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Abstract

It has been shown that machine translation
models usually generate poor translations for
named entities that are infrequent in the train-
ing corpus. Earlier named entity translation
methods mainly focus on phonetic transliter-
ation, which ignores the sentence context for
translation and is limited in domain and lan-
guage coverage. To address this limitation,
we propose DEEP, a DEnoising Entity Pre-
training method that leverages large amounts
of monolingual data and a knowledge base
to improve named entity translation accuracy
within sentences. Besides, we investigate a
multi-task learning strategy that finetunes a
pre-trained neural machine translation model
on both entity-augmented monolingual data
and parallel data to further improve entity trans-
lation. Experimental results on three language
pairs demonstrate that DEEP results in signifi-
cant improvements over strong denoising auto-
encoding baselines, with a gain of up to 1.3
BLEU and up to 9.2 entity accuracy points for
English-Russian translation.1

1 Introduction

Proper translation of named entities is critically im-
portant for accurately conveying the content of text
in a number of domains, such as news or encyclope-
dic text (Knight and Graehl, 1998; Al-Onaizan and
Knight, 2002a,b). In addition, a growing number
of new named entities (e.g., person name, location)
appear every day, therefore many of these entities
may not exist in the parallel data traditionally used
to train MT systems. As a result, even state-of-the-
art MT systems struggle with entity translation. For
example, Laubli et al. (2020) note that a Chinese-
English news translation system that had allegedly
reached human parity still lagged far behind hu-
man translators on entity translations, and this prob-

1Code/data/models are released at https://github.
com/JunjieHu/deep.

lem will be further exacerbated in the cross-domain
transfer settings or in the case of emerging entities.
Because of this, there have been a number of

methods proposed specifically to address the prob-
lem of translating entities. As noted by Liu (2015),
earlier studies on named entity translation largely
focused on rule-based methods (Wan and Verspoor,
1998), statistical alignment methods (Huang et al.,
2003, 2004) andWebmining methods (Huang et al.,
2005; Wu and Chang, 2007; Yang et al., 2009).
However, thesemethods have twomain issues. First,
as they generally translate a single named entity
without any context in a sentence, it makes it diffi-
cult to resolve ambiguity in entities using context.
In addition, the translation of entities is often per-
formed in a two-step process of entity recognition
then translation, which complicates the translation
pipeline and can result in cascading errors (Huang
et al., 2003, 2004; Chen et al., 2013).
In this paper, we focus on a simple yet effec-

tive method that improves named entity translation
within context. Specifically, we do so by devis-
ing a data augmentation method that leverages two
data sources: monolingual data from the target lan-
guage and entity information from a knowledge
base (KB). Our method also adopts a procedure of
pre-training and finetuning neural machine trans-
lation (NMT) models that is used by many recent
works (Luong and Manning, 2015; Neubig and Hu,
2018; Song et al., 2019; Liu et al., 2020). In par-
ticular, pre-training methods that use monolingual
data to improve translation for low-resource and
medium-resource languages mainly rely on a de-
noising auto-encoding objective that attempt to re-
construct parts of text (Song et al., 2019) or the
whole sentences (Liu et al., 2020) from noised in-
put sentences without particularly distinguishing
named entities and other functional words in the
sentences. In contrast, our method exploits an entity
linker to identify entity spans in the monolingual
sentences and link them to a KB that contains mul-
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Krasnodar (Q3646)
Language Label Description
English Krasnodar capital of Krasnodar region (Krai) in Southern Russia
Russian Краснодар город на юге России, административный центр

Краснодарского края::

Language Label ...
English Saratov ...
Russian Саратов ...

::

Saratov (Q5332)
Language Label ...
English Ulyanovsk ...
Russian Ульяновск ...

::

Ulyanovsk (Q5627)

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

Entity Recognition and Linking

Pre-training with DEEP

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

[MT] These new format stores have opened for business in Krasnodar, Saratov, and Ulyanovsk.

Multi-task Finetuning

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

[DEEP] Магазины нового формата заработали в Krasnodar , Saratov и Ulyanovsk .

[DEEP] Магазины нового формата заработали в Krasnodar , Saratov и Ulyanovsk .

