
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2878 - 2889

May 22-27, 2022 c©2022 Association for Computational Linguistics

Confidence Based Bidirectional Global Context Aware Training
Framework for Neural Machine Translation

Chulun Zhou1†, Fandong Meng2, Jie Zhou2,
Min Zhang3, Hongji Wang1, Jinsong Su1,4∗

1School of Informatics, Xiamen University, Xiamen
2Pattern Recognition Center, WeChat AI, Tencent Inc, China

3Harbin Institute of Technology, Shenzhen 4Pengcheng Lab, Shenzhen
clzhou@stu.xmu.edu.cn {fandongmeng,withtomzhou}@tencent.com

zhangminmt@hotmail.com {whj,jssu}@xmu.edu.cn

Abstract

Most dominant neural machine translation
(NMT) models are restricted to make predic-
tions only according to the local context of
preceding words in a left-to-right manner. Al-
though many previous studies try to incor-
porate global information into NMT models,
there still exist limitations on how to effec-
tively exploit bidirectional global context. In
this paper, we propose a Confidence Based
Bidirectional Global Context Aware (CB-
BGCA) training framework for NMT, where
the NMT model is jointly trained with an
auxiliary conditional masked language model
(CMLM). The training consists of two stages:
(1) multi-task joint training; (2) confidence
based knowledge distillation. At the first
stage, by sharing encoder parameters, the
NMT model is additionally supervised by the
signal from the CMLM decoder that con-
tains bidirectional global contexts. More-
over, at the second stage, using the CMLM
as teacher, we further pertinently incorpo-
rate bidirectional global context to the NMT
model on its unconfidently-predicted target
words via knowledge distillation. Experi-
mental results show that our proposed CB-
BGCA training framework significantly im-
proves the NMT model by +1.02, +1.30
and +0.57 BLEU scores on three large-scale
translation datasets, namely WMT’14 English-
to-German, WMT’19 Chinese-to-English and
WMT’14 English-to-French, respectively.

1 Introduction

In recent years, Neural Machine Translation (NMT)
has achieved great progress and attracted more
attention. Most dominant NMT models mainly
adopt an encoder-decoder framework (Sutskever
et al., 2014; Bahdanau et al., 2015; Vaswani et al.,
2017; Meng and Zhang, 2019; Song et al., 2019;

†This work is done when Chulun Zhou was interning at
Pattern Recognition Center, WeChat AI, Tencent Inc, China.

*Corresponding author

Miao et al., 2021) with the teacher-forcing strat-
egy (Goodfellow et al., 2016) for training. Despite
its success, the unidirectional property of teacher-
forcing strategy restricts NMT models to only focus
on the local context, i.e., the preceding words of the
to-be-predicted target word at each decoder step.
Apparently, this strategy tends to be limited be-
cause word dependencies are always bidirectional
involving both preceding and succeeding words on
the target side.

To address this issue, many previous researches
attempt to exploit global information on the target
side (Liu et al., 2016; Zhang et al., 2016; Serdyuk
et al., 2018; Zhang et al., 2018; Su et al., 2018;
Zhang et al., 2019a,b; Su et al., 2019; Zhou et al.,
2019; Zhang et al., 2020). Typically, they intro-
duce the modelling of target-side global context in
the reverse direction by pairing the conventional
left-to-right (L2R) NMT model with a right-to-left
(R2L) auxiliary model. However, in these methods,
the modelling of reverse global context is separate
from the local context of preceding words. Thus,
they cannot sufficiently encourage the NMT model
to exploit bidirectional global context (Devlin et al.,
2019). Meanwhile, some of them adopt bidirec-
tional decoding, which often relies on multi-pass
decoding or specially customized decoding algo-
rithms (Liu et al., 2016; Zhang et al., 2018; Zhou
et al., 2019; Zhang et al., 2020).

Another series of studies (Conneau and Lam-
ple, 2019; Edunov et al., 2019; Weng et al., 2020;
Baziotis et al., 2020; Yang et al., 2020; Chen et al.,
2020) resort to leveraging target-side bidirectional
global context contained in large-scale pre-trained
language models (PLM), such as ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019). These
PLMs are normally not bilingual-aware for transla-
tion and trained independently of the NMT model.
As a special case, Chen et al. (2020) design a con-
ditional masked language modelling objective to
make BERT aware of source input during the fine-
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Figure 1: The distribution of the NMT-predicted proba-
bilities to the corresponding ground-truth words on the
training set of WMT’14 English-to-German translation
task, which is output by a fully-trained Transformer
model using teacher-forcing strategy. For instance, the
model predicts 25.67% target ground-truth words with
probabilities between 0.0∼0.1 given totally correct pre-
ceding words at each time step.

tuning stage. Nevertheless, in these approaches,
the pre-trainings of PLMs are independent of NMT
models, limiting the potential of model perfor-
mance.

