
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2390 - 2402

May 22-27, 2022 c©2022 Association for Computational Linguistics

ClusterFormer: Neural Clustering Attention for Efficient and Effective
Transformer

Ningning Wang1∗, Guobing Gan1∗, Peng Zhang1†, Shuai Zhang1,
Junqiu Wei2, Qun Liu3, Xin Jiang3

1College of Intelligence and Computing, Tianjin University, Tianjin, China
2The Hong Kong Polytechnic University, China

3Huawei Noah’s Ark Lab, China
{w_ning1215,ganguobing,pzhang,szhang96}@tju.edu.cn
junwei@polyu.edu.hk,{qun.liu,Jiang.Xin}@huawei.com

Abstract

Recently, a lot of research has been carried
out to improve the efficiency of Transformer.
Among them, the sparse pattern-based method
is an important branch of efficient Transform-
ers. However, some existing sparse methods
usually use fixed patterns to select words, with-
out considering similarities between words.
Other sparse methods use clustering patterns
to select words, but the clustering process is
separate from the training process of the tar-
get task, which causes a decrease in effective-
ness. To address these limitations, we design a
neural clustering method, which can be seam-
lessly integrated into the Self-Attention Mech-
anism in Transformer. The clustering task
and the target task are jointly trained and op-
timized to benefit each other, leading to signif-
icant effectiveness improvement. In addition,
our method groups the words with strong de-
pendencies into the same cluster and performs
the attention mechanism for each cluster inde-
pendently, which improves the efficiency. We
verified our method on machine translation,
text classification, natural language inference,
and text matching tasks. Experimental results
show that our method outperforms two typical
sparse attention methods, Reformer and Rout-
ing Transformer while having a comparable or
even better time and memory efficiency.

1 Introduction

Transformer (Vaswani et al., 2017) has been widely
used and achieved state-of-the-art results in a va-
riety of NLP tasks such as neural machine trans-
lation (Bahdanau et al., 2015), text classification,
etc. Its good effectiveness benefits from its core
component Self-Attention Mechanism which can
capture global dependencies well. However, the
large calculation and memory cost limit the fur-
ther application of Transformer on long sequence

∗The first two authors contributed equally
†Corresponding Author

tasks due to the complexity of O(N2d) of Self-
Attention. As a result, many research works have
been carried out to improve the efficiency of Trans-
former (Tay et al., 2020b). These efficient Trans-
formers can be roughly divided into two cate-
gories: approximation-based (Tay et al., 2020a;
Katharopoulos et al., 2020) and sparse pattern-
based methods (Qiu et al., 2020; Ho et al., 2019;
Beltagy et al., 2020; Liu et al., 2018).

Regarding approximation-based methods, some
works are based on low-rank approximation (Tay
et al., 2020a; Wang et al., 2020) while others
are based on kernels (Katharopoulos et al., 2020;
Choromanski et al., 2020). Specifically, Lin-
former (Wang et al., 2020) adopts a low-rank ap-
proximation idea and projects the length dimension
of keys and values to a lower dimension (N → k).
This reduces the complexity to O(Nkd). However,
the projection matrix in this method requires that all
input sequences must be filled to the same lengthN ,
which makes it cannot handle the variable-length
sequence well. Linear Transformer (Katharopou-
los et al., 2020) uses kernels and the associative
property of matrix multiplication to linearize the
softmax attention, which reduces the complexity
to O(Nd2). However, the approximation error to
the softmax matrix in Self-Attention can be large
in some cases (Xiong et al., 2021).

Sparse pattern-based methods introduce sparse
patterns into the attention mechanism and limit
the number of key vectors that the query vector
should pay attention to. Prior work (Child et al.,
2019; Qiu et al., 2020; Ho et al., 2019; Beltagy
et al., 2020; Liu et al., 2018) proposed to use fixed
sparse patterns to improve the efficiency of Self-
Attention. For example, Sparse Transformer (Child
et al., 2019) restricts the query to focus only on
keys that are nearby or at fixed intervals. Such
fixed sparse patterns do not consider the similarity
between the query and different keys, and directly
filter keys according to their location, which re-

2390

sults in a degradation of the model effectiveness.
More recently, the clustering sparse patterns are
proposed. Reformer (Kitaev et al., 2020) and Rout-
ing Transformer (Roy et al., 2021) use Locality
Sensitive Hashing (LSH) and K-Means algorithms,
respectively, to divide the words in the sequence
into different clusters, and then the attention op-
eration is restricted within each cluster indepen-
dently. In this way, they reduce the complexity to
O(N logNd) and O(N

√
Nd), respectively. How-

ever, in Reformer and Routing Transformer, both
LSH and K-Means only play the role of cluster
partitioning, but run separately from the attention
network training. In addition, these two methods
also have the problem of inconsistency in the simi-
larity measure between the clustering and attention
operation. LSH and K-Means respectively use the
hash value obtained by random projections and the
negative Euclidean distance as the similarity mea-
sure between the input vectors while the attention
operations use the inner product. Therefore, such
a sparse pattern idea often results in the reduced
effectiveness.

To address the reduced effectiveness issue of
many efficient Transformers, especially sparse
pattern-based methods, we propose Neural Clus-
tering Method to learn the sparse pattern of the
Attention. It can be seamlessly integrated into neu-
ral networks for joint training and optimization.
In our method, the cluster center (centroid) is up-
dated by a weighted sum of all word hidden states.
At the same time, the members of clusters are di-
vided according to the subordinate matrix of the
centroids and word hidden states. The optimiza-
tion of the clustering loss can guide the represen-
tation of word hidden states while learning cluster
centroids. The integration of the neural clustering
method and attention training enables our Neural
Clustering Attention to perform better than previ-
ous clustering-based sparse attention mechanisms.
Our Neural Clustering Method is a general cluster-
ing method, in the sense that in addition to being
integrated into the network of the specific task, it
is can handle clustering tasks alone.

