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Abstract

This paper describes and tests a method for car-
rying out quantified reproducibility assessment
(QRA) that is based on concepts and definitions
from metrology. QRA produces a single score
estimating the degree of reproducibility of a
given system and evaluation measure, on the
basis of the scores from, and differences be-
tween, different reproductions. We test QRA
on 18 system and evaluation measure combina-
tions (involving diverse NLP tasks and types
of evaluation), for each of which we have the
original results and one to seven reproduction
results. The proposed QRA method produces
degree-of-reproducibility scores that are com-
parable across multiple reproductions not only
of the same, but of different original studies.
We find that the proposed method facilitates
insights into causes of variation between repro-
ductions, and allows conclusions to be drawn
about what changes to system and/or evaluation
design might lead to improved reproducibility.

1 Introduction

Reproduction studies are becoming more common
in Natural Language Processing (NLP), with the
first shared tasks being organised, including RE-
PROLANG (Branco et al., 2020) and ReproGen
(Belz et al., 2021b). In NLP, reproduction studies
generally address the following question: if we cre-
ate and/or evaluate this system multiple times, will
we obtain the same results?

To answer this question for a given specific sys-
tem, typically (Wieling et al., 2018; Arhiliuc et al.,
2020; Popović and Belz, 2021) an original study
is selected and repeated more or less closely, be-
fore comparing the results obtained in the original
study with those obtained in the repeat, and de-
ciding whether the two sets of results are similar
enough to support the same conclusions.

This framing, whether the same conclusions can
be drawn, involves subjective judgments and dif-
ferent researchers can come to contradictory con-

clusions: e.g. the four papers (Arhiliuc et al., 2020;
Bestgen, 2020; Caines and Buttery, 2020; Huber
and Çöltekin, 2020) reproducing Vajjala and Rama
(2018) in REPROLANG all report similarly large
differences, but only Arhiliuc et al. conclude that
reproduction was unsuccessful.

There is no standard way of going about a repro-
duction study in NLP, and different reproduction
studies of the same original set of results can differ
substantially in terms of their similarity in system
and/or evaluation design (as is the case with the Va-
jjala and Rama (2018) reproductions, see Section 4
for details). Other things being equal, a more simi-
lar reproduction can be expected to produce more
similar results, and such (dis)similarities should
be factored into reproduction analysis and conclu-
sions, but NLP lacks a method for doing so.

Being able to assess reproducibility of results
objectively and comparably is important not only
to establish that results are valid, but to provide
evidence about which methods have better/worse
reproducibility and what may need to be changed to
improve reproducibility. To do this, assessment has
to be done in a way that is also comparable across
reproduction studies of different original studies,
e.g. to develop common expectations of how simi-
lar original and reproduction results should be for
different types of system, task and evaluation.

In this paper, we (i) describe a method for quanti-
fied reproducibility assessment (QRA) directly de-
rived from standard concepts and definitions from
metrology which addresses the above issues, and
(ii) test it on diverse sets of NLP results. Following
a review of related research (Section 2), we present
the method (Section 3), tests and results (Section 4),
discuss method and results (Section 5), and finish
with some conclusions (Section 6).

2 Related Research

The situation memorably caricatured by Pedersen
(2008) still happens all the time: you download
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some code you read about in a paper and liked the
sound of, you run it on the data provided, only to
find that the results are not the same as reported
in the paper, in fact they are likely to be worse
(Belz et al., 2021a). When both data and code are
provided, the number of potential causes of such
differences is limited, and the NLP field has shared
increasingly detailed information about system, de-
pendencies and evaluation to chase down sources
of differences. Sharing code and data together with
detailed information about them is now expected
as standard, and checklists and datasheets have
been proposed to standardise information sharing
(Pineau, 2020; Shimorina and Belz, 2021).

Reproducibility more generally is becoming
more of a research focus. There have been sev-
eral workshops and initiatives on reproducibility,
including workshops at ICML 2017 and 2018,
the reproducibility challenge at ICLR 2018 and
2019, and at NeurIPS 2019 and 2020, the RE-
PROLANG (Branco et al., 2020) initiative at LREC
2020, and the ReproGen shared task on repro-
ducibility in NLG (Belz et al., 2021b).

Despite this growing body of research, no con-
sensus has emerged about standards, terminology
and definitions. Particularly for the two most fre-
quently used terms, reproducibility and replicabil-
ity, multiple divergent definitions are in use, var-
iously conditioned on same vs. different teams,
methods, artifacts, code, and data. For example, for
Rougier et al. (2017), reproducing a result means
running the same code on the same data and obtain-
ing the same result, while replicating the result is
writing and running new code based on the infor-
mation provided by the original publication. For
Wieling et al. (2018), reproducibility is achieving
the same results using the same data and methods.

According to the ACM’s definitions (Associa-
tion for Computing Machinery, 2020), results have
been reproduced if obtained in a different study
by a different team using artifacts supplied in part
by the original authors, and replicated if obtained
in a different study by a different team using ar-
tifacts not supplied by the original authors. The
ACM originally had these definitions the other way
around until asked by ISO to bring them in line
with the scientific standard (ibid.).