As for how to effectively incorporate global in-
formation into NMT models, another notable de-
ficiency of previous work is that they do not per-
tinently enhance the NMT model according to its
word-level prediction confidence. Ideally, under
the teacher-forcing strategy, a well-trained NMT
model should assign high probabilities to the tar-
get ground-truth words based on correct previous
words, which, however, is not the case. Figure 1 de-
picts the predicted word-level probabilistic distribu-
tion of a fully-trained Transformer model. We find
that, even based on totally correct preceding words,
there is a considerable portion of target ground-
truth words that the model predicts with relatively
low probabilities. The reasonable cause of this
phenomenon is that the NMT model cannot confi-
dently predict these target words according to only
the local context of preceding words (Watanabe
and Sumita, 2002; Hoang et al., 2017). Hence, we
should especially refine the NMT model on these
unconfidently-predicted target words.

In this paper, we propose a Confidence Based
Bidirectional Global Context Aware (CBBGCA)
training framework for NMT. Under our frame-
work, the NMT model is jointly trained with a con-
ditional masked language model (CMLM) which
is essentially bilingual-aware and contains bidirec-
tional global context on the target side. Specifically,

the CBBGCA training consists of two stages. At
the first stage, we jointly train the NMT model
and CMLM in a multi-task learning manner by
sharing the encoders of the two models. This pre-
liminarily enhances the NMT model because the
encoder is additionally supervised by the signal
from the CMLM decoder that contains bidirec-
tional global context. At the second stage, we em-
ploy the CMLM to pertinently refine the training of
the NMT model on those unconfidently-predicted
target words via confidence based knowledge dis-
tillation. By doing so, our model can be further
encouraged to effectively leverage the bilingual-
aware bidirectional global context contained in the
CMLM.

To sum up, the major contributions of our paper
are as follows:

• We introduce multi-task learning to benefit
the NMT model by sharing its encoder with
an auxiliary CMLM, which preliminarily en-
hances the NMT model to capture bidirec-
tional global context.

• We further propose confidence based knowl-
edge distillation using the CMLM as teacher
to especially refine the NMT model on
unconfidently-predicted target words, more
effectively exploiting the bidirectional global
contextual information.

• Extensive experiments on large-scale
WMT’14 English-to-German, WMT’19
Chinese-to-English and WMT’14 English-
to-French translation tasks show that our
CBBGCA training framework respectively
improves the state-of-the-art Transformer
model by +1.02, +1.30 and +0.57 BLEU
points, which demonstrate the effectiveness
and generalizability of our approach.

2 CBBGCA Training Framework

In this section, we will introduce our proposed CB-
BGCA training framework that employs a CMLM
to enhance the NMT model according to its predic-
tion confidence. In the following subsections, we
first describe the basic architectures of our NMT
model and CMLM. Then, we introduce the training
procedures of our CBBGCA framework, involving
two stages.

2.1 The NMT model and CMLM
Both the NMT model and CMLM are based on
Transformer (Vaswani et al., 2017), which is essen-
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tially an attentional encoder-decoder framework.1

2.1.1 Encoder
The encoders of the NMT model and the CMLM
are identical, which are mainly used to learn the
semantic representations of the source sentence.

Generally, the encoder consists of Le identical
layers, each of which contains two sub-layers: a
self-attention (SelfAtt) sub-layer and a position-
wise feed-forward network (FFN) sub-layer. The
SelfAtt sub-layer takes the hidden states of the
previous layer as inputs and conducts multi-head
scaled dot-product attention. Let h(l) denote the
hidden states of the l-th encoder layer, the SelfAtt
sub-layer can be formulated as

c(l) = AN(SelfAtt(h(l−1),h(l−1),h(l−1))), (1)

where AN(·) denotes the AddNorm, i.e., layer nor-
malization with residual connection. Afterwards,
the FFN sub-layer is applied,

h(l) = AN(FFN(c(l))). (2)

Note that h(0) is initialized as the embedding se-
quence of the source sentence and the hidden states
of the Le-th layer h(Le) are used as the final word-
level representations of the source sentence.

2.1.2 Decoders
The decoders of the NMT model and the CMLM
are similar except their self-attention mechanisms
and prediction manners.

The NMT Decoder. It is comprised of Ld iden-
tical layers with each having three sub-layers: a
masked self-attention (MaskSelfAtt) sub-layer, a
cross-attention (CrossAtt) sub-layer and an FFN
sub-layer. Particularly, to preserve the autoregres-
sive property at each time step, the MaskSelfAtt
sub-layer performs self-attention with an attention
mask that prevents the decoder from seeing suc-
ceeding words. To generate the hidden states s(l)

of the l-th decoder layer, the MaskSelfAtt sub-layer
can be formulated as

a(l) = AN(MaskSelfAtt(s(l−1), s(l−1), s(l−1))).
(3)

Then, the CrossAtt sub-layer conducts cross-
attention using a(l) and the source representations
h(Le),

z(l) = AN(CrossAtt(a(l),h(Le),h(Le))). (4)
1Please note that our framework can also be adapted to

other NMT models.

