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Abstract

In dialogue state tracking, dialogue history is
a crucial material, and its utilization varies be-
tween different models. However, no matter
how the dialogue history is used, each existing
model uses its own consistent dialogue history
during the entire state tracking process, regard-
less of which slot is updated. Apparently, it
requires different dialogue history to update
different slots in different turns. Therefore, us-
ing consistent dialogue contents may lead to
insufficient or redundant information for dif-
ferent slots, which affects the overall perfor-
mance. To address this problem, we devise
DiCoS-DST to dynamically select the relevant
dialogue contents corresponding to each slot
for state updating. Specifically, it first retrieves
turn-level utterances of dialogue history and
evaluates their relevance to the slot from a com-
bination of three perspectives: (1) its explicit
connection to the slot name; (2) its relevance to
the current turn dialogue; (3) Implicit Mention
Oriented Reasoning. Then these perspectives
are combined to yield a decision, and only the
selected dialogue contents are fed into State
Generator, which explicitly minimizes the dis-
tracting information passed to the downstream
state prediction. Experimental results show that
our approach achieves new state-of-the-art per-
formance on MultiWOZ 2.1 and MultiWOZ
2.2, and achieves superior performance on mul-
tiple mainstream benchmark datasets (includ-
ing Sim-M, Sim-R, and DSTC2).1

1 Introduction

Task-oriented dialogue systems have recently at-
tracted growing attention and achieved substan-
tial progress. Dialogue state tracking (DST) is
a core component, where it is responsible for
interpreting user goals and intents and feeding

∗Corresponding author.
1Code is available at

https://github.com/guojinyu88/DiCoS-master

S1:Good morning! How can I help you?

S2:The alpha-milton guest house is in the north and moderately priced. 

Would you like to book a stay?

U2:I need something cheaply priced.

U1:I'm looking to stay at a guesthouse while I'm in town. 

I don't need internet access, so don't worry about that.

S3:We have 9 guesthouses that match your search. Would you like to narrow it down?

S4:May i suggest the Worth House? It is a cheap, 4 star hotel in northern Cambridge. 

U4: How long can I book it from Monday for 7 people?

U3:I don't care as long as it's a guesthouse located in the north for cheap. 

S5: You can book it for 3 nights.

S6:Your booking for 3 nights was a success! Is there anything else I can help you with?

U6:Thank you. Are there any cheap restaurants near the hotel as well?

U5: That's fine. Please book it for me.

S7:Just to clarify, are you looking for a cheap restaurant in the north area of town?

S8:I'm sorry, there are no Swiss restaurants in the north side of town. 

Is there a different food choice you would like to try?

U8:I see. Hmm. What about Indian?

U7:Yes. This restaurant should serve swiss food too.

S9:How about the Royal Spice, it's a cheap Indian place in the north part of town.

S10:No problem, address is Victoria Avenue Chesterton, postcode cb41eh.

U10:Thank you.  I would also like to book a taxi to get from the guesthouse to the restaurant. 

U9:Thank you, please provide the address and the postcode. 

hotel-type: ['guesthouse']

hotel-pricerange: ['cheap']hotel-type: ['guesthouse']

hotel-name: ['worth house'] hotel-bookday: ['monday'] hotel-bookpeople: ['7'] hotel-bookstay: ['3']...

hotel-name: ['worth house'] restaurant-name: ['royal spice']

...

... taxi-departure: ['worth house'] taxi-destination: ['royal spice']

Figure 1: An example of multi-domain dialogues. Ut-
terances at the left and the right sides are from system
and user, respectively. Each red slot value in the figure
indicates that it is updated in its turn.

downstream policy learning in dialogue manage-
ment. The common practice treats it as a prob-
lem of compacting the dialogue content into a
series of slot-value pairs that represent informa-
tion about the user goals updated until the cur-
rent turn. For example, in Figure 1, the dialogue
state at turn 2 is {(“hotel− type”, “guesthouse”),
(“hotel − pricerange”, “cheap”)}.

