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Abstract

Abstractive summarization models are com-
monly trained using maximum likelihood es-
timation, which assumes a deterministic (one-
point) target distribution in which an ideal
model will assign all the probability mass to
the reference summary. This assumption may
lead to performance degradation during infer-
ence, where the model needs to compare sev-
eral system-generated (candidate) summaries
that have deviated from the reference sum-
mary. To address this problem, we propose
a novel training paradigm which assumes a
non-deterministic distribution so that different
candidate summaries are assigned probability
mass according to their quality. Our method
achieves a new state-of-the-art result on the
CNN/DailyMail (47.78 ROUGE-1) and XSum
(49.07 ROUGE-1) datasets. Further analysis
also shows that our model can estimate proba-
bilities of candidate summaries that are more
correlated with their level of quality.1

1 Introduction

Neural methods for abstractive summariza-
tion (Rush et al., 2015; Nallapati et al., 2016;
Chopra et al., 2016; Lewis et al., 2020; Zhang et al.,
2020) formulate summarization as a sequence-
to-sequence (Seq2Seq) problem (Sutskever et al.,
2014), learning to generate the summary in an
autoregressive manner. Such models are com-
monly trained with maximum likelihood estima-
tion (MLE), maximizing predictive probability of
the reference output given the gold sub-sequence
before it. However, during inference the model
must also generate the output based on possibly
erroneous previous steps. This can hurt model per-
formance, a phenomenon often called exposure
bias (Bengio et al., 2015; Ranzato et al., 2016). To
maintain reasonable performance even in the case
of a sub-sequence with errors, we argue that the

1We have made our code, results, and trained models pub-
licly available at https://github.com/yixinL7/BRIO.

System R-1 R-2 R-L Acc.(%)

High 53.99 29.85 51.12 100.00
Low 33.48 10.85 30.45 0.00

BART 44.88 21.68 41.92 54.80
Ours 50.10 26.29 47.19 79.63

Table 1: Accuracy of different abstractive summarization
systems w.r.t ranking the quality of candidate summaries on
CNNDM dataset. Acc. stands for the frequency of the model
assigning higher probabilities to better candidate summaries.
The candidate summaries are generated by a pre-trained model
(BART), and we select the best and the worst candidates (w.r.t.
ROUGE scores) for each of the samples. High and Low repre-
sent the average performance of the best and worst candidates
respectively. R-1/2/L are the ROUGE-1/2/L scores. The origi-
nal BART only achieves 54.80% accuracy.

model must accurately estimate relative quality of
different generated outputs, since effective infer-
ence requires comparison among these candidates.

To understand whether existing models can ac-
curately perform such relative comparisons, we
conducted a preliminary study on pre-trained
BART (Lewis et al., 2020), first generating two
candidate summaries from the model and observ-
ing whether a higher probability is assigned to the
candidate with a higher ROUGE (Lin, 2004) score.
As Tab. 1 shows, the accuracy is far from ideal.
This is likely due to the fact that MLE training only
encourages the model to assign high probability to
the reference summary, and is agnostic about any
relative comparison between non-reference sum-
maries. However, we argue that it is also important
for the order of model scores to be coordinated
with the actual quality metrics by which the sum-
maries will be evaluated – higher model scores
should indicate better quality summaries. In the
following we will refer to models that have such
scores as “coordinated” for conciseness.

We introduce a training paradigm which requires
the abstractive model to be able to be accurate
with respect to predicting the tokens in the refer-
ence summaries and coordinated with respect to
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Figure 1: Comparison of MLE loss (LMLE) and the con-
trastive loss (LCtr) in our method. MLE assumes a determin-
istic (one-point) distribution, in which the reference summary
receives all the probability mass. Our method assumes a non-
deterministic distribution in which system-generated sum-
maries also receive probability mass according to their quality.
The contrastive loss encourages the order of model-predicted
probabilities of candidate summaries to be coordinated with
the actual quality metric M by which the summaries will be
evaluated. We assign the abstractive model a dual role – a
single model could be used both as a generation model and a
reference-free evaluation model.

the candidate summaries. In other words, we give
the abstractive model a dual role: as a generation
model, it generates the output summaries in an au-
toregressive way; as an evaluation model, it can be
used to score the quality of candidate summaries
by estimating a probability distribution over can-
didate outputs. The generation model is trained
using the standard MLE loss, but to train the evalua-
tion model we introduce a contrastive loss (Hadsell
et al., 2006) defined over different candidate sum-
maries generated by pre-trained abstractive models
(Fig. 1), following previous work on ranking-based
or contrastive learning (Hopkins and May, 2011;
Zhong et al., 2020; Liu et al., 2021b).

Our main contribution is to change the target
distribution of abstractive models from a one-point
deterministic distribution assumed by MLE train-
ing to a non-deterministic distribution in which
candidate summaries are also assigned probability
mass according to their quality. The new SOTA
performance on CNN/DailyMail (Hermann et al.,
2015) and XSum (Narayan et al., 2018) datasets
demonstrated the effectiveness of our method. Our
in-depth analysis also found that the abstractive
models trained using our method can estimate the
candidate summary quality more accurately, in con-
cert with the the objective of our training paradigm.