Figure 1: General workflow of our method. Entities in a sentence is extracted and linked to Wikidata, which
includes their translations in many languages. DEEP uses the noise function 5 (H,KB) that replaces entities with
the translations for pre-training. DEEP is also employed during finetuning in a multi-task learning manner.

tilingual translations of these entities (such as Wiki-
data (Vrandečić and Krötzsch, 2014)). We then gen-
erate noised sentences by replacing the extracted
entity spans with their translations in the knowledge
base and pre-train our NMT models to reconstruct
the original sentences from the noised sentences.
To further improve the entity translation accuracy
and avoid forgetting the knowledge learned from
pre-training, we also examine a multi-task learning
strategy that finetunes the NMT model using both
the denoising task on the monolingual data and the
translation task on the parallel data.

In the experiments on English-Russian, English-
Ukrainian, and English-Nepali translations, DEEP
outperforms the strong denoising auto-encoding
baseline with respect to entity translation accuracy,
and obtains comparable or slightly better overall
translation accuracy as measured by BLEU. A fine-
grained analysis shows that our multi-task finetun-
ing strategy improves the translation accuracy of
the entities that do not exist in the finetuning data.

2 Denoising Auto-Encoding (DAE)

Given a set of monolingual text segments for pre-
training, i.e., H ∈ D. , a sequence-to-sequence de-
noising auto-encoder is pre-trained to reconstruct a
text segment H from its noised version corrupted by
a noise function 6(·). Formally, the DAE objective

is defined as follows:

LDAE(D. , \) =
∑
H∈D.

log %(H | 6(H); \), (1)

where \ denotes the model’s learnable parameters.
For notation simplicity, we drop \ in the rest of
the sections. This formulation encompasses sev-
eral different previous works in data augmentation
for MT, such as monolingual data copying (Currey
et al., 2017), where 6(·) is the identity function,
back translation (Sennrich et al., 2016), where 6(·)
is a backwards translation model, as well as heuris-
tic noise functions (Song et al., 2019; Lewis et al.,
2020; Liu et al., 2020) that randomly sample noise
according to manually devised heuristics.
In particular, as our baseline we focus on the

mBART method (Liu et al., 2020), a popular
method with two types of heuristic noise functions
being used sequentially on each text segment. The
first noise function randomly masks spans of text
in each sentence. Specifically, a span length is
first randomly sampled from a Poisson distribution
(_ = 0.35) and the beginning location for a span in H
is also randomly sampled. The selected span of text
is replaced by a mask token. This process repeats
until 35% of words in the sentence are masked. The
second noise function is to permute the sentence
order in each text segment with a probability.
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3 DEEP: Denoising Entity Pre-training

Our method adopts a procedure of pre-training and
finetuning for neural machine translation. First,
we apply an entity linker to identify entities in a
monolingual corpus and link them to a knowledge
base (§3.1). We then utilize entity translations in
the knowledge base to create noisy code-switched
data for pre-training (§3.2). Finally, we examine a
multi-task learning strategy to further improve the
translation of low-frequency entities (§3.3).

3.1 Entity Recognition and Linking
The goal of this part is to identify entities in
each monolingual segment and obtain their transla-
tions. To this end, we use Wikidata (Vrandečić and
Krötzsch, 2014) a public multilingual knowledge
base that covers 94M entities.2 Each entity is repre-
sented in surface forms from different languages in
which a Wikipedia article exists. Therefore, linking
an entity mention C in a target-language segment H
to an entity 4 in Wikidata allows us to obtain the
multilingual translations of the entity, that is,

∀C ∈ H, ∃4 ∈ KB : )4 = surface(4,KB), C ∈ )4

where)4 denotes a set of multilingual surface forms
of 4. We can define the translate operation as:
B = lookup()4, -) which simply looks for the sur-
face form of 4 in the source language - . Note that
this strategy relies on the fact that translations in
higher-resource languages are included in)4, which
we adopt by using English in our experiments. In
general, however, )4 does not universally cover all
the languages of interest. For entity recognition and
linking, we use SLING (Ringgaard et al., 2017),3
which builds an entity linker for arbitrary languages
available in Wikipedia.