In dialogue state tracking, dialogue history is
a crucial source material. Recently, granularity
has been proposed to quantify the utilization of
dialogue history(Yang et al., 2021). In DST, the
definition of granularity is the number of dialogue
turns spanning from a certain dialogue state in
the dialogue to the current dialogue state. Tra-
ditional DST models usually determine dialogue
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states by considering only utterances at the cur-
rent turn (i.e., granularity = 1), while recent
researches attempt to utilize partial history (i.e.,
granularity = k, k < T ) or introduce all dia-
logue history information into the prediction (i.e.,
granularity = T ). However, no matter what gran-
ularity is used, we find that each model uses a
constant granularity it determines, regardless of
which slot is being updated. Apparently, it requires
different granularity for different slots in different
turns. For example, in Figure 1, the granularity re-
quired for slot “hotel−name”, “hotel−bookday”,
and “hotel− bookpeople” in turn 5 is 2, while slot
“hotel− bookstay” in turn 5 requires a granularity
of 1. Therefore, using a constant granularity may
lead to insufficient input for updating some slots,
while for others, redundant while confusing con-
tents can become distracting information to pose a
hindrance, which affects the overall performance.

Furtherly, granularity means directly working on
all dialogue contents from a particular turn to the
current turn, regardless of the fact that there are still
dialogue contents that are not relevant to the slot.
Therefore, if it is possible to break the limitation
of granularity and to dynamically select relevant
dialogue contents corresponding to each slot, the
selected dialogue contents as input will explicitly
minimize distracting information being passed to
the downstream state prediction.

To achieve this goal, we propose a DiCoS-DST
to fully exploit the utterances and elaborately se-
lect the relevant dialogue contents corresponding
to each slot for state updating. Specifically, we re-
trieve turn-level utterances of dialogue history and
evaluate their relevance to the slot from a combi-
nation of three perspectives. First, we devise an
SN-DH module to touch on the relation of the di-
alogue and the slot name, which straightforward
reflects the relevance. Second, we propose a CT-
DH module to explore the dependency between
each turn in the dialogue history and the current
turn dialogue. The intuition behind this design is
that the current turn dialogue is crucial. If any pre-
vious turn is strongly related to the current turn
dialogue, it can be considered useful as depen-
dency information for slot updating. Third, we
propose an Implicit Mention Oriented Reasoning
module to tackle the implicit mention (i.e., corefer-
ences) problem that commonly exists in complex
dialogues. Specifically, we build a novel graph
neural network (GNN) to explicitly facilitate rea-

soning over the turns of dialogue and all slot-value
pairs for better exploitation of the coreferential re-
lation information. After the evaluation of these
three modules, we leverage a gate mechanism to
combine these perspectives and yield a decision.
Finally, the selected dialogue contents are fed into
State Generator to enhance their interaction, form
a new contextualized sequence representation, and
generate a value using a hybrid method.

We evaluate the effectiveness of our model
on most mainstream benchmark datasets on task-
oriented dialogue. Experimental results show that
our proposed DiCoS-DST achieves new state-of-
the-art performance on both two versions of the
most actively studied dataset: MultiWOZ 2.1 (Eric
et al., 2019) and MultiWOZ 2.2 (Zang et al., 2020)
with joint goal accuracy of 61.02% and 61.13%. In
particular, the joint goal accuracy on MultiWOZ
2.2 outperforms the previous state-of-the-art by
3.09%. In addition, DiCoS-DST also achieves new
state-of-the-art performance on Sim-M and Sim-
R (Shah et al., 2018) and competitive performance
on DSTC2 (Henderson et al., 2014).

Our contributions in this work are three folds:

• We propose a Multi-Perspective Dialogue Col-
laborative Selector module to dynamically se-
lect relevant dialogue contents corresponding
to each slot from a combination of three per-
spectives. This module can explicitly filter the
distracting information being passed to the
downstream state prediction.

• We propose Implicit Mention Oriented Rea-
soning and implement it by building a GNN to
explicitly facilitate reasoning and exploit the
coreferential relation information in complex
dialogues.

• Our DiCoS-DST model achieves new state-
of-the-art performance on the MultiWOZ 2.1,
MultiWOZ 2.2, Sim-M, and Sim-R datasets.

2 Related Work

There has been a plethora of research on dialogue
state tracking. Traditional dialogue state trackers
relied on a separate Spoken Language Understand-
ing (SLU) module (Thomson and Young, 2010;
Wang and Lemon, 2013) to extract relevant infor-
mation. In recent years, neural network models are
proposed for further improvements. One way to
classify DST models is whether they use dialogue
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Figure 2: The architecture of the proposed DiCoS-DST model. The gray area in the lower left part of the figure
shows the internal structure of the three modules in Multi-Perspective Dialogue Collaborative Selector.

history. Some DST models obtain each slot value
in the dialogue state by inquiring about a part or
all of the dialogue history (Xu and Hu, 2018; Lei
et al., 2018; Goel et al., 2019; Ren et al., 2019; Shan
et al., 2020; Zhang et al., 2020; Chen et al., 2020;
Guo et al., 2021), while the others use the current
turn dialogue to predict the dialogue state (Mrkšić
et al., 2017; Kim et al., 2020; Heck et al., 2020;
Zhu et al., 2020). Recently, (Yang et al., 2021) first
proposed the granularity in DST to quantify the use
of dialogue history. Its experimental results show
that different models on different datasets have dif-
ferent optimal granularity (not always using the
entire dialogue history). However, no matter what
granularity is used, each model uses a constant
granularity it determines, regardless of which slot
is updated.

