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Abstract

Responsing with image has been recognized as
an important capability for an intelligent con-
versational agent. Yet existing works only fo-
cus on exploring the multimodal dialogue mod-
els which depend on retrieval-based methods,
but neglecting generation methods. To fill in
the gaps, we first present a new task: multi-
modal dialogue response generation (MDRG) -
given the dialogue context, one model needs to
generate a text or an image as response. Learn-
ing such a MDRG model often requires multi-
modal dialogues containing both texts and im-
ages which are difficult to obtain. Motivated by
the challenge in practice, we consider MDRG
under a natural assumption that only limited
training examples are available. Under such a
low-resource setting, we devise a novel conver-
sational agent, Divter, in order to isolate param-
eters that depend on multimodal dialogues from
the entire generation model. By this means, the
major part of the model can be learned from a
large number of text-only dialogues and text-
image pairs respectively, then the whole param-
eters can be well fitted using just a few training
examples. Extensive experiments demonstrate
our method achieves state-of-the-art results in
both automatic and human evaluation, and can
generate informative text and high-resolution
image responses.

1 Introduction

With the development of instant messaging tech-
nology in the recent decades, the intermediary of
online conversation has also changed from pure text
to a variety of visual modalities (e.g., image, gif
animation, short video). Similar to communicating
by the messenger tools (e.g., Facebook, WhatsApp,
WeChat) in reality, an excellent intelligent conver-
sational agent should not only be able to converse
freely with plain text, but also have the ability to
perceive and share the real visual physical world.

∗ Corresponding author.

Hey Amy, how's your day going?

I'm on vacation in Venezia, falling in love with the 
colors of Burano.

And the best dinner at Gatto Nero!  

Wow, it looks so beautiful! Envy you.

So what’s about you today Tom?  

Haha, just went outdoors with my family.

What a warm scene. Your girls are pretty happy.

Figure 1: An example of human conversations. They
are talking about vacation and outdoors with both text
and various images.

Although recently some large-scale pre-trained
text-only dialogue generation models, such as Di-
aloGPT (Zhang et al., 2020), Blender (Roller et al.,
2021), Meena (Adiwardana et al., 2020), have
shown excellent performance, they still cannot rely
exclusively on plain text to completely simulate the
rich experience of visual perception. Recently, vari-
ous vision-language tasks have been introduced and
attracted widespread attention, such as visual ques-
tion answering (Ren et al., 2015; Lu et al., 2016;
Anderson et al., 2018; Li et al., 2019a; Huang et al.,
2020), image captioning (Xu et al., 2015; Anderson
et al., 2016; Ghanimifard and Dobnik, 2019; Cornia
et al., 2020), image-grounded dialogue (Das et al.,
2017; Yang et al., 2021; Agarwal et al., 2020; Qi
et al., 2020; Chen et al., 2021; Liang et al., 2021).
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Figure 2: The overview of our multimodal dialogue response generation model. The Textual Dialogue Response
Generator takes the text dialogue context U as input and generates a sequence contains text response and a image
description (e.g., “a parrot with red belly and green back is standing on the railing.”). With the description as a
condition, the Text-to-Image Translator generates image representation ẑ. The Image Decoder VD reconstructs ẑ to
a realistic and consistent high resolution image.

Specifically, in human conversations, the images
can easily show rich visual perception, which is
hard to be expressed by plain text. As the exam-
ple shown in Figure 1, images are required in at
least three circumstances: (i) the other speaker has
little knowledge (e.g., colorful Burano, in the 1st
image) of the objects only you had seen; (ii) to
share more details (e.g., red wine and pasta, in the
2nd image) of the objects even you have common
knowledge of them; (iii) to express your emotions
(e.g., happy, in the 3rd image) about a specific
event. An existing related task is photo sharing
(Zang et al., 2021), which aims to select and share
the image based on the textual context, is a chal-
lenging task that requires models to understand the
background story which complemented by human
imaginations, rather than to locate related visual
objects or explicitly mention main visible content
in the image as the previous works do. Zang et al.
(2021) propose a retrieval-based method to resolve
the above challenge. However, the performance
of the retrieval-based method is limited in specific
domains by the size of the pre-constructed conver-
sational history repository, especially for long-tail
contexts that are not covered in the history, where
the set of image responses of a retrieval system is
also fixed. On the other hand, a better way is to
generate a new one accordingly.

