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Abstract
Interactive neural machine translation (INMT)
is able to guarantee high-quality translations
by taking human interactions into account. Ex-
isting IMT systems relying on lexical con-
strained decoding (LCD) enable humans to
translate in a flexible translation manner be-
yond left-to-right. However, they typically suf-
fer from limitations in translation efficiency
and quality due to the reliance on LCD. In this
work, we propose a novel BiTIIMT system,
Bilingual Text-Infilling for Interactive Neural
Machine Translation. The key idea to BiTI-
IMT is the Bilingual Text-infilling (BiTI) task
which aims to fill missing segments in a manu-
ally revised translation for a given source sen-
tence. We propose a simple yet effective so-
lution by casting this task as a sequence-to-
sequence task. The benefits of our solution
are that it performs efficient decoding with
the same complexity as the standard decod-
ing in NMT and makes full use of revised
words for better translation prediction. Experi-
ment results show that BiTiIMT performs sig-
nificantly better and faster than state-of-the-art
LCD-based IMT on three translation tasks.

1 Introduction

Recent years have witnessed significant develop-
ment in neural machine translation(NMT) (Bah-
danau et al., 2015; Vaswani et al., 2017). Despite
their success, their translation in quality still can
not meet the requirements in industrial applications.
On the other hand, interactive neural machine trans-
lation (IMT) (Foster et al., 1997; Langlais et al.,
2000; Simard et al., 2007; Barrachina et al., 2009;
González-Rubio et al., 2013; Cheng et al., 2016;
Weng et al., 2019; Huang et al., 2021) is able to
guarantee high-quality translation: it is an iterative
collaboration process between human and machine
that involves multiple interactive steps to obtain a
satisfactory translation.

∗Work was done during internship at Tencent AI Lab.
†Corresponding authors.

Traditional IMT generates a translation in the
left-to-right completing paradigm (Langlais et al.,
2000; Sanchis-Trilles et al., 2014; Peris et al.,
2017a; Knowles and Koehn, 2016; Zhao et al.,
2020) where human translators are required to re-
vise words in the translation prefix. This strict left-
to-right manner limits its flexibility because some
human translators may enjoy their translation man-
ners beyond left-to-right. As a result, another part
of works (Weng et al., 2019; Huang et al., 2021)
propose an alternative IMT paradigm under which
human translators can revise words at arbitrary po-
sitions of a translation. The essential technique
to this paradigm is lexically constrained decoding
(LCD) (Hokamp and Liu, 2017; Post and Vilar,
2018), which extends beam search in the decoding
stage to include revised words as constraints.

Unfortunately, LCD-based IMT suffers from two
major shortcomings on efficiency and translation
quality in practice. Firstly, LCD-based IMT usu-
ally involves multiple interactions between a hu-
man translator and machine and runs the LCD algo-
rithm multiple times to translate a sentence. Since
each LCD run takes considerable time compared
with NMT decoding, the human translator will en-
counter severe latency, leading to poor user expe-
rience. In addition, LCD is based on the standard
translation model, which is defined on top of the
prefix context, and thus cannot make use of the re-
vised words to assist the model in predicting target
words to their left. Hence this characteristic limits
its overall translation quality.

This paper proposes a simple yet effective IMT
approach, BiTIIMT, which addresses the issues
above. The core idea to BiTIIMT is the Bilin-
gual Text-infilling (BiTI) task which extends text-
infilling (Zhu et al., 2019) from monolingual set-
ting to bilingual setting and aims to fill missing seg-
ments in a revised translation for a given source sen-
tence. Unlike Zhu et al. (2019) carefully designing
a model, we simply cast the bilingual text-infilling
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task as a sequence-to-sequence task and then em-
ploy the standard NMT model to perform this task.
To train the model, we construct simulated data by
randomly sampling revised sentences from a bilin-
gual corpus and augment the simulated data with
bilingual corpus for further improvements. In this
way, our model is able to yield a valid output that
can be seamlessly filled in the revised translation
in an efficient way similar to the standard NMT de-
coding. Moreover, the proposed model makes full
use of all revised words to predict a target word and
thus has the potential to obtain better translation
than LCD.