Our overall model is called ClusterFormer and it
is obtained by replacing the Self-Attention Mecha-
nism in Transformer with Neural Clustering Atten-
tion Mechanism. In order to validate the benefits
of ClusterFormer, we have carried out comparison
experiments of the efficiency and effectiveness re-
spectively. For efficiency, we provide a detailed

analysis about the time and memory on dataset
20NEWS of text classification. Results show that
our model has a comparable or even better effi-
ciency compared with two typical sparse attention
models, Reformer and Routing Transformer. Espe-
cially, when the sequence length exceeds 2000, our
model, Routing Transfomer and Reformer reduce
the memory of Transformer by 53.8%, 60.8% and
31.8% while reducing the training time by 51.4%,
41.8% and 14.4%, respectively on GPU. For ef-
fectiveness, we test it on machine translation, text
classification, natural language inference, and text
matching tasks. Experimental results show that
on all tasks, our model consistently outperforms
Reformer and Routing Transformer. In particular,
our method improves the accuracy by 15.6% and
7.2% on SciTail datasets of natural language infer-
ence task compared with Reformer and Routing
Transformer, respectively.

The major contributions of our work are as fol-
lows:

• We propose a general end-to-end fuzzy clus-
tering method based on neural network,
named Neural Clustering Method, which can
dynamically learn weights of each word and
then update centroids by weighting all the in-
put words along with the training of specific
tasks.

• We design the Neural Clustering Attention
Mechanism based on our proposed cluster-
ing method to refactor Self-Attention Mecha-
nism. The experimental results show that our
method has comparable efficiency and bet-
ter effectiveness than typical sparse attention
models.

2 Related Work

2.1 Self-Attention Mechanism
The Self-Attention is the core component of Trans-
former (Vaswani et al., 2017). It extracts sequence
features by processing the interaction of three se-
quence matrices Q, K, and V . Referring to the
standard Transformer, its function can be written
as follows:

Attention(Q,K, V) = Softmax(
QKT

√
d

)V

Q,K, V = XWQ, XWK , XWV

(1)

where X ∈ RN×dmodel , Q, K,V ∈ RN×d,
WQ,W V ∈ Rdmodel×d, N is the length of the se-

2391

Word sequence
after sort

Query after
equal chunking

Key after
equal chunking

Word sequence
after clustering

1 2 3 4 5 6 7 8 9

1 5 2 3 4 6 7 8 9

1 5 2 3 4 6 7 8 9

1 5 2 3 4 6 7 8 9

𝑋1
𝑋2
𝑋3
𝑋4
𝑋5
𝑋6
𝑋7
𝑋8
𝑋9

X (Word Sequence)

×

U (Subordinate Matrix)

Clustering

Normalization

Sort

Word
Sequence

I (Cluster index)

×

𝑋𝑆(Sorted Word Sequence)

መ𝐶(New Centroids)C (Centroids)

𝐶1
𝐶2
𝐶3

1
2
2
2
1
2
3
3
3

𝑋1
𝑋5
𝑋2
𝑋3
𝑋6
𝑋4
𝑋7
𝑋8
𝑋9

መ𝐶1
መ𝐶2
መ𝐶3

（a）Neural Clustering Method （b） Sorting and Chunking Operation

Figure 1: (a) is the Neural Clustering Method. Its main idea is to update centroids by weighting all the word hidden
states and divide clusters according to the subordinate matrix. (b) is the sorting and chunking operations. It aims
to make each cluster perform the attention mechanism in parallel.

quence, dmodel is the dimensionality of the model,
and d is the dimensionality of the attention head. In
Self-Attention Mechanism, the interaction ofQ and
K gives the N ×N attention (weight) matrix, and
it leads to the complexity of O(N2d), which has
been one of the crucial limitation of Transformer.

2.2 Sparse variants of Transformer

Transformer has been developed into many variants
to reduce the complexity of the attention mecha-
nism. In these works, one of the main research
directions is to use a sparse attention to substitute
the quadratic-cost attention.

Some early works (Qiu et al., 2020; Ho et al.,
2019; Beltagy et al., 2020) have been proposed
to reduce the time complexity by restricting ev-
ery query to focus only on keys that are nearby or
at fixed intervals. This method fixes the sparsity
pattern without considering the similarity between
queries and keys, limiting its ability to assemble
critical information from large contexts. Different
from these works, our method attempts to automat-
ically aggregate critical keys for each query based
on dependency relationships.

Moreover, the clustering-pattern methods were
used in Self-Attention to implement a sparse atten-
tion. For example, Reformer (Kitaev et al., 2020)
and Routing Transformer (Roy et al., 2021) in-
troduce Locality-Sensitive Hashing and K-Means
algorithms, respectively, to reduce complexity to
O(N logNd) and O(N

√
Nd). However, in this

kind of method, the clustering process and train-
ing process are separate, which is a limitation in
improving effectiveness. Based on previous re-
searches, we proposed a novel Neural Clustering
Method, which can be seamlessly integrated into
the network of specific tasks for joint training and

optimization to improve effectiveness.

3 Model

In this section, we first introduce our Neural Clus-
tering Method. Then, we introduce our Neural
Clustering Attention Mechanism which combines
our clustering method and the Self-Attention Mech-
anism.

