 6} =⇒ {20, 6} (20-LT),
which is similar to the 20-layer model in (Bapna
et al., 2018; Wang et al., 2019). Beyond 20 steps
in the encoder, we further configure a model with
{40, 6} =⇒ {40, 6} (40-LT).

We show the results of deep models in Table 1.
Running a large number of steps in the encoder can
consistently improve the performance of LT, and
deep LT outperforms baseline models. Similar to
base-LT, we also consider the CKA exam for the
equilibrium phenomena (Appendix E.5) that we
obtain similar conclusions to base-LT. It indicates
our method is a potential new development for deep
models without introducing additional parameters.

Besides, we find UT can get benefits from deep
settings, but the performance is not very strong. In-
tuitively, it is caused by the global equilibrium strat-
egy observed in base-UT that CKA scores change
dramatically at the early steps. Therefore, 20-UT
cannot smoothly run to an equilibrium, which re-
sults in a suboptimal choice. The CKA exam con-
firms our intuition and draws a similar conclusion
of base-UT. By contrast, instead of searching a
global equilibrium from scratch, LT searches local
equilibriums for tokens at the early steps, which
results in varying contributions for different token
representations, and then turns to find a global equi-
librium for all tokens that we observe a similar be-
havior to UT. We conjure that LT tends to focus
on token-specific characteristics first and then on
sequence-specific characteristics.

4.1.3 Zero-shot Inferring
In the above experiments, we set the inference
steps as the same as the training steps, sharing
the same strategy with previous works (Dehghani
et al., 2019; Lan et al., 2020; Bai et al., 2019).
We are interested in an asymmetric strategy that
the inference steps is different from the training
steps. Thus, some steps are zero-shot inferring
without explicit training. Recall that the model os-
cillates around an equilibrium point and outputs
similar representations (if iterating). We assume
these similar representations can be used for pre-
diction, and we expect similar performance. On
the other hand, we visualize the equilibrium phe-
nomena to observe the equilibrium, and zero-shot
inferring can quantitatively examine the equilib-
rium. For this test, we reuse our trained models9

9Interestingly, we find the reported sinusoidal step encod-
ings for UT support this test without bringing noises to un-
trained inference steps. However, some absolute methods or

Encoders / Decoder 4 5 6 7 8 20
base-UT:{6, 6} =⇒ {X,X} (nonzero: avg : 22.16, std : 6.32)

4 24.17 27.67 24.63 24.73 23.16 13.00
5 26.55 27.32 25.49 25.84 26.41 17.89
6 26.47 24.66 28.73 25.92 23.97 23.74
7 25.24 28.89 28.95 28.58 25.34 22.79
8 24.04 27.70 28.95 27.00 24.04 23.67
12 21.25 29.57† 29.22 26.96 27.7 14.21
20 14.95 21.4 21.6 22.48 22.33 14.21

base-LT:{6, 6} =⇒ {X,X} (nonzero: avg : 24.52, std : 5.03)
4 24.28 26.23 26.88 24.13 23.61 27.77
5 21.35 25.41 25.93 26.16 24.96 25.63
6 24.46 26.35 29.81 27.45 24.41 24.30
7 24.83 29.45 26.61 27.27 27.08 27.51
8 24.74 28.70 27.86 27.03 27.48 24.51
11 26.13 31.47† 28.35 29.35 29.61 25.16
20 23.87 28.11 28.07 28.15 26.5 25.80

20-UT:{20, 6} =⇒ {X,X} (nonzero: avg : 26.03, std : 4.62)
18 24.02 26.28 26.82 27.48 29.11 15.73
19 24.02 26.24 27.02 27.48 29.18 13.27
20 23.97 26.2 29.69 27.48 27.45 16.72
21 23.55 26.14 27.23 26.92 28.23 14.29
22 22.93 25.88 27.27 26.76 28.29 15.76
26 22.13 26.86 27.19 30.08 30.96† 11.54
40 21.42 24.70 27.15 27.37 25.55 10.05

20-LT:{20, 6} =⇒ {X,X} (nonzero: avg : 28.89, std : 1.65)
18 26.17 27.26 26.82 27.82 29.82 32.05†
19 26.17 27.26 26.85 27.82 29.82 30.80
20 26.17 26.98 30.54 27.65 29.82 30.80
21 25.78 26.90 27.63 27.90 29.45 30.29
22 26.23 26.90 27.63 27.90 29.45 30.29
40 25.29 26.86 27.25 27.84 28.52 30.89

40-LT:{40, 6} =⇒ {X,X} (nonzero: avg : 29.31, std : 1.54)
39 26.24 27.92 30.05 28.35 29.65 31.59
40 26.24 28.82 31.05 29.29 30.18 31.59
41 25.55 28.82 31.05 28.77 30.18 31.59
42 25.55 28.82 31.05 28.77 31.11 31.59
44 25.55 28.82 31.05 28.77 31.11 31.59†
50 25.46 28.29 31.05 28.27 30.64 31.48

base-UT w/o SE:{6, 6} =⇒ {X,X} (nonzero: avg : 21.04, std : 7.95)
base-UT + GRU:{6, 6} =⇒ {X,X} (nonzero: avg : 17.45, std : 9.13)
base-UT + ACT:{6, 6} =⇒ {X,X} (nonzero: avg : 23.81, std : 6.75)

Table 2: Partial results of zero-shot inferring. Training
steps are in bold. SE denotes step encodings. † denotes
the best performance. See texts for description.

forEn→ De but change the setting to {6, 6} =⇒
{[1, 12], [1, 12]}, {20, 6} =⇒ {[15, 26], [1, 12]},
and {40, 6} =⇒ {[35, 46], [1, 12]} respectively.
For metrics, we compute avg and std for nonzero
(> 1) outputs, where avg indicates how strong the
equilibrium point is and std tells us how far the
model is oscillating around the point.

We show a part of experimental results in Table
2 (see all the results in Appendix F). We observe
that models can achieve competitive performance
from zero-shot inferring for some steps close to
the training step, and the best performance does
not precisely exist at the training step, except for
base-UT + ACT. Essentially, we observe and con-
firm some conclusions as mentioned earlier. 1)
LT’s behavior is regularized around the equilib-
rium when comparing base-LT std : 5.03 with
base-UT std : 6.32 and 20-LT std : 1.65 with
20-UT std : 4.62. Specifically, LT’s lazy transi-
tion controls the refinements throughout the itera-
tion that token representations from one step can
jointly compose a sequence representation yielding
similar performance to the others, whereas UT is

look-up methods are problematic.