3.2 Entity-based Data Augmentation
After obtaining entity translations from the KB, we
attempt to explicitly incorporate these translations
into the monolingual sentences for pre-training. To
do so, we design an entity-based noise function that
takes in a sentence H and the KB, i.e., 5 (H,KB).
First, we replace all detected entity spans in the
sentence by their translations from the KB:

replace(H,KB) = swap(B, C, H), ∀C ∈ H (2)

2Dump June 14, 2021. Creative Commons CC0 License.
3https://github.com/google/sling, Apache-

2.0 License

where the swap() function swaps occurrences of
one entity span C in H with its translation B in the
source language. For example, in the second box
of Figure 1, the named entities “Краснодаре, Са-
ратове and Ульяновске” in Russian are replaced
by “Krasnodar, Saratov, and Ulyanovsk” in En-
glish. After the replacement, we create a noised
code-switched segment which explicitly includes
the translations of named entities in the context of
the target language. For some segments that con-
tain fewer entities, their code-switched segments
may be similar to them, which potentially results
in a easier denoising task. Therefore, we further
add noise to these code-switched segments. To do
so, if the word count of the replaced entity spans is
less than a fraction (35%) of the word count in the
segment, we randomly mask the other non-entity
words to ensure that about 35% of the words are
either replaced or masked in the noised segment.
Finally, we follow Liu et al. (2020) to randomly
permute the sentence order in H. We then train
a sequence-to-sequence model to reconstruct the
original sentence H from its noised code-switched
sentence as follows:

LDEEP(D. ,KB) =
∑
H∈D.

log %(H | 5 (H,KB))

3.3 Multi-task Finetuning

After pre-training, we continue finetuning the pre-
trained model on a parallel corpus (G, H) ∈ D-.

for machine translation.

LMT(D-. ) =
∑

(G,H) ∈D-.

log %(H | G) (3)

To avoid forgetting the entity information learned
from the pre-training stage, we examine a multi-
task learning strategy to train the model by both the
pre-training objective on the monolingual data and
the translation objective on the parallel data. Since
monolingual segments are longer text sequences
than sentences in D-. and the size of D. is usu-
ally larger than that of D-. , simply concatenating
both data for multi-task finetuning leads to bias
toward denoising longer sequences rather than ac-
tually translating sentences. To balance the two
tasks, in each epoch we randomly sample a subset
of monolingual segments D ′

.
from D. , where the

total subword count of D ′
.
equals to that of D-. ,

i.e.,
∑

H∈D′H |H | =
∑
(G,H) ∈D-.

max( |G |, |H |). We
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Lang. Token Para. Entity

Type Count N

Ru 775M 1.8M 1.4M 337M 123
Uk 315M 654K 524K 140M 149
Ne 19M 26K 17K 2M 34

Table 1: Statistics ofWikipedia corpora in Russian (Ru),
Ukrainian (Uk) and Nepali (Ne) for pre-training. # de-
notes the average subword count of entity spans in a se-
quence of 512 subwords.

then examine the multi-task finetuning as follows:

LMulti-task = LMT(D-. ) + LPre-train(D ′. ) (4)

where the pre-training objective LPre-train is either
DAE or DEEP with DEEP having an additional in-
put of a knowledge base. Notice that with the sam-
pling strategy for the monolingual data, we double
the batch size in the multi-task finetuning setting
with respect to that in the single-task finetuning
setting. Therefore, we make sure that the models
are finetuned on the same amount of parallel data
in both the single-task and multi-task settings, and
the gains from the multi-task setting sorely come
from the additional task on the monolingual data.
To distinguish the tasks during finetuning, we

replace the start token ([BOS]) in a source sen-
tence or a noised segment by the corresponding
task tokens for the translation or the denoising task
([MT], [DAE] or [DEEP]). We initialize these
task embeddings by the start token embedding and
append them to the word embedding matrix of the
encoder.

4 Experimental Setting

Pre-training Data: We conduct our experiments
on three language pairs: English-Russian, English-
Ukrainian and English-Nepali. We use Wikipedia
articles as the monolingual data for pre-training and
report the data statistics in Table 1. We tokenize the
text using the same sentencepiece model as Liu et al.
(2020), and train on sequences of 512 subwords.

