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Abstract

Human communication is a collaborative pro-
cess. Speakers, on top of conveying their own
intent, adjust the content and language expres-
sions by taking the listeners into account, in-
cluding their knowledge background, personal-
ities, and physical capabilities. Towards build-
ing AI agents with similar abilities in lan-
guage communication, we propose Pragmatic
Rational Speaker (PRS), a framework extend-
ing Rational Speech Act (RSA). The PRS at-
tempts to learn the speaker-listener disparity
and adjust the speech accordingly, by adding a
light-weighted disparity adjustment layer into
working memory on top of speaker’s long-term
memory system. By fixing the long-term mem-
ory, the PRS only needs to update its working
memory to learn and adapt to different types
of listeners. To validate our framework, we
create a dataset that simulates different types
of speaker-listener disparities in the context
of referential games. Our empirical results
demonstrate that the PRS is able to shift its out-
put towards the language that listeners are able
to understand, significantly improve the collab-
orative task outcome.

1 Introduction

In human communication, speakers often adjust
their language production by taking into consid-
eration listeners’ personality, background knowl-
edge, perceptual or physical capabilities etc (Clark,
1996). Recent years have seen an increasing
amount of work that explores pragmatic reason-
ing based on Rational Speech Act (RSA) (Andreas
and Klein, 2016; Fried et al., 2018a,b; White et al.,
2020; Cohn-Gordon et al., 2018), multi-agent emer-
gent communication framework (Lazaridou et al.,
2020; Lazaridou and Baroni, 2020), and Theory
of Mind in communication (Bara et al., 2021; Zhu
et al., 2021). However, except for (Zhu et al., 2021),
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(a) Target (b) Distractor.

Literal Speaker: There is an owl on the table.
Rational Speaker: There is a pizza on the table.
Listener’s Disparity: understands hypernym of food only.
Pragmatic Rational Speaker: There is food on the table.

Figure 1: TASK: Given two images, the speaker generates
a description for the target image and asks the listener to pick
out the image described. Both players win if the listener
picks the correct one. In this example, a Literal Speaker
could generate multiple captions that suit the target, such
as the one above, whereas a Rational Speaker limits the
description to the unique features of the target (e.g. pizza). If
the listener only understands the hypernym of food (disparity),
a Pragmatic Rational Speaker would learn the disparity and
use food instead of pizza to help the listener understand.

most previous works assume that the listeners and
the speakers have the same background knowledge
and capabilities, including vocabulary size, visual
access, and relative locations. This assumption is a
great simplification of real-world communication
where speakers and listeners often have various
types of disparities.

To address this limitation, this paper extends
the Rational Speech Act (RSA) (Frank and Good-
man, 2012) model towards rational agents learning
to adapt behaviors based on their experience with
the listener. The design choice of our model is
inspired by the human cognitive system (Cowan,
2008; Wardlow, 2013) where a limited capacity
working memory is built on top of the long-term
memory to adjust the output to be task and envi-
ronment specific. Each communication is a mod-
ification on the long-term memory (Reed, 2012)
with situation-specific factors. In our framework,
we fix the long-term memory which captures lan-
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guage structure for communication, and introduce
a light-weighted working memory (Miyake and
Shah, 1999) for the Pragmatic Rational Speaker
to modify and accommodate two goals: 1) a task
goal which retrieves relevant information from the
long-term memory and accomplish the task, and 2)
a disparity goal which learns and adjusts the con-
versation to accommodate the listener’s disparity
through reinforcement learning. We separate each
component as they are independent of each other
in utility, and can be easily switched and adapted
for new tasks and new environment.

Different from previous works which only
demonstrate how learned models affect task perfor-
mance (e.g. (Shridhar et al., 2020; Zhu et al., 2021;
Corona et al., 2019)), one of our goals is to also
provide transparency on what models have indeed
learned towards the end goal. It’s well established
that end-to-end neural models can often take advan-
tage of spurious data bias to gain end performance.
Models that only report end measure without show-
ing their internal works would not be sufficient to
tell the whole story about model’s abilities.

