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Abstract

Coreference resolution over semantic graphs
like AMRs aims to group the graph nodes
that represent the same entity. This is a cru-
cial step for making document-level formal se-
mantic representations. With annotated data
on AMR coreference resolution, deep learn-
ing approaches have recently shown great po-
tential for this task, yet they are usually data
hungry and annotating data is costly. We pro-
pose a general pretraining method using vari-
ational graph autoencoder (VGAE) for AMR
coreference resolution, which can leverage any
general AMR corpus and even automatically
parsed AMR data. Experiments on bench-
marks show that the pretraining approach
achieves performance gains of up to 6% abso-
lute F1 points. Moreover, our model signifi-
cantly improves on the previous state-of-the-
art model by up to 11% F1 points.

1 Introduction

Abstract Meaning Representation (AMR) is a way
to preserve the semantic meaning of a sentence in a
graph (Banarescu et al., 2013). As shown in Figure
1, AMRs are directed and acyclic graphs where the
nodes and edges indicate concepts and their seman-
tic relations. As a sentence-level semantic repre-
sentation, AMRs have been shown to be effective
in many NLP tasks, including text summarization
(Liu et al., 2015; Dohare et al., 2018), information
extraction (Rao et al., 2017; Li et al., 2020b; Zhang
and Ji, 2021), and machine translation (Song et al.,
2019; Pham et al., 2020).

More recently, the NLP tasks that are beyond
the single-sentence level (Nallapati et al., 2016;
Rajpurkar et al., 2016; Li et al., 2017; Chen et al.,
2021) are attracting rising attention, and thus rep-
resenting multiple sentences with AMR becomes
important. To expand AMRs to represent multiple
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Figure 1: An example of multi-sentence AMR coref-
erence resolution. It contains two coreference clusters,
marked by blue and pink respectively: police in S1 and
They in S2; shop in S1 and the implicit mention of shop
(with dashed edge and node) in S2.

sentences, the task of AMR coreference resolution
(O’Gorman et al., 2018) has been proposed, aiming
at recognizing the concepts from multiple AMRs
that represent the same entity. Figure 1 illustrates
the AMR graphs of two consecutive sentences in
a news article. Given them as the input, an AMR
coreference resolver needs to group police and they
(colored with blue), as well as shop and the implicit
mention shop (dashed and colored with pink). Un-
like text-based coreference resolution, where dense
textual information is available, AMR coreference
resolution deals with sparsely connected graphs
and implicit graph nodes. More importantly, only a
handful of annotated data (around 8K AMRs) exists
for AMR coreference resolution. Furthermore, an-
notating such coreference information and sentence
AMRs requires linguists, making the annotation
very costly. Both situations add extra difficulties to
this task.

Early attempts on AMR coreference resolution
adopt rule-based methods. For instance, Liu et al.
(2015) only consider the nodes that represent en-
tities (e.g., police in Figure 1), and they rely on
string match to detect coreference. This method
can cause errors, as concepts with the same surface
string may not point to the same entity. It also fails
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to recognize any situations that involve a pronoun
(e.g., police and they). Anikina et al. (2020) build
a pipeline system that uses a textual coreference
resolution model (Lee et al., 2017) and a text-to-
AMR aligner (Flanigan et al., 2014). Though this
system can theoretically resolve many situations,
in fact, it suffers from severe error propagation
(Fu et al., 2021). With the availability of recent
human-annotated data (O’Gorman et al., 2018) on
AMR coreference resolution, later work starts ex-
ploring data-driven models. Fu et al. (2021) extend
a standard text-based coreference model (Lee et al.,
2017) on AMRs by replacing the LSTM encoder
with a graph neural network (GNN). They show a
significant performance boost over previous rule-
based methods, and their generated document-level
AMRs can help a downstream neural summariza-
tion system, demonstrating the potential of this
task. However, the performance is still far from sat-
isfactory, and they find that the main reason is the
lack of annotated data. This calls for approaches
that can leverage cheap and/or existing supervision
signals to make further improvements.

In this paper, we propose a model and a corre-
sponding pretraining method based on Variational
Graph Autoencoder (VGAE) (Kipf and Welling,
2016b). Our model extends AMRCoref (Fu et al.,
2021), the current state-of-the-art model, by re-
placing the core GNN encoder with an improved
VGAE encoder. Our model can leverage the re-
construction loss and variational restriction from
the VGAE module as additional supervision at no
extra cost. Since the loss by our VGAE model can
work on any AMR graphs, we also study pretrain-
ing our model on the full AMR bank1 with gold
or automatically parsed annotations. In this way,
the training signal can be further enriched; thus,
the data hunger issue can be alleviated. Though
there exist some work applying VAEs and VGAEs
on concept knowledge graphs (Li et al., 2020a),
corpus-level graphs (Xie et al., 2021) and text (Su
et al., 2018), we are the first to study VGAE on a
graph-based formal semantic representation, to the
best of our knowledge.