In this paper, we formulate a new prob-
lem: Multimodal Dialogue Response Generation
(MDRG), that is, given the dialogue context, the
model should not only generate a pure text response
but also have the capacity to generate a multimodal
response (e.g., containing both image and text). We

argue that there are still some hindrances to applica-
tion, since (1) the sophisticated neural end-to-end
architecture will overfit to very few well-annotated
training data (e.g., a few existing 10k multimodal
dialogues). Evidence is that when discussing the
topics outside the training data domain, its perfor-
mance drops dramatically; and (2) as human effort
is expensive, it is not easy to collect enough train-
ing data for a new domain. Based on the above
facts, we take a step further to extend the assump-
tion of MDRG to a low-resource setting where only
a few multimodal dialogues are available.

To tackle the above challenges, our key idea is to
make parameters that rely on multimodal dialogues
small and independent by disentangling textual re-
sponse generation and image response generation,
and thus we can learn the major part of the gener-
ation model from text-only dialogues and <image
description, image> pairs that are much easier to
be obtained. Specifically, we present Divter, a
novel conversational agent powered by large-scale
visual world experiences. As shown in Figure 2,
our Divter is made up of two Transformer-based
(Vaswani et al., 2017a) components: a multimodal
dialogue response generator, and a text-to-image
translator. Divter takes the dialogue context as in-
put, then generates a textual sequence which may
contains a text response or a textual image descrip-
tion or both of them. The text-to-image translator
takes above image description as condition, then
generates a realistic and consistent high resolution
image. Both components are independent with the
opposite knowledge, and thus can be pre-trained
using a large number of text-only dialogues and
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the <image description, image> pairs respectively.
The end-to-end Divter depends on the multimodal
dialogues constructed as the tuple: (dialogue con-
text, text response / <image description, image>)
, but the joint learning and estimation of the two
components just require a few training examples
depending on specific domains.

Contributions of this work are three-fold:

• To the best of our knowledge, it is the first
work on the multimodal dialogue response
generation. We explore the task under a low-
resource setting where only a few multimodal
dialogues are assumed available.

• We present Divter, a novel conversational
agent which can effectively understand dia-
logue context and generate informative text
and high-resolution image responses.

• Extensive experiments on PhotoChat Corpus
(Zang et al., 2021) indicate the effectiveness of
Divter, it achieves a significant improvement
with pure text dialogue generation model and
retrieval-based image sharing method.

2 Related Work

2.1 Textual Dialogue Response Generation
End-to-end response generation for textual open-
domain dialogues is inspired by the successful ap-
plication of neural sequence-to-sequence models
on machine translation (Sutskever et al., 2014).
On top of the basic architecture (Shang et al.,
2015; Vinyals and Le, 2015), the vanilla encoder-
decoder method is widely extended to address
the critical challenges in open-domain dialogue
systems, including improving the diversity of re-
sponses (Li et al., 2016a; Zhao et al., 2017; Tao
et al., 2018), modeling conversation contexts (Ser-
ban et al., 2016; Xing et al., 2017; Zhang et al.,
2019; Zhao et al., 2020), controlling attributes of
responses (See et al., 2019; Zhou et al., 2018; Xu
et al., 2019), biasing responses to some specific
personas (Li et al., 2016b; Zhang et al., 2018), in-
corporating extra knowledge into generation (Di-
nan et al., 2019; Ghazvininejad et al., 2018; Kim
et al., 2020; Li et al., 2020), and building general
pre-trained agents (Adiwardana et al., 2020; Zhang
et al., 2020; Roller et al., 2021; Qi et al., 2021).
Different from the previous works on open-domain
dialogue response generation that converse freely
with plain text, our work lies in the research of
multimodal response generation.

