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Abstract

This work explores techniques to predict Part-of-
Speech (PoS) tags from neural signals measured
at millisecond resolution with electroencephalogra-
phy (EEG) during text reading. We show that infor-
mation about word length, frequency and word
class is encoded by the brain at different post-
stimulus latencies. We then demonstrate that pre-
training on averaged EEG data and data augmen-
tation techniques boost PoS single-trial EEG de-
coding accuracy for Transformers (but not linear
SVMs). Applying optimised temporally-resolved
decoding techniques we show that Transformers
outperform linear SVMs on PoS tagging of uni-
gram and bigram data more strongly when infor-
mation requires integration across longer time win-
dows.

1 Introduction

Electro-/Magnetoencephalography (EEG/MEG),
which measures neural activity at millisecond res-
olution, is a key neuroscientific method to assess
how neural representations unfold dynamically in
language processing. Early event related potential
(ERP) studies that rely on averaging EEG activity
across multiple trials have shown that EEG signal
magnitude and topography depend on word length,
frequency and open vs. closed class. Word length
effects arose in EEG at about 150 ms, frequency
effects at 200 ms and word class effects from 400-
700 ms (Osterhout et al., 1997; Brown et al., 1999;
Neville et al., 1992; Münte et al., 1998; Segalowitz
and Lane, 2000; Münte et al., 2001; Dufau et al.,
2015). Recent studies were able to predict these
and other (e.g. semantic) aspects based on single
trial multi-channel EEG/MEG activity (Ling et al.,
2019; Chan et al., 2011; King et al., 2020). Impor-
tantly, the aim of cognitive neuroscience studies
is to dissociate when (i.e. latency) and where (i.e.

brain region) specific linguistic information is ex-
plicitly encoded in neural activity. Neuroscience
studies therefore typically use linear decoders and
try to disentangle neural activity for linguistic and
non-linguistic dimensions that covary in natural
language statistics (e.g. word class vs. length).

By contrast, engineering applications mainly
aim to maximise performance accuracy, utilising
all available information and more powerful non-
linear classifiers. Intriguingly, recent studies have
shown that adding human eye tracking data (Barrett
et al., 2016) or morphosyntactic information ex-
tracted from human functional magnetic resonance
imaging (fMRI) signals during sentence reading,
can substantially improve PoS induction (Bingel
et al., 2016). Yet, morphosynactic information ob-
tained from fMRI is limited, because fMRI mea-
sures only the slow changes in blood oxygenation,
peaking 5-6 s after stimulus onset, rather than the
rapid neural activity during language processing.

Contributions. This interdisciplinary paper de-
codes PoS tags from EEG signals with linear SVMs
and Transformers, pursuing several aims relevant
for neuroscience and/or engineering.

Neuroscience-focused Section 3 uses linear
SVMs to define the distinct neural representations
of word length, frequency and class based on a new
EEG data set, in which a single subject reads an
extensive syntactically annotated corpus. To dis-
sociate these linguistic and non-linguistic aspects,
typically correlated in natural language statistics,
Section 3 matched the stimulus distributions for
each classification task with respect to the con-
founding dimensions of no interest. Consistent
with previous reports, we show that word length,
frequency and class can be decoded at different
post-stimulus latencies based on single trial and
trial-averaged data. This replication part serves to
validate the new EEG data set.

Methods-focused Section 4 moves beyond open
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vs. closed word class decoding that were the fo-
cus of previous MEG/EEG studies and decodes
6 PoS tags from EEG activity with linear SVMs
and Transformers. We show that pretraining on
trial-averaged data with subsequent fine-tuning
on single-trial data, alongside data augmentation,
boosts PoS decoding accuracy from single-trial
EEG data selectively for Transformers (but not for
linear SVMs).

Engineering-focused Section 5 finally uses lin-
ear SVMs and Transformers together with pretrain-
ing and augmentation techniques from Section 4
to assess how PoS information about unigrams
and bigrams becomes progressively available in
EEG activity across post-stimulus time. Compar-
ing EEG decoding from sliding and incremental
time windows suggests that Transformers outper-
form linear SVMs particularly when information
needs being integrated across longer time windows.
Our results raise the possibility of combining PoS-
tagging based on EEG decoding with corpora and
dependency tree annotation to obtain more reliable
morphosyntactic information for low-resource lan-
guages.