2910

encouraged to compose the final sequence represen-
tations at the training step and lacks a mechanism
to control the refinements explicitly. 2) UT does
not oscillate around a strong equilibrium point, i.e.,
having a suboptimal equilibrium, because base-UT
avg : 22.16 and 20-UT avg : 26.03 are not strong.
By contrast, LT is stably oscillating around a strong
equilibrium and can compose relatively strong se-
quence representations in different inference steps
because base-LT and 20-LT achieve avg : 24.52
and avg : 28.89 respectively. 3) In both UT and
LT, deep models generally find a stronger and
more stable equilibrium than base models. 4) base-
UT + GRU fails in this test, which results in low
avg : 17.46 and high std : 9.13. We suspect this
failure causes by a very irregular behavior at the
first step, as the CKA exam indicates in Appendix
E.4. 5) base-UT + ACT outperforms base-UT on
avg. However, base-UT is slightly more stable
than base-UT + ACT. Besides, base-UT + ACT
generally has a larger gradient norm than others,
which may impact the stability and convergence
in training. 6) Due to the halting mechanism in
ACT, base-UT + ACT seems to halt the process
instead of oscillating around the equilibrium be-
cause the performance is constant after some steps.
7) base-UT significantly outperforms base-UT w/o
SE on stability, which indicates a mechanism for
step identifications is an essential component for
stability.

Limitation We do not find a solution to pick the
inference step for the best performance, because
we do not recognize any pattern. Meanwhile, we
could dynamically select a step for a tradeoff be-
tween speed and performance by simply copying
equilibrium token representations from the previ-
ous steps to the next steps. We will leave this for
our future work. Besides, we find LT and UT are
not stable when translating sentences longer than
50 words. The BLEU score varies from 5 to 60
for different sentences (see Appendix G). We will
conduct further experiments to probe this problem.

4.2 Pre-training Task

ALBERT (Lan et al., 2020) study the application of
UT in pre-training. Since LT is extended from UT,
we study LT in pre-training, sharing the framework
of ALBERT. Concretely, our setting is identical to
base ALBERT, denoting it as 12-base-ALBERT.
We set the model dimension, word embedding di-
mension, and the maximum number of steps to 768,

Model SQuAD1.1 SQuAD2.0 MNLI
(F1) (F1) (Acc)

12-base-ALBERT (Lan et al., 2020) 89.3 80.0 81.6
?12-base-ALBERT 89.4 80.0 81.4
?12-base-ALBERT-ACT 89.5 80.5 81.6
?12-base-ALBERT-GRU 86.9 77.8 78.6
OURS: 12-base-LT 89.8 81.1 82.1
?24S-base-ALBERT 89.6 80.9 81.7
OURS: 24-base-LT 90.1 81.7 82.6

Table 3: LT in pre-training. ? denotes the baseline
models that are reimplemented.

128, and 12. Note that in the original ALBERT,
they denote steps as layers. As recommended, we
generate masked span for the MLM targets using
the random strategy from (Joshi et al., 2020), and
we use LAMB optimizer� with a learning rate of
0.00176 (You et al., 2020) instead of Adam op-
timizer. The only change is that we use our LT
to replace UT in 12-base-ALBERT, and we de-
note our model as 12-base-LT. Following the in-
structions, we pre-train models on BooksCorpus�
(Zhu et al., 2015) and English Wikipedia� (Devlin
et al., 2019) for 140k steps. Then, we fine-tune on
MNLI� (Williams et al., 2018) and SQuAD(v1.1
and v2.0)� (Rajpurkar et al., 2016, 2018). We re-
port the performance on the dev set as the same as
(Devlin et al., 2019; Lan et al., 2020).

Result We report the result in Table 3. In
this test, we run all models 12 steps, and we
implement 12-base-ALBERT-ACT and 12-base-
ALBERT-GRU, similar to the experiment of the
translation task. 12-base-LT significantly outper-
forms 12-base-ALBERT, 12-base-ALBERT-ACT,
and 12-base-ALBERT-GRU. These observations
confirm the effectiveness of our lazy transition. For
further tests, we train all models in 24 steps. Our
model gets benefits from a large number of steps,
improving the performance from the base model
significantly. By contrast, 24-base-ALBERT can-
not obtain significant improvements.

4.3 Learning to Execute

LTE (Learning to Execute) (Zaremba and
Sutskever, 2014) including program evaluation
tasks (program, control, and addition) and mem-
orization tasks (copy, double, and reverse) is an
algorithmic task of varying complexity. The goal
is to train models on short snippets of python code
to predict the output of the generated programs,
which is parameterized by their length and nesting.
Specifically, length is the number of digits in the
integers that appear in the programs, and nesting

2911

program evaluation memorization
Model program control addition copy double reverse
?LSTM 54.1 69.2 83.8 78.1 51.9 92.1
?Transformer (Vaswani et al., 2017) 72.0 92.9 99.8 98.2 94.8 81.8
DNC (Graves et al., 2016) 69.5 83.8 99.4 100.0 100.0 100.0
Entet (Henaff et al., 2017) 73.4 83.8 98.4 91.8 62.3 100.0
RMC (Santoro et al., 2018) 79.0 99.6 99.9 100.0 99.8 100.
UT (Dehghani et al., 2019) 89.0 100.0 100.0 100.0 100.0 100.
OURS: LT 91.2 99.8 100.0 100.0 100.0 100.

Table 4: Test per character Accuracy on LTE. ? denotes the baseline models that are reimplemented.

is the number of times we are allowed to combine
the operations. Following the instructions from the
official repository of LTE�, we use the mix-strategy
to generate the datasets for training.

Result Table 4 shows the results on LTE. Our
method yields benchmark performance on the pro-
gram task of program evaluation (column 2) and
reaches SOTA performance on the other tasks.

4.4 LAMBADA Language Modeling
We attempt the LAMBADA (Paperno et al., 2016)
task to evaluate our model on language modeling
tasks of varying complexity. The goal of the LAM-
BADA task is to predict the target word of the
target sentence, based on a narrative passage. In
this test, we only use the setting of the standard set-
up as language modeling that is more challenging.
Following the instructions (Parikh et al., 2016), we
download the dataset from the official repository
of LAMBADA�, and then we train the model to
predict the next word as a general language mod-
eling task on the training dataset but only predict
the target word at test time. Note that we do not
compare our method with pre-training-based SOTA
(Radford et al., 2018; Brown et al., 2020; Alec Rad-
ford, 2020). Readers can refer to Appendix D or
the authors’ paper for more introduction.