Next, the FFN sub-layer maps z(l) into s(l):

s(l) = AN(FFN(z(l))). (5)

Finally, with the source sentence x, the target
translation y<t and the learned top-layer hidden
states s, the decoder models the probability distri-
bution over the target vocabulary at the t-th time
step as follows:

p(yt|y<t,x) = softmax(Wst), (6)

where W represents the learnable parameter matrix
for the linear transformation.

The CMLM Decoder. Typically, it predicts a set
of masked target words ym given the source sen-
tence x and the set of observable target words yo.
The CMLM decoder also contains Ld identical lay-
ers, each of which also includes a SelfAtt sub-layer,
a CrossAtt sub-layer, and an FFN sublayer. Unlike
the MaskSelfAtt sub-layer of the NMT decoder, the
attention mask is removed in the SelfAtt sub-layer
of the CMLM decoder.

Finally, with the learned top-layer hidden states
s′ of the CMLM decoder, the predicted probability
distribution for every masked target word yt ∈ ym

can be formalized as

p(yt|yo,x) = softmax(W′s′t), (7)

where W′ is the learnable parameter matrix of the
linear transformation. Note that since the CMLM
decoder takes yo rather than y<t as input, which
includes both preceding and succeeding words with
respect to every masked target word, it should con-
tain bidirectional global contextual information.

2.2 Two-stage Training
The training of CBBGCA framework involves two
stages. At the first stage, we jointly train the NMT
model and CMLM by multi-task learning. At the
second stage, according to the word-level predic-
tion confidence, we employ the CMLM to refine
the training of the NMT model through knowledge
distillation.

2.2.1 Stage 1: Multi-task Joint Training
In the first training stage, given a batch of train-
ing instances, we jointly train the NMT model and
CMLM by simultaneously optimizing their respec-
tive objectives:

L1(θe, θnd, θcd) = λLnmt+(1−λ)Lcmlm, (8)
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Figure 2: The second training stage. Supposing the NMT-predicted p̂∗2, p̂∗3 and p̂∗5 are lower than ε, the
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y1, [M], [M], y4, [M], y6. The blue and red arrow also represent the forward an backward propagation pass, re-
spectively. Note that we separate the previously-shared encoder and fix the parameters of the CMLM at this stage.

where λ is a balancing hyper-parameter and θe, θnd
and θcd denote the parameters of the shared en-
coder, the NMT decoder and the CMLM decoder,
respectively. Very importantly, during this proce-
dure of joint training, we share the same encoder
for the NMT model and CMLM. In this manner, the
NMT model benefits from the multi-task learning
because the encoder is additionally supervised by
the signal from the CMLM decoder which contains
bidirectional global context.

Specifically, using the teacher-forcing strategy,
the NMT model is optimized through the following
objective:

Lnmt(θe, θnd) = −
|y|∑
t=1

log p(yt|y<t,x). (9)

Besides, we adopt the strategy used in (Ghazvinine-
jad et al., 2019) to optimize the CMLM. Con-
cretely, we randomly select n words, where
n∼uniform(1, |y|), and replace each word with
a special token [M], splitting y into yo and ym.
Formally, we optimize the CMLM by minimizing
the following objective for every word in ym:

Lcmlm(θe, θcd) = −
∑

yt∈ym

log p(yt|yo,x). (10)

2.2.2 Stage 2: Confidence Based Knowledge
Distillation (CBKD)

At the second stage, once we obtain the two fully-
trained models, we use the CMLM to further refine
the training of the NMT model through knowledge
distillation (KD). The reason why we introduce
such a KD-based model training is that the con-
ventional NMT model predicts a considerable por-
tion of target ground-truth words with relatively

low probabilities, as shown in Figure 1. This phe-
nomenon indicates that the NMT model cannot con-
fidently predict these target words based on only lo-
cal context of preceding words. Therefore, we aim
to pertinently distill the knowledge of CMLM into
the NMT model on these unconfidently-predicted
target words because the CMLM contains bilingual-
aware bidirectional global context.

Figure 2 depicts the training procedure of this
stage with an illustrative example. Given the source
sentence x and the preceding ground-truth words
y<t at each time step t, we first let the NMT model
make predictions for every target word using Equa-
tion 6, producing word-level probability distribu-
tions p̂1, p̂2, ..., p̂|y|. Then, we determine the word
set ym where the predicted probabilities p̂∗t to the
corresponding ground-truth words are lower than a
threshold value ε,

ym = {yt|p̂∗t ≤ ε, 1 ≤ t ≤ |y|}. (11)

Next, we obtain the set yo of partially observable
target words by replacing those selected ground-
truth words with a special token [M]. Subsequently,
we feed yo to the CMLM and obtain its predicted
probability distribution q̂t for every word in ym

using Equation 7.