2 General Methods

Our experiments used a new corpus annotated with
EEG data, previously acquired at the University
of Birmingham following ethical approval and par-
ticipant’s informed consent. The EEG annotated
corpus is available1 under a public license (CC
BY-SA 4.0).

Data set. The stimulus set includes 4,479 sen-
tences (74,953 tokens) selected from the English
Web Treebank (Bies et al., 2012), covering the gen-
res weblogs, newsgroups, reviews and Yahoo An-
swers. The mean sentence length is 16.7 words
(standard deviation: 12.23). 75 sessions of EEG
data are included over 20 days, each lasting 20-25
minutes, from a single subject who read approx-
imately five and a half iterations of the stimulus
set (i.e. 24,323 sentences and 404,205 tokens in
total, thereby substantially exceeding current freely
accessible data sets, e.g. (Bhattasali et al., 2020).
Three sessions were excluded because of data cor-
ruption.

The EEG data for separate text passages were
divided into training, dev and test sets to avoid
any temporal overlap. Further, dev and test sets
were matched for length of text passages, recording

1https://edata.bham.ac.uk/617

Figure 1: Example trial and EEG recording. Sentence
words were presented on average approximately every
240 ms. EEG signals were extracted from -100 to 700
ms relative to word onset.

dates and sentence position (initial, mid & end).
The training set contains 83% of the data (19,156
sentences; 317,753 tokens), dev set 8.5% (2,704
sentences; 45,822 tokens) and test set 8.5% (2,463
sentences; 40,630 tokens).

2.1 Experimental paradigm

In a Rapid Serial Visual Presentation (RSVP)
paradigm, sentences were presented one word at
a time, on average every ≈ 240 ms, in a white
monospace font on a grey background approxi-
mately in the centre of the screen, at the optimal
viewing position (Rayner et al., 2016). Each word
subtended a horizontal angle 0.76◦ to the left and
11.81◦ to the right from the centre. Sentences were
separated by 500 ms of a white central fixation
cross (see Figure 1). On approximately 20% of
the sentences in each session, the participant was
prompted to verbalise the previous sentence back
to the experimenter. An accuracy score of 93%
across all sessions confirmed that the participant
successfully attended the sentences. Stimuli were
presented using PsychoPy (Peirce et al., 2019) on
an LCD monitor with a resolution of 1920x1080
pixels and 60 Hz refresh rate. The subject’s head
was stabilised with a chin-rest.

2.2 EEG Data Acquisition and Preprocessing

Continuous EEG signals were recorded in
’reference-free’ mode at a sampling rate of 1 kHz
via BrainVision’s PyCorder software using 64
Ag/AgCl active actiCAP slim electrodes arranged
in a 10–20 layout (ActiCAP, Brain Products GmbH,
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tag train dev test total
ADJ 24,029 3,489 2,913 30,431
ADP 33,969 5,049 4,235 43,253
ADV 17,492 2,593 2,218 22,303
AUX 19,351 2,833 2,485 24,669
CCONJ 11,758 1,731 1,546 15,035
DET 31,429 4,589 3,962 39,980
INTJ 656 76 90 822
NOUN 59,991 8,691 7,501 76,183
NUM 5,062 712 677 6,451
PART 6,955 970 908 8.833
PRON 27,623 3,973 3,677 35,273
PROPN 28,867 3,737 3,641 35,245
PUNCT 3,716 485 501 4,702
SCONJ 7,116 1,046 943 9,105
VERB 39,710 5,723 5,186 50,619
X 1,029 125 147 1,301
total 317,753 45,822 40,630 404,205

Table 1: Number of samples for each PoS tag across
train, dev and test set

Gilching, Germany). Channel impedances were
kept below 15 kΩ.

Data were preprocessed using MNE-Python
(Gramfort et al., 2013). Individual EEG sessions
were band-pass filtered between 1-40 Hz, down-
sampled to 250 Hz and re-referenced to average ref-
erence. Noisy channels were determined based on
visual inspection and interpolated. Non-neuronal
components (e.g. ocular, muscular, electrical) were
removed via Independent Component Analysis
(ICA) individually for each recording session (an
average of 4 components were removed per EEG
session).