Result Table 5 shows the results on the LAM-
BADA task. 1) We first observe that Transformer
fails in this test. Specifically, Transformer shows
strong performance on control but weak perfor-
mance on test. The low performance on test cannot
be attributed simply to poor language modeling
because control is used to evaluate Transformer
in standard language modeling before test. We
suspect that the low performance on test can be
attributed to a lack of inductive bias in training.
Concretely, Transformer is trained to predict the
next word as a general language modeling task
but only predict the target word at test time. The
varying complexity leads to failure on test, similar
to the report in (Dehghani et al., 2019). 2) Our
method significantly improves the performance on

Ppl. (Acc. %)
Model dev control test
N-GRAM (Paperno et al., 2016) 3125 (0.1) 285 (19.1)
N-GRAM+Cache (Paperno et al., 2016) 768 (0.1) 270 (19)
?Transformer 5331 (0) 141 (18) 7433 (0.0)
? LSTM 5211 (0) 139 (22) 5314 (0.0)
Neural Cache Model (Grave et al., 2017) 129 139
base-UT(Dehghani et al., 2019) 279 (18) 131 (32) 319 (17)
ACT+base-UT(Dehghani et al., 2019) 134 (22) 130 (32) 142 (19)
8-UT(Dehghani et al., 2019) 192 (21) 129 (32) 202 (18)
OURS: base-LT 122 (23) 124 (32) 128 (20)
OURS: 8-LT 114 (24) 110 (33) 119 (21)

Table 5: LAMBADA challenge. ? denotes the base-
line models that are reimplemented. We show language
modeling perplexity (Ppl., lower better) with accuracy
(Acc., higher better) in parentheses.

test, which means our method does not hurt the
recurrent inductive bias inherited from UT 10. Also,
our method is robust to the maximum number of
steps we choose (base-LT achieves strong results),
whereas UT seems a bit sensitive to the maximum
number of steps.

5 Conclusion

In this work, we place our lazy transition on top
of UT to build LT. Our lazy transition leverages
the relaxed equilibrium for sequence modeling and
provides step identifications that the model pon-
ders the importance of every step for different to-
kens throughout the iteration. Our main experiment
shows that LT can achieve strong performance on
translation tasks, facilitate the training of deep mod-
els, and tackle the challenge of zero-shot inferring.
Our method retains the recurrent inductive bias
learned by its UT component, which is confirmed
by our secondary experiments. LT tends to focus on
token-specific characteristics at the early steps and
then turns to find sequence-specific ones at the late
steps, especially in deep settings. Meanwhile, sta-
ble and smooth behaviors in the early iteration are
significant. Although there are some practical limi-
tations, as we mentioned in this paper, we believe
our lazy transition is a novel perspective to recon-
sider the models based on iterative refinements in
sequence modeling.

10As mentioned before, LT can inherit the recurrent induc-
tive bias of UT for handling varying complexity.

2912

References
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265–
283.

Rewon Child David Luan Dario Amodei Ilya Sutskever
Alec Radford, Jeffrey Wu. 2020. [GPT-2] Language
Models are Unsupervised Multitask Learners. Ope-
nAI Blog, 1(May):1–7.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019.
Deep Equilibrium Models. In Advances in Neural
Information Processing Systems.

Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao,
and Yonghui Wu. 2018. Training deeper neural
machine translation models with transparent atten-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3028–3033, Brussels, Belgium. Association
for Computational Linguistics.

Ond rej Bojar, Rajen Chatterjee, Christian Feder-
mann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Var-
vara Logacheva, Christof Monz, Matteo Negri, Au-
relie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation, pages 131–198,
Berlin, Germany. Association for Computational
Linguistics.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Ale s
Tamchyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12–58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. 2020. Language models are few-shot learn-
ers. In Advances in Neural Information Processing
Systems.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2015. On the Properties
of Neural Machine Translation: Encoder–Decoder
Approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation, pages 103–111.

Zewei Chu, Wang Hai, Kevin Gimpel, and David
McAllester. 2017. Broad context language model-
ing as reading comprehension. In 15th Conference
of the European Chapter of the Association for Com-
putational Linguistics, EACL 2017 - Proceedings of
Conference, volume 2, pages 52–57.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence
Modeling.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave,
Yann Dauphin, and Nicolas Usunier. 2017. Parse-
val networks: Improving robustness to adversarial
examples. In Proceedings of the 34th International
Conference on Machine Learning.

Raj Dabre and Atsushi Fujita. 2019. Recurrent stack-
ing of layers for compact neural machine translation
models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6292–6299.

Mostafa Dehghani, Stephan Gouws, Jakob Uszkoreit
Łukasz, Kaiser Google, and Brain Google Brain.
2019. UNIVERSAL TRANSFORMERS. In 7th
International Conference on Learning Representa-
tions, ICLR 2019 - Conference Track Proceedings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4171–4186, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Stanisław Jastrz Ebski, Devansh Arpit, Nicolas Ballas,
Vikas Verma, Tong Che, and Yoshua Bengio. 2018.
Residual connections encourage iterative inference.
In 6th International Conference on Learning Repre-
sentations, ICLR 2018 - Conference Track Proceed-
ings.

Maha Elbayad, Jiatao Gu, Edouard Grave, and
Michael Auli. 2020. DEPTH-ADAPTIVE TRANS-
FORMER. In 8th International Conference on
Learning Representations, ICLR 2020 - Conference
Track Proceedings.

Carlos Escolano, Marta R. Costa-jussà, José A. R.
Fonollosa, and Mikel Artetxe. 2021. Multilin-
gual machine translation: Closing the gap between
shared and language-specific encoder-decoders. In

2913

https://github.com/codelucas/newspaper
https://github.com/codelucas/newspaper
http://arxiv.org/abs/1909.01377v2
https://doi.org/10.18653/v1/D18-1338
https://doi.org/10.18653/v1/D18-1338
https://doi.org/10.18653/v1/D18-1338
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.3115/v1/w14-4012
https://doi.org/10.3115/v1/w14-4012
https://doi.org/10.3115/v1/w14-4012
https://doi.org/10.18653/v1/e17-2009
https://doi.org/10.18653/v1/e17-2009
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://proceedings.mlr.press/v70/cisse17a/cisse17a.pdf
http://proceedings.mlr.press/v70/cisse17a/cisse17a.pdf
http://proceedings.mlr.press/v70/cisse17a/cisse17a.pdf
http://arxiv.org/abs/1807.03819v3
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1710.04773
https://aclanthology.org/2021.eacl-main.80
https://aclanthology.org/2021.eacl-main.80
https://aclanthology.org/2021.eacl-main.80

Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 944–948, Online. As-
sociation for Computational Linguistics.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2017. Improving neural language models with a con-
tinuous cache. In 5th International Conference on
Learning Representations, ICLR 2017 - Conference
Track Proceedings.