To pertinently refine the NMT model on the set
ym of its unconfidently-predicted target words, we
use the CMLM with fixed parameters as teacher
and transfer its knowledge to the NMT model.
Along with the supervision from the corresponding
ground-truth words, we optimize the NMT model
with a balancing factor α through the following
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objective:

Lkd(θne,θnd)=
∑

yt∈ym

{αKL(q̂t||p̂t)−(1−α)log p̂∗t},

(12)

where θne, θnd and KL(·) represent the NMT en-
coder parameters, the NMT decoder parameters
and the Kullback–Leibler divergence (Sohn et al.,
2015), respectively. Here, we follow (Clark et al.,
2019) to linearly decrease the factor α from 1 to 0
throughout training. This guides the NMT model
to absorb more knowledge from the CMLM at the
early period of the stage 2 and gradually re-focus
on the ground-truth words to learn better. Finally,
the total training objective of this stage is as fol-
lows:

L2(θne, θnd) = Lkd(θne,θnd)−
∑

yt∈yo\[M]

log p̂∗t ,

(13)
where yo\[M] represents yo excluding all special
tokens [M]. By doing so, we can fully strengthen
the ability of the NMT model to leverage the
bilingual-aware bidirectional global context con-
tained in the CMLM. Note that the CMLM is not
involved at the inference time.

3 Experiments

3.1 Datasets
We carry out experiments on three large-scale
translation tasks, WMT’14 English-to-German
(En→De), WMT’19 Chinese-to-English (Zh→En)
and WMT’14 English-to-French (En→Fr). The
data are preprocessed using Byte-Pair-Encoding2

(Sennrich et al., 2016) (BPE). More dataset statis-
tics and the detailed preprocessing procedures are
described in Appendix A.

3.2 Implementation Details
We follow the settings used in (Vaswani et al., 2017)
to build the NMT model under Transformer-base
configuration. Concretely, the Transformer-base
architecture is comprised of 6 encoder and decoder
layers, each with 512 as hidden size, the FFN sub-
layers of 2,048 dimension and 8 heads in multi-
head attentions. For more details about the training
and inference, please refer to Appendix B.

3.3 Hyper-parameters
Apart from all the hyper-parameters we empirically
set based on previous experience, the balancing

2https://github.com/rsennrich/subword-nmt
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Figure 3: The performance of the NMT model on the
WMT’14 En→De validation set with different hyper-
parameters. (a) The BLEU scores after the first stage
with different λ, the balancing factor in Equation 8. (b)
The BLEU scores after the second stage with different
ε, the confidence threshold in Equation 12.

factor λ in Equation 8 and the confidence thresh-
old ε for determining ym in Equation 13 are the
hyper-parameters we need to manually tune on the
validation set.

To balance the training of the NMT model and
CMLM, we select the minimum λ that can bring
steady improvements to the NMT model within
200,000 steps. As shown in Figure 3(a), we grad-
ually vary λ from 0.5 to 1.0 with an increment of
0.1 and evaluate the performance on the validation
set. We find that the NMT model achieves its peak
when λ = 0.7. Hence, λ is set to 0.7 for the joint
training of the two models at the first stage.

Given the selected λ, at the second training stage,
we also investigate the impact of ε on the validation
set. We adjust its value from 0.0 to 0.3 with an in-
terval of 0.05. As shown in Figure 3(b), the NMT
model performs the best when the ε is 0.2. There-
fore, we set ε = 0.2 as the confidence threshold for
the second training stage.

3.4 Main Results

In our experiments, CBBGCA is the system un-
der our proposed training framework, as described
in Section 2.2. Multi-300k denotes the baseline
system that jointly optimizes the NMT model and
CMLM by sharing their encoders throughout the
whole 300k training steps, which is used to make
comparison with conducting CBKD at the second
training stage. For evaluation, in addition to the
widely used BLEU (Papineni et al., 2002), we also
adopt the Comet (Rei et al., 2020) which is recently
a more welcomed metric.

Results on WMT’14 En→De. Table 1 lists sev-
eral existing competitive NMT systems and ours.
First, we can see that “Multi-300k” surpasses
“Transformer” by +0.58 BLEU and +0.0101 Comet
scores. Moreover, the BLEU and Comet scores
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System BLEU Comet
Existing Systems

Transformer (Vaswani et al., 2017)∗ 27.30 -
Rerank-NMT (Liu et al., 2016)∗ 27.81 -
ABD-NMT (Zhang et al., 2018)∗ 28.22 -
FKD-NMT (Zhang et al., 2019a)∗∗ 27.84 -
SB-NMT (Zhou et al., 2019)∗ 29.21 -
DBERT-NMT (Chen et al., 2020)∗ 27.53 -

Our Systems
Transformer 27.30 0.2602
Multi-300k 27.88† 0.2703†
CBBGCA 28.32‡� 0.2828‡�

Table 1: BLEU (%) and Comet scores on WMT’14
En→De. ‘*’: results are taken from corresponding
papers. ‘**’: results are reproduced by running orig-
inal code. ‘†’ and ‘‡’: significantly better than our
Transformer with t-test p<0.05 and p<0.01, respec-
tively. ‘�’: significantly better than FKD-NMT with
t-test p<0.01.

of “CBBGCA” are respectively +1.02 and +0.0226
higher than “Transformer”, verifying that CBKD
at the second training stage brings further improve-
ment.