EEG signals were extracted from -100 to 700
ms relative to word onset. For baseline correction,
we subtracted the channel-wise mean from -100
ms to 0 ms from the evoked post-stimulus EEG
response ([0 700] ms separately for each word;
see Figure 1). EEG data were spatially multivari-
ate noise normalised using the noise covariance
matrix estimated separately for each target class
(Guggenmos et al., 2018). Each EEG trial was
annotated with the gold part of speech tags of the
current and subsequent words, their word lengths,
and Zipf-logarithmic frequency scores from the
Python package WordFreq (Speer et al., 2018).

2.3 Models and EEG decoding

The decoding analyses used linear support vector
machines (SVM) (Chang and Lin, 2011) and Trans-
formers, which can capture complex interactions
of EEG data across time points. All classifiers
were trained on the EEG training data, assessed on
the dev set and scored on the independent test set.

parameter value parameter value
encoder layers 4 mlp size 1024
learning rate 0.04 mlp dropout 0.1
batch size 16 qkv size 512
warm up steps 50k attention heads 8
training steps 400k attention dropout 0.1
Adam β1 0.9 Adam β2 0.98
Adam ϵ 10−9 Adam weight decay 0.0

Table 2: Hyperparameters of the Transformer model

Hyperparameters and early stopping were selected
based on the dev set. We assessed linear SVMs
and Transformers on the dev set using 10 different
random seed points. We show mean classification
accuracy with 68% confidence intervals (CI) over
those 10 replications on the dev (Table 4, Figure 3)
resp. test set (Figure 2, 4, 5). We compute statistics
on test set classification responses from the model
that scored the highest on the dev set (e.g. binomial
or Wilcoxon signed rank tests).

For linear SVM, we used an online learning im-
plementation of SCIKIT-LEARN (Pedregosa et al.,
2011; Zhang, 2004), based on LIBSVM (Chang and
Lin, 2011), with hinge loss and Stochastic Gradient
Descent (SGD) optimiser. Hyperparameters were
set to default except for the SGD regularisation
parameter that was increased to α = 0.75, which
provided better classification accuracy on the dev
set. The parameter α is inversely proportional to
the C parameter in the standard SVM implemen-
tation. The online implementation also allowed us
to select the best model using early stopping. The
SVM was provided with EEG activity vectors as
inputs, i.e. 1 x (EEG channels × time points).

For the Transformer (Vaswani et al., 2017), we
conducted a model architecture and hyperparame-
ter search (layers, learning rate, MLP dimensions,
dropout rate, Encoder vs. Encoder-Decoder) on the
dev set. The selected model was composed of four
encoder-blocks and a final dense layer that projects
the output of the last encoder-block onto the PoS
tags via a softmax function. We used the Adam
optimiser and early stopping. The implementation
is based on the WMT example2 of Google’s novel
ML frameworks Flax/Jax. Table 2 lists the selected
hyperparameters. The Transformer received EEG
channels x time points as inputs and provided a
classification response for the entire time window.

We performed decoding based on (i) EEG for
single-trials (i.e. no averaging), (ii) EEG averaged
across three and (iii) ten trials. Averaging EEG

2https://github.com/google/flax/tree/master/examples/wmt
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signals across trials increases the signal to noise
ratio of the ’samples’ (Grootswagers et al., 2017;
Guggenmos et al., 2018; Roy et al., 2019; Tuckute
et al., 2019), but ignores true variability across EEG
data from different words of the same category
(Münte et al., 2001). For training (resp. dev) set we
generated the same number of samples for 3 and 10
trial averages as for the single trial test (resp. dev)
sets via boostrapping. For the test set, we averaged
data without replacement, so that examples can
be entered as independent data points in statistical
tests. Hence, the number of samples in the test set
(but not in the training or dev sets) is smaller for 3
and 10 trial averages than single trials (Table 3).

3 Decoding word class, length, frequency

For comparison with previous research (Osterhout
et al., 1997; Münte et al., 2001), we decoded word
length, frequency and class with linear SVMs in a
temporally-resolved fashion from 0 to 700 ms post-
stimulus EEG, recorded during sentence reading.