Alex Graves. 2013. Generating Sequences With
Recurrent Neural Networks. arXiv preprint
arXiv:1308.0850.

Alex Graves. 2016. Adaptive Computation Time for
Recurrent Neural Networks.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural Turing Machines.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann,
Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom,
Koray Kavukcuoglu, and Demis Hassabis. 2016.
Hybrid computing using a neural network with
dynamic external memory. Nature, 538(7626):471–
476.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski,
Ali Razavi, Razvan Pascanu, Karl Moritz Hermann,
Peter Battaglia, Victor Bapst, David Raposo, Adam
Santoro, and Nando de Freitas. 2018. Hyperbolic
attention networks. In 7th International Conference
on Learning Representations, ICLR 2019 - Confer-
ence Track Proceedings.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie Yan Liu, and Wei Ying Ma. 2016. Dual learn-
ing for machine translation. In Advances in Neural
Information Processing Systems, pages 820–828.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017 - Conference Track Proceedings.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Armand Joulin and Tomas Mikolov. 2015. Inferring
algorithmic patterns with stack-augmented recurrent
nets. In Advances in Neural Information Processing
Systems, volume 2015-Janua, pages 190–198.

Łukasz Kaiser and Ilya Sutskever. 2016. Neural GPUs
learn algorithms. In 4th International Conference on
Learning Representations, ICLR 2016 - Conference
Track Proceedings.

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural net-
work representations revisited. In 36th International
Conference on Machine Learning, ICML 2019, vol-
ume 2019-June, pages 6156–6175.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020 - Conference Track Proceedings.

Zhouhan Lin, Minwei Feng, Cicero Nogueira Dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In 5th International Conference on
Learning Representations, ICLR 2017 - Conference
Track Proceedings.

Mauro Mezzini. 2018. Empirical study on label
smoothing in neural networks. In WSCG 2018 -
Short papers proceedings.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Ma-
chine Translation, pages 314–319, Florence, Italy.
Association for Computational Linguistics.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernández. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context
*. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255,
Austin, Texas. Association for Computational Lin-
guistics.

2914

http://arxiv.org/abs/1612.04426
http://arxiv.org/abs/1612.04426
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1410.5401
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
http://arxiv.org/abs/1805.09786
http://arxiv.org/abs/1805.09786
http://arxiv.org/abs/1611.00179
http://arxiv.org/abs/1611.00179
http://arxiv.org/abs/1612.03969
http://arxiv.org/abs/1612.03969
http://arxiv.org/abs/1503.01007
http://arxiv.org/abs/1503.01007
http://arxiv.org/abs/1503.01007
http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
http://arxiv.org/abs/1905.00414
http://arxiv.org/abs/1905.00414
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1703.03130
http://arxiv.org/abs/1703.03130
https://doi.org/10.24132/csrn.2018.2802.25
https://doi.org/10.24132/csrn.2018.2802.25
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.18653/v1/W19-5333
http://arxiv.org/abs/1606.06031v1
http://arxiv.org/abs/1606.06031v1
http://arxiv.org/abs/1606.06031v1
https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/D16-1244

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, volume 2, pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Adam Santoro, Ryan Faulkner, David Raposo, Jack
Rae, Mike Chrzanowski, Théophane Weber, Daan
Wierstra, Oriol Vinyals, Razvan Pascanu, and Timo-
thy Lillicrap. 2018. Relational recurrent neural net-
works. In Advances in Neural Information Process-
ing Systems.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715–1725, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Samuel L Smith, David H.P. Turban, Steven Hamblin,
and Nils Y Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. In 5th International Conference on Learn-
ing Representations, ICLR 2017 - Conference Track
Proceedings.

Ashish Vaswani, Google Brain, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention Is All You Need. In Advances in neural
information processing systems, pages 5998–6008.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart Van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards AI-complete
question answering: A set of prerequisite toy tasks.
In 4th International Conference on Learning Repre-
sentations, ICLR 2016 - Conference Track Proceed-
ings.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1112–1122.

Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Emerging cross-
lingual structure in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and
Tao Qin. 2019. Tied Transformers: Neural Machine
Translation with Shared Encoder and Decoder. vol-
ume 33, pages 5466–5473.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho Jui Hsieh.
2020. Large batch optimization for deep learn-
ing: Training bert in 76 minutes. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020 - Conference Track Proceedings.

Wojciech Zaremba and Ilya Sutskever. 2014. Learn-
ing to Execute. In 3rd International Conference on
Learning Representations, ICLR 2015 - Conference
Track Proceedings.

Biao Zhang, Ankur Bapna, and Orhan Sennrich,
Rico;Firat. 2021. Share or not? Learning to sched-
ule language-specific capacity for multilingual trans-
lation. In 9th International Conference on Learn-
ing Representations, ICLR 20201- Conference Track
Proceedings, August, pages 1–19.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning Books and Movies:
Towards Story-Like Visual Explanations by Watch-
ing Movies and Reading Books. In Proceedings of
the IEEE International Conference on Computer Vi-
sion, pages 19–27.

A Introduction to Recurrence

Concretely, token-wise recurrent models recur over
depth for each token. The computational bound
of recurrence is not the number of tokens in the
sequence but is the maximum number of refine-
ments made to representations, i.e., the pre-defined
maximum number of steps. By contrast, recur-
rent neural networks recur over positions for the
sequence. The comparison is presented in Figure 1.