Conversely, in Drummond’s view 2009 obtain-
ing the same result by re-running an experiment in
the same way as the original is replicability, while
reproducibility is obtaining it in a different way.

Whitaker (2017), followed by Schloss (2018),
defines four concepts rather than two, basing defi-
nitions of reproducibility, replicability, robustness
and generalisability on the different possible com-
binations of same vs. different data and code.

None of these definitions adopt the general sci-
entific concepts and definitions pertaining to repro-
ducibility, codified in the International Vocabulary
of Metrology, VIM (JCGM, 2012). One issue is
that they all reduce the in principle open-ended
number of dimensions of variation between mea-
surements accounted for by VIM to just two or
three (code, data and/or team). Another, that unlike
VIM, they don’t produce comparable results.

NLP does not currently have a shared approach
to deciding reproducibility, and results from repro-
ductions as currently reported are not comparable
across studies and can, as mentioned in the intro-
duction, lead to contradictory conclusions about
an original study’s reproducibility. There appears
to be no work at all in NLP that aims to estimate
degree of reproducibility which would allow cross-
study comparisons and conclusions.

3 Metrology-based Reproducibility
Assessment

Metrology is a meta-science: its subject is the stan-
dardisation of measurements across all of science
to ensure comparability. Computer science has
long borrowed terms, most notably reproducibil-
ity, from metrology, albeit not adopting the same
definitions (as discussed in Section 2 above).

In this section, we describe quantified repro-
ducibility assessment (QRA), an approach that is
directly derived from the concepts and definitions
of metrology, adopting the latter exactly as they
are, and yields assessments of the degree of simi-
larity between numerical results and between the
studies that produced them. We start below with
the concepts and definitions that QRA is based on,
followed by an overview of the framework (Section
3.2) and steps in applying it in practice (Section
3.3).

3.1 VIM Definitions of Repeatability and
Reproducibility

The International Vocabulary of Metrology (VIM)
(JCGM, 2012) defines repeatability and repro-
ducibility as follows (defined terms in bold, see
VIM for subsidiary defined terms):

2.21 measurement repeatability (or repeatability,
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for short) is measurement precision under a
set of repeatability conditions of measure-
ment.

2.20 a repeatability condition of measurement
(repeatability condition) is a condition of
measurement, out of a set of conditions that
includes the same measurement procedure,
same operators, same measuring system,
same operating conditions and same location,
and replicate measurements on the same or
similar objects over a short period of time.

2.25 measurement reproducibility (reproducibil-
ity) is measurement precision under repro-
ducibility conditions of measurement.

2.24 a reproducibility condition of measure-
ment (reproducibility condition) is a condi-
tion of measurement, out of a set of condi-
tions that includes different locations, oper-
ators, measuring systems, etc. A specifica-
tion should give the conditions changed and
unchanged, to the extent practical.

In other words, VIM considers repeatability and
reproducibility to be properties of measurements
(not objects, scores, results or conclusions), and
defines them as measurement precision, i.e. both
are quantified by calculating the precision of a set
of measured quantity values. Both concepts are de-
fined relative to a set of conditions of measurement:
the conditions have to be known and specified for
assessment of repeatability and reproducibility to
be meaningful. In repeatability, conditions are the
same, whereas in reproducibility, they differ.

In an NLP context, objects are systems, and mea-
surements involve applying an evaluation method
to a system usually via obtaining a sample of its
outputs and applying the method to the sample
(further details of how concepts map to NLP are
provided in Section 3.3).

3.2 Assessment framework

The VIM definitions translate directly to the fol-
lowing definition of repeatability R0 (where all
conditions of measurement C are the same across
measurements):

R0(M1,M2, ...Mn) := Precision(v1, v2, ...vn),
whereMi : (m,O, ti, C) 7→ vi

(1)

and the Mi are repeat measurements for measur-
and m performed on object O at different times ti
under (the same) set of conditions C, producing
measured quantity values vi. Below, the coefficient

of variation is used as the precision measure, but
other measures are possible. Conditions of mea-
surement are attribute/value pairs each consisting
of a name and a value (for examples, see following
section). Reproducibility R is defined in the same
way as R0 except that condition values (but not
names) differ for one or more of the conditions of
measurement Ci:

R(M1,M2, ...Mn) := Precision(v1, v2, ...vn),
whereMi : (m,O, ti, Ci) 7→ vi

(2)

Precision is typically reported in terms of some or
all of the following: mean, standard deviation with
95% confidence intervals, coefficient of variation,
and percentage of measured quantity values within
n standard deviations. We opt for the coefficient
of variation (CV),1 because it is a general measure,
not in the unit of the measurements (unlike mean
and standard deviation), providing a quantification
of precision (degree of reproducibility) that is com-
parable across studies (Ahmed, 1995, p. 57). This
also holds for percentage within n standard devi-
ations but the latter is a less recognised measure,
and likely to be the less intuitive for many.