3.1 Neural Clustering Method

As shown in Figure 1 (a), our clustering method
takes word hidden states X ∈ RN×d and centroid
hidden states C ∈ Rk×d as inputs. C is initialized
randomly in the first layer. Then, we can get the
subordinate (similarity) matrix U between word
vectors and centroid vectors. It can be defined as:

Uij =
exp(φ(Ci, XjW

C))∑N
j=1 exp(φ(Ci, XjWC))

1 ≤ i ≤ k , 1 ≤ j ≤ N
(2)

where k is the number of clusters and N is the
length of sequence. WC ∈ Rdmodel×dmodel is a
parameter matrix. φ(·) is a similarity measure func-
tion and it is the inner product operation in this
scenario. Xj is the j-th row of matrix X and Ci

is the i-th row of matrix C. The subordinate value
Uij ∈ [0, 1] is the normalized similarity value be-
tween the i-th centroid vector and emphj-th word
vector, and it represents the degree of the word Xj

belonging to the centroid Ci.
Then, we get the updated centroids by weight-

ing all the word hidden states. The corresponding
formula is as follows:

Ĉi =
N∑

j=1

UijXjW
C 1 ≤ i ≤ k (3)

2392

Neural
Clustering
Method

X (Word Sequence)

C (Centroids) መ𝐶 (New Centroids) 𝑍𝑂1

𝑍𝑂2

𝑍𝑂3 Z (Output)

Chunking

𝑋𝑆(Sorted Word Sequence)

Next layer

Se
lf-A

tten
tio

n
 m

ech
an

ism

Se
lf-A

tten
tio

n
 m

e
ch

an
ism

Se

lf-A
tten

tio
n

𝑋1,2,3
𝑄

𝑋1,2,3
𝐾𝑉

𝑋1
𝑋2
𝑋3
𝑋4
𝑋5
𝑋6
𝑋7
𝑋8
𝑋9

𝑋1
𝑋5
𝑋2
𝑋3
𝑋6
𝑋4
𝑋7
𝑋8
𝑋9

Concat
Next layer

Resort

𝐶1
𝐶2
𝐶3

መ𝐶1
መ𝐶2
መ𝐶3

Figure 2: Neural Clustering Attention Mechanism. First, we group vectors with strong dependency into the same
cluster and get a new word sequence XS . Second, we carry out an equal chunking operation to get some block
sequences, and then perform the attention within each cluster separately.

where i and j represent the index value of the cen-
troid and word, respectively. Then we group the
word vectors according to the subordinate matrix
U , as follows:

Ij = Argmax(U:j) 1 ≤ j ≤ N (4)

where U:j is the j-th column of the matrix U and
function Argmax(·) assigns word hidden states to
the corresponding cluster according to the maxi-
mum subordinate value. Therefore, I ∈ RN repre-
sents the cluster index of all the word hidden states.
Then, we sort the word vectors according to the
cluster indexes I , as follows:

XS , I
′
= Sort(X, I) (5)

where the function Sort(·) is used to arrange word
hidden states belonging to the same cluster to ad-
jacent positions in ascending order of cluster in-
dex. XS ∈ RN×dmodel is the sorted word vectors.
I
′ ∈ RN is used to record the original positions

of shuffled word hidden states in the sequence and
will be used in Eq. 10. Through the above process,
we get the grouped and sorted word hidden states
XS , as shown in Figure 1 (a).

Clustering Loss: Clustering Loss (L1) is the
mean of the negative similarity scores of word hid-
den states and their belonging centroids, and it
will give guidance to learn the optimal clustering
scheme. It is defined as follows:

L1 = − 1

N

N∑
j=1

φ
(
Xj , ĈIj

)
(6)

where Xj , ĈIj represent the j-th word hidden state
in the sequence and the updated centroid. The
function φ(·) is a similarity measure function and
needs to be consistent with Eq. 2.

From the above analysis, our Neural Clustering
Method is based on the soft clustering. There is a
subordinate value between each pair of word vec-
tors and centroid vectors, which can quantitatively
describe the fuzzy relationship, so that the cluster-
ing can be carried out objectively and accurately.
In addition, Neural Clustering Method is based on
the neural network, which is easy to integrate into
the network corresponding to the target task. The
reconstruction of centroid vectors depends on all
the word vectors and is based on the continuous
optimization for the clustering objective function
(as shown in Eq. 6) and the task-specific objective
function to get better effectiveness.

In addition, we carried out a clustering compar-
ison experiments between our method and tradi-
tional clustering methods and observed improve-
ments of our method in effectiveness. See Ap-
pendix A for more details.

3.2 Neural Clustering Attention Mechanism

As described in Section 3.1, our Neural Clustering
Method groups word vectors with strong depen-
dency into the same cluster and outputs the sorted
word vectors XS . Then, we use different matrices
to project XS into matrix QS , KS , and V S , as
follows:

QS ,KS , V S = XSWQ, XSWK , XSWV (7)

where WQ, WK and W V ∈ Rdmodel×d are weight
matrices. QS , KS and V S are matrices Query,
Value and Key, respectively.

The number of members in each cluster may not
be uniform, which makes it difficult for all clusters
to perform the attention mechanism in parallel. For
parallel computing, after arranging word hidden
states in the same cluster to be in adjacent positions,

2393

we chunk them into equal blocks in order, as shown
in Figure 1 (b) (essentially similar to the masking of
Reformer). The process can be written as follows:

QOi = QS
(
(i− 1)

⌈
N

k

⌉
: i

⌈
N

k

⌉]
KOi = KS

(
(i− 2)

⌈
N

k

⌉
: i

⌈
N

k

⌉]
1 ≤ i ≤ k

(8)

where QOi ∈ Rw×d and KOi ∈ R2w×d are the
i-th Query block and Key block respectively. w
(w = N

k) is the number of members in each block.
Matrix V Oi has operations similar to KOi . Af-
ter chunking, Query contains one sequence block
while Key and Value consist of two contiguous
blocks, which corresponds to L2 mentioned in
Eq. 11. Each token in Query focuses on two blocks
of tokens so that the query can cover the words in
the same cluster as much as possible. Of course, it
does not have to be 2, and can be adjusted.

Then, we perform the attention operation within
the sequence block in parallel and concatenate the
output of each block.

ZOi = Attention(QOi ,KOi , V Oi)

ZO = Concat(ZO1 , ..., ZOk) 1 ≤ i ≤ k
(9)

where ZOi ∈ Rw×d and ZO ∈ RN×d. ZOi is the
output of the i-th sequence block after the attention
operation.