B Optimization Challenge in the
Combination of UT and GRU

We observe an optimization challenge. In prac-
tice, we find this combination fails due to gradient

2915

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf
https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf
https://doi.org/10.18653/v1/p18-2124
https://doi.org/10.18653/v1/p18-2124
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://proceedings.neurips.cc/paper/2018/file/e2eabaf96372e20a9e3d4b5f83723a61-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e2eabaf96372e20a9e3d4b5f83723a61-Paper.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://arxiv.org/abs/1702.03859
http://arxiv.org/abs/1702.03859
http://arxiv.org/abs/1702.03859
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://9-11commission.gov/
https://9-11commission.gov/
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.18653/v1/2020.acl-main.536
https://doi.org/10.1609/aaai.v33i01.33015466
https://doi.org/10.1609/aaai.v33i01.33015466
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/arXiv:2008.09622v2
http://arxiv.org/abs/arXiv:2008.09622v2
http://arxiv.org/abs/arXiv:2008.09622v2
http://www.cs.utoronto.ca/
http://www.cs.utoronto.ca/
http://www.cs.utoronto.ca/

Figure 1: Recurrent neural network and token-wise re-
current model. h′ and h” are hidden representations.
Given the sequence input ’a b c’, recurrent neural net-
work recurs over positions, whereas token-wise recur-
rent model recurs over each token at each step with
shared parameters for each step and each token.

explosions. We suspect naive GRU is not compati-
ble well with UT, and UT cannot converge due to
GRU. Inspired by (Smith et al., 2017), we impose
an orthogonal constraint to all the kernels in GRU.
Orthogonal kernels ensure that the unique quality
of representations is preserved because an orthog-
onal matrix preserves the dot product of vectors,
as well as their L2 distances, and is an isometry of
the Euclidean space, which helps to retain all the
information from UT. Moreover, it makes optimiza-
tion stable in our experiment. Therefore, we add
a kernel constraint or update strategy (Cisse et al.,
2017) to all kernels:

W ← (1 + β)W − β(WW T)W (8)

where β = 0.001 is suggested by (Cisse et al.,
2017). This kernel constraint ensures that all the
kernels stay close to the manifold of orthogonal
matrices after each update.

C More Comparison

Lazy Transition vs. GRU As aforementioned,
the computational procedure of lazy transition is
similar to GRU (Cho et al., 2015; Chung et al.,
2014), but the backend is significantly different.
Concretely, despite the difference of the recurrence
mechanism, GRU emerges segment-level represen-
tations including all the computed representations
before the current position, whereas our lazy tran-
sition only emerges token-level representations in-
formed by the sequence representation of previous
steps. Also, they have different motivations. GRU
aims to learn a representation for a sequence by
accumulating the information from all the tokens,
whereas LT is encouraged to ponder the importance
of every step for different tokens and then to reach
the relaxed equilibrium. Meanwhile, compared to
GRU, which forgets the previously computed state

via the reset gate, our lazy transition dismisses the
newly computed refinement.

Lazy Transition vs. Adaptive Computation
Methods for adaptive computation like ACT
(Graves, 2016) and Adaptive-depth Transformer
(Elbayad et al., 2020) learn a generator to output
a probability of exiting based on the step output.
These methods are agonistic for the model’s conver-
gence because these methods do not consider the
information flow from the input to the correspond-
ing output. By contrast, our method leverages the
model’s convergence and applies CKA to ponder
the correspondence and interdependence between
inputs and outputs.

Lazy Transformer vs. UT, DEQ, and ALBERT
Our work is parallel to UT (universal transformer)
(Dehghani et al., 2019), DEQ (Bai et al., 2019),
and ALBERT (Lan et al., 2020). We share the idea
of recurrence over depth. However, we have three
main differences: 1) previous methods require step
encodings in the model, whereas we consider step
identification in our lazy transition without explicit
step encodings; 2) we consider the significance of
a step for different tokens, whereas previous meth-
ods refine tokens equally at a step; 3) we consider
the local and token-level equilibrium in addition to
the sequence-level equilibrium. On the other hand,
from the view of halting refinement, compared to
UT, LT does not need ACT (Adaptive Computation
Time) (Graves, 2016). σtii dynamically prevents
the update from the further refinement. By contrast,
UT with the combination of ACT and step encod-
ings dynamically computes the halting probability
for the current step by employing a probability gen-
erator. From the perspective of UT, we believe
the lazy transition is a good alternative to the com-
bination of step encodings and ACT. Also, in our
empirical study and experiments, LT can run a large
number of steps to improve the performance sig-
nificantly, i.e., training a deep model, whereas UT
obtains limited improvements from a large number
of steps.

D LAMBADA Language Modeling

We attempt the LAMBADA (Paperno et al., 2016)
task, which is a dataset for language modeling tasks
but within a broad context, to evaluate our model
on language modeling tasks of varying complex-
ity. The goal of the LAMBADA task is to predict
the target word of the target sentence, based on a

2916

narrative passage. Human subjects are easily able
to guess the target word if they are exposed to the
narrative passage but cannot accurately guess the
target word if they only see the target sentence
preceding the target word. The task is challeng-
ing because models cannot simply rely on local
context but must understand the information in the
broader context, which means that models have to
genuinely understand the broad context in natural
language.

In this test, we only use the setting of the stan-
dard set-up as language modeling that is more chal-
lenging. For the reading comprehension setting
proposed by (Chu et al., 2017), we leave this exten-
sive set-up for further experiments. Following the
instructions (Parikh et al., 2016), we download the
dataset from the official repository of LAMBADA�,
and then we train the model to predict the next word
as a general language modeling task on the train-
ing dataset but only predict the target word at test
time. Pre-training-based methods (Radford et al.,
2018; Brown et al., 2020; Alec Radford, 2020)
yield SOTA in this test.

E Case Study for Equilibrium
Phenomenon

E.1 Visualization for Base NTM Model
We conduct a case study (En→ De) for the equi-
librium phenomenon by inputting a random mid-
length sentence from the test set: "The system is
fitted with coloured LEDs, which are bright enough
that drivers can easily see the lights, even when the
sun is low in the sky." We use the CKA exam Eq.6
for this study, and we observe that:

• As presented in Figure 2 (a,b), in base-LT, the
importance of a step differs from one token
to the others in both the encoder and decoder
because CKA scores (also σtii in Eq.7) are
different. It confirms the effectiveness of our
lazy transition.

• As presented in Figure 2 (a,b), base-LT has
a smooth process to find the relaxed equilib-
rium in the encoder and decoder because each
token representation does not change dramati-
cally. On the contrary, as presented in Figure
2 (c,d), base-UT is hard because CKA scores
dramatically change at the very early step for
all tokens, e.g., from step 1 to step 2, the aver-
age of absolute difference is 0.221, which is
only 0.105 in base-LT.

• We confirm base-UT tries to find a global di-
rection for all tokens at every step because
Figure 2 (c,d) shows a similar CKA score (im-
portance) for each token. However, base-LT
does not show such "global" effect in Figure
2 (a,b), which proves our relaxed equilibrium.

• Interestingly, we find that, as presented in
Figure 2 (c,d), base-UT seems only to get
significant benefits from the early steps be-
cause CKA scores at the late steps are too
large. However, CKA does not consider scal-
ing. Probably, these steps scale representa-
tions into an acceptable range.

E.2 Visualization for UT without Step
Encodings

In Figure 3, base-UT w/o SE shows a similar behav-
ior to base-UT, but it is more irregular in zero-shot
inferring.