To serve this goal, we situated our investigation
in the context of a referential game1 as shown in
Figure 1. We carefully curated a dataset to sim-
ulate two types of disparity: knowledge disparity
and perceptual disparity. Our empirical results
demonstrate that our model is able to significantly
improve the collaborative game performance by
shifting communication towards the language that
the listeners with disparities are able to understand.
In addition, our results show that separating work-
ing memory from long-term memory leads to faster
learning and better performance than the previous
model which conducted joint end-to-end learning.

Our contributions are the following. 1) Fol-
lowing human cognition, we demonstrate the
benefits of separating working memory from
the long-term memory, compared to end-to-end
joint training. 2) We propose a new dataset to
simulate multiple distinct types of disparities, and
demonstrate the pragmatic adaptability of our
model. 3) Instead of focusing on mere end task
performance, we show model’s strong language
shift ability to accommodate listener’s disparities.

1Different from traditional referential ground work as (Liu
et al., 2013; Gorniak and Roy, 2004; Siebert and Schlangen,
2008; DeVault et al., 2005; Liu et al., 2012), we adopted
this term from a recent line of work (Lazaridou et al., 2020;
Andreas and Klein, 2016) to refer to the task described in
Figure 1.

The dataset and code are available through
https://github.com/sled-group/
Pragmatic-Rational-Speaker to facili-
tate future work on pragmatics and theory of mind
in language interpretation and generation.

2 Related Work

It has been studied (Leung et al., 2021; Stephens
et al., 2010; Wardlow, 2013) in psychology that
human speakers adjust the way how we speak for
successful communication after learning the lis-
tener’s disparity. Some recent work (Zarrieß and
Schlangen, 2019; Zhu et al., 2021; Corona et al.,
2019; Hawkins et al., 2021) attempt to address
similar questions. We build our model upon the
following two concepts.

Rational Speech Act (RSA)

The Rational Speech Act (RSA) model (Frank
and Goodman, 2012) is a probabilistic model for
the speakers and listeners to pragmatically reason
about each other’s intention. In the context of a
referential game (Monroe and Potts, 2015), for
example (Figure 1), given an image m, it starts
with a literal speaker S0 to generate caption c:
PS0(c|m). A rational listener L1 reasons about
the literal speaker’s (S0) strategy and picks the
best image that matches the description. A rational
speaker S1 then takes the rational listener’s (L1)
strategy into account and produces a caption c that
maximizes the collaborative game goal.

PL1(m|c) ∝ PS0(c|m) · P (m)

PS1(c|m) ∝ PL1(m|c) · P (c)

In previous work (Andreas and Klein, 2016)
and (Lazaridou et al., 2020; Lazaridou and Baroni,
2020), the same referential game setup was used
to propose a rational speaker that learns to rea-
son the collaborative game and to produce natural
sounding image captions based on RSA. However,
they were mainly addressing the task goal, assum-
ing the speaker and listener have the exact same
capabilities and knowledge background, which is
unrealistic. In our work, we created listeners with
disparity d and extend this model for the speaker to
accommodate both the task and disparities goals.

Working Memory

Working memory (also short-term memory) is used
in neuropsychology and cognitive science (Cowan,
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Role Long Term Work Mem - Task Work Mem - Disparity
S0 Literal Speaker Image Caption
S1 Rational Speaker Image Caption Simulated Listener
Sd1 Pragmatic Rational Speaker Image Caption Simulated Listener Disparity Adjustment
L1 Rational Listener Caption Grounding
Ld1 Rational Listener w/ Disparity Caption Grounding with disparity

Table 1: Types of Speaker and Listener

2008; Miyake and Shah, 1999) to refer to the mem-
ory that controls attention, plans and carries out be-
havior. It is a combination of multiple components,
including the contribution of long-term memory
(Reed, 2012; Sawangjit et al., 2018) and situation-
specific task processing (Funahashi, 2017).

The classical artificial intelligence work such as
ACT (Heise and Westermann, 1989) and SOAR
(Laird et al., 1987) also incorporated the concept
of working memory to model human short-term
memory. The similar concept has been used in
recent work such as (Hermann et al., 2017; Hill
et al., 2017). Our work is a novel application of the
working memory to pragmatically adjust commu-
nication for speaker-listener disparities (disparity
goal), and take advantage of the internal simulation
architecture to achieve the task goal.