We conduct extensive experiments on WMT14
En-De, WMT14 En-Fr, and Zh-En tasks. Our
simulated experiments demonstrate that the pro-
posed model indeed outperforms LCD in terms of
translation quality and efficiency, and the proposed
BiTIIMT is better than LCDIMT according to both
translation quality and human editing costs. The
advantages of BiTIIMT over LCDIMT are also ver-
ified in real-world IMT experiments with human
translators.

This paper makes the following contributions:

• It proposes the bilingual text-infilling task and
provides a simple yet effective solution to ad-
dress this task.

• It proposes a novel IMT system on top of
bilingual text-infilling which empirically out-
performs a strong baseline in both translation
quality and efficiency.

2 Background

2.1 Neural Machine Translation

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015; Vaswani et al.,
2017) is based on a sequence to sequence model
which adopts an encoder-decoder architecture. The
encoder summarizes the source sentence into an
intermediate representation, and the decoder gener-
ates the target sentence.

Given a source sentenceX = {x1, · · · , xi, · · · },
a NMT model factorizes the distribution over pos-
sible output Y = {y1, · · · , yT } into a chain of
conditional probabilities from left to right:

P (Y | X; θ) =

T+1∏
t=1

P (yt | y1, y2, · · · , yt−1, X; θ)

(1)

Source
所有会员国必须支持这项固有的权利,并且必须采取一切措
施来维护这种权利。

Target

All Member States must support this inherent right and must 
take all measures to defend that right.

It is an

It is an inherent right that must be upheld by all Member States 
and must take all measures to defend it. preserve

It is an inherent right that must be upheld by all Member States 
and all measures must be taken to preserve it.

Translate

𝒀𝟏

𝒀𝟐
Accept!

It is an inherent right that must be upheld by all Member States, 
and all measures must be taken to preserve it.

Figure 1: An example of the BiTIIMT. Words with
blue fonts are chosen to keep by human translators.
Those with strikethrough and red fonts are deleted,
and words with green fonts are inserted by humans.

where the special tokens y0 (e.g. <bos>) and yT+1

(e.g. <eos>) are used to represent the beginning
and end of all target sentences.

2.2 Text Infilling

Text infilling (Zhu et al., 2019) is a task that fills
missing text segments of a sentence or paragraph
by a model (Berglund and Leo; Fedus et al., 2018;
Zhu et al., 2019) trained on a large amount of data
in a fill-in-the-blank format. The input text X =
{x1,<blank>, xi, ...,<blank>, ...} has an unknown
number of blanks whose positions are arbitrary, and
each blank has an arbitrary unknown length.

To address this task, a text infilling model fills in
each blank from left to right by predicting a target
word yj at each time step j. As a solution, Zhu
et al. (2019) proposes a variant model based on
Transformer, whose position encoding takes both
segment positions and token positions into account.

3 Proposed BiTIIMT

This section illustrates the overview of the pro-
posed BiTIIMT system and accordingly presents
its essential technique (i.e., bilingual text-infilling)
to take human interactions into NMT.

3.1 Overview of BiTIIMT

In general, the proposed BiTIIMT enjoys a human-
in-the-loop manner to output the final translation,
similar to conventional IMT systems (Cheng et al.,
2016). Specifically, for a given source sentence X ,
BiTIIMT iteratively performs the following two
steps:

• A human translator edits a translation Y from
the translation engine;
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• Then the engine updates Y based on the edited
translation as well as its source X .

This procedure terminates until the human transla-
tor is satisfied with the quality of Y . This procedure
is illustrated in Figure 1. The key to BiTIIMT is its
second step which relies on Bilingual Text-infilling
to update a translation Y . In the rest of this sec-
tion, the details about bilingual text-infilling will
be described.

3.2 Bilingual Text-infilling

3.2.1 Problem Statement and Model

Problem Statement Generally, bilingual text-
infilling extends text-infilling from the monolingual
setting (Zhu et al., 2019) to the bilingual setting.
Suppose Ȳ is a template, i.e., the edited (partial)
translation, which includes some blanks to be filled
in; Y b = {yb1, yb2, · · · , } is a sequence of segments
used to fill the blanks in Ȳ . BiTI aims to generate
Y b for filling the blanks in Ȳ , to obtain a translation
Y for a source sentence X .