Data set. We decoded word class from EEG via
binary classification between open class words (i.e.
NOUN, VERB, ADJ, and PROPN) vs. closed class
words (i.e. DET, ADP, AUX, PRON, SCONJ and
CCONJ). Likewise, for decoding word frequency
and length, words were assigned to two classes
based on the median values in the data set (i.e.
Zipf-frequency > 5.91 = HIGH else LOW; word
length > 4 characters = LONG, else SHORT). EEG
decoding analyses were performed for single-trials,
averages across 3 and 10 trials. To dissociate the
distinct contributions word length, frequency and
class that are highly correlated in natural language
statistics, we decoded one variable by controlling
for the other two variables. For instance, when de-
coding open vs. closed class words, we selected a
subset of trials such that the joint distributions over
the three confounding variables of word frequency
(discretised to the nearest 0.25), length (number
of characters) and sentence position (i.e. sentence
initial, mid, end) were equated for the categories of
open and closed class words.

To minimise confounds arising from the preced-
ing word in the sentence, we balanced the test set
with respect to the open/closed class status of the
previous word. Similarly, we controlled the decod-
ing of word frequency for word length, and the
analysis of word length for word frequency, and
both analyses for open/closed class and sentence
position. Table 3 gives the number of examples for

length frequency class
train 82,424 51,364 45,502
dev 12,402 7,590 5,670
test (single) 10,810 6,590 5,670
test (avg. 3) 3,603 2,196 1,890
test (avg. 10) 1,081 659 567

Table 3: Number of samples across train, dev and test
set in the confound-controlled data set.

each analysis across training, dev and test sets.
Methods. To temporally resolve how the brain

encodes word length, frequency and class, we
trained and tested linear SVMs on EEG signals
separately for sliding windows of 64 ms (i.e. 16
time points) that shift in increments of 4 ms (i.e.
one time sample). Figure 2 shows the mean accu-
racy values (averaged across 10 seed points) from
the test set (centred on the last bin of each time win-
dow (Grootswagers et al., 2017)) with ± 68% CI.
The classification responses for the test set from
the model that performed best on the dev set were
entered into a two-sided binomial test, separately
for each time window. Solid lines in Figure 2 above
the decoding accuracy time courses indicate time
points that were significant at (p < 0.05) False
Discovery Rate (FDR) corrected for multiple com-
parisons (Rouam, 2013) across time (i.e. 160 tests).

Results. Figure 2 (top rows of A, B, C) shows
butterfly plots for the effects of word length, fre-
quency and class across 64 electrodes. Our linear
SVM decoding analysis replicates the temporal cas-
cade of word length, frequency and class effects
previously reported for EEG responses averaged
across a large number of trials. The word length
effect arises early at about 100 ms, previously asso-
ciated with visual word processing in occipitotem-
poral cortices (Hauk and Pulvermüller, 2004; Pul-
vermüller et al., 2009; Schuster et al., 2016). Word
frequency influenced neural processing later from
200 ms onwards with a slight left-hemispheric pre-
dominance (Griffiths et al., 2012). The word class
effect emerged in early and late time windows with
the effect at about 550 ms in line with the well-
known P600 as an ERP indicator for syntactic pro-
cessing (Osterhout and Holcomb, 1992; Hagoort
et al., 1993; ter Keurs et al., 1999). Word length
and frequency effects were stronger than the word
class effect; see King et al. (2020). As expected, de-
coding accuracy increased when EEG signals were
averaged across trials. Thus, carefully controlling
each comparison of interest (e.g. word class) for
the effects of no interest (e.g. word length and
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Figure 2: Butterfly plots for difference waves across
all 64 channels (top rows, left), topographies (top rows,
right) and time courses of decoding accuracy (bottom
rows). (A) Length: LONG > SHORT, (B) Frequency:
HIGH > LOW. (C) Class: OPEN > CLOSED. Each line
in the butterfly plots represents an EEG channel, colour
coded by its position. The EEG topographies are shown
for the time points as indicated by the vertical lines.
The mean decoding accuracy time courses ± 68% CI
on the test set are shown for single-trials, averages of
3 and 10 trials. The horizontal lines (above the time
courses) indicate the time points with decoding accuracy
significantly different from chance at p < 0.05 FDR-
corrected for multiple comparisons across time. Chance
accuracy is denoted with a black line at 50%.

frequency) enabled us to dissociate word length,
frequency and class effects, despite their high cor-
relation in natural language, thereby validating our
new annotated EEG data set and analysis proce-
dure.