Similar to (Kottur et al., 2017; Lazaridou et al.,
2020), our model learns to converge language to
adapt to listener’s disparities through interactions,
instead of ground truth supervision on language
generation. The speakers have zero prior knowl-
edge on the listener’s background nor an oracle
access to probe the listener’s brain.

Different from previous works, our model is able
to generalize to distinct types of disparities. In addi-
tion, while previous models were trained in an end-
to-end joint fashion, our work separates training
and demonstrates the efficiency of working mem-
ory. Most importantly, few of the previous work
were able to showcase model’s language capabili-
ties and only evaluate them by the end performance
(e.g. accuracy), whereas our work emphasizes on
evaluating how well the models learn to shift the
language towards better understanding.

3 Dataset

There are many levels of disparities during ver-
bal communication (Stephens et al., 2010), includ-
ing phonetic, lexical, grammatical, semantic rep-
resentations, etc. In our work, we assembled two
datasets, and challenge the speaker model to handle

two types of disparities: 1) knowledge disparity,
and 2) perceptual disparity.

The knowledge disparity is simulated through
the hypernym dataset, where the listener only un-
derstands the hypernym for all the objects (e.g.
“food” instead of “pizza”), whereas the speaker un-
derstands both. This dataset challenges the speaker
model at the lexical level to learn what listener’s
vocab limitation, and shift towards the words that
they understand.

The perceptual disparity is simulated through
the limited visual dataset, where the listener has
impaired vision or some objects were physically
blocked from the eyesight. This dataset challenges
the speaker to shift attention and pick the visible
objects for the listener to describe. For control and
demonstration purposes, we remove all the animal-
related objects and words from listener’s training.

These datasets are used to simulate listener’s dis-
parities and train the listener’s model as described
in Section 4.2. The speaker’s long term memory
was trained with the original data which has full
knowledge of the vocab and objects, but no idea
what the listeners are or aren’t capable of. Detailed
dataset components can be found in the Appendix.

We modified the Abstract Scenes (Gilberto Ma-
teos Ortiz et al., 2015) dataset for our experiments.
There are 10020 images, each including 3 ground
truth captions, and a median of 6 to 7 objects. We
assembled ∼35k pairs of images that differ by ≤ 4
objects as the Hard set, ∼25k pairs that differ by
> 4 objects as the Easy set, and together as the
Combined set. The image pairs were split into
training, validation and testing by a ratio of 8:1:1.

4 Method

Given a pair of images m0,m1, the target image
indicator t ∈ {0, 1}, and the listener’s disparity
d, the speaker generates a caption c for the target
image mt, and the listener needs to pick out the
correct target t given c. Both receive a reward of
+1 upon correct choice, and −1 otherwise.

Following the RSA model, as shown Figure 2,
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Figure 2: Speaker and Listener Models: Literal Speaker S0 uses and object detector and image captioning module
to generate a list of candidate captions in the fixed long term memory. The Rational Speaker S1 simulates an
internal listener to rank (illustrated by color gradient) the candidate captions by their uniqueness in describing the
target image. The Pragmatic Rational Speaker Sd

1 interacts with the actual listener to rerank the captions and pick
out the best one to accommodate the disparity and the task goal. Both simulated listener and disparity adjustment
components are inside the working memory for task specific and disparity specific adjustments.

we start by building the Literal Speaker S0, gradu-
ally increase model structure and functionality with
the vanilla Rational Speaker S1 and the Pragmatic
Rational Speaker Sd

1 . Upon retrieving a list of can-
didate captions C from the long-term memory, the
final goal for Sd

1 is to output the best caption c
in the working memory, that accommodates both
1) task goal: describes the unique features of the
target image, and 2) disparity goal: learns and
accommodates the listener’s disparity.

Table 1 is a brief summary of each model. The
Literal Speaker S0 generates candidate captions
c for a given image m (Eq 1), which serves as
the long-term memory. The Rational Listener L1

picks out an image as the target given speaker’s
description (Eq 2). The vanilla Rational Speaker
S1 achieves the task goal by simulating the lis-
tener’s mind internally in its working memory (Eq
3). Ld

1 incorporates disparity to the Rational Lis-
tener. The Pragmatic Rational Speaker Sd

1 adds a
light-weight disparity adjustment layer (Eq 5) to
learn and accommodate listener’s disparity through
interactions, and achieves both goals. Each com-
ponent can be easily switched and adapted to new
tasks or environment.

