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Abstract

A language-independent representation of
meaning is one of the most coveted dreams
in Natural Language Understanding. With this
goal in mind, several formalisms have been
proposed as frameworks for meaning represen-
tation in Semantic Parsing. And yet, the de-
pendencies these formalisms share with respect
to language-specific repositories of knowledge
make the objective of closing the gap between
high- and low-resourced languages hard to ac-
complish. In this paper, we present the Ba-
belNet Meaning Representation (BMR), an in-
terlingual formalism that abstracts away from
language-specific constraints by taking advan-
tage of the multilingual semantic resources of
BabelNet and VerbAtlas. We describe the ra-
tionale behind the creation of BMR and put
forward BMR 1.0, a dataset labeled entirely
according to the new formalism. Moreover, we
show how BMR is able to outperform previous
formalisms thanks to its fully-semantic framing,
which enables top-notch multilingual parsing
and generation. We release the code at https:
//github.com/SapienzaNLP/bmr.

1 Introduction

Natural Language Understanding (NLU) enables
machines to understand human language. A key
enabling task in NLU is that of Semantic Pars-
ing, whose longed-for dream is that of developing
a formalism that can be used as an interlingual
representation of meaning, i.e., one that, indepen-
dently of the language, can explicitly embed sen-
tence meaning into a machine- and human-readable
form (Navigli, 2018). To this end, different for-
malisms such as Abstract Meaning Representation
(Banarescu et al., 2013, AMR), Universal Concep-
tual Cognitive Annotation (Abend and Rappoport,
2013, UCCA) and Universal Meaning Represen-
tation (Van Gysel et al., 2021, UMR), have been
proposed over the years.

As of now though, AMR is the most popular

formalism for Semantic Parsing, being widely ap-
plied to a variety of areas of NLP, such as Machine
Translation (Song et al., 2019), Question Answer-
ing (Lim et al., 2020; Bonial et al., 2020b; Kapani-
pathi et al., 2021), Human-Robot Interaction (Bo-
nial et al., 2020a), Text Summarization (Hardy and
Vlachos, 2018; Liao et al., 2018) and Information
Extraction (Rao et al., 2017).

The primary precept of AMR is that different
sentences carrying the same meaning should have
the same graph representation. Nonetheless, a
few inherent properties of AMR make it inappro-
priate for the purpose of providing a language-
agnostic representation of meaning. In fact, nodes
within AMR graphs are represented by means of
either English lemmas or OntoNotes frames (Hovy
et al., 2006) which, in turn, are based on PropBank
(Kingsbury and Palmer, 2002). The issue with lem-
mas is that they are merely surface forms devoid of
semantics, whereas, with respect to frames, even
though analogous repositories exist in other lan-
guages such as AnCora for Spanish (Aparicio et al.,
2008) or the Chinese PropBank (Xue and Palmer,
2009), they are not mutually interlinked, hence
making the cross-lingual application of AMR ardu-
ous to achieve (Conia et al., 2021).

Against this background, we follow the ideas put
forward by Navigli et al. (2022) and develop the Ba-
belNet Meaning Representation (BMR), a formal-
ism providing the building blocks for a language-
agnostic representation of meaning by exploiting
the wealth of multilingual knowledge contained
in BabelNet (Navigli and Ponzetto, 2010; Nav-
igli et al., 2021)1 and VerbAtlas (Di Fabio et al.,
2019)2.

In outline, the main contributions of this paper
are as follows: (i) we introduce BMR, a new Se-
mantic Parsing formalism that can be used as an
interlingua, (ii) we produce BMR 1.0, i.e., the first

1https://babelnet.org/
2https://verbatlas.org/
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lexical-semantic dataset annotated according to the
BMR formalism, (iii) we create and release models
that can generate BMR graphs from text and text
from BMR graphs in English, German, Spanish,
and Italian, and (iv) we describe a sound experi-
mental setup to show how, thanks to its fully se-
mantic framing, BMR outdoes previous formalisms
in both preserving and encoding textual informa-
tion, as well as in being used as an interlingua in
downstream tasks such as Machine Translation.

2 Related Work

Even though the vast majority of formalisms for
Semantic Parsing have been designed with English
in mind, several approaches have attempted to nar-
row the gap between English and other languages.
For instance, Universal Conceptual Cognitive An-
notation (Abend and Rappoport, 2013, UCCA) was
proposed as a cross-lingual annotation formalism in
which words in a sentence are connected using se-
mantic relations not tied to specific languages. And
yet, while UCCA reflects the semantic relations be-
tween nodes via a set of coarse-grained roles, it rep-
resents concepts by means of simple lemmas, hence
preventing an abstraction from language-specific
constraints. Parallel Meaning Bank (Abzianidze
et al., 2017, PMB), an approach based on the Dis-
course Representation Theory (Kamp and Reyle,
1993, DRT),3 also emerged. In PMB, English sen-
tences are parsed with labels that are automatically
projected to non-English translations. PMB too,
however, cannot be seen as a unified interlingual
representation, since it uses English-specific mean-
ing repositories.