Experiments on the MS-AMR benchmark
(O’Gorman et al., 2018) show that our model out-
performs the previous state-of-the-art system by
11 absolute F1-score points. Besides, we find that
pretraining with a larger AMR bank is helpful re-

1https://catalog.ldc.upenn.edu/
LDC2020T02
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Figure 2: AMRCoref framework (Fu et al., 2021). The
dashed rectangle indicates the core graph encoding
component, which is also our main focus.

gardless of whether gold or silver AMR annotations
are used. This indicates another potential boost on
the performance if more automatically annotated
data can be used. Code and pretrained models are
made public2.

2 Baseline: AMRCoref

We take the end-to-end AMR coreference resolu-
tion model (AMRCoref, Fu et al. 2021) as our
baseline system. Generally, it adapts a text-based
end-to-end coreference model (Lee et al., 2017) on
AMRs by clustering AMR nodes instead of text
spans. Another major difference is that they also
consider omitted AMR nodes (e.g., the dashed node
shop in Figure 1), which are represented by their
parent nodes and the corresponding relation (e.g.,
depart-01 and :ARG1). As illustrated in Figure
2, AMRCoref consists of four essential modules:
input representation, graph encoding, node type
identification, and antecedent prediction.

2.1 Input Representation

As the first step of AMRCoref, it calculates the
embedding h(0)i for each AMR node xi from its
character-level embedding eci , token-level embed-
ding eti and fixed embedding eberti generated by a
pretrained BERT model:

h
(0)
i =W concept([eci ; e

t
i; e

bert
i ]) + bconcept, (1)

where W concept and bconcept are model parameters.
The character-level and token-level embeddings
can be learned from scratch. One can choose to
eliminate BERT embedding eberti as a simple base
model.

2https://github.com/IreneZihuiLi/
VG-AMRCoref

2791

https://catalog.ldc.upenn.edu/LDC2020T02
https://catalog.ldc.upenn.edu/LDC2020T02
https://github.com/IreneZihuiLi/VG-AMRCoref
https://github.com/IreneZihuiLi/VG-AMRCoref


2.2 Graph Encoder

Next, the representations H(0) = [h
(0)
1 , . . . , h

(0)
N ]

of all AMR nodes X = [x1, . . . , xN ] are sent to a
graph encoder together with the AMR edges. Since
the input AMRs are disconnected (each AMR alone
represents a sentence), Fu et al. (2021) heuristically
connect the root nodes of these sentence AMRs to
make a connected graph G. Specifically, G =
(X,A), where the edge set A consists of both the
original AMR edges and the added ones between
pairs of roots.

The graph encoder, fGRN , is based on the Graph
Recurrent Network (GRN, Song et al. 2018; Beck
et al. 2018). It utilizes the gated operations of an
LSTM (Hochreiter and Schmidhuber, 1997) step
to simultaneously update each node representation
hi by exchanging information from its incoming
N i
in and outgoing neighborsN i

out that can be easily
obtained from the edge set A:

m
(l−1)
in =

∑
j∈N i

in

[h
(l−1)
j ; rij ],

m
(l−1)
out =

∑
j∈N i

out

[h
(l−1)
j ; rij ],

h
(l)
i = LSTM(h

(l−1)
i , [m

(l−1)
in ;m

(l−1)
out ]),

(2)

where each rij represents the embedding of the
edge from xi to xj . After L steps of information
exchange, zi = [h

(0)
i ;h

(L)
i ] is used as the represen-

tation of node xi for the next step.

2.3 Concept Identification
The concept identification subtask is to determine
the type for each AMR node from 6 predefined
candidate types. Taking Figure 1 as an example,
these types are: func (functional node like and),
ent (entity node like police), ver (regular verbal
node like report-01), verx (x ∈ [0, 1, 2]) (verbal
node with implicit argument like depart-01).

Given the node representation zi from the graph
encoder, a feed-forward network (FFNNtype) with
softmax activation is adopted to calculate the prob-
ability distribution for its node type ptypei :

ptypei = softmax(FFNNtype(zi)). (3)

This subtask is introduced for detecting implicit
mentions as shown in Figure 1, and it can also
provide additional supervision defined by cross-
entropy loss:

Ltype = −
1

N

N∑
i=1

log ptypei [t̂i], (4)

where t̂i is the index of the correct node type for
node xi.