E.3 Visualization for UT + ACT
In Figure 4, base-UT + ACT shows a similar be-
havior to base-UT. Intuitively, ACT has no power
to control the importance of a step throughout the
iteration. Note that in our experiment base-UT +
ACT has a general large gradient norm. It is po-
tentially problematic in practice. Interestingly, this
is the only configuration that the best performance
precisely exists at the training step.

E.4 Visualization for UT + GRU
In Figure 5, similar to ACT, GRU has no power to
control the importance of a step for tokens through-
out the iteration. Meanwhile, we suspect base-UT
+ GRU fails in the test of zero-shot inferring due to
the unstable refinement at the very early step. It is
even more irregular than base-UT.

E.5 Visualization for Deep NTM Model
As presented in Figure 6 (a), in the encoder of 20-
UT, CKA scores significantly change at the early
step and are similar at every step throughout the
iteration. By contrast, in Figure 6 (b) and Figure
7, tokens smoothly reach their local equilibriums,
and then all the tokens search the relaxed equi-
librium synchronously. Again, LT does not show
the "global" effect throughout the iteration, which
proves our relaxed equilibrium.

F Zero-shot Inferring

We list all the results of zero-shot inferring in Table
6 for base models and Table 7 for deep models.

2917

(a) CKA exam (σti
i) (Eq.6) for the encoder of base-LT.

(b) CKA exam (σti
i) (Eq.6) for the decoder of base-LT.

(c) CKA exam (Eq.6) for the encoder of base-UT.

(d) CKA exam (Eq.6) for the decoder of base-UT.

Figure 2: Exam of equilibrium phenomenon for base models.

Figure 3: CKA exam (Eq.6) for the encoder of base-UT w/o SE.

2918

Figure 4: CKA exam (Eq.6) for the encoder of base-UT + ACT.

Figure 5: CKA exam (Eq.6) for the encoder of base-UT + GRU.

2919

(a) CKA exam (Eq.6) for the encoder of 20-UT.

(b) CKA exam (σti
i) (Eq.6) for the encoder of 20-LT.

Figure 6: Exam of equilibrium phenomenon for deep models.

2920

Figure 7: CKA exam (σti
i) (Eq.6) for the encoder of 40-LT.

2921

Figure 8: Translation statistics for base-LT and base-
UT.

When connecting to the visualization earlier, we
conjecture that using the CKA exam is a good so-
lution to probe training problems and understand
the learning behavior. From all the tables, we can
conclude that:

• Compared to base models, deep models can
generally find a strong equilibrium, which re-
sults in higher avg and lower std.

• Compared to UT, LT can oscillate around
a stronger equilibrium and is more stable
(higher avg and lower std).

• Although GRU seems to be able to balance
two iteration steps, it cannot help UT find a
strong equilibrium and is unstable.

• We suspect unstable training (a large gradi-
ent norm) is the main problem for base-UT +
ACT in NMT. The best performance precisely
exists at the training step, and the performance
is constant after the training step. We attribute
this phenomenon to the halting mechanism of
ACT.

G Translation Statistics

We find both base-LT and base-UT are not stable
when translating sentences longer than 50 words.
As presented in Figure 8, the BLEU score varies
from 5 to 60 for different sentences. We will con-
duct further experiments to probe this problem.

H Source

We list all the links of datasets, tools, and other
sources in Table 8.

2922

Encoders / Decoder 1 2 3 4 5 6 7 8 9 10 11 12 20
base-UT:{6, 6} =⇒ {X,X} (nonzero: avg : 22.16, std : 6.32)

1 0.0 0.0 0.0 4.79 5.35 5.33 5.31 5.70 5.54 3.37 3.77 3.59 2.83
2 0.0 0.0 0.0 15.57 18.44 19.34 17.54 16.97 19.09 20.91 19.30 15.86 3.41
3 0.0 0.0 0.0 21.94 22.96 23.55 24.37 24.96 22.91 22.21 21.76 22.34 13.25
4 0.0 0.0 0.0 24.17 27.67 24.63 24.73 23.16 22.53 24.61 24.67 22.86 13.00
5 0.0 0.0 0.0 26.55 27.32 25.49 25.84 26.41 25.85 25.84 23.28 23.28 17.89
6 0.0 0.0 0.0 26.47 24.66 28.73 25.92 23.97 24.02 23.88 24.17 22.03 23.74
7 0.0 0.0 0.0 25.24 28.89 28.95 28.58 25.34 25.35 23.98 24.04 24.88 22.29
8 0.0 0.0 0.0 24.04 27.70 28.95 27.00 24.04 24.04 24.28 25.25 24.61 23.67
9 0.0 0.0 0.0 22.68 27.32 26.60 27.00 25.85 23.73 23.84 23.84 26.65 25.72
10 0.0 0.0 0.0 22.18 27.63 26.66 26.37 28.61 27.93 27.34 22.30 22.98 21.93
11 0.0 0.0 0.0 22.12 27.02 28.92 28.22 28.69 25.10 23.58 22.02 24.46 19.59
12 0.0 0.0 0.0 21.25 29.57† 29.22 26.96 27.7 23.58 25.03 23.62 23.92 18.30
20 0.0 0.0 0.0 14.95 21.40 21.60 22.48 22.33 22.01 23.51 21.27 20.05 14.21

base-UT w/o SE:{6, 6} =⇒ {X,X} (nonzero: avg : 21.04, std : 7.94)
1 0.0 0.0 0.0 2.51 5.67 8.59 9.41 7.03 6.66 5.93 6.39 8.19 4.60
2 0.0 0.0 0.0 2.72 22.14 20.06 21.38 21.46 20.01 21.76 20.53 20.53 16.54
3 0.0 0.0 0.0 4.43 24.37 25.11 25.24 26.08 22.44 23.88 21.92 19.93 17.68
4 0.0 0.0 0.0 13.88 23.42 24.89 24.94 23.74 22.13 22.92 20.50 20.52 14.99
5 0.0 0.0 0.0 13.88 24.16 23.95 23.56 24.19 22.86 22.12 20.66 18.34 19.69
6 0.0 0.0 0.0 7.47 23.48 27.85 27.82 29.65 30.69† 25.53 25.33 22.41 21.61
7 0.0 0.0 0.0 3.33 25.68 28.08 29.53 31.05 31.87 27.91 26.60 25.72 18.71
8 0.0 0.0 0.0 3.92 25.15 28.51 27.94 30.25 30.85 23.4 25.42 25.44 16.81
9 0.0 0.0 0.0 1.63 23.34 28.69 27.94 28.19 26.98 26.65 26.81 25.27 17.34
10 0.0 0.0 0.0 1.56 23.36 28.53 27.96 25.43 24.85 26.21 27.03 26.87 17.30
11 0.0 0.0 0.0 0.09 23.36 28.12 27.94 28.72 26.06 24.55 25.00 26.87 18.24
12 0.0 0.0 0.0 0.09 21.15 28.35 24.63 26.94 27.53 24.66 25.13 24.94 18.41
20 0.0 0.0 0.0 0.17 23.88 25.57 25.04 21.95 23.91 22.69 22.69 24.69 16.45