Take Figure 2 as an example, the template Ȳ is
a partial translation edited by a translator which
contains three blanks. Y b includes three segments
to fill each blank in Ȳ , and Y is the translation after
filling Ȳ with Y b. It is worth noting that Y b con-
tains three special tokens “<eob>”, indicating the
end of a segment, which correspond to the blanks
in Ȳ , respectively.

It is an inherent right __ all measures __ preserve __!𝑌:

𝑌!: that must be upheld by all Member States, and <eob> must 
be taken to <eob> it. <eob>

It is an inherent right that must be upheld by all Member 
States, and all measures must be taken to preserve it.𝑌:

Figure 2: Main notations of bilingual text-infilling
where represent a blank based on example in Fig-
ure 1.

Model Definition Formally, bilingual text-
infilling can be addressed by the following proba-
bilistic model:

P (Y b|X, Ȳ ; θ) =
∏
t

P (ybt | X, Ȳ , Y b
<t; θ) (2)

所有会员国必须支持这项固有的权利,并且必须采取一切措施来维护
这种权利。<sep> It is an inherent right __ all measures __ preserve __

<sep>

𝑋<sep>"𝑌:

𝑌!: that must be upheld by all Member States, and <eob> must be taken to
<eob> it. <eob>

Figure 3: Bilingual text-infilling as the sequence-to-
sequence task. The input is “X <sep> Ȳ ” and the out-
put is Y b.

To implement this model, it is possible to extend
the Transformer (Vaswani et al., 2017) by using
two encoders (i.e., one is for X , and the other is for
Ȳ ) and taking both segment and token positions
into account similar to Zhu et al. (2019). How-
ever, for simplicity, we instead cast this task as a
standard sequence-to-sequence task by format ma-
nipulation and employ an NMT model to address
it. Specifically, we treat two input sequences X
and Ȳ as one input sequence “X <sep> Ȳ ”, where
“<sep>” is a speck token for concatenation, and Y b

as the output sequence, as shown in Figure 3. Then
we employ the Transformer model to accomplish
this task as the conventional NMT task.

Relation to Previous Work Our method is sim-
ilar to previous works, including lexically con-
strained decoding (LCD) (Hokamp and Liu, 2017;
Post and Vilar, 2018), MT with soft constraints
(Dinu et al., 2019) and code-switch enhanced MT
(Song et al., 2019; Chen et al., 2020) in the sense
that all of them generate translations based on given
constraints which are Ȳ in our work. However,
LCD imposes hard constraints on beam search dur-
ing the decoding stage, leading to the suffering of
decoding speed. In addition, the other two series of
works can not guarantee the constraints Ȳ will be in
the output translation, and the code-switch method
even requires word alignment information whereas
human translators do not provide such alignment
information in our scenario.

3.2.2 Training via Data Augmentation

𝒟 = 𝑋, 𝑌

𝑋

𝑌
Random
sample K

&𝑌

𝑌!

𝑋<sep> &𝑌

𝒟 = 〈𝑋, &𝑌, 𝑌!〉

Sequence of K
sampled segments

Replace other
segments with
‘<blank>’

Figure 4: Sampling procedure to get synthetic bilingual
text-infilling data.
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Typically, to train the model in Eq.(2), one needs
to obtain large amount of data consisting of triples
D = {〈X, Ȳ , Y b〉}. Unfortunately, this is impracti-
cal because both Ȳ and Y b are obtained by human
translators. To this end, we apply a simple sim-
ulation method to obtain {〈X, Ȳ , Y b〉} on top of
bilingual corpus {〈X,Y 〉} through random sam-
pling. Specifically, for each oracle target sentence
Y in bilingual data, we randomly sample an integer
k ∈ [0, 5] and randomly sample k non-overlapped
segments in Y . Then Ȳ can be obtained by replac-
ing each remaining segment with “<blank>” in Y ,
and Y b can be obtained by wrapping k sampled
segments and then joining them together in the
same order. This sampling procedure is shown in
Figure 4.