2.4 Coreference Clustering

In the last step, coreference clusters are predicted
by finding the antecedent for each AMR node. Tak-
ing node xi for example, the score of a precedent
node xj being its antecedent is defined as:

s(xj , xi) = fm(xj) + fm(xi) + fant(xj , xi),

fm(xi) = FFNNm([zi; p
type
i ]),

fan(xj , xi) = FFNNant([zj , zi]),
(5)

where FFNNm classifies if the given node involves
in a coreference link, and FFNNant determines if
the given node pair form a coreference relation.
Next, the scores are normalized into a probability
distribution via a softmax layer, and the probability
pi,j for xj being the antecedent of xi is:

pxj ,xi =
es(xj ,xi)∑

x′∈Y(xi) e
s(x′,xi)

, (6)

where Y(xi) represents all precedents of xi. The
antecedent loss is a marginal log-likelihood on all
correct antecedents of all the nodes, given the gold
clustering for node i is GOLD(xi):

Lant = − log

N∏
i=1

∑
x̂∈Y(xi)∩GOLD(xi)

px̂,xi . (7)

Finally, the training loss is a combination of
antecedent loss and node type prediction loss:

L = Ltype + Lant. (8)

3 Proposed Method: VG-AMRCoref

This section describes our proposed model (VG-
AMRCoref) that adopts Variational Graph Autoen-
coder (VGAE) to enable the cheap supervision of
graph reconstruction. For fair comparison, we re-
place the original graph encoder of AMRCoref (Fig-
ure 2) with our optimized VGAE module. By doing
so, we make it possible to pretrain our model on
other standard AMR data for stronger robustness
and generalizability. We illustrate the model frame-
work in Figure 3.

3.1 VGAE-based Graph Encoding

After obtaining node embeddings H(0) and the
edge set A from the Concept Representation step
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Figure 3: VG-AMRCoref model illustration: The model consists of three main components: Graph Encoder,
Concept Identification and Coreference Cluster Prediction.

(Sec.2.1), a VGAE graph encoder is applied to fur-
ther encode the input graph nodes into the represen-
tations with more contextual information. VGAE
consists of a local graph encoder and a a local graph
decoder.

Local Graph Encoder The local graph en-
coder functions as a typical graph neural network,
where the node features in the lth layer are defines
as:

H(l) = f(H(l−1), A). (9)

A typical VGAE model usually applies a Graph
Convolutional Network (GCN) (Kipf and Welling,
2016a) as its local graph encoder fGCN . Eq. 9 can
be further defined as:

fGCN
(
H(l), A

)
= φ

(
D̃

1
2 ÃD̃−

1
2H(l)W (l)

)
, (10)

where φ(·) is the Sigmoid activation function, Ã =
A+I , I is the identity matrix, and D̃ is the diagonal
node degree matrix of Ã.

We study equipping the vanilla VGAE model
with other major graph encoders, such as Graph At-
tention Network (GAT, Veličković et al. 2017) and
Graph Recurrent Network (GRN, Beck et al. 2018;
Song et al. 2018), to better capture the contextual
information of each node. The GAT encoder fGAT
considers attention from the neighbors:

fGAT

(
H(l), A

)
= φ(

∑
αW (l−1)H(l−1)),

α = Attention(H(l−1)), (11)

and the definition of the GRN encoder fGRN is
given in Eq. 2.

This local graph encoder also takes L layers.
Same with the baseline (Sec. 2.2), we choose the
hidden layer features after encoding to be Z =
[H(0);H(L)] for the next step. Besides, Z indicates

the stochastic latent variable, and it is modeled by
a Gaussian prior distribution

∏
iN (zi, 0, I). For

zi ∈ Z:

q(zi|X,A) = N (zi|µi, diag(σ2i )), (12)

we have µ = fµ(X,A) and logσ = fσ(X,A).

Local Graph Decoder The hidden layer rep-
resentation Z is also fed into a local graph decoder
of VGAE. This decoder reconstructs the edge setA
from Z. Typically, it is calculated by dot-product:

A′ = σ(ZZT ),

p(A′ | Z) =
N∏
i=1

N∏
j=1

p
(
A′ij | zi, zj

)
.

(13)

The loss from the VGAE module LV GAE is de-
fined by the reconstruction loss on the edge set
Ledge and the variational restriction on the hidden
parameters Lvar:

LV GAE = Ledge + Lvar
= Eq(Z|X,A)[log p(A

′|Z)]
−KL[q(Z|X,A)||p(Z)],

(14)

where KL[q(·)||p(·)] is the Kullback-Leibler diver-
gence between q and p.