2.2 Text-to-Image Generation

In the research of text-to-image generation, various
works have been extensively studied. Mansimov
et al. (2016) shown the Draw generative model
(Gregor et al., 2015) could generate images from
natural language descriptions. Reed et al. (2016)
proposed a generative adversarial network to im-
prove the image fidelity. Then some improvement
methods continue to optimize the generation archi-
tecture, such as stacked generators (Zhang et al.,
2017), attentional network (Xu et al., 2018), and
extra knowledge (Li et al., 2019b). Nguyen et al.
(2017) provided a unified probabilistic interpreta-
tion of related activation maximization methods
to produce high-quality images at higher resolu-
tions. Separately, Cho et al. (2020) used uniform
masking with a large range of masking ratios and
align the suitable pre-training datasets to the proper
objectives. More recently, Ramesh et al. (2021)
and (Ding et al., 2021) adopt transformer-based
methods which autoregressively model the text and
image tokens as a single stream of data. For this
multimodal response generation scenario, we use
the textual image description to bridge above tex-
tual dialogue generation and text-to-image gener-
ation models, where the image description is the
output of the former and input of the latter in a
low-resource setting.

3 Problem Formalization

Suppose that we have dataset DS = {(Ui,Ri)}ni=1,
where ∀i ∈ {1, . . . , n}, Ui = {ui,1, . . . , ui,ni} is
the dialogue context with ui,j the j-th utterance,
and Ri is the response regarding to Ui. ui,j and
Ri could contain two modalities: text, and im-
age. The goal is to learn a generation model
P (R∣U ; θ) (θ denotes the parameters of the model)
with DS . Thus, given a new dialogue context U ,
one can generate a multimodal response R follow-
ing P (R∣U ; θ).

4 Approach

This section first formulates the unified tokeniza-
tion method for multimodal dialogues. We then
introduce the two important components in our
proposed multimodal dialogue response generation
model (Divter) under low-resource scenario, in-
cluding (i) textual dialogue response generator; (ii)
text-to-image translator. Figure 2 shows the overall
of our Divter.
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4.1 Multimodal Tokenization
To learn a multimodal generation model, we should
first model the unified representations of both text
and image. Inspired by the success of DALLE
(Esser et al., 2020) and VQGAN (Ramesh et al.,
2021), to utilize the highly expressive transformer
architecture for text-to-image generation, we need
to express an image in the form of a sequence, simi-
lar to what we usually do for pure text tokenization.

4.1.1 Text Tokenization
The tokenization for text is already well-studied,
e.g., BPE (Gage, 1994). This work uses 50257
BPE-encoded tokens and distributed embedding of
Transformer architecture (Vaswani et al., 2017b) to
model the texts in a dialogue.

4.1.2 Image Tokenization
The tokenizer for image is a discrete Auto-Encoder
(VQGAN1) V as shown in Figure 2. V uses an
encoder VE to compress each image rv of shape
H ×W × 3 into ẑ of shape h ×w × dz , then each
vector of dimension dz would be quantized to its
closest embedding zk in a learned, discrete code-
book Z = {zk}Kk=1 ∈ Rdz under the action of
element-wise quantization q(⋅)

zq = q(ẑ) ∶= (argmin
zk∈Z

∥ẑij − zk∥) ∈ Rh×w×dz (1)

Thus rv can be represented by a spatial collection
of codebook entries zq ∈ Rh×w×dz . The decoder
VD maps the zq back to a image r̂v to reconstruct
the input. In this work, H =W = 256, h = w = 16,
K = 16384, dz = 256. The learning details of V
and Z could be found in Ramesh et al. (2021).