Given a training data D = {〈X, Ȳ , Y b〉}, it is
straightforward to optimize the following objective
function according to maximum likelihood estima-
tion:

` = −
∑

〈X,Ȳ ,Y b〉

logP (Y b | X, Ȳ ; θ)

where the model P is defined in Eq. (2).
Models trained on training data D =
{〈X, Ȳ , Y b〉} possess the ability to translate sen-
tences with constraints in fill-in-blank format style,
but it may lose its strength in translating normal
sentences. As a result, for the first iteration in IMT,
the initial translation maybe not good as expected,
leading to more interactive iterations between hu-
mans and machines. One possible solution is to
build an additional NMT model to generate the
initial translation. Instead, we apply the data aug-
mentation (DA) technique, making our model per-
form both tasks. For the standard bilingual parallel
data {〈X,Y 〉}, we construct its trivial triple data
D′ = {〈X, ∅, Y 〉}, where ∅ means that no revised
words are provided in Ȳ for each bilingual sen-
tence. Then we combine the sampled data D and
the trivial data D

′
as the augmented data to train

the model P in our experiments.
Actually, our method is slightly different from

classical data augmentation for NMT (Novak et al.,
2018; Wang et al., 2018; Li et al., 2019) because the
input in the augmented data is different from that
for bilingual text infilling task. In addition, because
the augmented data is used for bilingual text infill-
ing task and the other data is used for translation
task, our training method resembles an instance
of multi-task learning (MTL) framework(Caruana,

1997; Dong et al., 2015; Liu et al., 2016; Wang
et al., 2020b), where both tasks are modeled by the
same Transformer architecture.

3.3 Decoding
The task of bilingual text-infilling is reduced to
decode Y b according to the model P in Eq. (2)
via maximum a posteriori (MAP) estimation as
follows:

arg max
Y b:#b(Y b)=#b(Ȳ )

P (Y b | X, Ȳ ; θ) (3)

where #b denotes the number of blanks, i.e.,
#b(Y

b) is the number of “<eob>” in Y b and #b(Ȳ )
counts the number of “ ” in Ȳ . The constraints
in the above equation are used to guarantee that all
blanks in Ȳ can be exactly filled by Y b to obtain a
valid translation Y , otherwise, Y b would lead to an
invalid Y .

Theoretically, the constrained optimization in
Eq. (3) is more difficult than the unconstrained one
in standard NMT decoding. In practice, since the
constraint in Eq. (3) is about the number of blanks
in Y b, it is easy to satisfy by extending the stan-
dard beam search algorithm. Specifically, in the
standard beam search algorithm, one only needs to
maintain a number to restore the number of blanks
in the partial output Y b. If this number is equal
to #b(Ȳ ), Y b is the final output; otherwise, Y b

should be extended until the constraint is satisfied.
As a result, our decoding algorithm is very efficient,
and it shares the same complexity as the standard
beam search algorithm. In fact, thanks to the power-
ful Transformer architecture and sufficient training
data in our scenario, our model is able to implicitly
learn the constraint #b(Y

b) = #b(Ȳ ) with about
99.39% accuracy in our preliminary experiments.
In other words, for almost all sentences, the stan-
dard beam search algorithm is able to yield a valid
Y , even without explicitly imposing the constraint
during decoding.

4 Experiments

Following previous works (Peris et al., 2017b;
Cheng et al., 2016; Weng et al., 2019; Li et al.,
2020), we experiment on two simulated scenarios
and a real-world scenario.

4.1 Experiment Settings
4.1.1 Dataset
We conduct experiments on the English-German
dataset (En-De), English-French (En-Fr), and a
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#Raw #Augmented
Train Valid Train Valid

En-De 4M 2,737 8M 5,474

En-Fr 36M 3,003 72M 6,006

Zh-En 2M 2,000 4M 4,000

Table 1: Statistics on three datasets: WMT14 En-De,
WMT14 En-Fr, and Zh-En. (Augmented: a combina-
tion of the raw bilingual parallel dataset and their corre-
sponding artificial dataset with constructed templates.)