Next, our proposed framework outperforms most
recent competitive models. Specifically, “CB-
BGCA” yields a better result than “ABD-NMT”
(Zhang et al., 2018) and “FKD-NMT” (Zhang et al.,
2019a) that only provide the NMT model with uni-
directional future contexts. This proves the power
of incorporating target-side bidirectional global
context into the NMT model. Note that “ABD-
NMT” needs two-pass decoding, which first ob-
tains reverse state sequence by a backward decoder
and then uses the forward decoder to generate fi-
nal translations. The only exception is “SB-NMT”
(Zhou et al., 2019) that designs elaborately cum-
stomized bidirectional decoding algorithms, which
is actually not fairly comparable to ours because of
its decoding manners and the involvement of syn-
thetic training data.3 These results demonstrate the
effectiveness of our proposed training framework.

Results on WMT’19 Zh→En and WMT’14
En→Fr. From Table 2, the “Multi-300k” pre-
liminarily gains +0.35 and +0.29 BLEU scores
over “Transformer” on Zh→En and En→Fr, re-
spectively. Moreover, our “CBBGCA” further
strongly outperforms “Multi-300k” and achieves
a total of +1.30 and +0.57 BLEU score improve-

3The result of “SB-NMT” is the reported performance with
checkpoint averaging technique from (Zhou et al., 2019).

System
Zh→En En→Fr

BLEU Comet BLEU Comet
Transformer 25.54 0.3187 40.97 0.5241
Multi-300k 25.89‡ 0.3263‡ 41.26‡ 0.5271‡
CBBGCA 26.84‡ 0.3544‡ 41.54‡ 0.5343‡

Table 2: BLEU (%) and Comet scores on WMT’19
Zh→En and WMT’14 En→Fr. ‘‡’: significantly
(p<0.01) better than the Transformer.

System BLEU Comet
Transformer 27.30 0.2602
Multi-300k 27.88 0.2703

w/. Dynamic 27.97 0.2734
CBBGCA 28.32 0.2828

w/o. ShareEnc 27.76 0.2683
w/o. CBKD 27.92 0.2712

Table 3: BLEU (%) and Comet scores of ablation re-
sults on the test set of WMT’14 En→De.

ments over “Transformer” on the two datasets, re-
spectively. In term of Comet, comparing different
models, we can see similar results. Note that the
sizes of WMT’19 Zh→En (20M) and WMT’14
En→Fr (36M) datasets are much larger than that of
WMT’14 En→De (4.5M) dataset, demonstrating
the effectiveness of our proposed framework on
various language pairs.

4 Analysis

4.1 Ablation Study

To fully investigate each part of our proposed train-
ing framework, we conduct ablation studies on
WMT’14 En→De translation task. Table 3 reports
the ablation results on the test set.

We first validate the necessity of our two-stage
strategy by only training the model using the multi-
task joint training. “w/. Dynamic” means the
weights in Equation 8 are dynamically adjusted.
Specifically, we linearly increase λ from 0.5 to 1.0
throughout the whole training process. We can see
that its performance is just slightly higher than the
fixed-weight “Multi-300k” and still significantly
inferior to the two-stage “CBBGCA”.

For the feasible options in two-stage strategy,
“w/o. ShareEnc” represents not sharing encoders
at the first training stage and its performance de-
creases by 0.56 BLEU score. This shows that the
NMT encoder is enhanced by the joint training
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with the CMLM. As for “w/o. CBKD”4, which
means not performing KD on any target words at
the second training stage (i.e., α=0), its perfor-
mance also decreases by 0.40 BLEU score. This
demonstrates the effect of pertinently incorporating
bidirectional global context into the NMT model
on its unconfidently-predicted target words.

4.2 Effects of Different KD Strategies

In our training framework, for each sentence pair,
we adopt KD to transfer the knowledge of the
CMLM into the NMT model only on the word
set ym. The set is determined by masking k tar-
get words whose NMT-predicted probabilities to
the corresponding ground-truths are lower than a
threshold ε. Obviously, there are alternative strate-
gies for the above process. Therefore, we further
investigate the following variants:

• Random: Regardless of confidence, we ran-
domly select k words of a target sentence to
be masked for the CMLM.

• NMT-High: As a contrast, we mask the target
words whose NMT-predicted probabilities to
the ground-truths are higher than 1− ε.

• NMT-Wrong: We mask the target words
where the predictions of the NMT model do
not coincide with the corresponding ground-
truths.

• All-at-Once: In this variant, to validate the
necessity of selectively distilling knowledge
on a portion rather than all of target words, we
generate CMLM-predicted probability distri-
butions for all target words. As an extreme
case, we mask all target words at once with
only source sentences as input to the CMLM.