2 Neural Abstractive Summarization

The goal of abstractive summarization is to create
a function g that takes a source document D and
generates an appropriate summary S

S ← g(D) (1)

Training Objective Neural abstractive summa-
rization models aim to learn a neural model g that
results in good summaries. Maximum likelihood
estimation (MLE) is the standard training algo-
rithm. It aims to maximize the likelihood of the
reference summary S∗, i.e.,

θ∗ = argmax
θ

∑
i

log pgθ(S
∗(i)|D(i); θ) (2)

where θ denotes the parameters of g and pgθ de-
notes the probability distribution entailed by these
parameters. The summation is over the training set
and {D(i), S∗(i)} is the i-th training sample.

For a specific sample {D(i), S∗(i)}, Eq. 2 is
equivalent to minimizing the sum of negative log-
likelihoods of the tokens {s∗1, · · · , s∗j , · · · , s∗l } in
the reference summary S∗ whose length is l, which
is the cross-entropy loss:

Lxent =

−
l∑

j=1

∑
s

ptrue(s|D,S∗<j) log pgθ (s|D,S
∗
<j ; θ)

(3)

where S∗
<j denotes the partial reference sequence

{s∗0, · · · , s∗j−1} and s∗0 is a pre-defined start token.
ptrue is a one-hot distribution under the standard
MLE framework:

ptrue(s|D,S∗<j) =

{
1 s = s∗j
0 s 6= s∗j

(4)

In practice, label smoothing (Szegedy et al., 2016)
is a widely used and effective technique that modi-
fies the target distribution in Eq. 4 to a "soft" label
by assigning probability mass β to other tokens:

ptrue(s|D,S∗<j) =

{
1− β s = s∗j
β

N−1
s 6= s∗j

(5)

where N is the size of the dictionary.
Inference and Exposure Bias During inference,
the abstractive model g is used to generate the can-
didate summary in an autoregressive manner. It
is intractable to enumerate all the possible candi-
date outputs, so in practice methods such as beam
search are used to reduce the search space.
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One important step in search is estimating the
probability of the next word st given the previous
predicted sequence S<t:

pgθ(st|D,S<t; θ) (6)

Comparing Eq. 6 with Eq. 3, the major difference
is that during inference the model makes new pre-
dictions based on its own previous predictions S<t
instead of the reference S∗

<t. As a result, even if
the generation model g achieves very high accu-
racy w.r.t. Eq. 3, once S<t starts to deviate from
S∗, there is the risk that the performance of g will
significantly degrade. This problem has been iden-
tified as the exposure bias (Bengio et al., 2015).

3 Coordinating Abstractive Models

Eq. 6 implies that the abstractive model g should
be able to assign higher estimated probability to the
better candidate summary during inference. How-
ever, this intuition is not directly captured in the
standard MLE objective used in training – a model
obtaining zero MLE loss would assign zero prob-
ability to any candidate summary different from
the reference. This is obviously improper for any
task where multiple reasonable generations may
exist (Khayrallah et al., 2020), and also does not
say anything about the ordering of two imperfect
references. We therefore advocate for making the
alternative assumption that the probability of one
candidate should be well-correlated with its quality
as evaluated by an automatic metric M . Since it is
intractable to enumerate all the possible candidate
outputs, we only require our model to be able to
accurately predict the ranking order of a set of the
most probable candidate summaries Ŝ, which are
its own beam search results. In order to achieve
this objective, we slightly modify the conditions
of Eq. 5, maintaining the general functional form,
but instead specifying the marginal probability of
the non-reference candidates S to be β, and encour-
aging coordination of probabilities and qualities
among non-reference candidates as follows:

ptrue†(S|D) = 1− β S = S∗∑
S∈S ptrue†(S|D) = β S 6= S∗

ptrue†(Si|D) > ptrue†(Sj |D)
∀Si, Sj ∈ Ŝ,
M(Si) > M(Sj)

(7)

We next describe precisely how we encourage co-
ordination through contrastive learning.
Contrastive Learning for Coordination The
candidate quality measure M can be defined in

many ways. In this work we define it as the
ROUGE (Lin, 2004) score of a candidate summary
Si given the reference summary S∗. To coordinate
a pre-trained abstractive model, we 1) use it to gen-
erate different candidate summaries with various
levels of quality,2 then 2) encourage the model to
assign higher estimated probabilities to better can-
didates by fine-tuning the model with a contrastive
loss, following the previous work (Hopkins and
May, 2011; Zhong et al., 2020):