Finetuning & Test Data: We use the news com-
mentary data from the English-Russian translation
task in WMT18 (Specia et al., 2018) for finetuning
and evaluate the performance on the WMT18 test
data from the news domain. For English-Ukrainian,
we use the TED Talk transcripts from July 2020 in
the OPUS repository (Tiedemann, 2012) for fine-
tuning and testing. For English-Nepali translation,

Lang. Train Dev Test Coverage (F) Coverage (T)

Type Count Type Count

En-Ru 235K 3.0K 3.0K 88% 94% 88% 91%
En-Uk 200K 2.3K 2.5K 87% 94% 91% 94%
En-Ne 563K 2.6K 2.8K 35% 25% 44% 27%

Table 2: Statistics of the parallel train/dev/test data for
finetuning. Coverage (F/T) represent the percentage of
entity types and counts in the Finetuning (Test) data
that are covered by the pre-training data.

we use the FLORES dataset in Guzmán et al. (2019)
and follow the paper’s setting to finetune on parallel
data in the OPUS repository. Table 2 shows the data
statistics of the parallel data for finetuning. Notice
that from the last four columns of Table 2, the en-
tities in the pre-training data cover at least 87% of
the entity types and 91% of the entity counts in both
finetuning and test data except the En-Ne pair.

Architecture: We use a standard sequence-to-
sequence Transformer model (Vaswani et al., 2017)
with 12 layers each for the encoder and decoder.
We use a hidden unit size of 512 and 12 attention
heads. Following Liu et al. (2020), we add an addi-
tional layer-normalization layer on top of both the
encoder and decoder to stabilize training at FP16
precision. We use the same sentencepiece model
and the vocabulary from Liu et al. (2020).

Methods in Comparison: We compare methods
in the single task and multi-task setting as follows:

• Random→MT: We include a comparison with
a randomly initializedmodel without pre-training
and finetune the model for each translation task.

• DAE→MT:We pre-train amodel byDAE using
the two noise functions in Liu et al. (2020) and
finetune the model for each translation task.

• DEEP→MT: We pre-train a model using our
proposed DEEP objective and finetune the model
on the translation task.

• DAE→ DAE+MT: We pre-train a model by the
DAE objective and finetune the model for both
the DAE task and translation task.

• DEEP→ DEEP+MT: We pre-train a model by
the DEEP objective and finetune the model for
both the DEEP task and translation task.

Learning & Decoding: We pre-train all models
for 50K steps first using the default parameters
in Liu et al. (2020) except that we use a smaller
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batch of 64 text segments, each of which has 512
subwords. We use the Adam optimizer (n=1e-6,
V2=0.98) and a polynomial learning rate decay
scheduling with a maximum step at 500K. All mod-
els are pre-trained on one TPUv3 (128GB) for about
12 hours for 50K steps.4 We apply the noise func-
tion on the monolingual data on the fly for each
epoch, and this takes only a few minutes by multi-
processing in Fairseq (Ott et al., 2019). We then
reset the learning rate scheduler and continue fine-
tuning our pre-trained models on the MT parallel
data for 40K steps. Single-task (multi-task) fine-
tuning takes about 16 (32) hours on 2 RTX 3090
GPUs. We set the maximum number of tokens
in each batch to 65,536 in the single task setting
and double the batch size in the multi-task setting
to ensure that models in both settings are trained
on an equal amount of parallel data, and thus any
performance gain can only be attributed to monolin-
gual data during finetuning. We use 2,500 warm-up
steps to reach a maximum learning rate of 3e-5,
and use 0.3 dropout and 0.2 label smoothing. After
training, we use beam search with a beam size of
5 and report the results in sacreBLEU (Post, 2018)
following the same evaluation in Liu et al. (2020).

5 Discussion

5.1 Corpus-level Evaluation
In Table 3, we compare all methods in terms of
BLEU (Papineni et al., 2002) and chrF (Popović,
2015) on the test data for three language pairs. First,
we find that all pre-training methods significantly
outperform the random baseline. In particular, our
DEEP method obtains a gain of 3.5 BLEU points in
the single task setting for the low-resource En-Ne
translation. Second, we compute statistical signifi-
cance of the BLEU and chrF scores with bootstrap
resampling (Koehn, 2004), and we observe signifi-
cant improvements with the multi-task finetuning
strategy over the single-task finetuning for En-Ru
and En-Ne. Our DEEP method outperforms the
DAE method for En-Ru translation by 1.3 BLEU
points in the multi-task setting. It is also worth not-
ing that DEEP obtains higher BLEU points than
DAE at the beginning of the multi-task finetuning
process, however the gap between both methods de-
creases as the finetuning proceeds for longer steps
(See Appendix A). One possible reason is that mod-
els trained by DEEP benefit from the entity trans-

4As we show in Figure 4, models pre-trained for 50K steps
provide a reasonably good initialization.

lations in the pre-training data and obtain a good
initialization for translation at the beginning of the
finetuning stage. As the multi-task finetuning pro-
ceeds, the models trained by both DAE and DEEP
rely more on the translation task than the denoising
task for translating a whole sentence. Thus the nu-
ance of the entity translations might not be clearly
evaluated according to BLEU or chrF.