In reproduction studies in NLP/ML, sample sizes
tend to be very small (a sample size of 8, one origi-
nal study plus 7 reproductions, as in Table 6 is cur-
rently unique). We therefore need to use de-biased
sample estimators: we use the unbiased sample
standard deviation, denoted s∗, with confidence
intervals calculated using a t-distribution, and stan-
dard error (of the unbiased sample standard devi-
ation) approximated on the basis of the standard
error of the unbiased sample variance se(s2) as
ses2(s∗) ≈ 1

2σ se(s2) (Rao, 1973). Assuming mea-
sured quantity values are normally distributed, we
calculate the standard error of the sample variance

in the usual way: se(s2) =
√

2σ4

n−1 . Finally, we also
use a small sample correction (indicated by the star)
for the coefficient of variation: CV∗ = (1+ 1

4n)CV
(Sokal and Rohlf, 1971).2

Before applying CV∗ to values on scales that
do not start at 0 (mostly in human evaluations) we
shift values to start at 0 to ensure comparability.3

This means that to calculate the CV∗ scores in the
tables below, measurements are first shifted.

1The coefficient of variation (CV), also known as relative
standard deviation (RSD) is defined as the standard deviation
over the mean, often expressed as a percentage.

2Code and data are available here: https://github.
com/asbelz/coeff-var.

3Otherwise CV∗ reflects differences solely due to different
lower ends of scales.
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3.3 Application of the framework

Using the defined VIM terms and the notations
from Section 3.2, we can refine the question from
the start of this paper as follows: if we perform
multiple measurements of object O and measurand
m under reproducibility conditions of measurement
Ci, what is the precision of the measured quantity
values we obtain? For NLP, this means calculating
the precision of multiple evaluation scores for the
same system and evaluation measure.

Focusing here on reproducibility assessment
where we start from an existing set of results (rather
than a set of experiments specifically designed to
test reproducibility), the steps in performing QRA
are as follows:

1. For a set of n measurements to be assessed,
identify the shared object and measurand.

2. Identify all conditions of measurement Ci for
which information is available for all mea-
surements, and specify values for each con-
dition, including measurement method and
procedure.

3. Gather the n measured quantity values
v1, v2, ...vn.

4. Compute precision for v1, v2, ...vn, giving re-
producibility score R.

5. Report resulting R score and associated con-
fidence statistics, alongside the Ci.

In NLP terms, the object is the ready-to-use system
(binaries if available; otherwise code, dependen-
cies, parameter values, how the system was com-
piled and trained) being evaluated (e.g. the NTS-
default system variant in Table 1), the measurand is
the quantity intended to be measured (e.g. BLEU-
style modified n-gram precision), and measurement
method and procedure capture how to evaluate the
system (e.g. obtaining system outputs for a speci-
fied set of inputs, and applying preprocessing and
a given BLEU implementation to the latter).

VIM holds that reproducibility assessment is
only meaningful if the reproducibility conditions of
measurement are specified for a given test. Condi-
tions of measurement cover every aspect and detail
of how a measurement was performed and how
the measured quantity value was obtained. The
key objective is to capture all respects in which the
measurements to be assessed are known to be either
the same or different. If QRA is performed for a
set of existing results, it is often not possible to

discover every aspect and detail of how a measure-
ment was performed, so a reduced set may have
to be used (unlike in experiments designed to test
reproducibility where such details can be gathered
as part of the experimental design).

The reproducibility and evaluation checklists
mentioned in Section 2 (Pineau, 2020; Shimorina
and Belz, 2021) capture properties that are in effect
conditions of measurement, and in combination
with code, data and other resources serve well as
a way of specifying conditions of measurement, if
they have been completed by authors. However,
at the present time, completed checklists are not
normally available. The following is a simple set
of conditions of measurement the information re-
quired for which is typically available for existing
work (we include object and measurand for com-
pleteness although strictly they are not conditions,
as they must be the same in each measurement in a
given QRA test):

1. Object: the system (variant) being evaluated.4

E.g. a given MT system.

2. Measurand: the quantity intended to be eval-
uated.5 E.g. BLEU-style n-gram precision or
human-assessed Fluency.

3. Object conditions:

(a) System code: source code including any
parameters. E.g. the complete code im-
plementing an MT system.

(b) Compile/training information: steps
from code plus parameters to fully com-
piled and trained system, including de-
pendencies and environment. E.g. com-
plete information about how the MT sys-
tem code was compiled and the system
trained.

4. Measurement method conditions:6

(a) Method specification: full description
of method used for obtaining values
quantifying the measurand. E.g. a for-
mal definition of BLEU.

(b) Implementation: the method imple-
mented in a form that can be applied to
the object in order to obtain measured
quantity values. E.g. a full implementa-
tion of BLEU.

4VIM doesn’t define ‘object’ but refers to it as that which
is being measured.