On the other hand, dialogue state tracking and
machine reading comprehension (MRC) have simi-
larities in many aspects (Gao et al., 2020). Recently,
Multi-hop Reading Comprehension (MHRC) has
been a challenging topic. For cases in MHRC
datasets, one question is usually provided with sev-
eral lexically related paragraphs, which contain
many confusing contexts. To deal with this situa-
tion, cascaded models (Qiu et al., 2019; Groeneveld
et al., 2020; Tu et al., 2020; Wu et al., 2021) that
are composed of a reader and a retriever are of-
ten used. They retrieve the most relevant evidence
paragraphs first and perform multi-hop reasoning
on retrieved contexts thereafter. The mechanism

of dialogue selection before state generation in our
work is partially inspired by the paragraph retrieval
in multi-hop reading comprehension.

3 Approach

The architecture of DiCoS-DST is illustrated in
Figure 2. DiCoS-DST consists of Encoder, State
Update Predictor, Multi-Perspective Dialogue Col-
laborative Selector, and State Generator. Here we
first define the problem setting in our work. We de-
fine the number of the current turn as T . The task is
to predict the dialogue state at each turn t (t ≤ T ),
which is defined as Bt = {(Sj , V j

t )|1 ≤ j ≤ J},
where Sj is the slot name, V j

t is the corresponding
slot value, and J is the total number of slots. For
the sake of simplicity, we omit the superscript T in
the variables in the next sections.

3.1 Encoder

We employ the representation of the previous turn
dialogue state BT−1 concatenated to the represen-
tation of each turn dialogue utterances Dt as input:
Et = [CLS]t⊕BT−1⊕ [SEP]⊕Dt, (1 ≤ t ≤ T ),
where [CLS]t is a special token added in front of
every turn input. The representation of the previous
turn dialogue state is BT−1 = B1

T−1⊕ . . .⊕BJ
T−1.

The representation of each slot’s state Bj
T−1 =

[SLOT]jT−1 ⊕ Sj ⊕ [VALUE]jT−1 ⊕ V j
T−1, where

[SLOT]jT−1 and [VALUE]jT−1 are special tokens
that represent the slot name and the slot value
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at turn T − 1, respectively. We donate the rep-
resentation of the dialogue at turn t as Dt =
Rt⊕;⊕Ut ⊕ [SEP], where Rt is the system re-
sponse and Ut is the user utterance. ; is a special
token used to mark the boundary between Rt and
Ut, and [SEP] is a special token used to mark the
end of a dialogue turn.

Then a pre-trained language model (PrLM) will
be adopted to obtain contextualized representation
for the concatenated input sequence Et.

3.2 State Update Predictor
We attach a two-way classification module to the
top of the Encoder output. It predicts which slots
require to be updated in the current turn. The subse-
quent modules will only process the selected slots,
while the other slots will directly inherit the slot
values from the previous turn.

We inject this module because whether a slot re-
quires to be updated indicates whether the current
turn dialogue is significant for this slot. For CT-DH
of the subsequent Multi-Perspective Collaborative
Selector, the great importance of the current turn
dialogue is a prerequisite. A more detailed expla-
nation will be given in Section 3.3.

We employ the same mechanism as (Guo et al.,
2021) to train the module and to predict the state
operation. We sketch the prediction process as
follows:

SUP(Sj) =

{
update, if Total_scorej > δ
inherit, otherwise

(1)
We define the set of the selected slot indices as

Us = {j|SUP(Sj) = update}.

3.3 Multi-Perspective Dialogue Collaborative
Selector

For each slot Sj (j ∈ Us) selected to be updated,
SN-DH, CT-DH, and Implicit Mention Oriented
Reasoning modules are proposed to evaluate dia-
logue relevance and aggregate representations from
three perspectives. Then a gated fusion mechanism
is implemented to perform the dialogue selection.