Finally, we recover the shuffled sequence (out-
put) to obtain the final result, as follows:

Z = Resort(ZO, I
′
) (10)

where the function Resort(·) aims to recover shuf-
fled sequence according to the original position
record vector I

′
obtained from the Eq. 5. Z ∈

RN×d is the output of Neural Clustering Attention.
For the autoregressive modeling, we provide a

Masked Neural Clustering Attention Mechanism to
prevent the leftward information flow. More details
can be found in Appendix B.

Centroid Sorting Loss: Centroid Sorting Loss
(L2) is the mean of the negative similarity scores of
the adjacent centroid pairs. In Eq. 8, each token in
Query block is expected to focus on two continuous
blocks of tokens. L2 makes word hidden states
belonging to adjacent clusters are also close to each
other. It is defined as follows:

L2 = − 1

k

((
k∑

i=2

φ
(
Ĉi, Ĉi−1

))
+ φ

(
Ĉ1, Ĉk

))
(11)

where k is the number of centroids, Ĉi is the i-
th updated centroid, and the meaning of φ(·) is
consistent with Eq. 6.

In our method, Clustering Loss, Centroid Sorting
Loss, and the loss of target tasks of the model are
assigned different weights for joint optimization.
More details can be found in Appendix C.

3.3 Analysis of Complexity

The complexity of Neural Clustering Attention
Mechanism comes from two parts: (i) Neural Clus-
tering Method. In this part, we need to calculate the
subordinate matrix between centroid hidden states
C ∈ Rk×d and the word hidden states X ∈ RN×d,
referring to the Eq. 2, which leads to the complex-
ity of O(Nkd). (ii) Attention Mechanism. For this
part, we compute attention within the Query block
(∈ Rk×w×d) and Key block (∈ Rk×2w×d), refer-
ring to the Eq. 9, which leads to the complexity of
O(kw2d) where w = N

k . In summary, the overall
complexity is O(Nkd+ kw2d). When k is set to√
N , the complexity is approximately O(N

√
Nd).

4 Experiments

In order to verify the effectiveness and efficiency
of our method, we carried out the following tasks.
We choose Transformer and its clustering-pattern
variants (Reformer, Routing transformer) as base-
line models. The implementations of the attention
layer of Reformer and Routing transformer refer
to the open source codes 12. For a fair comparison,
our proposed method and baseline models have the
same architecture, except for the attention layer.

4.1 Machine Translation

We validate our model on IWSLT14 German-
English and WMT14 English-German benchmarks,
which have been widely used for machine transla-
tion tasks. For IWSLT14 De-En, it contains about
160K training sentence pairs and is pre-processed
by using prepare-iwslt14en2de.sh 3. For WMT14
En-De, it contains about 4.5 million training sen-
tence pairs and it is pre-processed by using prepare-
wmt14en2de.sh 4. We use the BLEU score as the
effectiveness evaluation metric. Some hyperparam-
eters are set: the number of encoder and decoder

1https://github.com/lucidrains/reformer-pytorch
2https://github.com/lucidrains/routing-transformer
3https://github.com/pytorch/fairseq/blob/master/examples

/translation/prepare-iwslt14.sh
4https://github.com/pytorch/fairseq/blob/master/examples

/translation/prepare-wmt14en2de.sh

2394

Model IWSLT14 De-En WMT14 En-De
Transformer† (Vaswani et al., 2017) 34.4 27.3 / 26.4
Reformer† (Kitaev et al., 2020) 34.0 26.3 / 25.4
Routing Transformer† (Roy et al., 2021) 32.5 24.3 / 23.6
ClusterFormer 34.9 27.4 / 26.5

Table 1: Test BLEU on IWSLT14 (De-En) and WMT14(En-De). For IWSLT14, we reported Tokenized BLEU
results. For WMT14, we reported Tokenized BLEU and SacreBLEU results, arranged on the left and right. "†"
indicates that the results of the model are our implementations.

Model CR MR SUBJ MPQA 20NEWS Average
DiSAN (Shen et al., 2018) 84.8 – 94.2 90.1 – –
MPSAN (Dai et al., 2020) 85.4 – 94.6 90.4 – –
Transformer† (Vaswani et al., 2017) 86.2 81.8 95.4 89.9 83.6 87.38
Reformer† (Kitaev et al., 2020) 83.0 79.7 94.7 88.6 81.7 85.54
Routing Transformer† (Roy et al., 2021) 80.1 78.8 94.3 81.2 81.3 83.14
ClusterFormer 88.1 82.7 96.2 90.4 83.8 88.24

Table 2: Experimental results (Accuracy) on text classification tasks. "–" means that results are not reported.

layers L = 6, the number of centroids k = 3. The
dimension of word embedding and model dmodel

= 512. Specifically, for IWSLT14, the number of
heads is set to 4 and dff = 1024. For WMT14, the
number of heads is set to 8 and dff = 2048.

As shown in Table 1, our method boosts effec-
tiveness on both datasets. Specifically, the Tok-
enized BLEU score is improved by at least 1.5%
compared with other models on IWSLT14 datasets.
Compared with the latest models Reformer and
Routing Transformer, ClusterFormer respectively
has 2.6% and 7.4% improvement. Our method
shows the same trend on WMT14 datasets. Es-
pecially, compared with Reformer and Routing
Transformer, the Tokenized BLEU score of Cluster-
Former respectively has 4.2% and 12.8% improve-
ment and the sacreBLEU score respectively has
4.3% and 12.3% improvement.