5For definition of ‘measurand’ see VIM 2.3.
6For definition of ‘measurement method’, see VIM 2.5.
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System (Object) Evaluation measure N Papers reporting results NLP task Evaluation type(Measurand) scores

PASS

Clarity 2
Fluency 2 van der Lee et al. (2017), data-to-text human, intrinsicIdentifiability 2 Mille et al. (2021)
of stance

mult-base wf1 8
mult-word− wF1 8
mult-word+ wF1 8
mult-POS− wF1 8 Vajjala and Rama (2018),
mult-POS+ wF1 8 Huber and Çöltekin (2020), multilingual essay metric: intrinsic,
mult-dep− wF1 8 Arhiliuc et al. (2020), scoring as text evaluated against
mult-dep+ wF1 8 Bestgen (2020), classification single reference
mult-dom− wF1 8 Caines and Buttery (2020)
mult-dom+ wF1 8
mult-emb− wF1 8
mult-emb+ wF1 8

NTS_default BLEU 7 Nisioi et al. (2017), metric: intrinsic,
SARI 5 Cooper & Shardlow (2020), text simplification eval. against input

NTS-w2v_default BLEU 6 additional reproduction and/or multiple
SARI 4 study for this paper references

Table 1: Summary overview of the 18 object/measurand combinations taht were QRA-tested for this paper.

5. Measurement procedure conditions:7

(a) Procedure: specification of how sys-
tem outputs (or other system characteris-
tics) are obtained and the measurement
method is applied to them. E.g. running
a BLEU tool on system outputs and ref-
erence outputs.

(b) Test set: the data used in obtaining
and evaluating system outputs (or other
system characteristics). E.g. a test set
of source-language texts and reference
translations.

(c) Performed by: who performed the mea-
surement procedure and any additional
information about how they did it. E.g.
the team applying the BLEU tool, and
the run-time environment they used.

The names of the conditions of measurement used
in this paper are boldfaced above. The values for
each condition characterise how measurements dif-
fer in respect of the condition. In reporting results
from QRA tests in the following section, we use pa-
per identifiers as shorthand for each distinct condi-
tion value (full details in each case being available
from the referenced papers).

4 QRA Tests

Table 1 provides an overview of the 18 object/ mea-
surand pairs (corresponding to 116 individual mea-

7For definition of ‘measurement procedure’, see VIM 2.6.

surements) for which we performed QRA tests in
this study. For each object/measurand pair, the
columns show, from left to right, information about
the system evaluated (object), the evaluation mea-
sure applied (measurand), the number of scores
(measured quantity values) obtained, the papers in
which systems and scores were first reported, and
the NLP task and type of evaluation involved.

There are three sets of related systems: (i) the
(single) PASS football report generator (van der
Lee et al., 2017), (ii) Vajjala and Rama (2018)’s
11 multilingual essay scoring system variants, and
(iii) two variants of Nisioi et al. (2017)’s neural
text simplifier (NTS). PASS is evaluated with three
evaluation measures (human-assessed Clarity, Flu-
ency and Stance Identifiability), the essay scoring
systems with one (weighted F1), and the NTS sys-
tems with two (BLEU and SARI). For PASS we
have one reproduction study, for the essay scorers
seven, and for the NTS systems, from three to six.
The PASS reproduction was carried out as part of
ReproGen (Belz et al., 2021b), the reproductions
of the essay-scoring systems and of one of the NTS
systems as part of REPROLANG (Branco et al.,
2020), and we carried out an additional reproduc-
tion study of the NTS systems for this paper.8

The PASS text generation system is rule-based,
the essay classifiers are ‘theory-guided and data-
driven’ hybrids, and the text simplifiers are end-to-
end neural systems. This gives us a good breadth

8Authors of original studies gave permission for their work
to be reproduced (Branco et al., 2020; Belz et al., 2021b).

20



Measured quantity value Sample
Object Measurand van der Lee et al. Mille et al. (2021) size mean stdev stdev 95% CI CV∗ ↓

(2017)

PASS
Clarity 5.64 6.30 2 4.969 0.583 [-2.75, 3.92] 13.193
Fluency 5.36 6.14 2 4.75 0.691 [-3.26, 4.65] 16.372
Stance id. 91% 97% 2 93.88 5.096 [-24.05, 34.24] 6.107

Table 2: Precision (CV∗) and component measures (mean, standard deviation, standard deviation, confidence
intervals) for measured quantity values obtained in two measurements for each of the three human-assessed
evaluation measures for the PASS system. Columns 6–9 calculated on shifted scores (see Section 3.2).

Object conditions
Measurement method Measurement procedure Measured

Object Measurand conditions conditions quantity CV∗

Code by Comp./trained by Method Implem. by Procedure Test set Performed by value

PASS

Clarity
vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al 5.64

13.193
vdL&al vdL&al vdL&al M&al M&al vdL&al M&al 6.30

Fluency
vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al 5.36

16.372
vdL&al vdL&al vdL&al M&al M&al vdL&al M&al 6.14

Stance id.
vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al vdL&al 91%

6.107
vdL&al vdL&al vdL&al M&al M&al vdL&al M&al 96.75%

Table 3: Conditions of measurement for two measurements each for three evaluation measures (measurands) and
the PASS system. vdL&al = van der Lee et al. (2017); M&al = Mille et al. (2021).

of NLP tasks, system types, and evaluation types
and measures to test QRA on.