SN-DH SN-DH (Slot Name - Dialogue History)
aims to explore the correlation between slot names
and each turn of the dialogue history. For slot Sj ,
the slot name is straightforward explicit informa-
tion. Therefore, the correlation with the slot name
directly reflects the importance of the dialogue turn.
We take the slot name presentation [SLOT]jT−1 as
the attention to the t-th turn dialogue representation

Dt. The output αj
t = softmax(Dt([SLOT]jT−1)

⊺)
represents the correlation between each position of
Dt and the j-th slot name at turn t. Then we get
the aggregated dialogue representation htSN−DH =

(αj
t )

⊺Dt, which will participate in the subsequent
fusion as the embedding of the t-th turn dialogue
in this perspective.

CT-DH As aforementioned, a slot that needs to
be updated in the current turn means that the cur-
rent turn dialogue is most relevant to this slot. In
this case, if the dialogue content of any other turn
contains the information that the current turn dia-
logue highly depends on, it can also be considered
useful. Based on this consideration, we devise a
CT-DH (Current Turn - Dialogue History) module
to explore this association. Specifically, we build
a multi-head self-attention (MHSA) layer on top
of the [CLS] tokens generated from different turns
of dialogue to enhance inter-turn interaction. The
MHSA layer is defined as:

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (2)

Multihead = (headi ⊕ . . .⊕ headn)W
O (3)

I = MHSA([CLS]1 ⊕ . . .⊕ [CLS]T ) (4)

where Q, K, and V are linear projections from
[CLS] embeddings of each turn of dialogue, repre-
senting attention queries, key and values.

We then append an attention layer between the
output representation of the current turn dialogue
and each turn of dialogue history to capture inter-
actions between them:

γt = Attention([CLS]t, [CLS]T ) (5)

htCT−DH = γt[CLS]T + [CLS]t (6)

htCT−DH will participate in the subsequent fu-
sion as an aggregated representation of the t-th
dialogue in this perspective.

Implicit Mention Oriented Reasoning Han-
dling a complex dialogue usually requires address-
ing implicit mentions (i.e., coreferences). As
shown in Figure 1, in turn 10, the restaurant is not
referred to explicitly upon ordering a taxi within
the same dialogue turn. Instead, it is present in
the value of another slot. Therefore, SN-DH and
CT-DH are difficult to deal with this case due to
their mechanisms. To tackle this problem, we build
a graph neural network (GNN) model to explicitly
facilitate reasoning over the turns of dialogue and
all slot-value pairs for better exploitation of the
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coreferential relation. As illustrated in Figure 3,
the nodes in the graph include two types: ND for
each turn dialogue and NS−V for each slot-value
pair. They are initialized with the MHSA output
representation [CLS]t and WS−V ([SLOT]zT−1 ⊕
[VALUE]zT−1) (1 ≤ z ≤ J), respectively. Then
we design four types of edges to build the connec-
tions among graph nodes:
1) Add an edge between N j

S−V and NT
D (red line in

Figure 3). As aforementioned, the slot Sj will be
updated. This edge is to establish the connection
between the slot to be updated and the current turn
dialogue;
2) Add an edge between N j

S−V and N z
S−V (z ̸= j)

(blue line in Figure 3). These edges are to estab-
lish connections between the slot to be updated and
other slots;
3) Add an edge between N z

S−V (z ̸= j) and N tz
D .

tz is the turn when the most up-to-date value of Sz

is updated (green line in Figure 3). These edges are
to establish connections between each slot and the
turn of dialogue in which its latest slot value was
updated;
4) Add an edge between N z1

S−V and N z2
S−V (Sz1

and Sz2 belong to the same domain) (yellow line in
Figure 3). These edges are to establish connections
between slots that belong to the same domain.

The motivation for this design is that we first
explore the relation between the slot to be updated
and other slot-value pairs based on the current turn
dialogue. Then we use other slot-value pairs as
media to establish relations to their corresponding
dialogue turns. We add the fourth type of edges
to represent the auxiliary relationship of slots that
belong to the same domain.

We use multi-relational GCN with gating mecha-
nism as in (De Cao et al., 2019; Tu et al., 2019). We
define h0i represents initial node embedding from
ND or NS−V . The calculation of node embedding
after one hop can be formulated as:

hl+1
i = σ(uli)⊙ gli + hli ⊙ (1− gli) (7)

uli = fs(h
l
i) +

∑
r∈R

1

|N r
i |

∑
n∈N r

i

fr(h
l
n) (8)

gli = sigmoid(fg([u
l
i;h

l
i])) (9)

N r
i is the neighbors of node i with edge type r,

R is the set of all edge types, and hln is the node
representation of node n in layer l. |· | indicates the
size of the neighboring set. Each of fr, fs, fg can
be implemented with an MLP. Gate control gli is a

hIMOR
t

ND
T

ND
t

NS-V
j

Dialogue Node

Slot-Value Pair Node

L hops

Figure 3: Diagram of the graph neural network. The
dashed connection between the dialogue nodes does not
actually exist. We draw them to show that using the dia-
logue representation output by MHSA already includes
the contextual interactions between the dialogues.

vector consisting of values between 0 and 1 to con-
trol the amount information from computed update
uli or from the original hli. Function σ denotes a
non-linear activation function.