• Part-to-All: Instead of masking all target
words at once, we generate the CMLM-
predicted probability distributions in a part-
to-all way. Concretely, we first generate the
NMT-predicted probability distributions for
all words. Then, all target words are divided
into several non-overlapping subsets, each cor-
responding to a certain probability interval.
For each time, we mask a subset of target
words whose probabilities to the ground-truths
are located within the corresponding interval.

4It differs from “Multi-300k” in that the CMLM is not
optimized at the second stage (200k∼300k steps) in “w/o.
CBKD”. In “Multi-300k”, between 200k∼300k steps, the
CMLM and NMT model continue to be jointly optimized by
sharing their encoders.

System BLEU Comet
Transformer 27.30 0.2602
Multi-300k 27.88 0.2703
CBBGCA 28.32 0.2828

KD Strategy
Random 28.09 0.2774
NMT-High 27.85 0.2711
NMT-Wrong 27.98 0.2734
All-at-Once 27.64 0.2687
Part-to-All 28.06 0.2769

Table 4: BLEU (%) and Comet scores on the test set of
WMT’14 En→De with different KD strategies.

Particularly, because the hyper-parameter ε is
0.2 in “CBBGCA”, we have a total of 5 it-
erations and the intervals are set to [0.0, 0.2],
[0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1.0].

Table 4 lists the results with different KD strate-
gies. We can observe that all these variants are
inferior to our “CBBGCA” method. Particularly,
the results of “Random” and “NMT-High” indicate
that conducting knowledge distillation on either
randomly selected or confidently-predicted target
words is less effective than on those unconfidently-
predicted ones. Next, the result of “NMT-Wrong”
is lower than “CBBGCA”. It may be due to the fact
that the NMT model assigns low probabilities to
some correctly-predicted target words. Thus, the
NMT model fails to absorb the beneficial knowl-
edge from CMLM on these words. Lastly, “All-at-
Once” and “Part-to-All” represent two approaches
to generate CMLM-predicted probability distribu-
tions for all target words. It is reasonable for “All-
at-Once” to obtain a a worse performance since
the CMLM cannot predict well without any observ-
able word on the target side. For “Part-to-All”, we
can see it improves the NMT model over “Multi-
300k” but is still worse and takes more compu-
tational cost than “CBBGCA”. This also echoes
the finding in “NMT-High” that applying KD on
confidently-predicted target words is not optimal.
All these results demonstrate that it is crucial for
the NMT model to pertinently exploit bidirectional
global contexts on its unconfidently-predicted tar-
get words.

4.3 Change of Model Confidence

We also investigate the change of model confidence
with respect to target ground-truth words on the
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[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,1]
Transformer 25.67 6.19 4.82 4.44 4.54 54.34
CBBGCA 25.36 5.81 4.49 4.18 4.40 55.76

∆ -0.31 -0.38 -0.33 -0.26 -0.14 +1.42

Table 5: The percentage of tokens within each proba-
bility interval on the WMT’14 En→De training set.

training set. Table 5 lists the percentage of tokens
within each interval, in terms of NMT-predicted
probability. Because the probability higher than
0.5 must be the maximum across the vocabulary,
we group 0.5∼1.0 as a whole high-confidence in-
terval while the others are low-confidence intervals.
From the table, we can observe that the number
of tokens in low-confidence intervals drops. For
instance, the number of tokens locating in [0.0, 0.2]
becomes 0.69% fewer, which is a notable change
considering that the WMT’14 En→De training set
contains roughly 4.5 million sentences with a total
of approximately 140 million tokens. This indi-
cates that the NMT model becomes more confident
about the target ground-truth words.

4.4 Integration with Large-scale PLM

There are also some researches (Edunov et al.,
2019; Conneau and Lample, 2019; Yang et al.,
2020; Weng et al., 2020; Chen et al., 2020) that
focus on incorporating large-scale PLMs into the
NMT model. Different from these approaches that
require pre-training on massive external data, in
this work, the integration of CMLM into the train-
ing procedure is to directly provide the NMT model
with target-side bidirectional global context with-
out external data. To show that our proposed train-
ing framework is compatible and orthogonal to
existing approaches involving large-scale PLMs,
we conduct experiments with an external Roberta
model (Liu et al., 2019) in Appendix C.

4.5 Comparison over Stronger Systems

To further validate our proposed training frame-
work, we conduct experiments over stronger sys-
tems. Particularly, we first compare our proposed
training framework with (Baziotis et al., 2020) that
used a bidirectional LM as prior to regularize the
NMT model, which is similar to our method to
some extent. Following their setting, we train a
target-side language model using a 6-layer Trans-
former decoder. Then, it is used as the teacher
model to impose soft constraints on the output
of the NMT model. The upper rows of Table 6

System BLEU ∆

Transformer 25.54 ref.
Transformer + LM prior 25.85 +0.31
CBBGCA 26.84 +1.30
Transformer w/. BT data 25.85 ref.
Multi-300k w/. BT data 26.30 +0.45
CBBGCA w/. BT data 27.12 +1.27

Table 6: BLEU (%) scores on the test set of WMT’19
Zh→En. The upper rows list the results of models
trained using only the original training set of WMT’19
Zh→En. The lower rows represents the performances
of models trained with additional back-translated data.

give the comparison results. We can see that our
“CBBGCA” still outperforms “Transformer + LM
prior”.