4.1 QRA for NTS systems

The neural text simplification systems reported by
Nisioi et al. (2017) were evaluated with BLEU
(n-gram similarity between outputs and multi-
ple reference texts) and SARI (based on word
added/retained/deleted in outputs compared to both
inputs and reference texts, summing over addition
and retention F-scores and deletion Precisions).

Table 4 shows BLEU and SARI scores for the
two system variants from the original paper and
the two reproduction studies, alongside the four
corresponding CV∗ values. In their reproduction,
Cooper and Shardlow (2020) regenerated test out-
puts for NTS-w2v_def, but not for NTS_def, which
explains the missing scores in Column 4. The
different numbers of scores in different rows in
Columns 6–9 are due to our own reproduction us-
ing Nisioi et al.’s SARI script, but two different
BLEU scripts: (i) Nisioi et al.’s script albeit with
the tokeniser replaced by our own because the for-
mer did not work due to changes in the NLTK
library; and (ii) SacreBLEU (Xu et al., 2016).

Table 5 shows the conditions of measurement
for each of the 22 individual measurements. The
measured quantity values for those measurements
where Comp./trained by=Nisioi et al. are identi-
cal for the SARI metric (scores highlighted by

green/lighter shading and italics), but differ by
up to 1.4 points for BLEU (scores highlighted by
blue/darker shading). Because Test set=Nisioi et al.
in all cases, the differences in these BLEU scores
can only be caused by differences in BLEU scripts
and how they were run. The corresponding CV∗ is
as big as 0.838 for (just) the four NTS_def BLEU
scores, and 1.314 for (just) the three NTS-w2v_def
BLEU scores, reflecting known problems with non-
standardised BLEU scripts (Post, 2018).

If we conversely look just at those measurements
(identifiable by boldfaced measured quantity values
in Table 5) where the reproducing team regenerated
outputs (with the same system code) and evaluation
scripts were the same, SARI CV∗ is 3.11 for the
NTS_def variants, and 4.05 for the NTS-w2v_def
variants (compared in both cases to 0 (perfect)
when the same outputs are used). BLEU CV∗ is
2.154 for the NTS_def variants (compared to 0.838
for same outputs but different evaluation scripts, as
above), and 6.598 for the NTS-w2v_def variants
(compared to 1.314 for same outputs but different
evaluation scripts). These differences arise simply
from running the system in different environments.

The overall higher (worse) CV∗ values for NTS-
w2v_def variants (compared to NTS_def) are likely
to be partly due to the NTS models using one third
party tool (openNMT), and the NTS-w2v models
using two (openNMT and word2vec), i.e. the latter
are more susceptible to changes in dependencies.
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Measured quantity value
Object Measurand Nisioi et al. Cooper & Shardlow this paper Sample mean stdev stdev 95% CI CV∗ ↓

outputs 1 outputs 1 outputs 2 outputs 1 outputs 3 size
s1 / b1 s1 / b2 s1 / b2 s1 / b3 s1 / b4 s1 / b3 s1 / b4

NTS_def
BLEU 84.51 84.50 87.46 85.60 84.20 86.61 86.20 7 85.58 1.29 [0.45, 2.13] 1.562
SARI 30.65 30.65 29.13 30.65 29.96 5 30.21 0.72 [0.095, 1.34] 2.487

NTS-w2v_def
BLEU 87.50 – 80.75 89.36 88.10 89.64 88.80 6 87.36 3.502 [0.92, 6.08] 4.176
SARI 31.11 – 30.28 31.11 29.12 4 30.41 1.02 [-0.11, 2.15] 3.572

Table 4: Precision (CV∗) and component measures (mean, standard deviation, standard deviation confidence
intervals) for measured quantity values obtained in multiple measurements of the two NTS systems. Outputs 1 =
test set outputs as generated by Nisioi et al. (2017); outputs 2 = test set outputs regenerated by Cooper and Shardlow
(2020); outputs 3 = test set outputs regenerated by the present authors. s1 = SARI script (always the same); b1 =
Nisioi et al.’s BLEU script, run by Nisioi et al.; b2 = Nisioi et al.’s BLEU script, run by Cooper & Shardlow; b3 =
Nisioi et al.’s BLEU script with different version of NLTK tokeniser (see in text), run by the present authors; b4 =
SacreBLEU (Xu et al., 2016), run by the present authors.

Object conditions
Measurement method Measurement procedure Measured

Object Measurand conditions conditions quantity CV∗

Code by Comp./trained by Method Implem. by Procedure Test set Performed by value

NTS_def

BLEU

Nisioi et al. Nisioi et al. bleu(o,t) Nisioi et al. OTE Nisioi et al. Nisioi et al. 84.51

1.562

Nisioi et al. Nisioi et al. bleu(o,t) Nisioi et al. OTE Nisioi et al. Coop. & Shard. 84.50
Nisioi et al. Nisioi et al. bleu(o,t) ≈Nisioi et al. OTE Nisioi et al. this paper 85.60
Nisioi et al. Nisioi et al. bleu(o,t) SacreBLEU OTE Nisioi et al. this paper 84.20
Nisioi et al. Coop. & Shard. bleu(o,t) Nisioi et al. OTE Nisioi et al. Coop. & Shard. 87.46
Nisioi et al. this paper bleu(o,t) ≈Nisioi et al. OTE Nisioi et al. this paper 86.61
Nisioi et al. this paper bleu(o,t) SacreBLEU OTE Nisioi et al. this paper 86.20