Chinese-English dataset (Zh-En), which includes
about 2 million bilingual sentences from the news
domain in total. For En-De and En-Fr, the datasets
are from WMT14 and we use newstest13 as the
valid dataset and use newstest14 filtered by Stan-
ford (Bojar et al., 2014) as the test dataset. For
Zh-En, the datasets are the same as Li et al. (2020).
We utilize the approach mentioned in Section 3.2
to construct synthetic bilingual parallel sentence
pairs based on all the datasets above. To set up the
data augmentation strategy, we combine original
training datasets and their corresponding synthetic
datasets. As Table 1 shows, we get an 8M English-
German dataset based on the WMT14 En-De, a
72M English-French dataset based on WMT14 En-
Fr, and a 4M Chinese-English dataset based on
a Zh-En dataset mentioned above. Valid sets are
obtained the same as training datasets.

For all datasets mentioned above, we use Moses
toolkit to tokenize and clean data. Besides, we
use BPE (Sennrich et al., 2015) to process all the
source and target sentences.

4.1.2 System Configurations
We train and evaluate the following systems for
comparison.

• Transformer. We set Transformer (Vaswani
et al., 2017) using fairseq (Ng et al., 2019).
The Transformer model is trained on the bilin-
gual datasets: WMT14 En-De, WMT14 En-
Fr, and the Zh-En dataset.

• LCDIMT. Since LCD-based decoding is
widely used in IMT scenario (Weng et al.,
2019; Huang et al., 2021), we build an LCD-
based IMT as our strong baseline. Because
the original LCD algorithm is very slow, we
implement its efficient version (Post and Vilar,
2018) which achieves comparable translation

quality to the original version but 5x speedup
in decoding.

• Our System. Our BiTiIMT model is based on
the base Transformer architecture and trained
on the synthetic datasets mentioned in Sec-
tion 3.3.

All baselines (Transformer and LCDIMT) and the
BiTIIMT models are based on the architecture
with dmodel = 512, dhidden = 2048, nheads = 8,
nlayers = 6, and pdropout = 0.1. We use the Adam
Optimizer (Kingma and Ba, 2015) with β1 = 0.9
and β2 = 0.98 to train our models. We adopt a
warm-up of 10,000 steps and set the initial learn-
ing rate to 0.0007. We set the maximum tokens in
batch to 4096, and we share both source and target
embeddings for all models. Training stops until the
maximum update is 400,000 and the checkpoint
used for testing is selected according to its perfor-
mance on the valid dataset. We train all models on
16 NVIDIA V100 Tensor Core GPUs. We use a
beam size of 10 throughout our experiments.

4.1.3 Evaluation Metrics
Following prior work (Cheng et al., 2016; Weng
et al., 2019; Zhao et al., 2020; Huang et al., 2021),
two criteria are used to evaluate INMT systems:
one is translation quality and the other is efficiency
to yield the translation. We employ BLEU (Pa-
pineni et al., 2002) to measure translation qual-
ity, and human editing cost to measure efficiency,
which is calculated as the edit distance by count-
ing deletions on word level and insertions on char
level. In addition, we take the decoding time into
account because it is directly related to the latency
for human translators, which is critical for user
experience.

4.2 Simulated Scenario

We conducted two different simulated experiments,
including IMT with a single iteration and IMT with
multiple iterations, to validate the effectiveness of
our method in terms of translation quality and edit-
ing and decoding costs mentioned above.

4.2.1 IMT with a Single Iteration
Since IMT with a single iteration can be seen as
machine translation with lexical constraints where
human interactions are considered as constraints,
we first conduct an experiment to evaluate the per-
formance of BiTIIMT by following Hokamp and
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Number of constraint segments
1 2 3 4 5

En-De
Transformer 27.36 / 1×
LCDIMT 29.56 / 1.22× 31.33 / 1.68× 32.98 / 1.73× 36.18 / 1.79× 38.78 / 1.88×
BiTIIMT 32.51 / 0.93× 37.86 / 0.9× 43.01 / 0.83× 47.09 / 0.81× 52.33 / 0.73×

En-Fr
Transformer 39.9 / 1×
LCDIMT 44.53 / 1.56× 47.76 / 1.82× 48.35 / 1.83× 48.64 / 1.84× 48.96 / 1.85×
BiTIIMT 46.02 / 0.99× 51.26 / 0.93× 51.96 / 0.91× 52.66 / 0.9× 53.18 / 0.89×