3.2 Task Training
Next, the encoded AMR graph node Z from Eq. 12
is sent to the Concept Identification and Corefer-
ence Clustering step, which are described in Sec.
2.3 and 2.4. As shown in Figure 3, the overall loss
L comes from three parts: VGAE loss LV GAE ,
concept type loss Ltype and the antecedent loss
Lant, referring to Eq. 14, 4 and 7, respectively:

L = LV GAE + Ltype + Lant. (15)
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Data #Doc #AMR #Links #Nodes

MS-AMR Train 273 7,705 12,003 86,704
MS-AMR Dev 9 121 216 1,599
MS-AMR Test 9 201 404 2,745
LP Test 6 282 463 2,333

Pretraining
AMR-gold 6,254 49,405 591,918 631,128
AMR-silver 6,227 48,409 468,961 625,040

Table 1: Statistics on the datasets we use for AMR
Coreference Resolution.

Encoder MUC B3 CEAFφ4 Avg. F1

GRN 62.31 46.45 44.35 51.04
GCN 69.19 54.00 52.17 58.45
GAT 70.39 55.18 52.69 59.42

Table 2: Development results on MS-AMR regarding
multiple local graph encoders (Encoder).

3.3 Graph Encoder Pretraining
Eq. 14 shows that VGAE can be trained in a self-
supervised way, which only needs node features
X and the edge set A. So we propose to pretrain
the VGAE graph encoder using AMR graphs when
only AMR graphs are available. In this pretraining
stage, the loss function Lpt is defined as:

Lpt = LV GAE . (16)

After pretraining, the VGAE graph encoder will
be fine-tuned on the coreference resolution down-
stream task.

4 Experiments

4.1 Experimental Settings
Datasets Following previous work, we choose

the MS-AMR benchmark (O’Gorman et al., 2018),
which has manually annotated coreference informa-
tion over gold AMRs. It contains 273 documents
for training, 9 for development and 9 for testing.
In addition to the in-domain test set, we also eval-
uate on the Little Prince data (LP) that is anno-
tated by (Fu et al., 2021) for out-of-domain evalu-
ation. For pretraining, we choose the AMR bank
3.0 (LDC2020T02), the largest AMR corpus with
only regular sentence-level AMRs. Please note
that these AMRs are manually labeled and do not
contain comprehensive document-level coreference
annotations, thus they can not be utilized for task
training. We consider this dataset as AMR-gold.
To reduce the reliance on the annotated dataset, we
conduct another setting, AMR-silver: we take the

sentences of the AMR-gold dataset and apply a
well-trained neural AMR parser (Van Noord and
Bos, 2017) to generate silver AMR graphs. When
doing this, a few documents failed because of post-
processing issues3, so one may notice that it has
slight differences with AMR-gold, but we consider
this to be acceptable. Smatch F1 score (Cai and
Knight, 2013) on the silver results is 0.71, indicat-
ing an acceptable AMR parsing quality. We show
the statistics in Table 1.

Evaluation Metrics To be consistent with pre-
vious work (Fu et al., 2021), we apply three eval-
uation metrics and an average F1 of all: MUC F1
(Vilain et al., 1995), B3 F1 (Bagga and Baldwin,
1998) and CEAFφ4 F1 (Luo, 2005).

Hyperparameters For all of the experiment,
we follow Fu et al. (2021) to set hyperparameters
for fair comparison. For instance, the character
embedding and concept type dimension are 32; the
concept embedding dimension is 256. The pre-
trained BERT-base-cased model is used. We
choose the number of local graph encoder layer of
VGAE to be 3, an empirical value following Fu
et al. (2021), and provide more details in the Abla-
tion Study later. The optimizer is Adam (Kingma
and Ba, 2017). We report average results on 5 runs
with different random seeds.

Baselines We choose to compare with the fol-
lowing 4 models. Rule-based (Liu et al., 2015): it
merges entity nodes with the same surface string
to build document AMRs. Pipeline (Anikina
et al., 2020): it combines a pretrained text-based
coreference model and an AMR-to-text aligner
into a pipeline, where the text-based coreference
resolution results are projected onto AMRs via
AMR-to-text alignments. AMRCoref and AM-
RCoref+bert are the baselines (Section 2) without
and with BERT features, respectively.

4.2 Main Results
Since the local graph decoder has multiple choices
including GRN, GCN and GAT, as described in
Eq. 9, so we compare the performance on the de-
velopment set to select the best setting in Table 2.
Results show that our model can get the best per-
formance when applying GAT, so we choose this
setting in the main experiments.