4.2 Low-resource Learning Model
Learning an effective multimodal generation model
with a single sequence-to-sequence model often
requires a large number of training instances. How-
ever, only very few multimodal dialogues are avail-
able due to the privacy restrictions on social media
and the expensive human effort. On the other hand,
as shown in Figure 3, there existed a large num-
ber of open source text-only dialogues (e.g. Red-
dit comments2, formulated as DC = {(Ui, r

e
i )}Ni=1

with (Ui, r
e
i ) a <text dialogue context, text re-

sponse> pair) , and a large number of <image de-
scription, image> pairs (e.g. YFCC100M (Thomee

1https://github.com/CompVis/
taming-transformers

2https://files.pushshift.io/reddit/

Figure 3: Abstract Logic of the proposed approach.
Solid lines mean that there exists large-scale training
set to pre-train the generation model, while dotted lines
mean that only very few training instances are available,
“×” means bad generation quality.

et al., 2016), formulated as DP = {(cj , rvj )}Mj=1
with (cj , rvj ) a <textual image-description, image>
pair). Based on the above facts and the low-
resource challenges on MDRG task, we adapt to in-
corporate generative text-to-image translation into
text-only open domain dialogue response gener-
ation. More specifically: (i) if the multimodal
dialogue context contains an image, we replace
the image with its description to form a text-only
context, and take this context as the input of the
text-only dialogue generation model G (pre-trained
with DC); (ii) if we need to generate an image as
a part of response, we could first generation a tex-
tual description with G, then adopt a text-to-image
translator module F (pre-trained withDP ) to trans-
late the description to a synonymous image. To
bridge G and F , we further extend the formaliza-
tion of DS to a new D̃S in which each image rv

is paired with its textual description c. Both the
(i) and (ii) actions can be independently learned,
which becomes the key to aiding the small D̃S with
the large DC and DP .

By this means, the current goal is to learn a gen-
eration model P (R∣U ; θ)withD = {D̃S ,DC ,DP }.
With the pre-trained G and F available, we finally
use D̃S to jointly finetune G and F to obtain the
capacity of generating multimodal responses.

Figure 2 illustrates the architecture of our model.
The model is made up of two components: a textual
dialogue response generator G and a text-to-image
translator F . In the rest of this section, we will
elaborate these two modules in detail.

4.2.1 Textual Dialogue Response Generator

The textual dialogue response generator G is a
sequence-to-sequence model based on the Trans-
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former architecture (Vaswani et al., 2017b), it
consists of a 24-layers Transformer with a hid-
den size of 1024 and 16 heads. Specifically,
given a text dialogue context U = {u1, . . . , ul}
from D̃S as source, and the target is a text R̃ =
{w1,⋯, [SEP], [DST],⋯, [SEP],⋯,wT } with wt

the t-th word, the [DST] token means the following
subsequence is a textual image description c. The
generation loss is defined by

LG = E(U,R̃)∼D̃S
[− log p(R̃)] (2)

p(R̃) =∏
t

p(wt∣U,w1∶t−1) (3)

Inference Given a new text dialogue context U ,
when a generated image description c occurs, it will
be fed into the following text-to-image translator,
then constructed to the codebook embeddings of
its synonymous image.

4.2.2 Text-to-Image Translator
The text-to-image translator F is also a sequence-
to-sequence generation model based on the Trans-
former architecture, it consists of 24-layers Trans-
former with a hidden size of 1024 and 16 atten-
tion heads. Given an image rv ∈ RH×W×3 and
its textual description c = {w1,⋯,wT } from D̃S ,
with the VE and Z available, we can represent rv

in terms of the codebook indices of its encodings.
More precisely, the quantized encoding of image rv

is given by zq = q(VE(rv)) ∈ Rh×w×dz , and could
be transferred to a sequence s ∈ {0,⋯, ∣Z ∣ − 1}h×w
of indices from the codebook Z , which is obtained
by replacing each code with its index in the code-
book Z

si,j = k such that (zq)i,j = zk (4)

Then we concatenate tokenized c and s to a single
stream of tokens

x = {w1,⋯,wT , [SEP], s1,⋯, sh×w} (5)

and train an autoregressive transformer to model
the joint distribution over the text and image tokens,
the generation loss is defined by

LF = E(c,rv)∼D̃S
[− log p(x)] (6)

p(x) =∏
t

p(wt∣w1∶t−1)∏
i

p(si∣c, s1∶i−1) (7)

Inference Given a description c, we leverage the
text-to-image translator to generate the represen-
tations ẑ = F(c) ∈ Rh×w×dz of its synonymous
image.