SARI

Nisioi et al. Nisioi et al. sari(o,s,t) Nisioi et al. OITE Nisioi et al. Nisioi et al. 30.65

2.487
Nisioi et al. Nisioi et al. sari(o,s,t) Nisioi et al. OITE Nisioi et al. Coop. & Shard. 30.65
Nisioi et al. Nisioi et al. sari(o,s,t) Nisioi et al. OITE Nisioi et al. this paper 30.65
Nisioi et al. Coop. & Shard. sari(o,s,t) Nisioi et al. OITE Nisioi et al. Coop. & Shard. 29.13
Nisioi et al. this paper sari(o,s,t) Nisioi et al. OITE Nisioi et al. this paper 29.96

NTS-w2v_def

BLEU

Nisioi et al. Nisioi et al. bleu(o,t) Nisioi et al. OTE Nisioi et al. Nisioi et al. 87.50

4.176

Nisioi et al. Nisioi et al. bleu(o,t) ≈Nisioi et al. OTE Nisioi et al. this paper 89.36
Nisioi et al. Nisioi et al. bleu(o,t) SacreBLEU OTE Nisioi et al. this paper 88.10
Nisioi et al. Coop. & Shard. bleu(o,t) Nisioi et al. OTE Nisioi et al. Coop. & Shard. 80.75
Nisioi et al. this paper bleu(o,t) ≈Nisioi et al. OTE Nisioi et al. this paper 89.64
Nisioi et al. this paper bleu(o,t) SacreBLEU OTE Nisioi et al. this paper 88.80

SARI

Nisioi et al. Nisioi et al. sari(o,s,t) Nisioi et al. OITE Nisioi et al. Nisioi et al. 31.11

3.572
Nisioi et al. Nisioi et al. sari(o,s,t) Nisioi et al. OITE Nisioi et al. this paper 31.11
Nisioi et al. Coop. & Shard. sari(o,s,t) Nisioi et al. OITE Nisioi et al. Coop. & Shard. 30.28
Nisioi et al. this paper sari(o,s,t) Nisioi et al. OITE Nisioi et al. this paper 29.12

Table 5: Conditions of measurement for each measurement carried out for the NTS systems. OTE = outputs vs.
targets evaluation, OITE = outputs vs. inputs and targets evaluation. Shaded cells: evaluation of the same system
outputs, i.e. the reproductions did not regenerate outputs. Bold: evaluation of (potentially) different system outputs,
i.e. the reproductions did regenerate outputs.

4.2 QRA for PASS system

The PASS system, developed by van der Lee et al.
(2017), generates football match reports from the
perspective of each of the competing teams. The
original study evaluated the system for Clarity, Flu-
ency and Stance Identifiability in an evaluation with
20 evaluators and a test set of 10 output pairs. The
evaluation was repeated with a slightly different
evaluation interface and a different cohort of evalu-
ators by Mille et al. (2021). Table 2 shows the re-
sults from the original and reproduction evaluations
(columns 3 and 4), where the Clarity and Fluency
results are the mean scores from 7-point agreement

scales, and Identifiability results are the percentage
of times the evaluators correctly guessed the team
whose supporters a report was written for. Columns
6–9 show the corresponding sample size (number
of reproductions plus original study), mean, stan-
dard deviation (stdev), the confidence interval (CI)
for the standard deviation, and CV∗, all calculated
on the shifted scores (see Section 3.2).

Table 3 shows the values (here, paper identifiers)
for the nine conditions of measurement introduced
in Section 3.3, for each of the six individual mea-
surements (three evaluation measures times two
studies). Note that both object conditions and the
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test set condition are the same, because Mille et al.
used the system outputs shared by van der Lee et al.
The values for the Implemented by, Procedure and
Performed by conditions reflect the differences in
the two evaluations in design, evaluator cohorts,
and the teams that performed them.

The scores vary to different degrees for the three
measurands, with CV∗ lowest (reproducibility best)
for Stance Identifiability, and highest (worst) for
Fluency. These CV∗ results are likely to reflect that
evaluators agreed more on Clarity than Fluency.
Moreover, the binary stance identification assess-
ment has better reproducibility than the other two
criteria which are assessed on 7-point rating scales.

4.3 QRA for essay scoring system variants

The 11 multilingual essay scoring system variants
reported by Vajjala and Rama (2018) were evalu-
ated by weighted F1 (wF1) score. Table 6 shows
wF1 scores for the 11 multilingual system variants
from each of the five papers, alongside the 11 cor-
responding CV∗ values. Table 7 in the appendix
shows the corresponding conditions of measure-
ment. The baseline classifier (mult-base) uses doc-
ument length (number of words) as its only feature.
For the other variants, +/- indicates that the multi-
lingual classifier was / was not given information
about which language the input was in; the mult-
word variants use word n-grams only; mult-word
uses POS (part of speech) tag n-grams only; mult-
dep uses n-grams over dependency relation, depen-
dent POS, and head POS triples; mult-dom uses
domain-specific linguistic features including docu-
ment length, lexical richness and errors; mult-emb
uses word and character embeddings. The mult-
base and mult-dom models are logistic regressors,
the others are random forests.