4.2 Text Classification

We validate our model on five text classification
tasks. CR (Hu and Liu, 2004): Customer re-
views composed of positive or negative product
reviews; MR (Pang and Lee, 2004): Movie re-
views divided into positive and negative categories;
SUBJ: Subjectivity dataset where the target is to
classify a text as being subjective or objective;
MPQA (Wiebe et al., 2005): Opinion polarity de-
tection subtask. 20NEWS: A international standard
dataset for text classification, text mining, and in-
formation retrieval research. The dataset collects

about 20,000 newsgroup documents, divided into
a collection of newsgroups on 20 different topics.
Accuracy is used as the evaluation metric for these
datasets. In addition, for all datasets, word embed-
dings are initialized by GloVe (Pennington et al.,
2014) with 300-dimension. Some hyperparameters
are set: The number of encoder layers L = 2, the
dimension of model d = 300, the number of heads
h = 4, and the number of centroids k is adjusted
near the square root of the max length.

As shown in Table 2, ClusterFormer outperforms
all baseline models and improves the test accu-
racy by at least 3.16%, 1.70% for CR and SUBJ
datasets, respectively. In addition, on the MPQA
dataset, ClusterFormer achieves a comparable re-
sult with MPSAN. We also carry out the text clas-
sification task on the long text dataset 20NEWS.
The accuracy for the 20NEWS dataset increases at
least 0.24% compared with other models. In ad-
dition, compared with the latest models Reformer
and Routing Transformer, our model respectively
has 6.1%, 3.8%, 1.6%, 2.0%, 2.6% and 10.0%,
4.9%, 2.0%, 11.3%, 3.1% improvement for CR,
MR, SUBJ, MPQA and 20NEWS datasets.

4.3 Natural Language Inference (NLI) and
Text Matching

In this section, we conduct Natural Language
Inference tasks on SNIL, SciTail datasets, and
Text Matching tasks on Quora, WikiQA datasets.
SNLI (Bowman et al., 2015) is a benchmark dataset

2395

Model SNLI SciTail Quora
WikiQA

map mrr
DELTA (Han et al., 2019) 80.7 – – – –
Bigram-CNN (Yu et al., 2014) – – – 0.619 0.628
Transformer† (Vaswani et al., 2017) 83.7 76.6 85.4 0.601 0.613
Reformer† (Kitaev et al., 2020) 78.6 67.3 74.3 0.587 0.603
Routing Transformer† (Roy et al., 2021) 76.3 72.6 81.5 0.560 0.574
ClusterFormer 83.9 77.8 85.4 0.630 0.648

Table 3: Experimental results on Neural Language Inference (NLI) and Text Matching tasks.

for natural language inference. There are 570k
human-annotated sentence pairs with four labels.
SciTail (Khot et al., 2018) is an entailment classifi-
cation dataset constructed from science questions
and answers. Quora Question Pairs is a dataset for
paraphrase identification with two classes indicat-
ing whether one question is a paraphrase of the
other. The evaluation metric for these three data
sets is Accuracy. WikiQA (Yang et al., 2015) is a
retrieval-based question answering dataset based on
Wikipedia, which is composed of 20.4k/2.7k/6.2k
(train/dev/test) samples. The mean average pre-
cision (MAP) and mean reciprocal rank (MRR)
are used as the evaluation metrics. For SNIL and
Quora datasets, word embeddings are initialized by
GloVe (Pennington et al., 2014) with 300 dimen-
sions. For the rest, we use random word embedding
vectors with 300 dimensions. Some hyperparame-
ters are set: L = 1, the number of heads h = 6 and
the number of centroids k = 3.

As shown in Table 3, our model achieves the best
results for most datasets. Specifically, the accuracy
of our model is at least 1.6% higher than baseline
models on the SciTail dataset. On WikiQA, our
model improves the result by at least 1.8% and
3.2% in MAP and MRR evaluation metrics, respec-
tively. Our model and Transformer have consid-
erable effectiveness on SNLI and Quora datasets.
In addition, compared with the latest models Re-
former and Routing Transformer, our model has
6.7%, 15.6%, 14.9%, and 10.0%, 7.2%, 4.8% im-
provement for SNLI, SciTail, Quora datasets. For
the WikiQA dataset, the score increases 7.3% and
7.5% by our model in MAP and MRR compared to
Reformer. The score increases 12.5% and 13.0%
compared to Routing Transformer.

4.4 The choice of clustering numbers k

In this section, we test the effect of different cluster-
ing numbers (k) on the effectiveness and efficiency.

Model Acc(%) Memory(MiB) Time (s)
Transformer 84.8 21268 (x) 263.5 (y)
Our (k=5) 84.9 10980 (1.48x) 197.9 (1.25y)
Our (k=10) 84.3 9312 (1.56x) 169.4 (1.36y)
Our (k=20) 85.0 8542 (1.60x) 153.6 (1.42y)
Our (k=30) 84.5 8282 (1.61x) 147.6 (1.44y)
Our (k=60) 84.3 8072 (1.62x) 150.4 (1.43y)
Our (k=100) 83.6 7920 (1.63x) 151.7 (1.42y)
Our (k=300) 83.6 7830 (1.63x) 170.0 (1.35y)
Our (k=500) 83.2 8444 (1.60x) 194.4 (1.26y)

Table 4: Experimental results of different clustering
numbers k for ClusterFormer.

We test our model on the 20NEWS dataset of text
classification tasks with a NVIDIA V100 (16GB)
GPU. Some hyperparameters are set: the number of
encoder layers L is 2, the dimension of the model
d is 300, the batch size is 64, and the max sequence
length N is 1500.

From Table 4, we can draw the following conclu-
sions: (i) Accuracy of our model: In general, within
a certain range during the growth of k, the perfor-
mance of our model is relatively stable. When the
value of k goes beyond a certain threshold, the
performance of our model degrades; (ii) Memory
cost of our model: As the number of centroids k
increases, the memory cost of the model decreases
first and then increases; (iii) Training time of our
model: As the number of centroids k increases, the
training time of the model also decreases first and
then increases. Therefore, according to this law,
our method can simultaneously gain both the effec-
tiveness and efficiency of the model by determining
an appropriate k value through finite experiments.