After the message passes on the graph with L
hops, we take the final representation of the t-th
turn dialogue node N t

D as the aggregated represen-
tation htIMOR in this perspective.

Gating Fusion and Collaborative Selection
The representations htSN−DH, htCT−DH, and
htIMOR of the t-th turn dialogue enter this module
for fusion and ranking. To balance the informa-
tion from multiple perspectives, we leverage a gate
mechanism to compute a weight to decide how
much information from each perspective should be
combined. It is defined as follows:

β1 = σ1(Wβ1 tanh(W1h
t
SN−DH)) (10)

β2 = σ2(Wβ2 tanh(W2h
t
CT−DH)) (11)

β3 = σ3(Wβ3 tanh(W3h
t
IMOR)) (12)

htsum = β1h
t
SN−DH + β2h

t
CT−DH + β3h

t
IMOR

(13)

After the fusion, an MLP layer is followed, and
then we take the dialogues of the top k ranked turns
as the selected dialogue contents.

It is worth mentioning that, unlike the state up-
date predictor, since there is no ground-truth la-
bel of the dialogue turns that should be selected
corresponding to each slot, we take this module
and the following state generator as a whole and
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train it under the supervision of the final dialogue
state label. We mark each selected dialogue turn
to make the gradient of the state generator losses
only backpropagate to the marked turns to ensure
the effectiveness of supervision.

3.4 State Generator
The selected dialogue content will be utilized to
jointly update the dialogue state.

Cascaded Context Refinement After acquiring
a nearly noise-free set UD of selected dialogue
turns, we consider that directly using their rep-
resentations as inputs may ignore the cross at-
tention between them since they are used as a
whole. As a result, we concatenate these dialogue
utterances together to form a new input sequence
C = [CLS]⊕BT−1⊕⟨t⟩1⊕D1⊕ . . .⊕⟨t⟩T_S ⊕
DT_S ⊕ ⟨t⟩T ⊕DT (T_S = |UD|).

Especially, we inject an indicator token “⟨t⟩”
before each turn of dialogue utterance to get
aggregated turn embeddings for the subsequent
classification-based state prediction. Then we feed
this sequence into a single PrLM to obtain the con-
textualized output representation.

Slot Value Generation We first attempt to obtain
the value using the extractive method from repre-
sentation CE = D1 ⊕D2 ⊕ . . .⊕DT_S ⊕DT :

p = softmax(WsCE([SLOT]jT−1)
⊺) (14)

q = softmax(WeCE([SLOT]jT−1)
⊺) (15)

The position of the maximum value in p and
q will be the start and end predictions of the slot
value. If this prediction does not belong to the
candidate value set of Sj , we use the representation
of CC = ⟨t⟩1 ⊕ ⟨t⟩2 ⊕ . . .⊕ ⟨t⟩T_S ⊕ ⟨t⟩T to get
the distribution and choose the candidate slot value
corresponding to the maximum value:

y = softmax(WCCC([SLOT]jT−1)
⊺) (16)

We define the training objectives of two methods
as cross-entropy loss:

Lext = − 1

|Us|

|Us|∑
j

(p log p̂+ q log q̂) (17)

Lcls = − 1

|Us|

|Us|∑
j

y log ŷ (18)

where p̂ and q̂ are the targets indicating the propor-
tion of all possible start and end, and ŷ is the target
indicating the probability of candidate values.

4 Experiments

4.1 Datasets and Metrics
We conduct experiments on most of the mainstream
benchmark datasets on task-oriented dialogue, in-
cluding MultiWOZ 2.1, MultiWOZ 2.2, Sim-R,
Sim-M, and DSTC2. MultiWOZ 2.1 and Multi-
WOZ 2.2 are two versions of a large-scale multi-
domain task-oriented dialogue dataset. It is a fully-
labeled collection of human-human written dia-
logues spanning over multiple domains and topics.
Sim-M and Sim-R are multi-turn dialogue datasets
in the movie and restaurant domains, respectively.
DSTC2 is collected in the restaurant domain.