Zh-En
Transformer 46.71 / 1×
LCDIMT 47.83 / 1.35× 49.18 / 1.59× 49.34 / 1.83× 49.13 / 2.02× 49.73 / 2.08×
BiTIIMT 49.61 / 1.08× 51.62 / 1.08× 53.86 / 0.99× 56.05 / 0.97× 56.59 / 0.95×

Table 2: BLEU / Relative decoding time cost w.r.t Transformer baseline for five settings with 1 to 5 constraint
segments on WMT14 En-De, WMT14 En-Fr, and Zh-En datasets. For each setting, the boldface denotes the top
BLEU score and the best time cost among all systems.
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Figure 5: BLEU and Interactive cost comparison on WMT14 En-De, WMT14 En-Fr, and Zh-En datasets.

Liu (2017); Post and Vilar (2018). We use the refer-
ence as oracle to sample constraints for all datasets
and we consider five settings: they include grad-
ually increasing constraint segments from one to
five. In more detail, we randomly add a constraint
segment with a random length between 1 to 3 for
each setting. To ensure fairness, the constraints pro-
vided to both BiTIIMT and LCDIMT are exactly
the same. We measure decoding cost by using the
time required to translate the whole test set with
a batch size of one (excluding the time of model
loading).

As shown in Table 2, with only one constraint
segment, both BiTIIMT and LCDIMT obtain sub-
stantial improvements compared with Transformer
and BiTIIMT significantly outperforms LCDIMT
with a margin of +2.2, +4.63, and +1.12 BLEU
points for En-De, En-Fr, and Zh-En tasks, respec-
tively. This finding clearly verifies our hypothesis:
BiTIIMT indeed makes full use of the constraint
segments and thus yields better translations than

LCDIMT.

Table 2 also reports the results of relative decod-
ing cost with respect to the Transformer baseline.
As we can see, in the first setting with one con-
straint segment, BiTIIMT achieves modest speedup
in decoding time compared with the Transformer
baseline. With the growing number of constraint
segments, BiTIIMT keeps reducing the decoding
time, and it gives 0.27x decrease in decoding time
cost on En-De when running on five constraint
segments. Meanwhile, the time cost of LCDIMT
keeps growing, and it is almost twice as that of the
baseline in the 5th setting. Similar results can be
found on En-Fr and Zh-En datasets. It is worth
noting that the decoding efficiency of LCDIMT
seems not an issue for one iteration. In fact, decod-
ing efficiency indeed is a severe issue for multiple
iterations as in real-world scenarios, where more
constraint segments are involved especially at the
late stage of iterations.
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Figure 6: Accumulated decoding time cost compari-
sion on WMT14 En-De, WMT14 En-Fr, and Zh-En
datasets.

4.2.2 IMT with Multiple Iterations

We now turn to the evaluation of BiTIIMT in a
simulated IMT scenario where multiple iterations
of interactions are allowed. To simulate the human
interactive process of IMT, at each iteration, we
use the reference as oracle and match the oracle
with a translation from each system to calculate
Ȳ . Specifically, we delete unmatched words in the
translation as simulated deletion and add a word
from oracle as a simulated revision. By using the
edit distance algorithm, which includes only dele-
tion and revision operators, we can figure out Ȳ
given a translation and its reference. We use the
edit cost mentioned in Section 4.1.3 to qualify hu-
man interaction cost.

Figure 5 shows BLEU scores and interaction
costs along with all iterations on En-De, En-Fr, and
Zh-En datasets. As expected, BLEU scores con-
sistently increase with the increase of interaction
costs. As we can see on En-De, BiTIIMT obtains
improvements of about 5 BLEU points over the
baseline LCDIMT when using similar human in-
teraction costs. The BLEU gap between BiTIIMT
and LCDIMT is further enlarged in the late stage
of the interactive process. Results on En-Fr and
Zh-En give similar conclusions. These facts show
that BiTIIMT outperforms LCDIMT as it can re-
duce the human interaction cost to get a satisfying
translation.