A very clear picture emerges: system variant
pairs that differ only in whether they do or do not
use language information have very similar CV
scores. For example, mult-POS− (POS n-grams
without language information) and mult-POS+

(POS n-grams with language information) both
have a very good degree of wF1-reproducibility,
their CV∗ being 3.818 and 3.808 respectively; mult-
word− (word n-grams without language informa-
tion) and mult-word+ (word n-grams with language
information) have notably higher CV∗, around 10.
This tendency holds for all such pairs, indicating
that using language information makes next to no
difference to reproducibility. Moreover, the mult-

dom and mult-emb variants all have similar CV∗.9

The indication is that the syntactic information
is obtained/used in a way that is particularly repro-
ducible, whereas the domain-specific information
and the embeddings are obtained/used in a way that
is particularly hard to reproduce. Overall, the ran-
dom forest models using syntactic features have the
best reproducibility; the logistic regressors using
domain-specific features have the worst.

5 Discussion

Quantified reproducibility assessment (QRA) en-
ables assessment of the degree of reproducibility
of evaluation results for any given system and eval-
uation measure in a way that is scale-invariant10

and comparable across different QRAs, for repro-
ductions involving either the same or different
original studies. Moreover, formally capturing
(dis)similarities between systems and evaluation
designs enables reproducibility to be assessed rela-
tive to such (dis)similarities. In combination, a set
of results from QRA tests for the same system and
evaluation measure can provide pointers to which
aspects of the system and evaluation might be as-
sociated with low reproducibility. E.g. for the wF1
evaluations of the essay scoring systems above, it
is clear that variations in reproducibility are associ-
ated at least in part with the different features used
by systems.

It might be expected that the reproducibility of
human-assessed evaluations is generally worse than
metric-assessed. Our study revealed a more mixed
picture. As expected, the Fluency and Clarity eval-
uations of the PASS system were among those with
highest CV∗, and the BLEU and SARI evaluation
of the NTS systems and wF1 evaluation of the
mult-POS and mult-dep systems were among those
with lowest CV∗. However, human-assessed Stance
Identifiability of PASS was among the most re-
producible, and metric-assessed wF1 of mult-base,
mult-dom and mult-emb were among the worst.

In this paper, our focus has been QRA testing of
existing research results. However, ideally, QRA
would be built into new method development from
the outset, where at first reporting, a detailed stan-

9The high CV∗ for the baseline system may be due to an
issue wiith the evaluation code (macro-F1 instead of weighted-
F1), as reported by Bestgen (Section 3.2, first paragraph),
Caines and Buttery (Section 2.5, one before last paragraph)
and Huber and Çöltekin (Section 3.2, second paragraph).

10If evaluation scores are multiplied by a common factor,
CV∗ does not change.
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Measured quantity value
Vajjala Huber & Arhiliuc

Object Meas- & Rama Coltekin et al. Bestgen Caines & Buttery Sample mean stdev stdev 95% CI CV∗ ↓
urand seed 1 seed 2 seed ? seed 1 seed 2 seed 1 seed ? size

e1 / i1 e2 / i2 e3 / i1 e4 / i1 e5 / i1 e5 / i3 e6 / i1 e7 / i4

mult-base wF1 0.428 0.493 0.426 0.574 0.579 0.590 0.574 0.600 8 0.533 0.08 [0.03, 0.12] 14.633
mult-word− wF1 0.721 0.603 0.605 0.606 0.720 0.732 0.606 0.740 8 0.667 0.07 [0.03, 0.11] 10.609
mult-word+ wF1 0.719 0.604 0.607 0.607 0.723 0.733 0.607 0.736 8 0.667 0.07 [0.03, 0.11] 10.440
mult-POS− wF1 0.726 0.681 0.680 0.680 0.722 0.728 0.680 0.732 8 0.704 0.03 [0.01, 0.04] 3.818
mult-POS+ wF1 0.724 0.680 0.680 0.681 0.725 0.729 0.681 0.731 8 0.704 0.03 [0.01, 0.04] 3.808
mult-dep− wF1 0.703 0.660 0.650 0.651 0.699 0.711 0.651 0.710 8 0.679 0.03 [0.01, 0.05] 4.500
mult-dep+ wF1 0.693 0.661 0.652 0.653 0.699 0.712 0.653 0.716 8 0.68 0.03 [0.01, 0.05] 4.387
mult-dom− wF1 0.449 0.600 0.433 0.597 0.635 0.646 0.597 0.698 8 0.582 0.1 [0.04, 0.15] 17.147
mult-dom+ wF1 0.471 0.647 0.447 0.647 0.696 0.711 0.647 0.726 8 0.624 0.11 [0.05, 0.18] 18.248
mult-emb− wF1 0.693 0.658 0.683 0.668 0.692 0.689 0.659 0.391 8 0.642 0.11 [0.04, 0.17] 17.033
mult-emb+ wF1 0.689 0.662 0.681 0.659 0.681 0.684 0.657 0.401 8 0.639 0.1 [0.04, 0.16] 16.226