S0 : P (c|mt) (1)

L1 : P (t|m0,m1, c) ∝ PS0(c|mt) · P (mt) (2)

S1 :P (c|m0,m1, t) ∝
PL1(t|m0,m1, c) · P (c|m0,m1)

(3)

Ld
1 :P (t|m0,m1, c, d) ∝
PS1(c|m0,m1, t, d) · P (t|m0,m1, d)

(4)

Sd
1 :P (c|m0,m1, t, d) ∝
PLd

1
(t|m0,m1, c, d) · P (c|m0,m1, d)

(5)

4.1 Literal Speaker S0

The Literal Speaker S0 (Figure 2) is an object detec-
tion based image captioning module that generates
caption candidates for the target image.

o1, . . . , ok, b1, . . . , bk = ObjDet(mt)

e1, . . . , ek = WordEmb(o1, . . . , ok)

c1, . . . , cn = Transformer(e1, . . . , b1, . . . )

(6)

For a given target image mt, since it’s im-
portant to ground words to the scenes in order
to control the disparities in vocabularies, we ap-
plied the object detector YOLO3 (Redmon and
Farhadi, 2018) to extract a list of k detected ob-
jects O = {o1, o2, . . . , ok}, and their correspond-
ing bounding boxes B = {b1, b2, . . . , bk}. Each
image chooses at most max_obj = 9 detected
objects, and the names of each were embedded
with a pre-trained BERT (Devlin et al., 2019) word
embedding E = {e1, e2, . . . , ek}. These embed-
dings are then concatenated with their bounding
box locations, and sent to the Transformer Decoder
to generate beam_size = 30 candidate captions
C = {c1, c2, . . . , cn} for each target image.
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4.2 Rational Listener (L1)
Without disparity concerns, the Rational Listener
picks out the image that they believe is the target.

g0 = FT_Transformer(m0, c)

g1 = FT_Transformer(m1, c)

t = argmaxi∈{0,1}CosSim(gi, c)

(7)

Recall that S0 used a Transformer de-
coder to connect the image and its corre-
sponding captions. We reuse the same Fixed
pre-trained Training-mode Transformer module
(named FT_Transformer) to decide which image
does the caption ground better in. Adopting the
idea of teacher-forcing language training, the out-
put (gi) of FT_Transformer with an input pair
(mi, c) should closely resemble the original input
c if the input image mi is indeed the one used
to generate the caption c. By calculating the co-
sine similarity of each (gi, c) pair, the image that
grounds better (higher CosSim) in the description
would be chosen as the target.

This module allows the agents to quickly and
accurately make the decisions without further train-
ing. In theory, if the speaker and the listener
were to have the exact same brain (same model
and weights), the performance of this task should
approach 100%. The results of “No Disparity”
speaker in Figure 3 confirmed the design choice.

4.3 Rational Speaker (S1)
Without disparity concerns, the Rational Speaker
(S1) fulfills the task goal by simulating (Figure 2)
the Rational Listener (L1)’s behavior, and rank the
candidate captions generated by the Literal Speaker
(S0) according to how well they can describe the
target image apart from the distractors. This design
is under the fair assumption that both speakers and
listeners are aware of the collaborative game goal,
but can be switched for other task purposes.

For i ∈ {0, · · · , n},where n = |C| :
ti, pi = Simulate_L1(m0,m1, ci)

c = cargmaxi[[ti==t∗]]·pi

(8)

Given an image pair (m0,m1), and a list of can-
didate captionsC = {c1, · · · , cn} generated by S0,
the Rational Speaker goes through each caption ci
and simulates how well the listener (Simulate_L1)
would pick out the correct target image. If a can-
didate caption ci helps the simulator pick out the
correct target image (i.e. ti == t∗) with high

confidence (pi), then it will be chosen as the final
caption sent over to the actual listener. The sim-
ulated listener shares the same architecture as L1

and initializes the weights pre-trained from S0. By
doing so, the Rational Speaker takes the listener’s
intention into account and achieves the task goal.

4.4 Listener with Disparities (Ld1)

In the real world, however, it is hardly the case
that different agents have the exact same knowl-
edge background, experiences, physical capabili-
ties, etc. The listener’s decision making process is
influenced by various kinds of disparities d.