Table 3 shows the main results on the test
set. Here we study three variations of our pro-
posed model: VG-AMRCoref learns node em-

3More details: https://github.com/RikVN/AMR
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In-domain Test Set Out-domain Test Set
Model MUC B3 CEAFφ4 Avg. F1 MUC B3 CEAFφ4 Avg. F1

Rule-based (Liu et al., 2015) 50.80 41.10 22.40 38.10 53.30 41.70 25.90 40.30
Pipeline (Anikina et al., 2020) 58.00 43.00 25.00 42.00 55.20 42.30 26.70 41.40
AMRCoref (Fu et al., 2021) 66.10 49.70 38.10 51.30 64.40 45.80 31.40 47.20
AMRCoref + bert (Fu et al., 2021) 72.50 64.10 50.60 62.40 69.90 61.90 48.50 60.10

Ours
VG-AMRCoref (GRN) 80.63 56.97 42.10 59.90±0.93 62.03 46.54 42.69 50.42±2.28

VG-AMRCoref 85.96 74.01 56.29 72.08±1.00 74.52 50.36 44.09 56.33±2.43

VG-AMRCoref + pretrain 88.62 75.54 57.40 73.85±1.16 78.27 55.43 52.82 62.18±1.79

VG-AMRCoref + pretrain + bert 90.25 76.43 53.80 73.49±1.28 82.89 58.59 48.97 63.48±1.63

Table 3: Main results: we compare variations of our proposed model with selected baselines, and report both
in-domain and out-domain performances.

beddings from scratch; VG-AMRCoref+pretrain
first pretrains the VGAE encoder using AMR-
gold, and then fine-tune on the task; VG-
AMRCoref+pretrain+bert is a model that adds
pretrained BERT embeddings further. These three
models are using GAT as the graph encoder. To
compare with Fu et al. (2021) that applies a GRN
as the graph encoder, we also conducte the VG-
AMRCoref (GRN) that applies the same encoder.
Both VG-AMRCoref (GRN) and VG-AMRCoref
can be fairly compared with AMRCoref, given
that they use the same training data and are under
the same setting (without BERT). When applying
GRN, our model improves about 8.6% and 3.2%
Average F1 gains on in- and out-domain. When
applying GAT, we could have a significant improve-
ment, specifically, 20.7% and 9.1% Average F1
gains on in- and out-domain. With pretraining,
VG-AMRCoref+pretrain performs better than VG-
AMRCoref, improving 1.8% and 5.8% on the Av-
erage F1 score. This shows that our graph pre-
training approach that learns from external data is
effective, especially on the out-domain. Finally,
we can notice that small gains can be found in the
two domains when integrating with BERT knowl-
edge. A possible reason is that only fixed BERT
embeddings are applied. Since AMRCoref is under-
trained, we see BERT improves the F1 scores by a
large margin there. Overall, our best model outper-
forms the best baseline by around 11.1% and 3.4%
on in- and out-domain. Besides, though there is a
performance gap between the in- and out- domain
test sets, our model shows improvements on both
two domains.

One may notice a significant gap between the
dev and test results when comparing Table 2 and 3,
which is also reported by Fu et al. (2021). After a
careful check on the data, we find that the average

Model MUC B3 CEAFφ4 Avg. F1

GAT Encoder 84.26 71.39 49.70 68.45
+ VGAE Lvar 86.29 71.84 54.47 70.87
+ VGAE Ledge 85.96 74.01 56.29 72.08

Table 4: Ablation study on VGAE loss components:
results on MS-AMR Test set.

cluster sizes of the dev and test sets are 3.6 and 5.6,
respectively. Since the model predicts as correct if
the predicted ancestor is in the same cluster as the
current mention, a larger cluster size gives better
chances to make correct decisions. We also calcu-
late the average distance between a mention to its
closest ancestor, and the values for the dev and test
sets are 7.1 and 5.8. This also indicates that the dev
set is even more difficult.

4.3 Ablation Study

We include ablation study on VGAE loss, number
of graph layers, and the affect of pretraining data
size.

VGAE Loss We first study how the VGAE
loss from Eq. 14 can affect model performance.
We start with a basic setting: applying GAT as
the graph encoder (GAT Encoder). Then we add
variational restriction (+VGAE Lvar), as well as
the reconstruction loss of edge set (+VGAE Ledge).
We show the results on the MS-AMR test set in
Table 4. With variational loss Lvar, we see an
improvement of about 2.4% of Average F1. And
with the edge set reconstruction loss Ledge, we see
the Average F1 increases again by 1.4%. In total,
we see an overall improvement of 3.6% with the
VGAE loss.

Number of Graph Layers Previous study
shows that more graph layers may hurt the per-
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formance (Zhou et al., 2020; Fu et al., 2021), due
to the over-smoothing issue led by message passing
over multiple layers on the graph. We compare 1
to 5 graph layers in the VGAE encoder, and show
the Average F1 score of two domains (test set) in
Figure 4. When the number of layers is 3, the
model achieves the best performance on both in-
and out-domain. The performance increases from
1 to 3, and decreases from 3 to 5. This observation
is consistent with the AMRCoref model.