5.2 Entity Translation Accuracy
Since corpus-level metrics like BLEU or chrFmight
not necessarily reveal the subtlety of named en-
tity translations, in the section we perform a fine-
grained evaluation by the entity translation accu-
racy which counts the proportion of entities cor-
rectly translated in the hypotheses. Specifically, we
first use SLING to extract entities for each pair of
a reference and a hypothesis. We then count the
translation accuracy of an entity as the proportion
of correctly mentioning the right entity in the hy-
potheses, followed bymacro-averaging to obtain the
average entity translation accuracy. We also show
the accuracy scores in Table 3. First, our method
in both single- and multi-task settings significantly
outperformed the other baselines. In particular, the
gains from DEEP are much clear for the En-Uk
and En-Ru translations. One possible reason is that
Russian or Ukrainian entities extracted from the
pre-training data have a relatively higher coverage
of the entities in both the finetuning and test data
as reported in Table 2. However, SLING might not
detect as many entities in Nepali as in the other lan-
guages. We believe that future advances on entity
linking in low-resource languages could potentially
improve the performance of DEEP further. We
leave this as our future work.

5.3 Fine-grained Analysis on Entity
Translation Accuracy

In this section, we further analyze the effect on
different categories of entities using our method.

Performance of Entity Groups over Finetuning:
The model is exposed to some entities more often
than others at different stages: pre-training, finetun-
ing and testing, which raises a question: how is the
entity translation affected by the exposure during
each stage? To answer this question, we divide the
entities appearing in the test data into three groups:
• PFT: entities appearing in the pre-training, fine-
tuning, and test data.

• PT: entities only in the pre-training and test data.
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Pre-train→ Finetune BLEU chrF Entity Translation Acc.

En-Uk En-Ru En-Ne En-Uk En-Ru En-Ne En-Uk En-Ru En-Ne

Random→MT 17.1 15.0 7.7 37.0 36.8 24.3 49.5 31.1 20.9
DAE→MT 19.5 18.5 10.5 39.2 40.4 26.8 56.7 37.7 26.0
DEEP→MT 19.4 18.5 11.2∗ 39.2 40.7∗ 27.7∗ 57.7 40.6∗ 28.6∗

DAE→ DAE+MT 19.4 18.5 11.2 39.1 41.0 27.8 58.8 47.2 27.9
DEEP→ DEEP+MT 19.7 19.6∗ 11.5 39.1 42.4∗ 28.2∗ 61.9∗ 56.4∗ 28.3

Table 3: BLEU, Entity translation accuracy, and chrF in single- and multi-task settings. Largest numbers in each
column are bold-faced. ∗ indicates statistical significance of DEEP with ? < 0.05 to DAE in the respective settings.
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Figure 2: Entity translation accuracy scores aggregated over different entity sets for Russian. PFT, PT, FT data
correspond to entities appearing in (i) pre-training, finetuning and test data, (ii) only pre-training and test data (iii)
only finetuning and test data.

• FT: entities only in the finetuning and test data.
We show the English-to-Russian entity transla-

tion accuracy scores for each group over finetuning
steps in Figure 2. Overall, accuracies are higher for
the entities that appear in the finetuning data (PFT,
FT), which is due to the exposure to the finetuning
data. Our proposed method consistently outper-
formed baseline counterparts in both single- and
multi-task settings. The differences in accuracy are
particularly large at earlier finetuning steps, which
indicates the utility of our method in lower-resource
settings with little finetuning data. The effect of
multi-task finetuning is most notable for entities in
PT. Multi-task finetuning continuously exposes the
model to the pre-training data, which as a result pre-
vents the model from forgetting the learned entity
translations from PT.