4 Improving training methods for PoS
decoding

Moving beyond open/closed word class decoding,
we assessed whether multi-class PoS decoding with
SVMs and/or Transformers can be improved by (i)
data augmentation, i.e. increasing the number of
samples in the training set via bootstrapping and
re-averaging (only applicable to 3 and 10 trial aver-
ages) and (ii) pretraining on trial-averages followed
by fine-tuning of the model parameters on single-
trial EEG data.

Data set. We focused on decoding of 3 open
class (NOUN, VERB, PROPN) and 3 closed class
(ADP, DET, PRON) PoS tags. From the word class
dataset that was controlled for length and frequency
effects (section 3), we selected an equal number
of examples per PoS class (i.e. train: 3,470, dev:
335, test: 335, i.e. in total ≈ 20k data points; word
frequency of each word > median frequency Zipf
value (5.91). The samples for dev and test sets were
matched for distribution of word lengths.

4.1 Data Augmentation

Methods. Using this 6-class unigram dataset, we
assessed whether data augmentation via bootstrap-
ping and re-averaging increases decoding perfor-
mance for the 3 and 10 trial averages. We sampled
3 (resp. 10) individual trials with replacement from
a particular PoS class and averaged them in 3 (resp.
10) trial averages. We thus trained SVMs and Trans-
formers (over 20 random seeds) on 4 training set
sizes: Nsize = {20k, 100k, 250k, 500k} × 2 levels
of trial averaging (3 vs. 10) resulting in 8 training
sets. The baseline training (resp. dev) set included
as many 3 (resp. 10) trial averages as the initial
single-trial training (resp. dev) set.

Results. Data augmentation systematically
boosted the decoding accuracy of the Transformer
but not of the SVM - most likely because of the
former’s greater model complexity. For both 3 and
10 trial averages the Transformer’s decoding ac-
curacy on the dev set increased from a training
set size of 20k to 100k, peaking at 250k. It then
declined for an even larger training size of 500k -
potentially because continued bootstrapping pro-
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Figure 3: Dev set decoding accuracy (mean across
seeds) for SVM (blue) and Transformer (red) separately
for 3 and 10 trial averages and four levels of data aug-
mentation: 20k (original), 100k, 250k and 500k. Chance
decoding accuracy is 16.66%.

gressively generates dependencies amongst train-
ing samples thereby limiting their additional ben-
efit beyond 250k. We formally assessed whether
the Transformer that scored best on the dev set ob-
tained better decoding accuracy for 250K than for
the original 20k training set (n.b. we performed this
statistical test on the test set, because the 3 and 10
trial averages within the dev set were not indepen-
dent from one another as a result of boostrapping).
Indeed, for both 3 and 10 trial averages the Trans-
former’s (but not the SVM’s) decoding accuracy
was significantly better for 250k than the original
20k training set (p < 0.01; Wilcoxon signed-rank
test).

4.2 Pretraining

Methods. The ultimate goal is to decode PoS
from single-trial EEG data (rather than trial av-
erages). We therefore assessed whether pretrain-
ing the SVM and/or Transformer on trial averages
with subsequent fine-tuning on single-trial data in-
creases decoding accuracy. Pretraining may be
beneficial because trial averages have a greater sig-
nal to noise ratio. Specifically, we assessed the
impact of pretraining in a 2×2 factorial design ma-
nipulating i) pretraining scheme: training in three
steps (10-3-1) from 10 trial averages to 3 trial aver-
ages to single-trials vs. training in two steps (3-1)
from 3 trial averages to single-trials and ii) data
augmentation: training only on the original 20k vs.

SVM Transformer
single-trials 31.93 (±0.62) 37.15 (±0.32)
10-3-1 31.74 (±0.51) 38.5 (±0.28)
10-3-1 (250k) 31.89 (±0.67) 39.17 (±0.33)
3-1 32.03 (±0.52) 37.83 (±0.24)
3-1 (250k) 31.79 (±0.58) 39.41 (±0.41)

Table 4: Single-trial decoding accuracies (%, mean
across seeds ± 68% CI) on dev set for the SVM and
Transformer: without pretraining, with 10-3-1 pretrain-
ing, with 10-3-1 and 250k data augmentation, with 3-1
pretraining, with 3-1 and 250k data augmentation

the 250k data set, which obtained highest dev set
performance in section 4.1. We trained both SVMs
and Transformers on the 2× 2 training conditions
using 20 random seeds and report mean accuracy
(± 68% CI, across those 20 seeds) in Table 4.