We use joint goal accuracy and slot accuracy as
evaluation metrics. Joint goal accuracy refers to
the accuracy of the dialogue state in each turn. Slot
accuracy only considers slot-level accuracy.

4.2 Baseline Models
We compare the performance of DiCoS-DST with
the following baselines: TRADE encodes the
dialogue and decodes the value using a copy-
augmented decoder (Wu et al., 2019). BERT-
DST generates language representations suitable
for scalable DST (Chao and Lane, 2019). DST+LU
presents an approach for multi-task learning of
language understanding and DST (Rastogi et al.,
2018). TripPy extracts values from the dialogue
context by three copy mechanisms (Heck et al.,
2020). DSS-DST consists of the slot selector based
on the current turn dialogue, and the slot value gen-
erator based on the dialogue history (Guo et al.,
2021). Seq2Seq-DU employs two BERT-based en-
coders to respectively encode the utterances and
the descriptions of schemas (Feng et al., 2021).
Pegasus-DST applies a span prediction-based pre-
training objective designed for text summarization
to DST (Zhao et al., 2021). DST-as-Prompting uses
schema-driven prompting to provide task-aware
history encoding (Lee et al., 2021).

4.3 Implementation Details
We employ a pre-trained ALBERT-large-uncased
model (Lan et al., 2019) for the encoder. The hid-
den size of the encoder d is 1024. We use AdamW
optimizer (Loshchilov and Hutter, 2018) and set
the warmup proportion to 0.01 and L2 weight de-
cay of 0.01. We set the peak learning rate of State
Update Predictor the same as in DSS-DST and the
peak learning rate of the other modules to 0.0001.
We set the dropout (Srivastava et al., 2014) rate
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Model MultiWOZ 2.1 MultiWOZ 2.2 Sim-M Sim-R DSTC2
Joint Slot Joint Slot Joint Joint Joint

TRADE 45.60 - 45.40 - - - -
DST+LU - - - - 46.0 84.9 -
BERT-DST - - - - 80.1 89.6 69.3
TripPy 55.29 - - - 83.5 90.0 -
Pegasus-DST 54.40 - 57.60 - - - 73.6
DST-as-Prompting 56.66 - 57.60 - 83.3 90.6 -
Seq2seq-DU 56.10 - 54.40 - - - 85.0
DSS-DST 60.73 98.05 58.04 97.66 - - -

DiCoS-DST (k = 1)
60.89

(±0.47)
98.05

(±0.02)
61.04

(±0.56)
98.05

(±0.04)
84.5

(±1.2)
91.2

(±0.3)
77.7

(±0.2)

DiCoS-DST (k = 2)
61.02

(±0.41)
98.05

(±0.02)
61.13

(±0.54)
98.06

(±0.03)
84.7

(±1.1)
91.5

(±0.3)
78.4

(±0.2)

DiCoS-DST (k = 3)
60.85

(±0.24)
98.05

(±0.01)
60.88

(±0.33)
98.05

(±0.03)
83.8

(±1.1)
91.0

(±0.2)
77.3

(±0.2)

Table 1: Accuracy (%) on the test sets of benchmark datasets vs. various approaches as reported in the literature.

PrLM MultiWOZ 2.2
ALBERT (large) 61.13
ALBERT (base) 60.05(-1.08)
BERT (large) 60.16(-0.97)
BERT (base) 59.51(-1.62)

Table 2: Ablation study with joint goal accuracy (%).

to 0.1. We utilize word dropout (Bowman et al.,
2016) with the probability of 0.1. We set L to 3.
The max sequence length for all inputs is fixed to
256. During training the Multi-Perspective Dia-
logue Collaborative Selector, we use the ground
truth selected slots instead of the predicted ones.
We report the mean joint goal accuracy over 10
different random seeds to reduce statistical errors.

4.4 Main Results

Table 1 shows the performance of our DiCoS-DST
and other baselines. Our model achieves state-of-
the-art performance on MultiWOZ 2.1 and Multi-
WOZ 2.2 with joint goal accuracy of 61.02% and
61.13%. In particular, the joint goal accuracy on
MultiWOZ 2.2 outperforms the previous state-of-
the-art by 3.09%. Besides, despite the sparsity
of experimental results on Sim-M and Sim-R, our
model still achieves state-of-the-art performance
on these two datasets. On DSTC2, the performance
of our model is also competitive. Among our mod-
els, DiCoS-DST (k = 2) performs the best on
all datasets. Especially, DiCoS-DST (k = 2) and
DiCoS-DST (k = 1) perform better than DiCoS-