4.2.3 Learning Details
Let us denote {θg, θπ, θϕ} as the parameters of
textual dialogue response generator G, image to-
kenizer V and text-to-image translator F . In the
pre-training stage, we use textual dialogues DC to
estimate θg, use the ImageNet (Deng et al., 2009) to
estimate θπ, use <image description, image> pairs
DP to estimate θϕ. Then we fix θπ, and jointly fine-
tune θg and θϕ with D̃S , thus the final objective is
to minimize the integrated loss

L = LG + λLF (8)

where λ is a hyper parameter.
Remarks. In this work, we mainly focus on in-
tegrating text and image responses generation, but
our proposed approach actually provides a recipe
for a general solution to low-resource MDRG in
which the target modality could be gifs, videos, or
speech sounds, etc. To do that, one only needs
to modify the text-to-image translator to make it
compatible with the specific modality type, then
pre-train a new text-to-<target modality> translator.

5 Experiments

5.1 Dataset
To evaluate the performance of Divter, we con-
duct comprehensive experiments on the PhotoChat
dataset released by Zang et al. (2021), which is
a multimodal conversational dataset consisting of
10917 images and 12286 dialogues, each of which
is paired with a user image that is shared during the
conversation, and each image is paired with its text
description. The dataset has been split into 10286
train, 1000 dev, and 1000 test instances. More
details are described in Appendix A.1.

5.2 Evaluation Metrics
We conduct evaluation with both automatic metrics
and human judgements. For automatic evaluation,
we focus on four aspects: (1) Image Intent Pre-
diction, the goal of this task is to predict whether
a image should be produced in the next turn for
given context; (2) Text Description Generation;
(3) Image Generation Quality ; (4) Text Response
Generation. For (1), we follow Zang et al. (2021),
which formulates the problem as a binary classifi-
cation task, and use F1 as metric; for (2) and (4),
we use PPL, BLEU (Papineni et al., 2002), Rouge
(Lin, 2004) and F1; for (3) we follow Ramesh et al.
(2021) and use Frechet Inception Distance (FID)
and Inception Score (IS).
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Models Intent Image Description Generation Image Generation Text Response Generation
F1 PPL B-1 B-2 Rouge FID ↓ IS ↑ PPL B-1 B-2 Rouge

BERT-base 53.2∗ – – – – – – – – – –
T5-3B 58.9∗ – – – – – – – – – –
S2S-TF 47.6 213.81 1.65 0.17 1.84 278.63 4.4 ± 0.8 329.43 3.61 0.40 3.05
Divter 56.2 5.12 15.08 11.42 15.81 29.16 15.8 ± 0.6 59.63 6.52 1.66 5.69
Divter (w/o G pre-train) 47.3 122.56 1.99 0.23 2.60 29.78 15.5 ± 0.5 153.62 4.82 0.53 3.83
Divter (w/o Fϕ pre-train) 55.9 5.23 15.01 11.20 15.63 262.09 4.9 ± 0.7 63.76 6.28 1.51 5.40
Divter (w/o G, Fϕ pre-train) 47.1 128.87 1.75 0.21 2.38 254.31 5.2 ± 0.6 163.85 4.53 0.48 3.55
Divter (w/o joint learning) 55.6 5.20 15.00 11.36 15.73 29.04 15.4 ± 0.6 59.21 6.47 1.58 5.63

Table 1: Automatic evaluation results of Divter and baselines on the test set. (w/o joint learning) means fine-tuning
G and Fϕ respectively rather than using Eq. 8. Numbers in bold mean that the improvement to the best baseline is
statistically significant (t-test with p-value < 0.01). ∗ reported by Zang et al. (2021).