4.5 Ablation study for Clustering Losses

In this section, we provide an ablation experiment
about the two kinds of clustering losses. We ver-
ify the effectiveness of the two loss modules by
assigning different weight. Some hyperparameters

2396

(a) (b)

Figure 3: (a), (b) is the training and inference time versus the sequence length on GPU.

Datasets / Weight(L1/L2) N/N N/Y Y/N Y/Y
SciTail(Acc) 77.19 77.75 75.96 78.32

WikiQA(map) 0.612 0.620 0.619 0.631
WikiQA(mrr) 0.636 0.640 0.633 0.648

Table 5: Experimental results of Clustering Loss abla-
tion. Specifically, ’N’ represents the weight is zero and
’Y’ represents the weight is non-zero.

are set: the number of encoder layers L is 1, the
dimension of model d is 300, the batch size is 128
and the max sequence length N is 500.

From Table 5, the experimental result shows that
both L1 and L2 contribute to the performance. For
example, on dataset SciTail, the accuracy with the
best result is improved by 1.46% (acc) compared
with the result without the two losses. On dataset
WikiQA, the accuracy with the best result is im-
proved by 3.10% (map), 1.89% (mrr) compared
with the result without the two losses.

4.6 Time and Memory Analysis

In this section, we provide a comparison experi-
ment on dataset 20NEWS about the time and mem-
ory cost for different models. About the dataset, its
average sequence length is approximately 280 and
the maximum sequence length exceeds 10,000. To
compare time and memory cost, we set the range
of sequence length N as (0, 2000] and batch size
to 20. We test the memory and time cost on a
NVIDIA V100 GPU. We take the time of 1000
steps forward propagation of the model as the in-
ference time, and the time of 1000 steps forward
and back propagation as the training time.

As shown in Figure 4, as the sentence length in-
creases, both Routing Transformer and our model
can significantly reduce memory cost compared to
Transformer. When N exceeds 2000, our model,
Routing Transfomer and Reformer reduce the mem-
ory by 53.8%, 60.8%, and 31.8%, respectively.

As shown in Figure 3, the training time of Trans-

Figure 4: Memory cost versus the sequence length.

former increases significantly with increasing se-
quence length, while our model and Routing Trans-
former have a relatively small increase on GPU de-
vices. When N is 2000, our model, Routing Trans-
fomer and Reformer reduce the training time by
51.4%, 41.8%, and 14.4%. However, the inference
speed of these improvements is inferior compared
with Transformer, which may be caused by the de-
crease of the model parallelism. The above analysis
fully demonstrates the efficiency and effectiveness
of our proposed Neural Clustering Mechanism.

5 Conclusion

In this paper, we propose a Neural Clustering Atten-
tion Mechanism to address the reduced effective-
ness issue in sparse attention methods. This issue
is mainly caused by the introduction of a sparse pat-
tern that is separated from the target task or does
not consider the similarity between words. In our
method, we design a neural clustering algorithm to
better capture critical pairs of dependencies. We
integrate this clustering algorithm and the neural
network to jointly train and optimize with specific
tasks together to further contribute to the effective-
ness and efficiency. The experimental results show
that our model can achieve better effectiveness and
a comparable or even better efficiency, compared
with the latest typical sparse attention models, Re-
former and Routing Transformer.

2397

Acknowledgements

This work is supported in part by the state
key development program of China (grant
No.2017YFE0111900), Natural Science Founda-
tion of China (grant No.61772363), PolyU internal
fund (grant No.1-BD47) under the research project
(P0039657) of the Hong Kong Polytechnic Univer-
sity, and the Beijing Academy of Artificial Intelli-
gence(BAAI).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Iz Beltagy, Matthew E. Peters, Arman Cohan, et al.
2020. Longformer: The long-document transformer.
CoRR, abs/2004.05150.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, David Belanger,
Lucy Colwell, et al. 2020. Masked language mod-
eling for proteins via linearly scalable long-context
transformers. CoRR, abs/2006.03555.

Biyun Dai, Jinlong Li, and Ruoyi Xu. 2020. Mul-
tiple positional self-attention network for text clas-
sification. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 7610–7617. AAAI Press.

Kun Han, Junwen Chen, Hui Zhang, Haiyang Xu, Yip-
ing Peng, Yun Wang, Ning Ding, Hui Deng, Yonghu
Gao, Tingwei Guo, Yi Zhang, Yahao He, Baochang
Ma, Yulong Zhou, Kangli Zhang, Chao Liu, Ying
Lyu, Chenxi Wang, Cheng Gong, Yunbo Wang, Wei
Zou, Hui Song, and Xiangang Li. 2019. DELTA: A
deep learning based language technology platform.
CoRR, abs/1908.01853.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn,
and Tim Salimans. 2019. Axial attention in multi-
dimensional transformers. CoRR, abs/1912.12180.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear at-
tention. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event, volume 119 of Proceed-
ings of Machine Learning Research, pages 5156–
5165. PMLR.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5189–5197. AAAI Press.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summariz-
ing long sequences. In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages 271–
278, Barcelona, Spain.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih,
Sinong Wang, and Jie Tang. 2020. Blockwise self-
attention for long document understanding. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 2555–2565, Online. As-
sociation for Computational Linguistics.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based

2398

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/2004.05150
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2006.03555
http://arxiv.org/abs/2006.03555
http://arxiv.org/abs/2006.03555
https://aaai.org/ojs/index.php/AAAI/article/view/6261
https://aaai.org/ojs/index.php/AAAI/article/view/6261
https://aaai.org/ojs/index.php/AAAI/article/view/6261
http://arxiv.org/abs/1908.01853
http://arxiv.org/abs/1908.01853
http://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1912.12180
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
http://proceedings.mlr.press/v119/katharopoulos20a.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=Hyg0vbWC-
https://openreview.net/forum?id=Hyg0vbWC-
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.findings-emnlp.232
https://doi.org/10.18653/v1/2020.findings-emnlp.232
https://doi.org/10.1162/tacl_a_00353

sparse attention with routing transformers. Transac-
tions of the Association for Computational Linguis-
tics, 9:53–68.