In addition, back-translated data are often used
to boost NMT models. We also involve addi-
tional back-translated data during training. Specif-
ically, we use an in-house English-to-Chinese
Transformer-base model to translate the English
sentences in the WMT’19 Zh→En training set.
Then, we add these back-translated data to the
WMT’19 Zh→En training set. The lower rows
of Table 6 lists the performance of our models
under this setting. Similar to previous results, it
shows that both of “Multi-300k” and “CBBGCA”
consistently improve the NMT model on the BT-
augmented WMT’19 Zh→En, demonstrating the
the effectiveness of our proposed training frame-
work.

4.6 Case Study

In Appendix D, we give an illustrative example on
the WMT’19 Zh→En test set to show the improve-
ments of our model.

5 Related Work

5.1 Exploiting Global Context

This line of research aims at modelling target-side
global context in the reverse direction with an aux-
iliary model. Liu et al. (2016) first adopt L2R
and R2L NMT models to independently generate
translations through beam search, then re-rank the
candidate list via their agreement. Zhang et al.
(2018) employ a backward decoder to capture re-
verse target-side context, which is then exploited
by the forward decoder. Serdyuk et al. (2018) pro-
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pose twin networks, where the forward network
is encouraged to generate hidden states similar
to those of the backward network. Zhang et al.
(2019a) present a future-aware knowledge distilla-
tion framework enabling the unidirectional decoder
to explore the future context for word predictions.
Zhou et al. (2019) propose a synchronous bidirec-
tional NMT model with revised beam search algo-
rithm that involves interactive L2R and R2L decod-
ings. Zhang et al. (2019b) also combine the L2R
and R2L NMT models by considering their agree-
ment, helping the model to generate sentences with
better prefixes and suffixes. Although these meth-
ods indeed gain some improvements, the modelling
of reverse global context is independent of the lo-
cal context of preceding words. Meanwhile, they
usually rely on elaborately designed mechanisms
for burdensome multi-pass decoding.

5.2 KD from Pre-trained Language Model

Another line of research is to exploit global con-
textual information contained in large-scale pre-
trained language models (PLM) via knowledge dis-
tillation (KD). For example, Edunov et al. (2019)
and Conneau and Lample (2019) feed the top-layer
representations of ELMo or BERT to NMT en-
coders. Yang et al. (2020) explore three techniques
to apply BERT on NMT models, namely asymp-
totic distillation, dynamic switch for knowledge
fusion, and rate-scheduled updating. Weng et al.
(2020) propose a training framework consisting
of a dynamic fusion mechanism and a continuous
KD paradigm to leverage the knowledge of various
PLMs. Baziotis et al. (2020) incorporate a language
model prior for low-resource NMT. Chen et al.
(2020) fine-tune the BERT on the parallel corpus
to make it aware of source input, and then utilize it
to improve the NMT model via KD over all target
words. Compared to this, CBBGCA jointly opti-
mizes the NMT model and auxiliary model, lead-
ing to better performance. Moreover, our method
just selectively conducts KD on a portion of target
words, giving higher distillation efficiency, which
is similar to (Wang et al., 2021). Even though these
PLM-based approaches have gained remarkable
improvements, they unavoidably have some inher-
ent limitations: (1) the monolingual PLMs lacks
crucial bilingual information for translation; (2)
the independence between PLM pre-trainings and
NMT model training. In contrast, our proposed
model is able to overcome these limitations.

6 Conclusion

In this paper, we propose a CBBGCA training
framework for the NMT model to effectively ex-
ploit target-side bidirectional global context with
an auxiliary CMLM. The training consists of two
stages. At the first stage, we introduce multi-task
learning to benefit the NMT model by sharing its
encoder with an auxiliary CMLM. Then, at the sec-
ond stage, through confidence based knowledge
distillation, we use the CMLM as teacher to es-
pecially refine the NMT model on unconfidently-
predicted target words. Experimental results show
that our framework can significantly improve the
NMT model. Compared with previous work, nei-
ther external nor synthetic data are needed and only
the NMT model is involved during inference.
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Appendix

A Datasets

WMT’14 En→De. For English-to-German
translation, the training set from the WMT 2014
contains about 4.5 million parallel sentence pairs.
We use the newstest2013 and newstest2014 as the
validation and test sets, respectively. We apply
BPE to preprocess the data, obtaining a shared
vocabulary of approximately 32,000 tokens. For
evaluation, we adopt the case-sensitive BLEU
scores by using the multi-bleu.perl script5 and the
Comet scores as our metrics.