Models Context Text Image Background Kappa
Coherence Fluency Quality Consistency

SCAN – – 1.95 0.96 0.65
S2S-TF 0.42 0.58 0.25 0.20 0.67
Divter 1.59 1.95 1.83 1.61 0.63

Table 2: Human evaluation results.

Models Overall Improvement Kappa
W(%) L(%) T(%)

Divter (pure text) vs. DialoGPT 34.4 35.7 29.9 0.64
Divter vs. DialoGPT 53.5 27.4 19.1 0.68

Table 3: Human evaluation results. (W, L, T) means
(Win, Lose, Tie).

Figure 4: Qualitative assessment of various variants for
image generation with same context as input in Pho-
toChat test set. 1st column: Divter. 2nd column: Divter
w/o G pre-train. 3rd column: Divter w/o F pre-train.

For human evaluation, we randomly sample 200
dialogue contexts and generate responses from Pho-
toChat for Divter and baselines. Three human an-
notators are asked to score the response quality on
a scale of {0, 1, 2} from four aspects: (1) Context
Coherence: Whether the text response is coherent
with the context; (2) Text Fluency: Whether the
text response is natural and fluent; (3) Image Qual-
ity: The quality (including definition and integrity)
of the image response; (4) Background Consis-
tency of Image: For each dialogue, We select the
top-8 generated/retrieved images group and ask the
annotators to decide whether the group is consis-
tent with the dialogue background, a qualitative

assessment is also shown in Figure 5. We report
the average scores over three annotators, and the
higher score means the better.

We also compare both pure text Divter and mul-
timodal Divter with DialoGPT, respectively. The
“pure text Divter” means we block the [DST] token
in the vocabulary in the decoding stage, so that the
responses would only contain texts. We also ran-
domly sample 200 dialogues. To each annotator,
two responses from different models are presented,
which are randomly shuffled to hide their sources.
The annotators then judge which response is more
effective in improving the dialogue experience and
attractiveness. The agreement among the annota-
tors is measured by Fleiss’ Kappa (Fleiss, 1971).

5.3 Implementation Details

For the textual dialogue response generator G, we
use DialoGPT (Zhang et al., 2020) as pre-trained
model initialization, trained on 147M conversation-
like exchanges extracted from Reddit comment
chains over a period spanning from 2005 through
2017. In the fine-tuning stage, we concatenate
the context turns with the token [SEP] as a sin-
gle sequence, we adopt Adam optimizer as an ini-
tial learning rate of 1e-5, and the batch size is
256, the training of PhotoChat is conducted on
16 Nvidia Tesla V100 32G GPU cards. We use
beam search(size=5) to decode the text sequence.

For the image tokenizer V , we inherit the model
released by Ramesh et al. (2021).

For the text-to-image translator F , we randomly
select 5M <categorical image description, image>
pairs from ImageNet, and <image description, im-
age> pairs from YFCC100M (Thomee et al., 2016)
as training data. We set the maximum image de-
scription length as 32, then pre-train F for 3.5
million steps with a batch size of 256 accumulated
on 16 Nvidia Tesla V100 32G GPUs. In the fine-
tuning stage, we train PhotoChat for 50000 steps.
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Figure 5: Examples of the images generated by Divter and the images retrieved by SCAN. The dialogue contexts
are presented in Appendix A.2.

In the inference stage, we use CLIP (Radford et al.,
2021) to rerank the generated 256 samples.

In the joint learning, we first train F for 48000
steps, then jointly train G andF for 2000 steps. The
λ in Eq.8 is 0.2. Early stopping on validation is
adopted as a regularization strategy. All the hyper
parameters are determined by grid search. More
details are described in Appendix A.3.