base-UT + GRU:{6, 6} =⇒ {X,X} (nonzero: avg : 17.45, std : 9.13)
1 0.0 0.0 0.0 0.0 3.62 3.6 3.4 5.25 1.91 2.35 1.18 1.10 0.63
2 0.0 0.0 0.0 0.0 18.29 14.23 10.26 13.78 9.85 8.25 6.72 5.51 0.32
3 0.0 0.0 0.0 0.0 21.76 23.13 19.13 20.64 19.89 19.66 14.88 7.22 0.29
4 0.0 0.0 0.0 0.0 24.22 23.82 24.61 26.17 26.23 22.54 19.28 12.34 0.48
5 0.0 0.0 0.0 0.0 23.32 22.97 26.22 22.41 26.62 19.83 18.33 10.09 0.68
6 0.0 0.0 0.0 0.0 22.93 26.59 23.17 23.58 26.07 20.44 18.54 16.33 0.38
7 0.0 0.0 0.0 0.0 22.93 22.74 23.23 22.95 28.11 20.63 17.46 13.82 0.38
8 0.0 0.0 0.0 0.0 23.49 22.79 23.28 22.95 28.04 23.83 21.23 8.25 0.56
9 0.0 0.0 0.0 0.0 23.62 22.79 23.79 25.57 28.04 28.57 21.29 10.37 0.78
10 0.0 0.0 0.0 0.0 22.82 22.51 22.30 26.00 29.04† 25.69 18.25 6.18 0.66
11 0.0 0.0 0.0 0.0 22.82 21.16 22.78 25.51 28.35 26.44 18.38 13.41 0.62
12 0.0 0.0 0.0 0.0 23.60 24.01 25.27 28.45 26.54 22.05 17.90 18.13 0.58
20 0.0 0.0 0.0 0.0 21.73 25.38 24.03 27.91 26.49 26.03 15.08 18.67 0.75

base-UT + ACT:{6, 6} =⇒ {X,X} (nonzero: avg : 23.81, std : 6.75)
1 0.0 0.0 0.0 0.42 5.13 6.10 5.95 6.03 6.03 6.03 6.03 6.03 6.03
2 0.0 0.0 0.0 10.53 16.97 12.20 14.22 14.22 14.22 14.22 14.22 14.22 14.22
3 0.0 0.0 0.0 19.60 26.37 25.27 25.90 25.90 25.90 25.90 25.90 25.90 25.90
4 0.0 0.0 0.0 19.63 26.27 26.75 26.03 26.03 26.03 26.03 26.03 26.03 26.03
5 0.0 0.0 0.0 16.79 25.68 27.30 27.65 27.65 27.65 27.65 27.65 27.65 27.65
6 0.0 0.0 0.0 18.14 26.35 29.11† 29.11 29.11 29.11 29.11 29.11 29.11 29.11
7 0.0 0.0 0.0 17.26 25.79 28.33 27.96 27.96 27.96 27.96 27.96 27.96 27.96
8 0.0 0.0 0.0 20.50 25.59 27.65 27.50 27.50 27.50 27.50 27.50 27.50 27.50
9 0.0 0.0 0.0 20.39 25.16 27.65 27.98 27.98 27.98 27.98 27.98 27.98 27.98
10 0.0 0.0 0.0 17.69 24.90 27.96 27.94 27.94 27.94 27.94 27.94 27.94 27.94
11 0.0 0.0 0.0 21.32 25.04 27.70 27.99 27.99 27.99 27.99 27.99 27.99 27.99
12 0.0 0.0 0.0 20.03 24.04 27.18 27.38 27.38 27.38 27.38 27.38 27.38 27.38
20 0.0 0.0 0.0 22.10 22.44 26.31 25.94 25.94 25.94 25.94 25.94 25.94 25.94

base-LT:{6, 6} =⇒ {X,X} (nonzero: avg : 24.52, std : 5.03)
1 0.0 0.0 0.0 1.30 10.21 10.22 10.53 10.60 10.38 11.64 11.62 10.39 9.84
2 0.0 0.0 0.0 15.05 20.18 19.81 18.88 20.09 21.31 21.20 20.35 20.64 22.50
3 0.0 0.0 0.0 19.05 23.52 24.10 24.32 24.21 24.05 23.91 23.92 25.43 26.66
4 0.0 0.0 0.0 24.28 26.23 26.88 24.13 23.61 24.77 25.04 24.74 25.17 27.77
5 0.0 0.0 0.0 21.35 25.41 25.93 26.16 24.96 25.38 25.53 25.53 25.94 25.63
6 0.0 0.0 0.0 24.46 26.35 29.81 27.45 24.41 26.95 24.49 25.16 24.27 24.30
7 0.0 0.0 0.0 24.83 29.45 26.61 27.27 27.08 27.21 24.75 24.75 24.81 27.51
8 0.0 0.0 0.0 24.74 28.70 27.86 27.03 27.48 28.32 27.72 27.30 24.81 24.51
9 0.0 0.0 0.0 26.67 29.02 25.39 28.88 28.04 27.99 27.99 29.03 25.70 28.29
10 0.0 0.0 0.0 26.07 29.64 28.76 29.63 28.04 28.09 25.44 25.44 25.39 25.16
11 0.0 0.0 0.0 26.13 31.47† 28.35 29.35 29.61 26.07 26.04 30.72 24.83 25.16
12 0.0 0.0 0.0 26.13 31.15 28.29 26.16 26.26 26.07 26.14 26.04 24.78 25.17
20 0.0 0.0 0.0 23.87 28.11 28.07 28.15 26.50 26.45 26.45 25.70 25.70 25.80

Table 6: Zero-shot inferring for base models. Training steps are in bold. † denotes the best performance.