Figure 6 reports the accumulated decoding time
cost on three datasets. As we can see, results on
three datasets give similar conclusions with the con-
clusions in section 4.2.2 that BiTIIMT has a lower

decoding time cost compared to LCDIMT for all in-
teractive iterations. Furthermore, the accumulated
decoding time cost of BiTIIMT after 5 iterations is
lower than the time cost of LCDIMT with only 2
iterations. The facts indicate that BiTIIMT has its
outstanding advantage in efficiency.

4.3 Real-world Scenario
We conduct two kinds of IMT experiments to vali-
date the effectiveness of BiTIIMT in a real-world
scenario. First, we use the post-editing data from
a valid dataset of WMT21 Automatic Post-Editing
Shared Task on En-De (Sharma et al., 2021), where
the words are edited by humans are natural con-
straints instead of simulated constraints. By using
these constraints, we compare the proposed IMT
method with baselines involve a single iteration
of human-machine interactions. Results in table 3
show that BiTIIMT can obtain much better trans-
lations than LCDIMT. Since in this dataset there
are many constraints edited by humans and the
post-edited translation is used as the reference, the
improvements of BiTIIMT over LCDIMT are sub-
stantial in terms of BLEU (up to 9 BLEU points).

Furthermore, we conduct another real-world ex-
periment that involves multiple iterations of human-
machine interactions. Specifically, we randomly
sample 200 sentences from the Zh-En test set and
then ask two professional human translators to in-
teract with both systems. Translators are asked
to do interactions (deletions, revisions, and inser-
tions) multiple times until they get a satisfactory
translation. We compared LCD-based and BiTI-
based IMT systems on averaged BLEU, averaged
decoding time cost, and averaged editing cost of
deletions, revisions, and insertions supplied by hu-
man translators. As shown in Table 4, BiTIIMT
can reach higher BLEU points with less decoding
time cost, editing cost, as well as fewer interaction
rounds. Note that our BLEU gains over LCDIMT
in Table 4 are relatively small compared with those
in Table 3. One main reason is that the constraints
edited by human translators may not appear in the
reference translation.

4.4 Analysis
Effect of Data Augmentation As the descrip-
tion in Section 3.2.2, we train our model (#Aug-
mented in Table 5) on the augmented data which in-
cludes synthetic bilingual data D = {〈X, Ȳ , Y b〉}
and their corresponding bilingual parallel data
D′ = {〈X, ∅, Y 〉} by data augmentation. For com-
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Method BLEU

Transformer 41.92
LCDIMT 46.96
BiTIIMT 56.02

Table 3: Results on the real-world dataset from
WMT21 En-De Automatic Post-Editing shared task.
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Figure 7: Effectiveness of Random Sampling Strategy.
"k" denotes the models trained on augmented Zh-En
datasets, which includes k constraint segments. BiTi-
IMT is trained on a dataset with a random number of
constraint segments. The x-coordinate denotes testing
with a different number of constraint segments.

parison, we train two additional models: one is on
D only (#Synthetic Only in Table 5) and the other
is trained on D′ (#Raw in Table 5). We compare
all these three models according to their BLEU on
the Zh-En dataset. Note that in this experiment, we
do not provide any human interactions to all three
models, i.e., Ȳ = ∅, during testing.

Table 5 summarizes the results of the three mod-
els. The model trained on the only synthetic dataset
almost collapses on automatic machine translation
task: it is worse than # Raw model by a substan-
tial margin of 18 BLEU points. In addition, it can
be found that the model trained on the augmented
dataset achieves +0.68 BLEU improvements over
# Raw model. Although such improvements are
not that large, it still shows that data augmentation
or the application of multiple task learning plays a
critical role in making BiTiIMT successful.

Effect of Random Sampling Strategy When
training the model for BiTIMT in section 3.2.2,
we employ a random strategy to sample Ȳ such
that it contains a random number of constraint seg-

ments. We are also curious about the effect of
such a random strategy. In comparison, we fix the
number of constraint segments and then train three
models for k = {1, 3, 5}. Under all five settings
as in Section 4.2.1, we compare BiTIIMT with
these three models on the Zh-En task. Figure 7
shows that, by training on data with a diverse num-
ber of constraints, our model achieves increasing
BLEU on all five settings while the BLEU of the
model (k = 1) gradually decreases and another
two models could not give continuous improve-
ment. Results suggest that our random sampling
strategy assists BiTIIMT to translate with a various
number of constraints.