WMT’19 Zh→En. For Chinese-to-English
translation, we use the training data from the WMT
2019, which consists of about 20 million sentence
pairs. The newstest2018 and newstest2019 are
used as the validation and test sets, respectively.
We also apply BPE to preprocess the data with
30,000 merge operations for both source and target
languages. Then, we construct their corresponding
vocabularies having roughly 47,000 Chinese
tokens and 32,000 English tokens. To evaluate the
models, we use cased BLEU scores calculated
with the Moses mteval-v13a.pl script6 as well as
the Comet scores.

WMT’14 En→Fr. For English-to-French trans-
lation, the training set contains about 36 million
parallel sentence pairs. We use the newstest2013
and newstest2014 as the validation and test sets,
respectively. The preprocessing and evaluation are
the same as those for WMT’14 En→De.

B Implementation Details

During training, we set dropout to 0.1 and use label-
smoothing technique of value 0.1. For parameter
updating, we employ the Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.998 and
ε=10−9. As for learning rate scheduling, we adopt
the same strategy as (Vaswani et al., 2017) and set
warm-up steps to 4,000. For all the three transla-
tion tasks, we train our models on Tesla V-100 GPU
where we batch sentence pairs of similar lengths
together containing roughly 32000 tokens. At the
first stage, we train all models by sharing their en-
coders for 200,000 steps. At the second stage, we

5https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl

6http://www.statmt.org/moses/

System BLEU ∆

w/o Roberta
Transformer 27.30 ref.
Multi-300k 27.88 +0.58
CBBGCA 28.32 +1.02

w/ Roberta
Transformer 27.64 +0.34
Multi-300k 28.13 +0.83
CBBGCA 28.68 +1.38

Table 7: BLEU scores (%) on the test set of WMT’14
En→De. The upper rows (w/o Roberta) represent the
performance without using Roberta while the lower
rows (w/ Roberta) are the results with the incorpora-
tion of the Roberta model using dynamic switch mech-
anism.

separate their encoders and fix the CMLM param-
eters. Then, the NMT model is solely optimized
with the fixed CMLM by additional 100,000 steps,
resulting in a total of 300,000 training steps.

At the inference time, we use beam search with
the beam size 5. The results are reported with the
statistical significance test (Koehn, 2004) for both
translation tasks.

C Integration with Large-scale PLM

In this experiment, we adopt the dynamic switch-
ing mechanism used in (Yang et al., 2020) to in-
corporate externally pre-trained information into
the NMT model. Specifically, we use Roberta (Liu
et al., 2019) as the large-scale PLM that provides
our NMT model with external knowledge. For-
mally, a context gate is employed to control the
amount of information flowing from the pre-trained
model and our NMT model, which is computed as

g = σ(Ur + Vh), (14)

where σ(·) is the sigmoid function, r and h respec-
tively represent the hidden states of each token
obtained from the Roberta and the NMT encoder,
U and V are the trainable parameter matrix. Then,
the hidden states of the Roberta model and the
NMT encoder are combined as

h′ = g � r + (1− g)� h, (15)

where � is the operation of element-wise multipli-
cation.

Table 7 lists the performance of our model with
the integration of Roberta using dynamic switch
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Figure 4: An example on the WMT’19 Zh→En test set. The green and blue words are the source Chinese words
and their corresponding English ground-truth translations. Those in red are wrongly translated words.

mechanism. We can see that the incorporation of
external Roberta brings some improvements to the
NMT model under different settings (w/ Roberta vs.
w/o Roberta). Besides, it is notable that “CBBGCA”
still achieves consistent improvements over “Trans-
former” and “Multi-300k” regardless of whether
using Roberta or not, which demonstrates the com-
patibility and orthogonality of our proposed train-
ing framework to those approaches (Edunov et al.,
2019; Conneau and Lample, 2019; Yang et al.,
2020; Weng et al., 2020; Chen et al., 2020) of inte-
grating external large-scale PLMs.

D Case Study

We conduct case study to illustrate the improve-
ments of our model. Figure 4 gives an example on
the WMT’19 Zh→En test set with the outputs of
different models.

We can see that “Transformer” inappropriately
translates the Chinese words “dà huì” and “kē jì”
into “Congress” and “technology”, respectively.
For “Multi-300k”, it correctly translates “kē jì” into
“scientific and technological”. Although it is some-
what acceptable for “kē jì” to be translated as “tech-
nology”, “scientific and technological” is a stricter
translation and and more proper modifier consider-
ing that the succeeding word“chéng guǒ” (“achieve-
ments” is a noun. The reason is that the multi-task
joint training makes the NMT model aware of bidi-
rectional global context rather than only the local
context of preceding words.

Moreover, “CBBGCA” successfully translates
both “dà huì” and “kē jì”. This indicates that the
CBKD at the second training stage further gives
our model more confidence to predict the ground
truth “Conference” rather than its near-synonym

“Congress”. The above analyses show that our pro-
posed training framework actually enhances the
NMT model to capture bidirectional global context
and significantly improves translation quality.
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