Lctr =
∑
i

∑
j>i

max(0, f(Sj)− f(Si) + λij) (8)

where Si and Sj are two different candidate sum-
maries and ROUGE(Si, S∗) > ROUGE(Sj , S∗),
∀i, j, i < j. λij is the margin multiplied by the
difference in rank between the candidates, i.e.,
λij = (j − i) ∗ λ. f(Si) is the length-normalized
estimated log-probability3

f(S) =

∑l
t=1 log pgθ(st|D,S<t; θ)

|S|α
(9)

where α is the length penalty hyperparameter.
This loss gives the abstractive model a dual pur-

pose, first as a reference-free evaluation model,
which can be used in a two-stage summarization
pipeline, where it is used to score the candidates
generated by a pre-trained generation model and
select the final output from them. However, since
the autoregressive generation depends on both the
token-level prediction accuracy and sequence-
level coordination, the model fine-tuned with the
contrastive loss alone can no longer be used as a
generation model.
Multi-task Fine-tuning Following Edunov et al.
(2018), we combine the contrastive (Eq. 8) and
cross-entropy (Eq. 3) losses to preserve the gener-
ation ability of the pre-trained abstractive model:

Lmul = Lxent + γLctr (10)

where γ is the weight of the contrastive loss. We
note that the contrastive and the cross-entropy loss
can effectively complement each other – since the
contrastive loss is defined on the sequence level, the
token-level cross-entropy loss serves as a normal-
ization to ensure that the model could assign bal-
anced probability mass across the whole sequence.

2This is achieved by using diverse beam search (Vijayaku-
mar et al., 2018).

3We length-normalize as it is standard in comparing hy-
potheses in neural sequence generation (Cho et al., 2014).
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4 Related Work

Training Methods of Seq2Seq Models In or-
der to align the training objective and evaluation
metric, structured losses have been used for the
Seq2Seq model training. Among them, margin-
based losses (Herbrich et al., 1999; Taskar et al.,
2004; Gimpel and Smith, 2010), which require the
model to assign higher probability to the better
output, are a major category. Many margin-based
losses used in modern seq2seq models (Wiseman
and Rush, 2016; Edunov et al., 2018) assume a
deterministic (one-point) distribution: a model can
achieve zero loss if it can assign a much higher
probability to the (pseudo)-reference, regardless of
relative comparisons of other candidate summaries.
By contrast, our method has a non-deterministic
assumption (Eq. 7), which focuses on the pair-wise
ranking of a set of candidate summaries.

One main challenge of directly optimizing a
Seq2Seq model with quality scores of the output is
that the discrete sampling process makes the loss
non-differentiable. To circumvent this problem,
reinforcement learning has been used to reformu-
late the conditional text generation tasks (Ranzato
et al., 2016; Bahdanau et al., 2016; Li et al., 2016;
Paulus et al., 2018; Li et al., 2019). Compared to
this school of methods, our method is based on su-
pervised learning, and it is more stable and less sen-
sitive to the design choices (e.g. reward shaping),
which are well-known challenges of reinforcement
learning methods. Minimum risk training (Shen
et al., 2016; Wieting et al., 2019) and other on-
line sampling based methods (Bengio et al., 2015;
Norouzi et al., 2016; Zhang et al., 2019) belong
to another school of methods used to circumvent
the problem of non-differentiability. However, they
also exhibit similar problems of stability as rein-
forcement learning.
Contrastive Learning Recently, contrastive
learning (Hadsell et al., 2006) has been introduced
into several conditional text generation tasks, such
as machine translation (Yang et al., 2019; Pan
et al., 2021), text summarization (Cao and Wang,
2021; Xu et al., 2021; Sun and Li, 2021), and other
tasks (Uehara et al., 2020; Cho et al., 2021; Lee
et al., 2021b). Among these application scenar-
ios, most work deployed contrastive learning in the
latent representation space, following the frame-
work proposed in Chen et al. (2020). However,
in this work we adopt contrastive learning over
the discrete space of the generated texts. Besides,

instead of constructing the contrastive learning ex-
amples by rule-based methods (e.g. perturbing the
reference output), we use the generation models
to construct the examples, which makes the con-
trastive learning task closer to the generation task.
Sun and Li (2021) also adopted contrastive learning
on the generated texts. However, their formulation
belongs to the margin-based losses. We have dis-
cussed the difference between our method and the
margin-based losses in the previous paragraphs.
Discriminative Reranking Discriminative rerank-
ing has been widely studied for conditional gen-
eration tasks (Shen et al., 2004; Och et al., 2004;
Wan et al., 2015; Mizumoto and Matsumoto, 2016).
Some recent works (Liu and Liu, 2021; Lee et al.,
2021a) have also explored discriminative reranking
of candidates from neural natural language gener-
ation models, which adopt large pre-trained lan-
guage models (e.g. BERT (Devlin et al., 2019)) as
the reranker. In this work, we factorize the Seq2Seq
model (e.g., BART) trained on the same dataset as
the reranking model, which maximizes the param-
eter sharing across two stages. Besides, our ap-
proach contributes an instance of leveraging large
pre-trained Seq2Seq models as a quality estimation
model (Yuan et al., 2021).