Table 6: Precision (CV∗) and component measures (mean, standard deviation, standard deviation confidence
intervals) for measured quantity values obtained in multiple measurements of the essay scoring systems. Seed i =
different approaches to random seeding and cross-validation; ei = different compile/run-time environments; ii =
different test data sets and/or cross-validation folds.

dardised set of conditions of measurement is spec-
ified, and repeatability tests (where all conditions
are identical except for the team conducting the
tests, see Section 3.2) are performed to determine
baseline reproducibility. Such repeatability QRA
would provide quality assurance for new methods
as well as important pointers for future reproduc-
tions regarding what degree of reproducibility to
expect for given (types of) methods.

If this is not possible, post-hoc reproducibility
QRA (where there are differences in conditions of
measurement values) is performed instead. If this
yields high (poor) CV∗, one way to proceed is to
minimise differences in conditions of measurement
between the studies and observe the effect on CV∗,
changing aspects of system and evaluation design
and adding further conditions of measurement if
need be. For human evaluation in particular, persis-
tently high CV∗ would indicate a problem with the
method itself.

6 Conclusion

We have described an approach to quantified re-
producibility assessment (QRA) based on concepts
and definitions from metrology, and tested it on 18
system and evaluation measure combinations in-
volving diverse NLP tasks and types of evaluation.

QRA produces a single score that quantifies the
degree of reproducibility of a given system and
evaluation measure, on the basis of the scores from,
and differences between, multiple reproductions
of the same original study. We found that the ap-
proach facilitates insights into sources of variation

between reproductions, produces results that are
comparable across different reproducibility assess-
ments, and provides pointers about what needs to
be changed in system and/or evaluation design to
improve reproducibility.

A recent survey (Belz et al., 2021a) found that
just 14% of the 513 original/reproduction score
pairs analysed were exactly the same. Judging the
remainder simply ‘not reproduced’ is of limited
usefulness, as some are much closer to being the
same than others. At the same time, assessments
of whether the same conclusions can be drawn
on the basis of different scores involve subjective
judgments and are prone to disagreement among
assessors. Quantifying the closeness of results as in
QRA, and, over time, establishing expected levels
of closeness, seems a better way forward.
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A Conditions of Measurement for the Essay Scoring Systems

Table 7 shows the conditions of measurement for each of the 88 individual measurements for the Essay
Scoring Systems.

Object conditions
Measurement method Measurement procedure Measured

Object Measurand conditions conditions quantity CV∗

Code by Comp./trained by Method Implem. by Procedure Test set Performed by value

mult-base wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.428

14.633

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.493
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.426
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.574
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.579
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.590
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.574

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.600

mult-word− wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.721

10.609

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.603
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.605
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.606
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.720
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.732
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.606

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.740

mult-word+ wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.719

10.44

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.604
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.607
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.607
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.723
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.733
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.607

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.736

mult-POS− wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.726

3.818

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.681
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.680
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.680
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.722
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.728
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.680

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.732

mult-POS+ wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.724

3.808

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.680
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.680
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.681
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.725
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.729
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.681

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.731

mult-dep− wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.703

4.5

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.660
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.650
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.651
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.699
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.711
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.651

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.710

mult-dep+ wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.693

4.387

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.661
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.652
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.653
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.699
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.712
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.653

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.716

Table continued on next page.
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Object conditions
Measurement method Measurement procedure Measured

Object Measurand conditions conditions quantity CV∗

Code by Comp./trained by Method Implem. by Procedure Test set Performed by value

mult-dom− wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.449

17.147

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.600
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.433
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.597
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.635
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.646
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.597

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.698

mult-dom+ wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.471

18.248

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.647
Va.& Ra. Arhiliuc et al.. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.447
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.647
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.696
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.711
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.647

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.726

mult-emb− wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.693

17.033

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.658
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.683
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.668
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.692
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.689
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.659

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.391

mult-emb+ wF1

Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Va.& Ra. 0.689

16.226

Va.& Ra. Huber & Coltekin wF1(o,t) Va.& Ra. OTE Va.& Ra. Huber & Coltekin 0.662
Va.& Ra. Arhiliuc et al. wF1(o,t) Va.& Ra. OTE Va.& Ra. Arhiliuc et al. 0.681
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.659
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Bestgen 0.681
Va.& Ra. Va.& Ra. wF1(o,t) ≈Va.& Ra. OTE Va.& Ra. Bestgen 0.684
Va.& Ra. Va.& Ra. wF1(o,t) Va.& Ra. OTE Va.& Ra. Cai. & But. 0.657

Cai. & But. Cai. & But. wF1(o,t) Cai. & But. OTE Va.&Ra. Cai. & But. 0.401

Table 7: Conditions of measurement for each measurement carried out for the multilingual essay scoring systems.
OTE = outputs vs.targets evaluation.
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