To study speaker’s ability of situated language
adjustment, we created two representative types
of listeners with different knowledge background
and visual capabilities by training different caption
grounding modules (FT_Transformer) with the
datasets assembled in Section 3. These disparities
would challenge the speaker model to adjust the
language at different levels.

1. Ld11 : Hypernym. With limited vocabulary and
knowledge in a certain domain, people tend
to refer to objects in their hypernym form (e.g.
“animal” instead of “cat”). In this experiment,
we create listeners that would refer to all the
detected objects by their hypernyms. This
disparity would require the speaker to switch
individual words that share similar meanings.

2. Ld21 : Limited Visual. Due to the physical
orientation or impaired vision capability, it
is likely that some objects are blocked or
hardly visible to one party but not the other.
In this experiment, we remove all the animal
objects from listener’s visual detected object
list (O), and replace the relevant descriptions
with the special token ‘[UNK]’. This disparity
would require the speaker to shift attention,
and choose alternative objects to describe.

We investigate in listeners with a subset of
speaker’s capabilities under the argument that in
the opposite case, the listener could use only a sub-
set of the knowledge to achieve best performance
without having the speakers to adjust the speech.
Other disparities can be inferred through transfer
learning or are left for further investigation with
broader information access and datasets.
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(a) Ld1
1 : Hypernym (b) Ld2

1 : Limited Vision

Figure 3: Referential game Accuracy: The Pragmatic Rational Speakers are able to significantly outperform Literal
Speakers and vanilla Rational Speakers across different types of disparities. Word level models achieve higher
performance and is much closer to the No Disparity upper bound than the sentence level communication.

4.5 Pragmatic Rational Speaker (Sd1 )
On top of the Rational Speaker (S1), the Pragmatic
Rational Speaker incorporates a disparity adjust-
ment layer to learn and accommodate the listener’s
disparity through emergent communication.

For i ∈ {0, · · · , n},where n = |C| :
qi = MLP(SentenceEmb(ci))

ai = [[ti == t∗]] · pi · qi
c = cargmaxiai

(9)

We use a pretrained BERT model to embed
each candidate caption ci, add a single MLP layer,
and approximate the REINFORCE policy through
Equation 9. The reward (rc∗) for each chosen cap-
tion c∗ is +1 or −1. The loss is calculated for all
the chosen captions across each batch (Eq 10).

L = −
∑
c∗

log(ac∗) · rc∗ (10)

4.6 Communication with Words
We conducted the same sets of experiments using
individual words (object names) instead of sen-
tences to demonstrate the effects of working mem-
ory on disparity accommodation and internal task
simulation, reducing the noise that came from the
imperfection of the image description generator.
The simplified pipeline uses the detected object
name embedding for disparity adjustment, and the
listener picks the target images by conducting sim-
ple word matching.

5 Results and Analysis

We evaluate our models (S0, S1, Sd1 ) on the referen-
tial game (Figure 1) along four dimensions: End-
task Performance, Efficiency, Transparency,

and Balance of Goals. Recall that each speaker
model has different capabilities (Table 1) and only
Sd1 is able to fulfill both task and disparity goals.
Implementation details and more experiment re-
sults can be found in Appendix.

1. [Task Performance] that measures overall ac-
curacy of the collaborative game. Task perfor-
mance is often the sole evaluation metrics in
previous work.

2. [Efficiency] that measures time used for
model training across tasks.

3. [Transparency] that uncovers the underlying
distribution shift of vocabulary use learned to
accommodate different types of disparities.

4. [Balance of Goals] that the working memory
needs to consider between the task and dispar-
ity goals to achieve maximum performance

5.1 Task Performance Comparison

To assess the performance of the speakers in the
collaborative game, Figure 3 presents the task accu-
racies with Literal Speaker (S0), Rational Speaker
(S1), Pragmatic Rational Speaker (Sd1 ), and No Dis-
parity (Snd1 ). Snd1 has the same structure as S1 and
was trained on the same disparity dataset as the cor-
responding listener. It serves as the upper bound
of performance. The same experiments also were
conducted at the word level.