5 Experiments

5.1 Experimental Settings

Datasets We mainly use three datasets in our ex-
periments (statistics in Appendix A).
CNNDM4 (Hermann et al., 2015) is a large scale
news dataset. Following Nallapati et al. (2016), we
treat the news articles as the source documents and
the associated highlights as the summaries.
XSum5 (Narayan et al., 2018) is a highly abstractive
dataset of articles from the British Broadcasting
Corporation (BBC).
NYT6 (Sandhaus, 2008) contains articles from the
New York Times and the associated summaries.
We follow Kedzie et al. (2018) for data preprocess-
ing and splitting, and use the associated archival
abstracts as the summaries.
Baselines We choose a variety of related
models with strong performance as baselines.
BART (Lewis et al., 2020) and PEGASUS (Zhang
et al., 2020) are both large pre-trained Seq2Seq
LMs standard in the literature. GSum (Dou et al.,

4https://cs.nyu.edu/~kcho/DMQA/
5https://github.com/EdinburghNLP/XSum
6https://catalog.ldc.upenn.edu/LDC2008T19
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2021) is built on BART, and improves performance
by using additional guidance from an extractive
summarizer. SimCLS (Liu and Liu, 2021) intro-
duces a two-stage framework where the pre-trained
BART model is used to generate candidates and a
pre-trained RoBERTa (Liu et al., 2019) model is
fine-tuned as an evaluation model to score the can-
didate summaries and select from them. It achieves
state-of-the-art performance on both CNNDM and
XSum. GOLD (Pang and He, 2021) uses offline
reinforcement learning to train the BART model by
treating the reference summaries as the demonstra-
tions, a different formulation that can also improve
the performance of the original BART. SeqCo (Xu
et al., 2021) and ConSum (Sun and Li, 2021) are
two recent methods that aim to leverage contrastive
learning to improve the performance of the abstrac-
tive summarization model (BART).
Implementation Details In the following exper-
iments, we use either BART or PEGASUS as a
backbone. We label our proposed methods BRIO,
with two variants: (1) BRIO-Ctr is fine-tuned
with the contrastive loss (Eq. 8) only; (2) BRIO-
Mul is fine-tuned with the multi-task loss (Eq. 10).
We use BRIO-Ctr as an evaluation model that
scores different candidate summaries generated by
a Seq2Seq abstractive model and selects the final
output from them, and BRIO-Mul as a standard
Seq2Seq model that takes the source documents as
input and generates the output in an autoregressive
manner. Further details are in Appendix B.

5.2 Results
The results are shown in Tab 2. For CNNDM and
NYTwe use BART as the backbone model while for
XSum we use the pre-trained PEGASUS model as
our base model since it achieves better performance
than BART. We have the following observations:

(1) BRIO-Ctr outperforms SimCLS, its counter-
part as an evaluation model in a two-stage summa-
rization framework. Specifically, both BRIO-Ctr
and SimCLS are used to score the candidate sum-
maries generated by a Seq2Seq abstractive model
(BART). The final outputs are selected based on
those scores. We attribute BRIO-Ctr’s superior
performance to its use of the same model archi-
tecture (BART) for both candidate generation and
scoring, while SimCLS uses RoBERTa as the eval-
uation model. As a result, BRIO-Ctr maximizes the
parameter sharing between the two stages, and pre-
serves the power of the Seq2Seq model pre-trained
on the same dataset.

System R-1 R-2 R-L

CNNDM

BART* 44.16 21.28 40.90
PEGASUS* 44.17 21.47 41.11
GSum* 45.94 22.32 42.48
ConSum* 44.53 21.54 41.57
SeqCo* 45.02 21.80 41.75
GOLD-p* 45.40 22.01 42.25
GOLD-s* 44.82 22.09 41.81
SimCLS* 46.67 22.15 43.54
BART‡ 44.29 21.17 41.09

BRIO-Ctr 47.28† 22.93† 44.15†

BRIO-Mul 47.78† 23.55† 44.57†

XSum

BART* 45.14 22.27 37.25
PEGASUS* 47.21 24.56 39.25
GSum* 45.40 21.89 36.67
ConSum* 47.34 24.67 39.40
SeqCo* 45.65 22.41 37.04
GOLD-p* 45.75 22.26 37.30
GOLD-s* 45.85 22.58 37.65
SimCLS* 47.61 24.57 39.44
PEGASUS‡ 47.46 24.69 39.53

BRIO-Ctr 48.13† 25.13† 39.84†

BRIO-Mul 49.07† 25.59† 40.40†

NYT

BART‡ 55.78 36.61 52.60

BRIO-Ctr 55.98 36.54 52.51
BRIO-Mul 57.75† 38.64† 54.54†

Table 2: Results on CNNDM, XSum and NYT. On NYT we only
reported our own results due to different data pre-processing.
†: significantly better than the baseline model (p < 0.01). *:
results reported in the original papers. ‡: results from our own
evaluation script. R-1/2/L are the ROUGE-1/2/L F1 scores.

(2) BRIO-Mul is able to establish the new
stare-of-the-art performance on CNNDM. Notably,
the previous state-of-the-art model, GSum, takes
additional guidance as input and needs a sepa-
rate encoder to encode the guidance information,
while BRIO-Mul uses the same parameterization
of BART. Compared to other methods (ConSum,
SeqCo, GOLD) that aim to improve upon BART,
BRIO-Mul performs much better, showing the ef-
fectiveness of our training method.

(3) Since on XSum we use PEGASUS instead
of BART as the base model, the result shows that
our method is not restricted to the specific choice
of the base model.