Model MultiWOZ 2.2
DiCoS-DST 61.13
-State Update Predictor 58.48 (-2.65)
-Multi-Perspective Dialogue
Collaborative Selector

54.94 (-6.19)

-Cascaded Context Refinement 59.75 (-1.38)

Table 3: Ablation study with joint goal accuracy (%).
Each performance in this table represents the test results
after the model was retrained with the corresponding
module removed. "- State Update Predictor" means that
all slots are updated in each turn. "-Multi-Perspective
Dialogue Collaborative Selector" means that using the
entire dialogue history without selection. "-Cascaded
Context Refinement" means that directly using the rep-
resentation of selected turns from the dialogue selector
without context refinement.

DST (k = 3). We conjecture that selecting two
turns from the dialogue history may be sufficient,
and introducing more turns may confuse the model.

4.5 Ablation Study

Different PrLMs We employ different pre-
trained language models with different scales as the
backbone for training and testing on MultiWOZ 2.2.
Table 2 shows that the joint goal accuracy of other
encoders decreases in varying degrees compared
with ALBERT (large). The joint goal accuracy of
BERT(base) decreases by 1.62%, but still outper-
forms the previous state-of-the-art performance on
MultiWOZ 2.2. This demonstrates that our model
achieves consistent performance gain in all fair

2326



Perspective(s) MultiWOZ 2.2
SN-DH 57.73 (-3.40)
CT-DH 55.47 (-5.66)
IMOR 55.11 (-6.02)
SN-DH + CT-DH 59.56 (-1.57)
SN-DH + IMOR 58.68 (-2.45)
CT-DH + IMOR 56.79 (-4.34)
SN-DH + CT-DH + IMOR 61.13

Table 4: Ablation study with joint goal accuracy (%).
IMOR stands for Implicit Mention Oriented Reasoning.

Graph MultiWOZ 2.2
Original Graph (DiCoS-DST) 61.13
-1st type of edges 59.70 (-1.43)
-2nd type of edges 59.62 (-1.51)
-3rd type of edges 59.78 (-1.35)
-4th type of edges 60.65 (-0.48)
+fully connecting all
dialogue nodes

61.01 (-0.12)

+3rd type of edges between
each N z

S−V and all N t
D

60.04 (-1.09)

Table 5: Ablation study with joint goal accuracy (%).

comparison environments with other methods.

Effect of Core Components To explore the ef-
fectiveness of core components, we conduct an ab-
lation study of them on MultiWOZ 2.2. As shown
in Table 3, we observe that the performance de-
grades by 2.65% for joint goal accuracy when the
State Update Predictor is removed. It is worth
mentioning that this performance still outperforms
the previous state-of-the-art performance, which
demonstrates that the large performance gain of
DiCoS-DST over other baselines comes from its
dialogue selection. This is also supported by the
observation that the performance of the model with-
out the Multi-Perspective Dialogue Collaborative
Selection module drops drastically (degrades by
6.19% for joint goal accuracy). In addition, when
we remove the Cascaded Context Refinement mod-
ule, we lose 1.38%, indicating the usefulness of
interaction between different dialogue turns.

Separate Perspective and Combinations We
explore the performance of each separate perspec-
tive and their various combinations. When a per-
spective needs to be masked, we set their corre-
sponding gating weights to 0. It can be observed
in Table 4 that the SN-DH module has the great-
est impact on performance, and the most effective

MultiWOZ 2.2
k DiCoS-DST Granularity-Based
1 61.04 59.58 (-1.46)
2 61.13 59.88 (-1.25)
3 60.88 59.91 (-0.97)

Table 6: The joint goal accuracy (%) of different k.
The state generator is re-trained with the corresponding
selected turns as input for granularity-based methods.

MultiWOZ 2.2
Domain k = 0 k = 1 k = 2

Attraction 79.15 79.04 78.79
Hotel 56.95 58.07 58.02

Restaurant 73.81 74.73 75.14
Taxi 53.50 55.12 56.33
Train 75.13 76.89 77.26

Table 7: Domain-specific results on MultiWOZ 2.2.

combination of perspectives is the combination of
SN-DH and CT-DH. Despite the simplicity of the
mechanism of SN-DH, the association with the
slot name straightforward reflects the importance
of the dialogue. To solve the common problem
of coreferences in complex dialogues, the Implicit
Mention Oriented Reasoning module improves the
performance close enough to the CT-DH.