For each type of listener disparity, the perfor-
mance is S0 << S1 < Sd1 < Snd1 . The vanilla
Rational Speaker (S1) improved the overall perfor-
mance from Literal Speaker by over 25% because
it is achieving the task goal to describe the target
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image apart from the distractor. The Pragmatic
Rational Speaker (Sd1 ) is able to learn and adjust
for the listener’s disparity, and further improve the
game performance by ∼10%. There is still, how-
ever a gap between Sd1 and the upper bound Snd1 ,
where the speaker and the listener have the exact
knowledge and capability limitation, potentially
due to the imperfection in caption generations.

Breaking down between the hard, easy datasets
in Figure 4 (recall that image pairs that differ by
≤ 4 objects are in the Hard set, otherwise the Easy
set), Sd1 on the easy dataset is able to gain a lot more
improvement upon its Rational Speaker compared
to the pair trained on the hard dataset. The gap
between Sd1 and No Disparity is also a lot smaller
for the model trained on the easy dataset. This is
likely because when a pair of images differ more
objects (easier), the model has more options to
adjust upon, hence the larger improvement.

Compared to the sentence level model, the word
level pragmatic speaker for Ld11 achieves even
higher improvement against the corresponding Ra-
tional Speaker. They both achieve almost perfect
accuracy with close to zero gap to the upper bound.
This suggests the high potential of the disparity
adjustment design, especially after reducing the
caption generation and interpretation noise.

Figure 4: Pragmatic Rational Speaker Performance
Gain/Loss compared to Rational Speaker and No Dis-
parity (upper bound).

5.2 Learning Efficiency

To study the training efficiency of the working
memory, we compared our model to the joint train-
ing “Multi-Task leaning” model in (Lazaridou et al.,
2020)’s work, retrained and evaluated in our dataset.
The image captioning model and the REINFORCE

Train(min) Accuracy% BLEU4
Joint 19.04 60.14 27.79
Separate 21.02 77.34 29.3
• LM 11.59 29.3
•WM 9.43 77.34

(a) Ld1
1 : Hypernym

Train(min) Accuracy% BLEU4
Joint 29.52 63.69 27.29
Separate 29.95 81.09 29.3
• LM 11.59 29.3
•WM 18.36 81.09

(b) Ld2
1 : Limited Vision

Table 2: Compared to joint training, separate training
only needs to train the long-term memory once, and can
achieve higher performance. LM: Long-term Memory,
WM: Working Memory.

learning are joint trained through a combined loss:

L = λfL
functional + λsL

structural

Functional in our task refers to the REINFORCE
learning to achieve both task and disparity goals
(evaluated by Accuracy), and structural refers to
the caption generation loss for natural-sounding
language (evaluated by BLEU4). We used λf =
λs = 1 as in previous work for our experiments.

Detailed training and comparison strategies can
be found in the Appendix. Table 2 shows that
for each type of disparity, our model separating
working memory from long-term memory is able to
achieve higher accuracy and higher BLEU4 score
than the joint training. Moreover, the Joint Trained
model needs to retrain all the weights for each
type of disparity from scratch, whereas our model
only needs to train the long-term memory once, and
retrain the light weighted working memory for each
type of disparity, which is much more efficient.

5.3 Transparency: Vocabulary Adjustment
To gain insights in whether the Pragmatic Rational
Speaker (PRS) is actually adjusting the descriptions
for listeners’ disparities or taking the advantage of
statistical bias to achieve higher task performance,
we plotted the word distribution shift across dif-
ferent types of disparities. Qualitative examples
can be found in Figure 6. For each experiment,
the word frequencies of all the chosen captions
were calculated for the Rational Speakers, the Prag-
matic Rational Speakers, and Joint Training. We
collected the top choice of each speaker per image
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(a) Ld1
1 : Hypernym

(b) Ld2
1 : Limited Vision

Figure 5: Word Distribution Shift: The Pragmatic Rational Speaker for Ld1
1 avoids specific object names and prior-

itizes some hypernyms. The Pragmatic Rational Speaker for Ld2
1 avoids animal related words in communication.

(a) Ld1
1 : Hypernym

(b) Ld2
1 : Limited Vision

Figure 6: Qualitative examples for each disparity ad-
justment. The orange words are the vocabulary that the
Pragmatic Rational Speaker is avoiding, and the blue
words are the preferred alternative for the listeners. The
strikethrough sentences are discarded because they can
be used to describe both images.

pair, repeated the experiments 3 times, and reported
the mean and standard deviation in Figure 5.