5.3 Analysis

We further perform some in-depth analyses from
diverse perspectives on the CNNDM dataset to gain
more insights into our proposed method.
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Coefficient (γ) R-1 R-2 R-L

0 (BART) 44.29 21.17 41.09
0.1 45.08 21.63 41.71
1 46.01 22.22 42.68
2 46.36 22.79 43.07
5 46.91 23.03 43.63
10 47.22 23.31 43.94
100 47.78 23.55 44.57
1000 46.83 22.17 43.68
+∞ (BRIO-Ctr) 47.28 22.93 44.15

Table 3: Model performance with different γ coefficients
weighting the contrastive loss (Eq. 10) on CNNDM. BRIO-
Ctr is trained with the contrastive loss only, which no longer
preserves its generation ability. We report its performance
when it is used as an evaluation model to select from candidate
summaries. R-1/2/L are the ROUGE-1/2/L F1 scores.

Figure 2: Loop of candidate generation and model finetuning.

System R-1 R-2 R-L

BART 44.29 21.17 41.09
BRIO-Mul 47.78 23.55 44.57

BRIO-Loop 48.01† 23.80† 44.67†

Table 4: Results on CNNDM when the pre-trained model are
fine-tuned twice. BRIO-Loop is trained on the candidates gen-
erated by BRIO-Mul. †: significantly better than the baseline
(BART) (p < 0.01). R-1/2/L are ROUGE-1/2/L F1 scores.

Coefficients of the Multi-Task Loss The multi-
task loss (Eq. 10) used to train our model contains
two parts: the cross-entropy loss and the contastive
loss. As shown in Tab. 3, as the weight of the con-
trastive loss (γ) increases, the model’s performance
improves. However, the cross-entropy loss is still
necessary to preserve the model’s ability as a gener-
ation model. We argue that this is because the token
level accuracy is still important during the auto-
regressive generation process, where the individual
tokens are predicted sequentially. In addition, we
also found that the model tends to achieve the best
performance (w.r.t the ROUGE scores on the devel-
opment set) faster with a higher γ. Specifically, it
requires less than one entire epoch to achieve the
best performance on CNNDM, making our approach
an efficient fine-tuning method.
Generation-Finetuning as a Loop Since the
fine-tuned model (BRIO-Mul) is still able to gen-

Beams BART BRIO-Mul

R-1 R-2 R-1 R-2

4 44.29 21.17 47.78 23.55
10 43.83 20.76 47.98 23.81
20 43.53 20.49 48.07 23.92
50 43.06 20.05 48.18 24.01
100 42.79 19.76 48.23 24.09

Table 5: Results on CNNDM with different beam widths (the
number of beams) used in beam search. The default beam
width is 4. R-1/2 are the ROUGE-1/2 F1 scores.

erate, we can use it to generate a new set of candi-
dates in the same way as we used the pre-trained
BART model, and continue fine-tuning it on this
newly created set of candidates (Och, 2003). Fig. 2
illustrates this iterative process. The results shown
in Tab. 4 illustrate that this new model (BRIO-
Loop) outperforms BRIO-Mul. Besides, the model
reached the best performance very quickly, show-
ing the potential of adopting our method in an on-
line framework where the new candidates are dy-
namically generated from the current model. We
leave this direction for future work.
Increasing the Beam Width While theoretically
a larger beam width (i.e. the number of candidates
maintained during beam search) would allow more
candidates to be considered and therefore increase
the upper bound of the performance, in practice
model performance may be lower if the beam width
is too large. The reason for this phenomenon is
closely related to the low sequence-level coordina-
tion of the generator. Specifically, increasing the
beam width may introduce candidates with lower
quality (Stahlberg and Byrne, 2019), and the gen-
erator may not be able to differentiate them from
high-quality candidates.

In Tab. 5, we compare the performance of the
pre-trained BART and our model (BRIO-Mul) with
different beam widths used during inference. We
observe that the performance of BART goes down
as the beam width increases. On the other hand, our
model is able to achieve better performance with
a larger number of beams, demonstrating that our
training method can improve the coordination of
the model by encouraging the model to assign esti-
mated probabilities to candidate summaries well-
correlated with their quality.
Training with Different Evaluation Metrics In
the previous experiments, we used ROUGE as
the evaluation metric to define the target order-
ing of the candidate summaries (Eq.7). To eval-
uate our method’s performance beyond ROUGE,
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System R-1 R-2 R-L BS

BART 44.29 21.17 41.09 27.38
BRIO-Mul (R) 47.78 23.55 44.57 32.11
BRIO-Mul (B) 47.53 23.22 44.37 32.59

Table 6: Results on CNNDM using different evaluation metrics
as M in Eq.7. BRIO-Mul (R) is trained with candidate sum-
maries ordered by ROUGE scores, while BRIO-Mul (B) is
trained with candidate summaries ordered by BERTScore. R-
1/2/L are ROUGE-1/2/L F1 scores. BS denotes BERTScore.