Graph Edges Ablation We investigate the effect
of the different edges in the GNN. As shown in
Table 5, the performance degradation is relatively
obvious when the first, second, and third types of
edges are removed separately. It indicates that the
majority of the connections are indeed to construct
the reasoning logic, while the correlation of the
same domain’s slots plays an auxiliary role. In
addition, we design two comparative experiments.
First, we start naively by fully connecting all di-
alogue nodes to enhance the interaction among
dialogue turns. However, this change does not give
a clear benefit. This is mostly because the initial-
ization of the dialogue nodes using the dialogue
representation output by MHSA already includes
the contextual interactions between the dialogues.
Second, we add a third type of edges between each
slot-value pair node and all dialogue nodes with-
out distinguishing the correspondence. We observe
that this change does harm to the performance (de-
grades by 1.09%). This reflects the importance
of using other slots to explore their corresponding
turns of dialogues when dealing with coreferences.
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5 Analysis

5.1 Is It Beyond the Granularity?
DiCoS-DST filters out some distracting informa-
tion by selecting relevant dialogues, but is it really
beyond the granularity? To investigate it, we sim-
ulate the granularity and compare it with DiCoS-
DST. Specifically, we use the maximum granularity
(i.e., the number of dialogue turns spanning from
the selected furthest dialogue turn to the current
turn) and capture the corresponding dialogue con-
tents as input to State Generator. As shown in
Table 6, DiCoS-DST outperforms the granularity-
based method by 1.46% (k = 1), 1.25% (k = 2),
and 0.97% (k = 3), indicating that there is still re-
dundant information in the dialogue contents deter-
mined by the granularity that confuses the model.

5.2 Domain-Specific Dialogue Requirements
Table 7 shows the domain-specific results when we
set different values for k (k = 0, 1, 2). In taxi
and train domains, the performance of the model
decreases significantly when k = 0 compared to
k = 2, implying that acquiring the values of the
slots in these domains is highly dependent on the
dialogue history. Nevertheless, there is no signif-
icant difference in the performance in attraction
domain when we set different values for k. This
indicates that the values of the slots in this domain
can usually be simply obtained from the current
turn dialogue, instead of using the dialogue history
or resolving coreferences.

6 Conclusion

We introduce an effective DiCoS-DST that dynam-
ically selects the relevant dialogue contents corre-
sponding to each slot from a combination of three
perspectives. The dialogue collaborative selector
module performs a comprehensive selection for
each turn dialogue based on its relation to the slot
name, its connection to the current turn dialogue,
and the implicit mention oriented reasoning. Then
only the selected dialogue contents are fed into
State Generator, which explicitly minimizes the
distracting information passed to the downstream
state prediction. Our DiCoS-DST model achieves
new state-of-the-art performance on the MultiWOZ
benchmark, and achieves competitive performance
on most other DST benchmark datasets. The poten-
tial relationship among the above perspectives is a
promising research direction, and we will explore
it for more than dialogue selection in the future.
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Dialogue Example γ

β

S1:Good morning! How can I help you?

S2:The alpha-milton guest house is in the north and moderately priced. Would you like 
to book a stay?

U2:I need something cheaply priced.

U1:I'm looking to stay at a guesthouse while I'm in town. I don't 
need internet access, so don't worry about that.

S3:We have 9 guesthouses that match your search. Would you like to narrow it down?

S4:May i suggest the Worth House? It is a cheap, 4 star hotel in northern Cambridge. 

U4: How long can I book it from Monday for 7 people?

U3:I don't care as long as it's a guesthouse located in the north for cheap. 

S5: You can book it for 3 nights.

U5: That's fine. Please book it for me.

hotel-type: ['guesthouse']

hotel-pricerange: ['cheap']hotel-type: ['guesthouse']

hotel-name: ['worth house'] hotel-bookday: ['monday'] hotel-bookpeople: ['7'] hotel-bookstay: ['3']...

Turn 2 Turn 4Turn 3

Appendices

A  Visualization
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B  Statistics of datasets in experiments 

 

 

Characteristics MultiWOZ 2.1 MultiWOZ 2.2 Sim-M & Sim-R DSTC2 

No. of domains 7 8 2 1 

No. of dialogues 8,438 8,438 1,500 1612 

Total no. of turns 113,556 113,556 14,796 23354 

Avg. turns per dialogue 13.46 13.46 9.86 14.49 

Avg. tokens per turn 13.38 13.13 8.24 8.54 

No. of categorical slots 37 21 0 3 

No. of non-categorical slots 0 40 14 0 

Have schema description Yes Yes No No 
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