In the Hypernym disparity (Figure 5a) experi-
ment, where the listener only understands the hy-
pernym of detected objects, the lower-case words
on the left are the top detected object names, and
the upper-case words on the right are hypernyms.
On the left side, the word frequencies of PRS sig-
nificantly dropped from the Rational Speaker. On
the right side, the model is maintaining similar
level, or using some of the hypernyms more fre-
quently (y-axis in log scale). Note that the Rational
Speaker can generate both hypernym and hyponym
regardless of disparities, and multiple valid cap-
tions available for all speakers to choose from. For
the Joint Trained Speaker, we also observed a hy-
ponym usage drop (left), but it’s unclear how it
accommodates the disparity without using hyper-
nyms. This result shows that PRS learned to avoid
using hyponyms, and replaced them with their hy-
pernym to accommodate the disparity.

For the Limited Visual disparity (Figure 5b),
since all the animal objects are missing for the
listener, there is a sharp decline in Sd21 ’s use of
animal related words during the communication.
Instead, it is choosing other objects such as “hat”,
and “ball” to describe the target image. The PRS is
accommodating listener Ld21 ’s disparity by shifting
the attention and choosing alternative objects other
than animals to communicate. The behavior of the
Joint Trained Speaker is harder to interpret.
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5.4 Balancing Between Goals

Recall that the working memory of the Pragmatic
Rational Speaker (Sd1 ) has two two goals: 1) Task
Goal: an internal simulation of a listener to rank
the candidate captions by their uniqueness in de-
scribing the target image, and 2) Disparity Goal:
a disparity adjustment layer to learn and accommo-
date the listener’s disparity through interactions.
Each goal component can be formalized in the
above two terms (Equation 11). We parameterized
each term with λl and λd to study how different
λl : λd weight ratio could affect rational speaker’s
ability to achieve both goals.

ai = ([[ti == t∗]] · pi)λl · (qi)λd (11)

Figure 7 shows that when the Pragmatic Ratio-
nal Speaker puts a high emphasis on adjusting the
listener’s disparity λd, it would “forget” to describe
the unique characters of the target image and lower
the overall performance. On the other hand when
the PRS emphasize too much on the task goal, it
would “forget” to accommodate listener’s dispari-
ties, and lower the overall performance as well. In
the end, we chose λl : λd = 1 : 1 for all experi-
ments demonstrated above.

Figure 7: Balancing between the task goal and the dis-
parity adjustment goal: the Pragmatic Rational Speaker
needs a balanced emphasise on both λl and λd in order
to achieve both goals simultaneously.

6 Conclusion and Future Work

In this work, we present a novel framework based
on the Rational Speech Act framework for prag-
matic communication that can adjust the conversa-
tion content according to listener’s disparities by
adding a light-weighted working memory on top of
speaker’s long-term memory. The Pragmatic Ratio-
nal Speaker significantly improved the collabora-
tive game performance by shifting the conversation
towards the language that the listeners are able to

understand. The flexibility and training efficiency
also makes it easy to be applied broadly.

There are, however, several limitations that re-
quires further investigation. First of all, despite
recent progress, algorithms that connect language
and the visual world are still limited. For example,
caption generation, even in this simple setup, often
does not faithfully capture what’s been conveyed
in the images. As our framework heavily relies on
the quality of various models that bridge language
and vision, e.g., as part of our long term memory,
it’s important to improve functionality and perfor-
mance of these base models.

We conducted our experiments in a relative sim-
ple and artificial environment with the purpose of
easy control and demonstration. We emphasize on
evaluating model’s actual language ability of adjust-
ing for the disparities on top of task performance.
The next step would be to apply the framework to
more realistic images and interactive environment.

Other than listener’s knowledge background and
perceptual capabilities, there are a lot of other rea-
sons for language communication to be adjusted,
such as the physical environment, relative posi-
tions, speaker’s personalities, etc. Studying how a
rational agent can accommodate these disparities
would require additional multimodal datasets and
information processing methods.

At the moment, the Pragmatic Rational Speaker
trains a new layer in working memory from scratch
for each type of disparity. This could have back-
ward influence on the long-term memory. In life-
long learning (Parisi et al., 2019) like humans, the
working memory can shape their long-term mem-
ory. At the very least, the model could store each
learned disparity adjustments for future encounter.
This modification is left for future work.