System Unigram Bigram

Reference .1110 .4865

BART .0101 .0924
BRIO-Mul .0262 .2381

Table 7: Ratio of novel n-grams of different models on
CNNDM. Novel n-grams are those that appear in the summaries
but not in the source documents.

we use a model-based semantic similarity metric,
BERTScore (Zhang* et al., 2020),7 as the evalua-
tion metric M in Eq.7 to compare the performance
of different candidate summaries. Then, we trained
another version of BRIO-Mul based on the order
of candidate summaries calculated by BERTScore.

The results in Tab. 6 show that (1) Our model
can significantly improve the model performance
when either ROUGE or BERTScore is used as the
target evaluation metric for ordering candidate sum-
maries. This suggests that it is possible to use
our method to optimize any specific target met-
ric, making our method an alternative to reinforce-
ment learning or minimum risk training. (2) Our
model that is trained on one evaluation metric (e.g.
BERTScore) also achieves improvement on another
metric (e.g. ROUGE) compared with the baseline
model, which indicates that the improvement made
by our model is not from exploiting the potential
weaknesses of individual metrics. Besides, this re-
sult also demonstrates a non-trivial degree of agree-
ment between ROUGE and BERTScore.
Novel n-grams We compare the ratio of novel
n-grams in reference, BRIO-Mul’s, and BART’s
summaries. As Tab. 7 shows, our model is more
“abstractive” compared to BART, although refer-
ence summaries still contain more novel n-grams.
This is likely due to the fact that our model is op-
timized at the sequence-level, allowing more free-
dom for paraphrasing and compression.

We further investigate the relation of the “ab-
stractiveness" and model performance by com-

7https://github.com/Tiiiger/bert_score. We use its default
version for English texts.
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Figure 3: Performance comparison (BART v.s. BRIO-Mul)
w.r.t. reference summary novelty. The x-axis represents differ-
ent buckets of test examples grouped by reference summary
novelty (Eq. 11). Larger x-coordinates correspond to exam-
ples of which the reference summaries have higher novelty.
The left figure shows the performance improvement of our
model compared with the baseline model, while the right one
shows model performance.

Own PEGASUS

BART .0470 .1205

BRIO-Mul .1839† .2768†

Table 8: Rank Correlation between the model’s estimated
probabilities of the candidate summaries and the quality scores
(ROUGE) of the candidate summaries on CNNDM. Own stands
for the candidates generated by the models themselves, while
PEGASUS stands for the candidates generated by the pre-
trained PEGASUS model. †: significantly better than the
baseline model (BART) (p < 0.01).

paring our model (BRIO-Mul) with the baseline
model (BART) on different buckets of test exam-
ples grouped by the “novelty" of the reference sum-
maries,8 i.e.,

Novelty(D,S∗) =

∑
g∈GS∗

1(g /∈ GD)
|GS∗ |

(11)

where D and S∗ are the source document and ref-
erence summary respectively, GD and GS∗ are the
sets of bigrams inD and S∗, 1 is the indicator func-
tion. The results in Fig. 3 show that when novelty
is higher, (1) all models’ performance decreases;
(2) our model achieves larger improvement over
the baseline model.
Rank Correlation We computed the rank corre-
lation between the estimated probabilities of the
candidate summaries calculated by the generators
and the quality scores of the candidate summaries.
We use Eq. 9 to calculate the estimated probabil-
ities9 and we use ROUGE-1 as the quality score
metric of the candidate summaries. We calculate

8The calculation is performed using ExplainaBoard (Liu
et al., 2021a). https://github.com/neulab/ExplainaBoard.

9We found the value of the length penalty factor α in Eq. 9
by maximizing the rank correlation on the validation set.
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Dataset System ECE Acc Conf

CNNDM BART .4097 .3711 .7365
BRIO-Mul .2719 .4271 .6652

XSum PEGASUS .2369 .4688 .6990
BRIO-Mul .1423 .4744 .5881

Table 9: Expected Calibration Error (ECE), accuracy (Acc)
and confidence (Conf) on the test set of CNNDM and XSum.
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Figure 4: Reliability graphs on the CNNDM and XSum datasets.
The accuracy of model’s predictions is plotted against the
model’s confidence on these predictions.

Spearman’s rank correlation for each sample, and
use the average score as the overall correlation,

We investigated two specific settings: 1) rank-
ing candidate summaries generated by a different
model (PEGASUS); 2) ranking candidate sum-
maries generated by themselves (BART & BRIO-
Mul). We use 16 candidates in total for calculation.
As Tab. 8 shows, our model achieves better rank
correlation on the candidate summaries generated
by both itself and the independent model. This sug-
gests that our model can better estimate the quality
of candidate summaries.