Performance according to Entity Frequency:
We further analyze the entity translation accuracy
scores using entity frequencies in each group intro-
duced above. This provides a more fine-grained per-
spective on how frequent or rare entities are trans-
lated. To do so, we take Russian hypotheses from

a checkpoint with 40K steps of finetuning, bin the
set of entities in three data (i.e. PFT, PT, FT) ac-
cording to frequencies in each of the data. We then
calculate the entity translation accuracy within each
bin by comparing them against reference entities in
the respective sentences. Figure 3 shows the accu-
racy gain of each pre-training methodologies from
Random→MT (i.e. no pre-training) on test data,
grouped by the entity frequency bins in pre-training
and finetuning data. Note that leftmost column and
the bottom row represent PT, FT, respectively. As
observed earlier, the proposed method improves
more over most frequency bins, with greater differ-
ences on entities that are less frequent in finetuning
data. This tendency is observed more significantly
for the multi-task variant (DEEP→DEEP +MT),
where the gains are mostly from entities that never
appeared in finetuning data (i.e. leftmost column).
Multi-task learning with DEEP therefore prevents
the model from forgetting the entity translations
learned at pre-training time. Analytical results on
Ukrainian and Nepali are in Appendix B.
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Figure 3: Gain from Random→MT in entity translation accuracy for each model.

Methods 0.24M 4.25M

BLEU Acc. BLEU Acc.

Random→MT 15.0 31.1 15.7 39.4
DAE→MT 18.5 37.7 16.3 53.7
DEEP→MT 18.5 40.6 17.2 53.9

Table 4: Model comparisons across different finetun-
ing data sizes. The results on the right are obtained af-
ter finetuning on the combined news commentary and
ParaCrawl data.

5.4 Optimization Effects on DEEP

Finetuning Data Size vs Entity Translation:
While DEEP primarily focuses on a low-resource
setting, the evaluation with more resources can
highlight potential use in broader scenarios. To
this end, we expand the finetuning data for English-
Russian translation with an additional 4 million
sentence pairs from ParaCrawl (Bañón et al., 2020),
a parallel data collected from web pages. Although
web pages might contain news text, ParaCrawl data
covers more general domains. We finetune mod-
els on the combined data and evaluate with BLEU
and entity translation accuracy. Table 4 shows the
comparisons across different finetuning data sizes.
When the model is initialized with pre-training
methods, we observed decreased BLEU points and
increased entity translation accuracy scores. This is
partly due to the discrepancy of domains between
our finetuning data (news) and ParaCrawl. Regard-
less, DEEP is consistently equal to or better than
DAE in all tested settings.

Pre-training Steps vs Entity Translation:
Since DEEP leverages entity-augmented mono-
lingual data, the model trained by DEEP revisits
more entities in different context as the pre-training
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Figure 4: English-to-Russian BLEU and Entity transla-
tion accuracy scores after finetuning from variable pre-
training steps. Finetuning is performed for 40K steps.

proceeds. To analyze the efficiency of learning
entity translation during pre-training, we focus
on the question: how many pre-training steps are
needed for named entity translation? To examine
this question, we take the saved checkpoints trained
by DEEP from various pre-training steps, and
apply the single-task finetuning strategy on the
checkpoints for another 40K steps. We plot the
entity translation accuracy and BLEU on the test
data in Figure 4. We find that the checkpoint at
25K steps has already achieved a comparable entity
translation accuracy with respect to the checkpoint
at 150K steps. This shows that DEEP is efficient to
learn the entity translations as early as in 25K steps.
Besides, both the BLEU and entity translation
accuracy keep improving as the pre-training steps
increase to 200K steps.
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Src: These new format stores have opened for business in Krasnodar, Saratov, and Ulyanovsk.
Ref: Магазины нового формата заработали в Краснодаре, Саратове и Ульяновске.

1© Эти новые форматовые магазины открылись для бизнеса в Анридаре, Кристофе и Куьянме.
2© Эти новые формат @-@ магазины открылись для бизнеса в Краснодаре, Сараабане и в Уругянском университете.
3© Эти новые магазины форматов открылись для бизнеса в Krasnodar, Saratov и Ulyanovsk.
4© Эти новые форматные магазины открылись для бизнеса в Краснодаре, Саратове и Ульяновске.