Pretraining Data Size Our main results have
shown that pretraining on the AMR-gold dataset
makes a significant difference, especially for out-
domain. We further investigate if our model can
benefit from silver AMR data. We compare the
Average F1 score with different pretraining sizes
of AMR-gold and AMR-silver in Figure 5. In both
domains, the x-axis shows the number of pretrain-
ing data size. Gold and silver datasets have the
same trend: more pretraining data leads to better
performance. Though pretraining using the silver
dataset is slightly worse than the gold dataset, our
model can still improve. Specifically, while the
AMR parser (Van Noord and Bos, 2017) is not the
current state-of-the-art, results show that applying
silver dataset is positive. In the future, we plan
to optimize with better AMR parsers and larger
datasets to see if the silver data may achieve even
better results than the gold dataset.

5 Case Study

To further understand the predicted results of our
model, we compare our best performed model (VG-
AMRCoref+pretrain+bert) and the best baseline
model (AMRCoref+bert) with two case studies.

Figure 6 shows one example taken from the LP
test set. Given that the whole document is too long,
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Figure 5: Ablation study on pretraining data size: re-
sults on MS-AMR test set.

we keep a part of the content and highlight the
coreference cluster tokens with different colors to
indicate ground truth, base model prediction and
our model prediction. Note that we illustrate both
AMRs and original sentences to show the context
better, while the sentences were not directly partici-
pated in the training and testing. This content piece
shows a dialogue between two characters: me and
little prince. In the ground truth, the coref-
erence cluster is indicating little prince, and this
can be easily recognized from the token prince in
S1 and the token he in S5 and S6. However, to find
out if the token I in S3 belongs to this cluster, one
needs to read from S1. Because dialogues are going
in turns, it is important to figure out which charac-
ter said S3. Here, the answer should be little
prince (token I means himself) and should be
included in the cluster. This could be challeng-
ing due to the deep understanding of the previous
content and also the difficulty of long dependency.
Our model successfully recognized the coreference
tokens in this situation.

We illustrate another example from the MS-
AMR test set in Figure 7. As can be observed form
the ground truth, the highlighted tokens are indi-
cating the coreference cluster of the main character
in this article, I. The base model predicts a wrong
answer in S1 (who), and misses the correct token
I in that sentence. While both models ignore the
token I in S2 and S3, compare with the base model,
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S1:  For the little prince asked me abruptly -- as if seized by a 
grave doubt -- “It is true , is n't it , that sheep eat little bushes ?”

(a / ask-01
   :ARG0 (p / prince

            :mod (l2 / little))
   :ARG1 (t / true-01...

S2: “Yes , that is true .”
(t / true-01
   :ARG1 (t2 / that))

S3: “I    am glad !”
(g / glad-02
   :ARG1 (i /   i))

S4: I did not understand why it was so important…
(c2 / contrast-01
    :ARG2 (c / comment-01

             :ARG0 (h / he)
             :ARG1 (s / start-out-05 ...

S5:  “We would have to put them one on top of the other ,”  he 
said .

(s / say-01
   :ARG0 (h / he)
   :ARG1 (o / obligate-01 ...

S6: But he  made a wise comment : " Before they grow so big , 
the baobabs start out by being little ...
   ... :ARG2 (c / comment-01

             :ARG0 ( h / he )
             :ARG1 (s / start-out-05 ...

Highlight: Ground Truth Base Our

prince

p / prince

i / i 

I 

h / he

he

Figure 6: An example from LP Test set: for better
understanding, we also put the original sentences here
with the AMRs. (Best viewed in Color.)

our model is able to identify more correct corefer-
ence tokens. Consistent with the previous example
case, both models tend to predict only a part of the
ground truth that they are more confident with, in
order to keep a reasonable good performance.

While automatic evaluation only shows the over-
all performance, our case studies provide some
interesting observations. The base and our model
tend to predict fewer coreference nodes than the
ground truth, but our model can capture larger and
more accurate coreference clusters than the base
model.

6 Related Work

Encoding AMRs using Graph Neural Net-
works Recently, graph neural networks (GNNs)
have shown their simplicity and effectiveness in
many NLP tasks, especially in encoding graph-
structured input, such as knowledge graphs and
other task-specific graphs (Li et al., 2020a; Xiong
and Gao, 2019; Yin et al., 2019; Song et al.,
2020b). Some methods are proposed to encode
AMR graphs. For example, Graph Convolutional
Networks (GCNs, Kipf and Welling 2016a) and
some variations are well-studied for AMRs (Zhang
et al., 2020; Cai and Lam, 2020). On the other

S1: ...Well I    might have signs of something on the autism 
spectrum but who does n't have one or two ?    