2923

Encoders / Decoder 1 2 3 4 5 6 7 8 9 10 11 12 20
20-UT:{20, 6} =⇒ {X,X} (nonzero: avg : 26.03, std : 4.62)

15 0.0 0.0 0.0 24.47 27.83 26.76 28.61 28.01 29.28 28.54 26.48 22.72 9.91
16 0.0 0.0 0.0 24.44 27.42 27.30 27.47 27.91 29.82 26.01 29.25 23.37 17.26
17 0.0 0.0 0.0 23.87 25.45 27.27 27.47 28.66 28.26 25.13 24.55 27.06 15.64
18 0.0 0.0 0.0 24.02 26.28 26.82 27.48 29.11 27.90 28.62 24.92 27.3 15.73
19 0.0 0.0 0.0 24.02 26.24 27.02 27.48 29.18 29.43 29.55 28.38 28.42 13.27
20 0.0 0.0 0.0 23.97 26.20 29.69 27.48 27.45 29.43 29.55 28.24 28.83 16.72
21 0.0 0.0 0.0 23.55 26.14 27.23 26.92 28.23 30.08 28.92 28.48 27.60 14.29
22 0.0 0.0 0.0 22.93 25.88 27.27 26.76 28.29 29.50 28.92 30.67 29.99 15.76
23 0.0 0.0 0.0 23.65 26.77 26.36 27.56 30.67 30.35 29.29 29.85 29.99 14.42
24 0.0 0.0 0.0 24.28 26.63 25.95 29.75 30.60 30.53 28.97 29.05 28.54 12.55
25 0.0 0.0 0.0 22.02 26.92 26.91 29.96 30.45 29.81 28.79 28.98 28.43 12.92
26 0.0 0.0 0.0 22.13 26.86 27.19 30.08 30.96† 30.48 28.69 29.05 29.00 11.54
27 0.0 0.0 0.0 21.42 24.70 27.15 27.37 25.55 25.55 24.39 24.18 24.41 10.05

20-LT:{20, 6} =⇒ {X,X} (nonzero: avg : 28.89, std : 1.65)
15 0.0 0.0 0.0 26.45 27.31 27.83 27.96 29.87 29.85 30.56 30.26 30.26 31.56
16 0.0 0.0 0.0 26.41 27.31 27.62 28.0 29.72 29.85 30.15 30.19 30.15 31.49
17 0.0 0.0 0.0 26.17 26.41 26.82 27.92 29.72 29.85 30.15 30.19 30.19 31.49
18 0.0 0.0 0.0 26.17 27.26 26.82 27.82 29.82 29.85 30.15 30.19 30.19 32.05†
19 0.0 0.0 0.0 26.17 27.26 26.85 27.82 29.82 29.55 30.15 30.19 30.19 30.80
20 0.0 0.0 0.0 26.17 26.98 30.54 27.65 29.82 29.55 29.6 30.03 30.75 30.80
21 0.0 0.0 0.0 25.78 26.90 27.63 27.90 29.45 29.55 29.98 30.49 30.75 30.29
22 0.0 0.0 0.0 26.23 26.90 27.63 27.90 29.45 29.45 29.98 30.49 30.63 30.29
23 0.0 0.0 0.0 25.61 26.90 27.59 26.96 29.56 29.98 29.98 30.49 30.63 31.26
24 0.0 0.0 0.0 25.61 26.90 27.59 28.65 30.10 29.98 29.45 29.89 30.49 31.26
25 0.0 0.0 0.0 25.61 26.86 27.73 28.54 29.05 29.87 29.45 29.89 30.49 31.26
26 0.0 0.0 0.0 25.33 26.86 27.69 27.42 28.76 29.35 29.45 29.89 30.49 30.89
40 0.0 0.0 0.0 25.29 26.86 27.25 27.84 28.52 28.7 28.85 28.77 28.99 30.89

40-LT:{40, 6} =⇒ {X,X} (nonzero: avg : 29.31, std : 1.54)
35 0.0 0.0 0.0 26.34 27.92 28.36 28.89 29.55 29.58 28.90 28.90 29.88 31.59
36 0.0 0.0 0.0 26.34 27.92 27.82 28.35 29.55 29.58 28.90 28.82 29.88 31.59
37 0.0 0.0 0.0 26.34 27.92 27.82 28.35 29.55 29.58 28.90 28.82 29.88 31.59
38 0.0 0.0 0.0 26.24 27.92 28.70 28.35 29.55 29.58 28.90 28.82 29.88 31.59
39 0.0 0.0 0.0 26.24 27.92 30.05 28.35 29.65 29.58 28.82 29.88 29.88 31.59
40 0.0 0.0 0.0 26.24 28.82 31.05 29.29 30.18 29.58 28.82 29.88 29.88 31.59
41 0.0 0.0 0.0 25.55 28.82 31.05 28.77 30.18 29.58 28.82 29.88 29.88 31.59
42 0.0 0.0 0.0 25.55 28.82 31.05 28.77 31.11 29.58 28.82 29.88 29.88 31.59
43 0.0 0.0 0.0 25.55 28.82 31.05 28.77 31.11 29.58 28.93 29.88 29.88 31.59
44 0.0 0.0 0.0 25.55 28.82 31.05 28.77 31.11 30.53 28.93 29.88 29.88 31.59†
45 0.0 0.0 0.0 25.55 28.29 31.05 28.27 31.11 30.43 28.93 29.88 29.88 31.48
46 0.0 0.0 0.0 25.55 28.29 31.05 28.27 31.11 30.43 28.93 29.88 29.88 31.48
50 0.0 0.0 0.0 25.46 28.29 31.05 28.27 30.64 30.54 29.88 29.88 29.88 31.48

Table 7: Zero-shot inferring for deep models. Training steps are in bold. † denotes the best performance.

Item Links
WMT 2014 http://www.statmt.org/wmt14/translation-task.html
WMT 2016 http://www.statmt.org/wmt16/translation-task.html
FLoRes https://github.com/facebookresearch/flores
sacreBleu https://github.com/mjpost/sacrebleu
Moses tokenizer https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
fastBPE https://github.com/glample/fastBPE
SemEval’17 https://alt.qcri.org/semeval2017/task2/
XNLI https://github.com/facebookresearch/XNLI
BooksCorpus https://yknzhu.wixsite.com/mbweb
WikiExtractor http://opus.nlpl.eu
FAIR https://github.com/pytorch/fairseq/tree/main/examples/translation
tensor2tensor https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/research/universal_transformer.py
CKA tool https://colab.research.google.com/github/google-research/google-research/blob/master/representation_similarity/Demo.ipynb
LAMB https://github.com/ymcui/LAMB_Optimizer_TF

Table 8: Links of source.

2924