We implement the image Auto-Encoder using
the code https://github.com/CompVis/
taming-transformers, implement the Tex-
tual Dialogue Response Generator using the
code https://github.com/microsoft/
DialoGPT, and implement the Text-to-Image
Translator using the code https://github.
com/lucidrains/DALLE-pytorch.

5.4 Baselines

Two pre-trained models BERT-base (Devlin et al.,
2019) and T5-3B (Raffel et al., 2020) are selected
as baselines to measure the “Image Intent Predic-
tion” task in Section 5.2. They takes the text di-
alogue context as input, and predict “whether a
image will be shared in the next turn”.
SCAN is proposed by Lee et al. (2018), the model
captures interplay between image regions and
text tokens to infer image-text similarity, SCAN
achieves state-of-the-art performance of the “Image
Retrieval” task on PhotoChat.
S2S-TF is a single sequence-to-sequence model
with 24-layers Transformer, we only use PhotoChat

to train this multimodal generation model.

5.5 Evaluation Results

As shown in Table 1, our Divter achieves not only
comparable performance with the state-of-the-art
retrieval-based image response intent prediction
model but also achieves remarkable performance
in all the generation metrics. This indicates that Di-
vter can accurately judge the timing of generating
image response with the given dialogue context,
and produce text responses that are coherent to the
context, and generate high-quality image responses.
The significant performance gap between Divter
and the baseline models (e.g. S2S-TF, Divter vari-
ants) without pre-training indicates the superiority
of our proposed learning strategy. Table 2 reports
the results of human evaluation, our Divter also
significantly outperforms the baselines on most of
the aspects. The comparison results shown in Table
3 indicates (1): out Divter can achieve comparable
performance on pure text response generation with
DialoGPT; (2): the multimodal responses gener-
ated by Divter achieve a significant improvement
on the dialogue experience and attractiveness in
contrast to pure text dialogue model (DialoGPT).

5.6 Ablation Study

We conduct extensive ablation experiments over
different variants to better understand their relative
importance to the MDRG task. As shown in Ta-
ble 1, all the variants lead to worse performance
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Example 1 Example 2
A: OMG...the new ice cream shop is amazing.

......
A: I had the twist chocolate and vanilla but it was so fresh
tasiting. like you just made it. like you just made it.
B: I call it the malado gilato.
A: Sam wouldn’t let me have another lick bc he thought I’d
eat it all.
D: That sounds interesting.
D: Yes, could you please share it with me?
D: Objects in the photo: Chocolate Ice cream, Dairy, Drink.
D:

D: Wow! The ice cream looks so delicious.
D: Sure, it tastes pretty good.

A: Have you been out in nature lately?
B: Yes.

......
A: I’m sitting at home now looking through some old pho-
tographs.
B: I see. than.
A: Would you like to see one of my favorites It’s a cool shot
of a honey bee near a beautiful flower.
D: Objects in the photo: Honey bee, Insect, Animal, Flower.
D:

D: It is a nice picture. Thank you for sharing.
D: Haha, just enjoy the beautiful scenery.
D: Yeah, definitely.

Table 4: Examples of PhotoChat test set. In each example, the turns with the prefix of “A”/“B” are the given context;
the blue text is the text description generated by Divter; the left image and the red response are generated by Divter,
the right image is the ground-truth image.

in most of the metrics. For a more intuitive com-
parison, the qualitative assessment results are also
shown in Figure 4. In particular, both quantitative
and qualitative results on the ablation study vali-
date that: (1) pre-training is crucial to low-resource
multimodal dialogue response generation, since re-
moving any component from pre-training causes
performance drop when training data is small; (2)
in terms of impact to performance of image gener-
ation, F > G, in terms of impact to performance of
text generation, G > F ; (3) The joint learning also
has contributions to Divter, indicating that leverag-
ing the integrated learning of textual context and
visual image benefits more in contrast to any single
one of them.