Src: In Barnaul, the new asphalt on Krasnoarmeyskiy Prospekt is being dug up
Ref: В Барнауле вскрывают новый асфальт на проспекте Красноармейском

1© В Барнауле новое, как разворачивающееся на железнополярном Происсе, растет.
2© В Барнале, новое, как разразилось на Красно @-@Молгскиском Просвещении, растет.
3© Барнаул, новый миф на Krasnoarmey Prospekt, выращивающий Krasnoarmeski.
4© В Барнауле новый асфальт на Красноармейском проспекте выращивание растет.

Table 5: Qualitative comparison among four pre-training methods on named entity translations. 1©: DAE→ MT,
2©: DEEP→MT, 3©: DAE→ DAE+MT, 4©: DEEP→ DEEP+MT.

5.5 Qualitative Analysis

In this section, we select two examples that contain
entities appearing only in the pre-training and test-
ing data. The first example contains three location
names. We find that the model trained by the single-
task DAE predicts the wrong places which provide
the wrong information in the translated sentence.
In addition, the model trained by the multi-task
DAE just copies the English named entities (i.e.,
“Krasnodar”, “Saratov” and “Ulyanovsk”) to the
target sentence without actual translation. In con-
trast, our method predicts the correct translation
for “Krasnodar” in both single-task and multi-task
setting, while the multi-task DEEP translates all en-
tities correctly. In the second example, although our
method in the single-task setting predicts wrong for
all the entities, the model generates partially correct
translations such as “Барнале” for “Барнауле” and
“Красно @-@ Молгскиском” for “Красноармей-
ском”. Notice that DEEP in the multi-task setting
translates the correct entities “asphalt” and “Kras-
noarmeyskiy” which convey the key information in
this sentence. In contrast, the translation produced
by the multi-task DAEmethod literally means “Бар-
наул (Barnaul), новый (new) миф (myth) на (at)
Krasnoarmey Prospekt, выращивающий (grow)
Krasnoarmeski.”, which is incomprehensible due
to the entity translation errors.

6 Related Work

Named Entity Translation has been extensively
studied for decades (Arbabi et al., 1994; Knight and
Graehl, 1998). Earlier studies focus on rule-based
methods using phoneme or grapheme (Wan and
Verspoor, 1998; Al-Onaizan and Knight, 2002b),
statistical methods that align entities in parallel

corpus (Huang et al., 2003, 2004; Zhang et al.,
2005) and Web mining methods built on top of
a search engine (Huang et al., 2005; Wu and Chang,
2007; Yang et al., 2009). Recently, Finch et al.
(2016); Hadj Ameur et al. (2017); Grundkiewicz
and Heafield (2018) used NMT to transliterate
named entities without any sentence context. An-
other line of research (Ugawa et al., 2018; Li et al.,
2018; Torregrosa et al., 2020; Modrzejewski et al.,
2020; Zhou et al., 2020) only performs entity recog-
nition and uses entity tags (e.g., person) which
are not directly informative to the translation task,
in contrast to the entity translations obtained by
entity linking in our work. Besides, these meth-
ods modify model architecture to integrate entity
tag embeddings or knowledge graph entity embed-
dings (Moussallem et al., 2019), which also require
extracting entity information for both training and
test data. In contrast, we focus on data augmentation
methods to improve name entity translation within
context, so our method is easily applicable to any
architectures and test data without preprocessing.

Pre-training of Neural Machine Translation has
been shown effective by many recent works (Con-
neau and Lample, 2019; Song et al., 2019; Liu et al.,
2020; Lin et al., 2020), where different pre-training
objectives are proposed to leverage monolingual
data for translation. These methods adopt a denois-
ing auto-encoding framework, which encompasses
several different works in data augmentation on
monolingual data for MT (Lambert et al., 2011;
Currey et al., 2017; Sennrich et al., 2016; Hu et al.,
2019). However, named entity translations during
pre-training is under-explored. We fill this gap by
integrating named entity recognition and linking to
the pre-training of NMT. Moreover, while recent
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work shows that continue finetuning a pre-trained
encoder with the pre-training objective improves
language understanding tasks (Gururangan et al.,
2020), this finetuning paradigm has not been ex-
plored for pre-training of a sequence-to-sequence
model. Besides, previous works on multi-task learn-
ing for MT focus on language modeling (Gulcehre
et al., 2015; Zhang and Zong, 2016; Domhan and
Hieber, 2017; Zhou et al., 2019), while we examine
amulti-task finetuning strategy with an entity-based
denoising task in this work and demonstrate sub-
stantial improvements for named entity translations.