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2018. Disan: Di-
rectional self-attention network for rnn/cnn-free lan-
guage understanding. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5446–5455. AAAI Press.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan,
Zhe Zhao, and Che Zheng. 2020a. Synthesizer:
Rethinking self-attention in transformer models.
CoRR, abs/2005.00743.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2020b. Efficient transformers: A survey.
CoRR, abs/2009.06732.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768.

Janyce Wiebe, Theresa Wilson, et al. 2005. Annotating
expressions of opinions and emotions in language.
Lang. Resour. Evaluation, 39(2-3):165–210.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis
Chakraborty, Mingxing Tan, Glenn Fung, Yin
Li, and Vikas Singh. 2021. Nyströmformer:
A nyström-based algorithm for approximating
self-attention. CoRR, abs/2102.03902.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer
sentence selection. CoRR, abs/1412.1632.

2399

https://doi.org/10.1162/tacl_a_00353
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16126
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16126
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16126
http://arxiv.org/abs/2005.00743
http://arxiv.org/abs/2005.00743
http://arxiv.org/abs/2009.06732
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2006.04768
http://arxiv.org/abs/2006.04768
https://doi.org/10.1007/s10579-005-7880-9
https://doi.org/10.1007/s10579-005-7880-9
http://arxiv.org/abs/2102.03902
http://arxiv.org/abs/2102.03902
http://arxiv.org/abs/2102.03902
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
http://arxiv.org/abs/1412.1632
http://arxiv.org/abs/1412.1632

A Comparison experiment for clustering
methods

In this section, we carry out the comparison experi-
ment between the Neural Clustering Method and
other clustering methods to verify the effectiveness
of our clustering method.

Firstly, according to the division mode, we intro-
duce the following two kinds of clustering methods.

Hard Clustering: Each element to be recog-
nized is strictly divided into a certain cluster . It
defines an either/or relationship R ∈ {0, 1} be-
tween the element and clusters.

Soft Clustering (Fuzzy Clustering): Each ele-
ment to be recognized is subordinate to all clusters
(with different subordinate values). It defines a
fuzzy relationship U ∈ [0, 1] between the element
and clusters.

Regarding the selection of the comparative clus-
tering method, we chose the classic hard clustering
algorithm K-means (used for Routing Transformer)
and the soft clustering algorithm SOM, a compet-
itive neural network. In addition, since Locality
Sensitive Hashing (used for Reformer) cannot con-
struct the loss function (no iteration condition), it
cannot be used for the following clustering task on
the MNIST dataset. In the experiment, we set the
number of centroids k to 10, 50, 100, 200, and 300
respectively.

Data set SOM K-Means Proposed method
MNIST(k=10) 59.8 59.2 60.7(+0.9, +1.5)
MNIST(k=50) 80.9 82.5 82.5(+1.6, +0)
MNIST(k=100) 87.8 87.7 90.1(+2.3, +2.4)
MNIST(k=200) 91.2 90.7 91.8(+0.6, +1.1)
MNIST(k=300) 93.1 92.0 93.6(+0.5, +1.6)

Table 6: Comparison of clustering accuracy of different
clustering algorithms on MNIST task.

As shown in Table 6, our method consistently
has the best effectiveness in experiments with dif-
ferent centroids. In particular, when the number of
centroids exceeds 300, the accuracy of our method
can reach 93.6, which improved the accuracy by
0.54% and 1.74% compared with SOM and K-
Means, respectively. From the above analysis, we
have confirmed that Neural Clustering Method is
a general clustering method. It can also achieve
better effectiveness compared with K-Means and
SOM when handling clustering tasks alone.

B Masked Neural Clustering Attention
Mechanism

For autoregressive modeling, we provide a Masked
Neural Clustering Attention Mechanism to prevent
the leftward information flow. We first obtain the
original position indexes of the QOi ,KOi matrix.
The formula is as follows:

IQ
Oi

= I
′(
(i− 1)

⌈
N

k

⌉
: i

⌈
N

k

⌉]
IK

Oi
= I

′(
(i− 2)

⌈
N

k

⌉
: i

⌈
N

k

⌉]
1 ≤ i ≤ k

(12)

where IQ
Oi ∈ Rw and IK

Oi ∈ R2w. IQ
Oi and

IK
Oi are the original position indexes of the i-th

sequence block QOi and KOi respectively.
Then, we extend IQ

Oi in the second dimension
to get MQOi ∈ Rw×2w, and extend IK

Oi in the
first dimension to get MKOi ∈ Rw×2w. Therefore,
we can obtain a mask matrix MOi for the i-th se-
quence block by comparing these position indexes,
as follows:

MOi
uv =MKOi

uv ≥MKOi

uv

1 ≤ i ≤ k , 1 ≤ u ≤ w , 1 ≤ v ≤ 2w
(13)

where MOi ∈ Rw×2w is the mask matrix of the
i-th block and the MOi is composed of either 0 or
1. MOi

uv is the value of the u-th row and v-th column
of the matrix MOi . Then, for each word in Query
block, it will mask the words whose index value
in Key block is greater than it according to mask
matrix MOi , as follows:

SOi
uv =

d∑
m=1

QOi
umK

Oi
vmM

Oi
uv

1 ≤ i ≤ k , 1 ≤ u ≤ w , 1 ≤ v ≤ 2w

(14)

where SOi ∈ Rw×2w is the similarity matrix of
the i-th sequence block. The subsequent opera-
tions are the same as Neural Clustering Attention
Mechanism.