Results. For the SVM, the 3-1 pretraining with-
out data augmentation resulted in the highest dev
set accuracy (32.03%), though accuracy was only
slightly better than for direct single-trial training
(31.93%). For the Transformer, the 3-1 pretrain-
ing scheme with 250k data augmentation obtained
the highest single-trial decoding accuracy (39.41%)
on the dev set. Indeed, Wilcoxon signed-rank test
(Pereira et al., 2009) confirmed that the best dev
set Transformer performed significantly better on
the test set after 3-1 pretraining than after direct
single-trial training (p < 0.01).

5 Temporally-resolved PoS decoding

Sections 3 and 4 were driven by the neuroscience
goal of dissociating neural representations associ-
ated with PoS from confounding factors such as
word length or frequency, which are typically cor-
related with PoS in natural language statistics. To
control for these confounds sections 3 and 4 gen-
erated data sets, in which e.g. PoS classes were
equated with respect to word length. By contrast,
Section 5 pursues the engineering goal of maximis-
ing PoS decoding accuracy. Here, correlations be-
tween word frequency, length and PoS class are no
longer considered a confound but a useful source
of information. Capitalising on the optimised 3-1
training scheme with 250k data augmentation from
Section 4, section 5 will assess whether PoS infor-
mation about unigrams and bigrams can be decoded
from EEG signals (without any confound controls).
For both unigrams and bigrams, we will first in-
vestigate how PoS information becomes available
dynamically across post-stimulus time by training
SVMs and Transformers on EEG signals from 64
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ms sliding time windows. Second, we will assess
how SVMs and Transformers integrate PoS infor-
mation across post-stimulus time by training them
on EEG signals from incremental time windows.

5.1 Unigrams

Data Set. We selected an equal number of exam-
ples for the 6 most frequent PoS tags (i.e. NOUN,
VERB, ADP, DET, PRON & PROPN) from the data
set matched for length of text passage, recording
dates and sentence position, but not for word length
or frequency. Each PoS class included the follow-
ing number of samples - train: 28,265 , dev: 2,948,
test: 3,183 examples.

Methods.We implemented the 3-1 pretraining
with 250k data augmentation (section 4). For the
sliding window analysis, we trained and tested
SVMs and Transformers on EEG signals from 64
ms windows (i.e. 16 time points) that shifted in
increments of 16 ms from 0 ms to 700 ms (i.e. re-
sulting in a sequence of 41 decoding accuracies).
For the incremental window analysis, we succes-
sively increased the initial [0 16] ms time window
(i.e. 4 samples) by 4 additional sampling points
resulting in a temporal sequence of 44 decoding ac-
curacies. We computed decoding accuracies (mean
across seeds, ± 68% CI) from the test set. Across
time windows we compared the decoding accura-
cies on the test set of the best dev set SVM and
Transformer using the Wilcoxon signed rank-test
(reported at p < 0.05, FDR-corrected for multiple
comparisons across time i.e. 41 resp. 44 tests).

Results. In the sliding window analysis, the de-
coding accuracies of SVMs and Transformers show
two prominent peaks at 200 ms and 400 ms sug-
gesting that PoS decoding relies on several aspects
of information encoded in the EEG. Based on our
confound-controlled analysis (section 3) the first
peak reflects word length and frequency informa-
tion, while the second peak is more closely related
to semantic and syntactic aspects of the word. The
incremental window analysis showed an accuracy
benefit of 4.5% for the Transformer starting in the
very first [0 16] ms time window. This difference
in performance between the two models further
widened, reaching a maximum advantage of 11.6%
around 360 ms. Transformers thus benefit from in-
tegrating information about word frequency, length
and class that arise at different post-stimulus laten-
cies. Moreover, because PoS classes of subsequent
words are correlated in natural language, the Trans-

Figure 4: Unigram results: Test set decoding accuracies
(mean across seeds ± 68% CI), aligned with last bin of
each time window. Top: Incremental window analysis.
Middle: Sliding window analysis. Bottom: ERP for
NOUN, i.e. EEG averaged across all examples from the
training set. Vertical lines indicate word onset times.
All time windows are significant at p < 0.05 FDR-
corrected.

former may also benefit via self-attention from in-
formation about the next word that is presented
and progressively encoded in EEG activity about
240 ms after the current (i.e. to be decoded) word.
Statistical testing confirmed that the Transformer
significantly outperformed the SVM for all sliding
and incremental windows (Wilcoxon-signed rank
test, FDR-corrected at p < 0.05).