Last but not least, instead of training for every
single type of disparity to name, human learners
have the ability of meta-learning and zero-shot
transferring existing knowledge to a new category.
Future work on pragmatic reasoning should be eas-
ily adaptable to different disparities and situations.
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A Speaker and Listener Model
Architecture Breakdown

(a) Literal Speaker S0: for each input image, we
run YOLO3 object detector to get a list of de-
tected object names. Each name is embedded
with pre-trained BERT embedding, and con-
catenated with their bounding box location.
The embedded images goes through a Trans-
former Decoder to generate a list of candidate
captions.

(b) Rational Listener L1: for each pair of im-
ages and an input caption, the Rational Lis-
tener reuses a pre-trained Transformer De-
coder as in S0 to figure out which image
does the caption ground better in. Inspired
the teacher-forcing caption training procedure,
given an image and the input caption, if it gen-
erates a sentence that’s closer to the input cap-
tion than the other image, then this image is
chosen as the target.

(c) Rational Speaker S1: for a pair of images,
and a list of candidate captions generated by
S0, the Rational Speaker goes through each
candidate caption via the internal simulated
listener (same model as L1 with no disparity),
to figure out whether the caption can help the
listener pick the correct target image, and if
so, how confident. It ranks all the captions by
the correctness and confidence score.

(d) Pragmatic Rational Speaker Sd1 : given a list
of ranked (by S1) candidate captions, the Prag-
matic Rational Speaker picks the most confi-
dent one and send it to the actual listener with
disparities (Ld1), and receives a reward feed-
back. This feedback helps Sd1 to learn the
disparity, and rerank all the captions to accom-
modate the difference and optimize for the
task goal.

(a) Literal Speaker S0

(b) Rational Listener L1/Ld
1

(c) Rational Speaker S1

(d) Pragmatic Rational Speaker Sd
1

Figure 8: Speaker and Listener model breakdown
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Hypernym Object Hypernym Object

boy

mike_reach

girl

jenny_reach
mike_kick jenny_kick
mike_run jenny_run
mike_sit jenny_sit

mike_fall over jenny_fall over
mike_wave jenny_wave

mike_up jenny_up

clothing

blue hat

large
objects

bee
crown slide

chef hat sand
pirate hat grill

sweater hat swing
silly hat tent

wizzard hat bench
horn hat christmas tree
glasses tree

sunglasses apple tree

toys

baseball

food

pie
glove pizza
shovel hotdog
racket ketchup
kite mustard
fire burger

bucket coke
colorful ball

sky
objects

helicopter
basketball hotair balloon

soccer cloud
tennis ball sun

football lightening
frisbee rain

baseball poll rocket
balloon . plane

animal
bear

animal
duck

cat owl
dog snake

Table 3: List of objects and their hypernyms
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B Implementation Details

We pretrained the image captioning models using
2 layers of Transformer Decoder with 4 attention
heads each, and 512 in internal dimension for 100
epochs each. The dropout rate was 0.5, learning
rate started at 1e−4, on a scheduled decline rate of
0.8 for each 20 unimproved epochs.

We also pretrained the literal listeners and the
literal speaker with different disparity datasets. All
the weights are fixed before being integrated into
the interactive learning phase. During disparity
learning, each pair of speaker and listener were
trained for 150 epochs, with batch size of 128,
learning rate starting at 1e−3, and on decline at
the rate of 0.8 per 20 unimproved epoches. Each
experiment is repeated 3 times. The mean and stan-
dard deviation were reported in figures. Similarly
in the word level training, the model was trained
for 200 epochs, and with learning rate starting at 2,
and on a scheduled decline rate of 0.8 for each 50
unimproved epochs.

For the efficiency comparison experiment, we
used the combined test dataset for this experi-
ment, trained each component until 50 unimproved
epochs, and selected the top performances within
the first 30 minutes of each. All models have
reached stable performance by then. All experi-
ments done on a single NVIDIA(R) GeForce(R)
RTX 2070 SUPER(TM) 8GB GDDR6 and 10th
Gen Intel(R) Core(TM) i9-10900K processor.
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