  ... :ARG1 (p / possible-01
            :ARG1 (h / have-03
                     :ARG0 ( i / I   )
                     :ARG1 (t / thing...
  ...  :ARG2 (h2 / have-03
             :ARG0 (a2 / amr-unknown)
             :ARG1 (o2 / or
                      :op1 (t2 / thing...

S2: You guys know what  I  mean .
(k / know-01
   :ARG0 (y / y…mean-01
            :ARG0 ( i / I)))

S3: I  used to walk on my toes , but that was because I was 
born with strange toes that curled under and had to be 
straightened with surgery two years ago .

(c3 / contrast-01
    :ARG1 (w / walk-01
             :ARG0 ( i / I)
             :prep-on (t2 / toe
                          :part-of i)
             :time (u2 / use-03))...  

S4: My   brother 's autistic but I have n’t noticed this ...
             ... :ARG1 (a / autistic
             :domain (p4 / person

     :ARG0-of (h3 /have-rel-role-91                                              
  :ARG1 (i / I  )
  :ARG2 (b 
/brother))))...  

S5: But then I     do n't have a proper diagnosis and even having 
some symptoms might not mean you have a certain condition ...
   :ARG2 (a / and
        :op1 (h / have-03
            :ARG0 ( i / I  )
               :ARG1 (t2 / thing
                      :ARG2-of (d 
/diagnose-01)
                      :mod (p / proper))
               :polarity -)...

Highlight: Ground Truth Base Our

My

i / I 

I 

I  

i / I

i / I

Figure 7: An example from MS-AMR Test set: for a
better understanding, we also put the original sentences
here with the AMRs. (Best viewed in Color.)

hand, Song et al. (2019) applied Graph Recurrent
Networks (GRNs, Song et al. 2018) on AMRs,
achieving reasonable performance for neural ma-
chine translation. As a variant of GAT (Veličković
et al., 2017), relation-aware self-attention (Shaw
et al., 2018) is recently proposed and has been
shown more effective (Zhu et al., 2019; Song et al.,
2020a) than other GNN variants on presenting
AMRs for text generation. We have similar obser-
vations where GAT gives better results over GCN
and GRN on encoding AMRs for AMR coreference
resolution.

Graph Pretraining Previous work shows that
pretraining a model may bring better generalizabil-
ity and performance gain, such as the pretrained
language model, BERT (Devlin et al., 2018). There
is limited research that focuses on pretraining graph
neural networks. The work by Hu et al. (2019)
proposes two methods to pretrain GNNs in both
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individual node level and the entire graph level.
Though there are a few attempts to pretrain GNNs
in a similar way with BERT, i.e., Graph Trans-
former (Dwivedi and Bresson, 2020), and Knowl-
edge Graph Pretraining (Yu et al., 2020), there is
still limited study in other NLP tasks. Our work
fills this gap by taking advantage of knowledge
learned from external data.

Coreference Resolution Coreference resolu-
tion has long been an active research topic in NLP.
Recently, Clark and Manning (2016) proposed a re-
inforcement learning approach to optimize a neural
mention-ranking model for coreference. The first
end-to-end neural coreference resolution method
(Lee et al., 2017) targets span embeddings from
context-dependent boundary representations using
a head-finding attention mechanism. Then, Kantor
and Globerson (2019) proposed the Entity Equal-
ization mechanism to capture mentions in clusters
using a neural network. Applying these textual
coreference methods to AMR graphs requires extra
AMR-to-text alignment, which can cause severe
error propagation.

To promote multi-sentence AMR coreference
resolution, O’Gorman et al. (2018) annotated MS-
AMR dataset, which considered coreferences, im-
plicit role coreferences and bridging relations. Very
recent work by Fu et al. (2021) is the first end-to-
end AMR coreference resolution model for multi-
sentence. This model achieves better and robust
performance compared with selected baselines.

7 Conclusion

This work proposed a new model (VG-AMRCoref)
that is capable of self-supervised training for multi-
sentence AMR coreference resolution. It applies
VGAEs to encode document-level AMRs, signif-
icantly improving performance by up to 11% on
the F1 score. We further proposed a simple but
effective graph pretraining method using VGAEs,
which can simultaneously boost in in-domain and
out-domain performances. Analysis shows that
potential boost performance may happen if more
automatically parsed AMR data is available. One
future work will focus on applying larger scale sil-
ver AMR datasets for pretraining to improve AMR
coreference resolution. Another future direction is
to investigate the generated document-level AMRs
on more downstream tasks, like question answering
and dialogue understanding.
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Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
rnns and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290.

Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf Her-
mjakob, Kevin Knight, and Martha Palmer. 2018.
AMR beyond the sentence: the multi-sentence AMR
corpus. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
3693–3702, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Viet Pham, Long HB Nguyen, and Dien Dinh. 2020.
Semantic convolutional neural machine translation
using amr for english-vietnamese. In Proceedings
of the 2020 International Conference on Computer
Communication and Information Systems, pages 52–
56.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal
Daumé III. 2017. Biomedical event extraction us-
ing Abstract Meaning Representation. In BioNLP
2017, pages 126–135, Vancouver, Canada,. Associa-
tion for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468.

2799

https://doi.org/10.18653/v1/2021.acl-long.324
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P19-1066
https://doi.org/10.18653/v1/P19-1066
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.3115/v1/N15-1114
https://doi.org/10.3115/v1/N15-1114
https://aclanthology.org/H05-1004
https://aclanthology.org/H05-1004
https://aclanthology.org/C18-1313
https://aclanthology.org/C18-1313
https://doi.org/10.18653/v1/W17-2315
https://doi.org/10.18653/v1/W17-2315


Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using amr. Transactions of the As-
sociation for Computational Linguistics, 7:19–31.

Linfeng Song, Ante Wang, Jinsong Su, Yue Zhang,
Kun Xu, Yubin Ge, and Dong Yu. 2020a. Struc-
tural information preserving for graph-to-text gen-
eration. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7987–7998.

Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang,
Radu Florian, and Daniel Gildea. 2020b. Evi-
dence integration for multi-hop reading comprehen-
sion with graph neural networks. IEEE Transactions
on Knowledge and Data Engineering.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for amr-
to-text generation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pages 1616–
1626. Association for Computational Linguistics.

Jinsong Su, Shan Wu, Biao Zhang, Changxing Wu, Yue
Qin, and Deyi Xiong. 2018. A neural generative au-
toencoder for bilingual word embeddings. Informa-
tion Sciences, 424:287–300.

Rik Van Noord and Johan Bos. 2017. Neural seman-
tic parsing by character-based translation: Experi-
ments with abstract meaning representations. arXiv
preprint arXiv:1705.09980.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

Qianqian Xie, Jimin Huang, Pan Du, Min Peng, and
Jian-Yun Nie. 2021. Inductive topic variational
graph auto-encoder for text classification. In Pro-
ceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, pages
4218–4227. Association for Computational Linguis-
tics.

Fan Xiong and Jianliang Gao. 2019. Entity alignment
for cross-lingual knowledge graph with graph convo-
lutional networks. In IJCAI, pages 6480–6481.

Yongjing Yin, Linfeng Song, Jinsong Su, Jiali Zeng,
Chulun Zhou, and Jiebo Luo. 2019. Graph-based
neural sentence ordering. In Proceedings of the

Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI-19, pages 5387–5393. In-
ternational Joint Conferences on Artificial Intelli-
gence Organization.

Donghan Yu, Chenguang Zhu, Yiming Yang, and
Michael Zeng. 2020. Jaket: Joint pre-training
of knowledge graph and language understanding.
arXiv preprint arXiv:2010.00796.

Yan Zhang, Zhijiang Guo, Zhiyang Teng, Wei Lu,
Shay B. Cohen, Zuozhu Liu, and Lidong Bing. 2020.
Lightweight, dynamic graph convolutional networks
for AMR-to-text generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2162–2172,
Online. Association for Computational Linguistics.

Zixuan Zhang and Heng Ji. 2021. Abstract meaning
representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49.

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang.
2020. AMR parsing with latent structural infor-
mation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4306–4319, Online. Association for Computa-
tional Linguistics.

Jie Zhu, Junhui Li, Muhua Zhu, Longhua Qian, Min
Zhang, and Guodong Zhou. 2019. Modeling graph
structure in transformer for better amr-to-text gen-
eration. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5459–5468.

2800

https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.1162/tacl_a_00252
https://doi.org/10.18653/v1/P18-1150
https://doi.org/10.18653/v1/P18-1150
https://aclanthology.org/M95-1005
https://aclanthology.org/M95-1005
https://doi.org/10.18653/v1/2021.naacl-main.333
https://doi.org/10.18653/v1/2021.naacl-main.333
https://doi.org/10.24963/ijcai.2019/748
https://doi.org/10.24963/ijcai.2019/748
https://doi.org/10.18653/v1/2020.emnlp-main.169
https://doi.org/10.18653/v1/2020.emnlp-main.169
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397