5.4 Token-level Calibration

Calibration requires that a model’s confidence on
its predictions is equal to the accuracy of these pre-
dictions (Guo et al., 2017). Previous work (Müller
et al., 2019; Kumar and Sarawagi, 2019; Wang
et al., 2020) has found that a more calibrated
text generation model tends to have better per-
formance, and techniques like label smoothing
can improve both the token-level calibration and
sequence-level accuracy (i.e. the ability of generat-
ing better results). One intuitive explanation of this
phenomenon is to interpret the model’s estimated
probability of a generated summary as the product
of the model’s confidences on a series of token-
level predictions. Then, since a more calibrated
model’s confidence estimates better the accuracy
of its predictions, the model’s estimated probabil-
ity of one sequence should be more indicative of

the quality of this sequence, which is essential for
the beam search during inference. However, the
relation of token-level calibration and sequence-
level performance remains inconclusive (Müller
et al., 2019).10 For example, a generator that al-
ways predicts a uniform distribution over all to-
kens would be perfectly calibrated, however, such
a model would not generate high-quality outputs.

We investigate this relation from the opposite
direction by evaluating whether our model (BRIO-
Mul), which is trained to have better sequence-
level performance, would also be more calibrated at
the token-level compared with the baseline models
that are trained using MLE and label smoothing.
We follow previous work by using the Expected
Calibration Error (Naeini et al., 2015) (ECE) as
the evaluation metric of calibration:

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (12)

where the samples are grouped into M equal-width
buckets by confidence (conf),Bm denotes them-th
bucket, and n is the total number of samples. Fol-
lowing Wang et al. (2020), we evaluate model cal-
ibration on the system-generated summaries dur-
ing inference and use the tercom toolkit11 to assign
labels (correct/incorrect) to the system-generated
summaries based on the reference summaries.

The results in Tab. 9 show that BRIO-Mul is
better calibrated compared to BART, suggesting
that our method helps to improve the token-level
calibration by explicitly encouraging the model to
have more accurate sequence-level probability es-
timations. The reliability graph is shown in Fig. 4.
We found that (1) abstractive models are generally
over-confident on their own predictions, (2) mod-
els are generally more calibrated on XSum than
CNNDM. This is likely due to the fact that XSum
has shorter summaries therefore it is less likely to
be affected by the exposure bias.

5.5 Few-shot Fine-tuning
The training paradigm proposed in this paper may
be extended to any Seq2Seq model. However, it can
be a non-trivial overhead to generate the candidate
summaries using large neural models on the entire
training set. On the other hand, recent work (Raffel
et al., 2020; Zhang et al., 2020; Schick and Schütze,

10In general, better token-level calibration doesn’t guaran-
tee better sequence-level performance.

11http://cs.umd.edu/~snover/tercom/
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System Summary

Reference chelsea forward tammy abraham nets first-half double for chelsea. dominic solanke adds a third late on as chelsea look set to win trophy.
manchester city struggle without injured star thierry ambrose. read: mourinho warns his young chelsea players he can not play them all.
click here to read our match report from man city ’s academy stadium.

BART tammy abraham scored twice in the first half to give chelsea the lead. isaac buckley-ricketts levelled the game for manchester city. dominic
solanke scored late on to put a gloss on the scoreline. click here to read sportsmail’s player ratings from the youth cup final.

BRIO-Mul chelsea beat manchester city 3-1 in the youth cup final at the etihad stadium. tammy abraham scored twice in the first half to give chelsea
the lead. dominic solanke scored late on to seal the win for the home side.

Reference alejandro valverde won ahead of julian alaphilippe and michael albasini. chris froome finished 123rd after a crash during the final 12
kilometres. team sky’s sports director gabriel rasch praised froome for finishing. rasch said froome was ‘banged up’ but expects to ride
tour de romandie.

BART movistar rider alejandro valverde won fleche wallonne on wednesday. team sky’s chris froome fell in the final 12km but finished the race.
philippe gilbert pulled out of the race after a bad crash 50km from the end. click here for more cycling news.

BRIO-Mul alejandro valverde defended his fleche wallonne title in belgium on wednesday. movistar rider finished ahead of julian alaphilippe and
michael albasini. team sky’s chris froome fell in the final 12km of the race but finished in 123rd. froome was involved in a crash but
finished the race despite being ‘banged up’

Reference manuel pellegrini won the premier league and capital one cup last season. city currently sit fourth in the league table - 12 points behind
chelsea. pellegrini’s contract expires at the end of the 2015-16 season. city players have been impressed with vieira’s work with the youth
team. pep guardiola is city’s first-choice to succeed pellegrini at the etihad.

BART manuel pellegrini’s future at manchester city is under scrutiny. patrick vieira is highly-respected among the city players. city’s first-choice
managerial option is bayern munich boss pep guardiola. click here for all the latest manchester city news. click here for more premier
league news.

BRIO-Mul manchester city players have backed patrick vieira to replace manuel pellegrini as manager of the club. the frenchman is highly-respected
among the players at the etihad stadium. pellegrini’s future at the club is under scrutiny after a disappointing season. city’s first-choice
manager is current bayern munich boss pep guardiola.

Table 10: Case Study on CNNDM. BRIO-Mul learns to ignore the noise pattern (“click here") while BART cannot.

Dataset System R-1 R-2 R-L

CNNDM BART 44.29 21.17 41.09
BRIO-Few 45.81 21.91 42.61

XSum PEGASUS 47.46 24.69 39.53
BRIO-Few 47.95 24.89 39.71

Table 11: Few-shot Fine-tuning. BRIO-Few is trained on
only 100/1000 training examples on CNNDM and XSum respec-
tively. R-1/2/L are ROUGE-1/2/L F1 scores.