7 Conclusion

In this paper, we propose an entity-based pre-
training method for neural machine translation. Our
method improves named entity translation accu-
racy as well as BLEU score over strong denois-
ing auto-encoding baselines in both single-task and
multi-task setting. Despite the effectiveness, sev-
eral challenging questions remain open. First, re-
cent works on integrating knowledge graphs (Zhao
et al., 2020a,b) in NMT have shown promising re-
sults for translation. Our method links entities to a
multilingual knowledge base which contains rich
information of the entities such as entity descrip-
tion, relation links, and alias. How to leverage these
richer data sources to resolve entity ambiguity de-
serves further investigation. Second, finetuning pre-
trained models on in-domain text data is a potential
way to improve entity translations across domains.
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Appendix

A Finetuning BLEU Curves

We report BLEU score for three language pairs calculated from checkpoints at different finetuning steps in
Figure 5. For all language pairs, all pre-training methods result in a significant increase in terms of BLEU
throughout the finetuning in both single-task and multi-task setting. In particular, the differences in BLEU
between DEEP and the other baselines are most significant at the beginning of the finetuning stage.
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Figure 5: BLEU scores for 3 language pairs over various finetuning steps.

B Entity Translation Accuracy for other languages

We show the entity translation accuracy performance over various finetuning steps for Ukrainian and
Nepali in Figure 6, 7, and show the gains of three pre-training methods over the random baseline with
respect to the entity frequencies in Figure 8, 9. Empty cells in the heatmaps are due to no entities that
meet the conditions in those cells.

Ukrainian: As seen in Figure 6, the general trend for the entity translation accuracy according to entity
groups are similar to that of Russian. While DEEP achieves the highest accuracy in FT, the results for
FT is less reliable due to a small sample size of entities in FT. In terms of the gain from Random→
MT according to the entity frequency, we observe a consistent improvement of our multi-task DEEP on
translating low-frequent entities in the finetuning data (See the left bottom of Figure 8).

Nepali: While outperforming at the beginning of finetuning, Figure 7 shows that DEEP→ DEEP+MT
eventually under-performed for translations of entities in PFT data. Moreover, the accuracy is considerably
lower on entities in PT, which suggests that the degree of forgetting is much more conspicuous in Nepali.
The gain fromRandom→MTwith respect to the entity frequency exhibited a different trend from Russian
and Ukrainian. Figure 9 shows the results. In the single-task setting, DEEP improve the translations of
frequent entities appearing in both the pre-training and finetuning data. Despite the multi-task learning
that introduces additional exposure to entities that are more frequent in the pre-training data, the largest
gain comes from entities that are less frequent in the pre-training data but frequent in the finetuning data.

C Scientific Artifacts

In Table 6, we provide the detailed information about the scientific artifacts (e.g., data, code, tools) used
in our paper. We have checked the data used in this work to make sure that we do not intentionally use
private or sensitive information or offensive content for deriving the observations and conclusions from
our work. Although WikiData may contain the name of some individual people (e.g., famous people that
have Wikipedia webpages), we do not use their sensitive information in our analysis.
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Figure 6: Entity translation accuracy aggregated over different entity sets for Ukrainian.
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Figure 7: Entity translation accuracy aggregated over different entity sets for Nepali.
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Figure 8: Gain from Random→MT in entity translation accuracy for Ukrainian for each model.
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Figure 9: Gain from Random→MT in entity translation accuracy for Nepali for each model.

Artifact License/Term Documentation

WikiData (Vrandečić and Krötzsch, 2014) Creative Commons CC0 This resource is a free knowledge base that supports various research and projectw.
Sling (Ringgaard et al., 2017) Apache-2.0 This tool is intended to use for analyze WikiData and Wikipedia articles.
WMT18 En-Ru Data (Specia et al., 2018) Open-sourced This dataset is intended to be used for MT on news texts.
OPUS Data (Tiedemann, 2012) Open-sourced This data resource is intended to be used for MT.
FLORES Data (Guzmán et al., 2019) CC-BY-SA-4.0 License This dataset is intended to be used for low-resource MT.
Fairseq (Ott et al., 2019) MIT License This tool is intended to facilitate deep learning research.

Table 6: Detail information about scientific artifacts used in this paper.

1766