5.2 Bigrams

To define the contributions of successive words to
EEG PoS decoding in naturalistic text reading, we
designed a bigram data set that artificially removes
the correlations between PoS classes of subsequent
words, though we note that this does not fully re-
move correlations between specific word tokens.

Data set. We selected 6 bigrams, in which
each first word’s PoS is combined equally often
with two different PoS classes from the second
word: NOUN-PRON, NOUN-VERB, PRON-NOUN,
PRON-VERB, VERB-NOUN and VERB-PRON. As
a result, the PoS class of word 1 is uninforma-
tive about the PoS class of word 2 and vice versa.
Hence, prior to the presentation of word 2, the max-
imal possible decoding accuracy for a particular
bigram is 50%. Each bigram class included the
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Figure 5: Bigram results: Test set decoding accuracies
(mean across seeds ± 68% CI), aligned with last bin of
each time window. Top: Incremental window analysis.
Middle: Sliding window analysis. Bottom: ERP for
VERB-PRON, i.e. EEG averaged across all examples
from the training set. Vertical lines indicate word onset
times. Asterisks (aligned with end of time window)
indicate significance at p < 0.05 FDR-corrected.

following number of samples - train: 3,470, dev:
322, test: 349 examples.

Methods for details see unigram analysis.

Results Similar to the unigram results, the slid-
ing window analysis revealed two prominent ac-
curacy peaks at 200 ms and 500 ms. Yet, the 2nd
peak was slightly later than in the unigram anal-
ysis and it was higher than the first peak only in
the bigram, but not the unigram analysis. These
differences between unigram and bigram decoding
profiles arise, because EEG at 500 ms encodes se-
mantic and syntactic aspects of word 1 and crucial
information about word 2 of the bigram. As shown
in Figure 5, the Transformer significantly outper-
formed the SVM in the sliding and incremental
window analyses. Yet, in contrast to the unigram
results, the Transformer outperformed the SVM in
the incremental analysis only for windows 0-208
ms and 0-336 ms. The Transformer’s smaller bene-
fit arises mainly because our balanced design radi-
cally reduced the number of examples and thereby
the Transformer’s generalisation ability. It also
removed the natural correlations between subse-
quent words on which the Transformer may have
additionally capitalised in the unigram data.

6 Related Work

The confound-controlled analysis dissociated word
length, frequency and class effects in EEG. This
replication of earlier ERP (Osterhout et al., 1997;
Münte et al., 1998) and MEG decoding work (King
et al., 2020) validates a new EEG data set for an
extensive morphosyntactically gold annotated cor-
pus; c.f. Bhattasali et al. (2020). Transformers
successfully decoded 6 PoS tags from single trial
EEG with data augmentation and 3-1 pretraining
(≈ 40% accuracy), raising the possibility to boost
PoS induction with EEG-decoded PoS tags. While
we acknowledge that our results are limited to EEG
data from a single subject, given the spatial smooth-
ness of EEG scalp topographies, we envision pre-
training on EEG obtained from different partic-
ipants. Further, because human brains generate
similar neural signatures for word classes across
different languages (c.f. Yudes (2016); Münte
et al. (2001); Hagoort et al. (2003)), pretraining
PoS-EEG decoders on large morphosyntactically
annotated EEG datasets for English followed by
fine-tuning on a smaller annotated EEG data set
for a low-resource language may enable success-
ful generalisation to EEG obtained from reading
non-annotated texts in this low-resource language.
PoS-induction jointly based on annotated texts and
EEG signals could thus be transformative for cor-
pus generation of low-resource languages.

7 Conclusion

Combining neural signals measured at millisecond
resolution with EEG and a linguistically annotated
corpus, this work shows - to the best of our knowl-
edge - the first time that unigram and bigram PoS
tags can be decoded successfully from single-trial
EEG data. Temporally-resolved EEG decoding un-
raveled how information about linguistic and non-
linguistic aspects evolved dynamically across time.
Unsurprisingly, Transformers with self-attention
mechanisms outperformed SVMs across all experi-
ments. In particular, they benefited from integrat-
ing information across time, data augmentation and
pretraining methods. Our work paves the way for
future applications that incorporate human brain
signals in traditional NLP methods.
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