2021; Fabbri et al., 2021) has shown that few-shot
learning can be an effective fine-tuning method of
pre-trained models for text generation tasks.

Therefore, we investigate our model’s perfor-
mance in a few-shot setting. Specifically, we ran-
domly sample 100/1000 examples from the training
set of CNNDM/XSum, and fine-tune the models that
are pre-trained using MLE loss on those examples.
More training details can be found in Appendix C.
The results are shown in Tab. 11. All experiments
are repeated three times, and the reported results
are the average performance. The results indicate
that our model can achieve improvement over the
baseline model under the few-shot learning setting
with a small computational overhead.

5.6 Case Study on CNNDM
Tab. 10 presents an interesting pattern we observed
when comparing the results of BRIO-Mul and
BART, which demonstrates that our method helps
the abstractive model to filter out noise patterns in
the original data. Specifically, some of the refer-
ence summaries (331/11490) in CNNDM contains

the phrase “click here”, pointing to a hyperlink,
and 103 source documents also contain this phrase.
BART picked up this pattern, and generates this
phrase in 96 output summaries. On the contrary,
our model learns to ignore this noise pattern and
never generated it across the whole test set, likely
because it identified that generated candidates with
this pattern rarely achieve a high ROUGE score,
and downweighted the probability accordingly.

6 Conclusion and Future Work

In this work, we presented a new training paradigm
that assigns candidate outputs probability mass ac-
cording to their quality using contrastive learning.
While our method has achieved significant improve-
ment on abstractive summarization, we note sev-
eral directions for the future work to explore. First,
since our method makes no assumptions specifi-
cally about the summarization task, it can be ex-
tended to other conditional text generation tasks
such as machine translation. Second, it is possible
to apply our method in a reinforcement learning
setting, where the candidate summaries are dynam-
ically generated. Finally, in experiments we only
used diverse beam search to generate the candidate
summaries, but it is likely that other candidate gen-
eration methods could yield further improvements.
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A Datasets Statistics

Datasets # Examples Avg. Words

Train Valid Test Doc. Sum.

CNNDM 287K 13K 11K 791.6 55.6
XSum 203K 11K 11K 429.2 23.3
NYT 44K 5.5K 6.4K 1320.2 123.4

Table 12: Datasets Statistics.

B Implementation Details

We use diverse beam search (Vijayakumar et al.,
2018) to generate 16 candidates for each data sam-
ple. On CNNDM and XSum, we use the pre-trained
BART12 and PEGASUS13 models from the Trans-
formers (Wolf et al., 2020) library as the base ab-
stractive models for candidate summary generation
and model finetuning respectively. On NYT, we
first fine-tuned a BART model14 with MLE train-
ing as the base abstractive model, since our data
pre-processing is sightly different from the previ-
ous work and there are no available pre-trained
checkpoints. We use 4 NVIDIA RTX 3090 GPUs
for the model training, and the average running
time for one epoch is around 20 hours. We use
the Adam optimizer (Kingma and Ba, 2015) with
learning rate scheduling for the model training:

lr = 2× 10−3 min(step−0.5, step · warmup−1.5)

where warmup denotes the warmup steps, which is
set to 10000, step is the number of updating steps,
lr is the learning rate.

We set the length penalty factor α in the scoring
function (Eq. 9) to the same value as used in the
original beam search. We search the value of the
margin λ in the contrastive loss (Eq. 8) within the
range [1× 10−5, 1], and decide the value based on
the model performance on the validation set. We
also performed extensive search for the coefficient
γ in Eq. 10. The specific hyper-parameter setting
is reported in Tab. 13.

We use the standard ROUGE (Lin, 2004) Perl
package15 for evaluation. The command line pa-
rameters are ‘-c 95 -r 1000 -n 2 -m’. Before the

12The checkpoint is “facebook/bart-large-cnn”, containing
around 400M parameters.

13The checkpoint is “google/pegasus-xsum"" containing
around 568M parameters.

14The checkpoint is “facebook/bart-large”.
15https://github.com/summanlp/evaluation/tree/master/

ROUGE-RELEASE-1.5.5

Datasets λ (Eq. 8) α (Eq. 9) γ (Eq. 10)

CNNDM 0.001 2.0 100
XSum 0.1 0.6 100
NYT 0.001 2.0 100

Table 13: Hyper-parameter Setting.

ROUGE evaluation, the reference summaries and
system outputs are lower-cased and tokenized.16

C Details of Few-shot Fine-tuning

On CNNDM, we randomly select 100 examples from
the training set for fine-tuning. On XSum, we
found that at least 1000 examples are needed for
the model to achieve better performance compared
to the baseline model. All experiments are repeated
three times. We randomly select 1000 examples
from the original validation set for hyper-parameter
selection. We use the Adam optimizer with the
learning rate set to 1× 10−6. The model is trained
for 15 epochs on CNNDM and 10 epochs on XSum.

16PTB tokenizer is used for tokenization. https:
//nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/
process/PTBTokenizer.html
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