C Optimization of the multi-task
learning for ClusterFormer

As shown in Figure 1, our model, ClusterFormer,
consists of two joint training tasks, clustering tasks,
and specific tasks of the model. Therefore, it con-
tains the loss from the two tasks. The loss functions
related to the clustering task are Clustering Loss
(L1) and Centroid Sorting Loss (L2). Their equa-

2400

Evaluation Metrics Model/Length 2500 5000 7500 10000 15000 25000 35000 45000 55000
Transformer 3271 7663 15519 – – – – – –

Memory(MiB) Reformer 2699 3807 4795 6067 9515 15867 – – –
Routing Transformer 2129 2467 2841 3189 3779 5477 7451 9117 11397
ClusterFormer 2257 2689 3165 3623 4435 6839 9647 12553 15695
Transformer 46.5 127.6 260.9 – – – – – –

Training Time(s) Reformer 30.7 51.2 72.3 89.0 135.0 252.1 – – –
Routing Transformer 24.8 38.5 58.5 69.8 114.9 207.2 343.4 490.1 684.6
ClusterFormer 30.2 44.8 60.4 77.2 115.4 197.1 277.2 375.6 461.3

Table 7: Memory efficiency (measuring unit: MiB) and Training-time efficiency(measuring unit: second) of dif-
ferent methods under the ultra-long sequence condition. ’-’ represent memory cost exceeds the upper limit of the
GPU device and the corresponding training time can not be provided.

tions are as follows:

L1 = − 1

N

N∑
j=1

φ(Xj , ĈIj)

L2 = − 1

k
((

k∑
i=2

φ(Ĉi, Ĉi−1)) + φ(Ĉ1, Ĉk))

(15)

where X and C are respectively word vectors and
centroid vectors. N is the length of the input and
k is the number of clusters. The loss function of a
specific task (e.g., text classification) is formulated
as follows:

L3 = −
n∑

i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (16)

where ŷi is predictive value and yi is the corre-
sponding target value. Then, the overall loss func-
tion can be written as:

Ltotal(X,C,W, b) = µL1 + νL2 + λL3 (17)

where C, W , and b are respectively centroid pa-
rameters, weight parameters, and bias parameters
in ClusterFormer. µ, ν, and λ ≥ 0 are non-negative
coefficients, which are used to adjust the proportion
of the importance of corresponding tasks.

Therefore, we can obtain the optimal parameters
in the neural network by minimizing the loss func-
tion Ltotal through gradient descent, as follows:

ci = ci − η
∂Ltotal(X,C,W, b)

∂ci
1 ≤ i ≤ k × dmodel

wj = wj − η
∂Ltotal(X,C,W, b)

∂wj
1 ≤ j ≤ m

br = br − η
∂Ltotal(X,C,W, b)

∂br
1 ≤ r ≤ n

(18)

where ci, wi and bi represent the element value of
the corresponding vectors. dmodel is the dimension-
ality of the model. m and n represent the number
of weight and bias parameters, respectively. η is

Figure 5: Comparison of training loss on SNLI dataset.

the learning rate. From the above, it can be seen
that the update of centroid, weight, and bias pa-
rameters is the result of multi-task joint learning in
ClusterFormer.

D Convergence Analysis

In this section, we provide a comparison experi-
ment on the SNLI dataset about the convergence
speed for standard Transformer and efficient Trans-
formers during training, as shown in Figure 5. In
our experiment, the epochs of different models to
achieve convergence is: Transformer has 21 epochs,
Reformer has 24 epochs Routing Transformer has
29 epochs and ClusterFormer has 19 epochs. Com-
pared with Transformer, our model has a compar-
ative convergence rate and is more stable. In ad-
dition, compared with the latest model Reformer
and Routing Transformer, our model not only has a
faster and more stable convergence speed, but also
has better effectiveness.

E Comparison experiment of different
methods under the ultra-long sequence
condition

In this section, we have supplemented the experi-
ment of time and memory cost in different methods
on extremely long sequence tasks. We tested them
on text classification of the 20NEWS dataset and
trained them on a NVIDIA V100 GPU. We set the

2401

Model MNLI QQP QNLI SST2 CoLA STSB MRPC RTE Average
Bert-Small-uncased 77.6/77.0 68.1/87.0 86.4 89.7 27.8 78.8/77.0 83.4/76.2 61.8 74.23
Pretrained ClusterFormer 75.21/75.7 83.1/86.9 82.5 88.3 34.2 82.7/82.4 85.2/77.7 60.3 76.18

Table 8: GLUE Dev results, the “Average” column represents the average of all datasets scores. F1 and accu-
racy scores are reported for QQP and MRPC. Spearman correlations are reported for STSB. Accuracy scores are
reported for the other tasks.

number of centroids k to the square root of the max
length and set the batch size to 2 (constrained by
resources).

As shown in Table 7, we can see that our method
has a better efficiency advantage on long sequences
compared with Transformer. And as the sequence
length increases, the advantage in memory and
training time are even more significant.

F Pretraining experiment with the
Neural Clustering Attention
Mechanism

In this section, we pretrain a model with the Neural
Clustering Attention Mechanism with two unsu-
pervised tasks, masked language modeling (MLM)
and next sentence prediction (NSP). The parame-
ter settings of our pretraining model are similar to
BERT-small-uncased. Some hyperparameters are
set: the number of layers L is 4, the hidden size is
512, and the number of heads h is 8.

For downstream tasks, we use the General Lan-
guage Understanding Evaluation (GLEU) bench-
mark which is a collection of diverse natural lan-
guage understanding tasks. We use a batch size
of 32 and fine-tune On a scale of 3 to 10 epochs
over the data for all GLEU tasks. For each task,
we selected the best fine-tuning learning rate (5e-5,
4e-5, 3e-5, and 2e-5) on the Dev set.

As shown in Table 8, experimental results
demonstrate that our method can have a good per-
formance improvement through Pretraining. Es-
pecially, compared with the Bert-Small-uncased,
pretraining ClusterFormer respectively has 23.0%,
4.9% / 7.0%, and 2.2% / 2.0% improvement on
CoLA, STSB, and MRPC datasets. The experimen-
tal results show that our model has the potential
to do more NLP tasks including pretraining and
non-pretraining tasks.

2402