5.7 Case Study

To further investigate the quality of multimodal
responses generated by Divter, we show two ex-
amples on the PhotoChat test data in Table 4. The
given context of the first one is about “ice cream”,
and the second one is about “honey bee”. As we
can see, Divter can not only generate a realistic
high-resolution image which is coherent to the
background, but also generate the informative text
responses grounded on the image. Separately, The
high-quality generated images are comparable to
those real-world ground truths, which demonstrates
the practicability of Divter.

5.8 Discussions

Benefits over retrieval-based methods To further
investigate and compare the generalization capabil-
ity between Divter and the retrieval-based method,
we also get top-10 generated images from Divter
and equivalent retrieved images from SCAN model
given the same context. As shown in Figure 5,
on the one hand, the diversity and richness of the
generated images are desirable, on the other hand,
those retrieved results often suffer from wrong con-
sistency with dialogue background. For example
in the second case, the dialogue is talking about
“coffee”, but the retrieved images contain some un-
correlated objects like “milk”, “cake”, “dog’ and
“snack”. And in the third example, all the retrieval
results are mistaken since there is little “curtain” in
the training and retrieval space. This demonstrates
the fact that the performance of retrieval-based
method is extremely limited in specific domains
by the size of the pre-constructed conversational
history repository, especially in the low-resource
scenario. Furthermore, our proposed generation
based method shows better generalization capabil-
ity to tackle the low-resource challenge.

6 Conclusion

In this paper, we explore multimodal dialogue re-
sponse generation under a low-resource setting. To
overcome the challenges from the new task and in-
sufficient training data, we propose Divter, a neural
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conversational agent which incorporates text-to-
image generation into text-only dialogue response
generation, in which most parameters do not rely
on the training data any more and can be estimated
from large scale textual open domain dialogues and
<image description, image> pairs. Extensive exper-
iments demonstrate Divter achieves state-of-the-art
results in automatic and human evaluation. In the
future, we will explore more efficient methods to
inject more modalities into response generation.
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A Appendix

A.1 Dataset

Table 5 reports the statistics of the PhotoChat
dataset.

Split images dialogues turns tokens
Train 8,917 10,286 130,546 827,154
Dev 1,000 1,000 12,701 80,214
Test 1,000 1,000 12,852 80,847
Total 10,917 12,286 156,099 988,215

Table 5: PhotoChat statistics.

A.2 Dialogue Contexts in Figure 5

Table 6 presents the textual dialogue contexts of
the examples shown in the Figure 5.

Textual Dialogue Context

1

A: hows your day going?
A: beautiful sky today
A: Have you been near a mountain lately
B: yes
A: beatiful right, just took a hike today with my dog.
B: my college placed in mountain area
B: super enjoy the lot
A: Oh great, do you have an aquarium at your college?
B: how is your dog
A: He is great. I’ll share a pic.
B: i want to see your dog

2

B: hi
B: hello friend
A: hi
A: how are you
A: i am doing well
B: how are yow
B: great
A: i am having some coffee
B: ok
A: you should come over for a cup!
A: do you like coffee?

3

A: what are you doing?
A: great moment
B: Just finishing up with some work so I can start
fresh tomorrow!!
B: Great moment? What’s that mean?
A: you chat dude
B: ???
A: Curtain you have like
B: I don’t understand.
A: why dude?

Table 6: Dialogue contexts of the examples shown in
the Figure 5.

A.3 More Implementation Details
The CLIP model assigns a score based on how well
the image matches the description, we use CLIP
to rerank the generated 256 samples, and select
the best image as the final response. To obtain
high-quality training set, we discard the instances
with the prefix of “The photo has your * #” in de-
scriptions, “*” includes “mom”, “dad”, “daughter”,
“sister”, “uncle”, etc. “#” is name of a person. To
build the training set for text-to-image translator F
from ImageNet, we combine the text “Objects in
the photo:” and textual categorical name of each
image to build the <categorical image description,
image> pair. To train the baseline S2S-TF model,
we also use the image tokenizer V to tokenize each
image, and combine the image tokens with text
tokens to form a single stream as the generation
source/target.
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