5 Related Work

Since the period of statistical machine transla-
tion (SMT), IMT has been widely exploited to
reduce human effort by using human’s feedback
to improve translation quality (Foster et al., 1997;
Langlais et al., 2000; Simard et al., 2007; Bar-
rachina et al., 2009; González-Rubio et al., 2013;
Cheng et al., 2016; Li et al., 2021). Recently, with
the development of NMT (Bahdanau et al., 2015;
Vaswani et al., 2017), researchers turned to employ
IMT on it (Hokamp and Liu, 2017; Wang et al.,
2020a).

A classical type of IMT uses a left-to-right sen-
tence completing framework proposed in Langlais
et al. (2000), in which human translators can only
revise the translation generated by models from
left to right. Generally, the text portion from the
beginning to the current modified part is called
prefix, and the system will generate a new trans-
lation based on the given prefix (Sanchis-Trilles
et al., 2014; Peris et al., 2017a; Knowles and Koehn,
2016).

Cheng et al. (2016) propose a pick-revise frame-
work that enables translators to do revisions on ar-
bitrary positions to improve efficiency. Huang et al.
(2021) allow users to make any interaction at ran-
dom positions by using LCD algorithms (Hokamp
and Liu, 2017; Post and Vilar, 2018) in the decod-
ing stage which can integrate lexical constraints
into translation. However, LCD can not achieve
a win-win result in terms of decoding speed and
translation quality. Weng et al. (2019) propose a
bidirectional IMT framework on top of LCD, which
could fix mistakes by using two constrained decod-
ing procedures with opposite directions. However,
it needs to train two decoders, and in each con-
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Methods BLEU Decoding Time Cost Editing Cost Rounds

Transformer 45.46 0.92 - -
LCDIMT 51.36 1.44 19.79 1.46
BiTIIMT 53.48 0.27 15.815 1.27

Table 4: Results in the real-world IMT scenario for different methods.

Dataset BLEU

#Raw 46.71
#Synthetic Only 28.96
#Augmented 47.39

Table 5: Results of routine machine translation task
over models trained on different dataset settings. (Raw:
Zh-En dataset; Synthetic Only: artificial dataset with
constraint segments based on Zh-En; Augmented: a
combination of the raw dataset and synthetic dataset).

strained decoding, the model can only use part of
the constraints supplied by translators, making it
inefficient both in using human knowledge and de-
coding speed. Instead, BiTIIMT puts all constraints
into a template as part of the input, which makes it
possible for the model to use all human knowledge
and meanwhile fix mistakes automatically in the
whole sentence.

Other works (Alkhouli et al., 2019; Song et al.,
2020; Chen et al., 2021) apply alignment informa-
tion to improve the decoding efficiency of LCD.
Alkhouli et al. (2019) use alignment extracted by
vanilla transformer, which is poor as argued by
Garg et al. (2019). Song et al. (2020) apply an
external aligner to train the alignment module.
These works can only perform constrained decod-
ing based on a constraint pair, which means a bur-
den for human translators.

In order to address the issue of decoding speed
for LCD, some works use a non-autoregressive
approach to integrate constraints. Susanto et al.
(2020) propose Levenshtein Transformer (Gu et al.,
2019) to inject terminology constraints at infer-
ence time. Xu and Carpuat (2021) propose a novel
re-position operator to replace deletion in Leven-
shtein Transformer to exploit lexical constraints
more effectively and efficiently. However, non-
autoregressive models are still worse than autore-
gressive models in translation quality currently.
Compared to these efforts in NAT, BiTIIMT is es-
sentially based on an auto-regressive translation
model.

6 Conclusion

Traditional IMT systems often use LCD to incor-
porate manually revised words into translations.
In this paper, we propose BiTIIMT, a novel IMT
method that outperforms LCD-based IMT in both
translation quality and efficiency. The key to BiTI-
IMT is the bilingual text-infilling task which ex-
tends text-infilling from a monolingual setting to a
bilingual one. We cast this task as a sequence-to-
sequence task and propose a simple yet effective
solution to address it. Experiments show that BiTI-
IMT achieves a significantly improved efficiency
in the area of IMT.
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