As regards Abstract Meaning Representation
(Banarescu et al., 2013, AMR), instead, several
approaches have tried to adapt it for cross-lingual
use. As a case in point, Xue et al. (2014) analyzed
the viability of tailoring the AMR formalism to fit
other languages by making use of language-specific
repositories similar to PropBank (Aparicio et al.,
2008; Xue and Palmer, 2009).4 On a different note,
Damonte and Cohen (2018) and Blloshmi et al.
(2020) attempted to adopt AMR as an interlingual
formalism, despite its English-centric nature, by
assuming that the AMR graph of an English sen-
tence is also representative of translations of that
sentence in other languages. Once again, these

3DRT is a framework that embeds the semantics of an
utterance employing a formal logic semantic structure.

4For a similar approach, see also the Prague Tectogram-
matical Graphs of Hajič et al. (2012, PTG).

approaches testify to the limits of AMR as an inter-
lingua, given the drawbacks of dealing with struc-
tural divergences among different languages. In
recent years, Zhu et al. (2019) have recommended
abstracting the AMR formalism away in order to
reduce its language-specific complexity by preserv-
ing just the predicate roles and relations that con-
stitute the core semantic information of sentences.
Conversely, rather than decreasing the complexity
of AMR, the Universal Meaning Representation
(Van Gysel et al., 2021, UMR) extends it by in-
cluding new features that render the formalism less
tied to a specific language. In particular, UMR en-
riches the verbal predicates with information about
grammatical aspect and scope, while introducing
temporal and modal dependencies at the document
level. Finally, it enhances AMR to use it as a cross-
lingual formalism by employing language-specific
repositories and relations. Yet, the focus of UMR
is that of providing languages with the necessary
resources to parse texts, rather than being an inter-
lingual representation.

In contrast to previous approaches, and thanks
to the multilingually-shared word meanings and se-
mantic roles taken from the interlinked repositories
of BabelNet (Navigli et al., 2021) and VerbAtlas
(Di Fabio et al., 2019), we put forward BMR, a
formalism that fully detaches from syntax and thus
stands as a lexical-semantic representation that is
able to bring different languages together.

3 Preliminaries

To accomplish the goal of an interlingual meaning
representation, we disconnect our formalism from
language-specific constraints of any kind. To this
end, we draw on resources that inherently connect
word meanings and predicate-argument structures
across languages, i.e., BabelNet and VerbAtlas.

BabelNet (Navigli et al., 2021) is a multilingual
encyclopedic dictionary and semantic knowledge
base in which concepts are represented as synsets
(sets of synonyms that convey the same meaning),
linked via semantic relation edges like hypernymy
or meronymy. BabelNet was built by the aggre-
gation of several knowledge resources including
WordNet (Fellbaum, 1998), Wikipedia and Wik-
tionary, resulting in a remarkable ontology of con-
cepts and named entities covering 500 languages.
Given its versatility, which makes it suitable for a
wide range of tasks across languages, we employ
its most recent version 5.0 as a tool to switch the
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Figure 1: AMR graph for the sentence “The students
and their parents will take the plane at the last minute".

focus of Semantic Parsing formalisms from words
to multilingual concepts.

VerbAtlas (Di Fabio et al., 2019) is a manually-
curated lexical-semantic inventory that collapses
the BabelNet verbal synsets into around 450
semantically-coherent frames, each defining pro-
totypical argument structures via human-readable
relationships (e.g. AGENT, THEME). Thanks to its
linkage to BabelNet, VerbAtlas represents the best
option for handling predicate-argument relations in
BMR in a language-independent manner.

4 BabelNet Meaning Representation

Like AMR, BMR embeds the semantics of a sen-
tence in a directed acyclic graph, with nodes and
edges connecting them. However, where AMR re-
lies on English lemmas and OntoNotes frames to
represent nodes and relations (see Figure 1), BMR
disposes of language-specific constraints, and em-
ploys multilingual concepts and self-explanatory
semantic roles (see Figure 2).5 In what follows
(Sections 4.1 to 4.4), we will describe and detail
the features that make BMR stand out with respect
to a widely-employed Semantic Parsing formalism
such as AMR, as well as their integration into the
AMR 3.0 dataset (Knight et al., 2020) to produce
the BMR 1.0 dataset.6

4.1 Self-explanatory Semantic Relations
As briefly mentioned in Section 1, AMR derives
its coarse-grained frames and argument structures

5Appendix A details how to read BMR graphs.
6AMR 3.0 is licensed by LDC at https://catalog.

ldc.upenn.edu/LDC2020T02. For this reason, we do
not make the BMR-annotated dataset (BMR 1.0) publicly
available, but rather provide tools to convert the original AMR
3.0 dataset, provided its rightful ownership.

from the English PropBank section of OntoNotes,
a repository which is circumscribed to the English
language and that features semantic relations that
are both predicate-specific and largely unintelli-
gible without a gloss. For example, in Figure 1,
the subgraph representation of students’ parents
is pivoted on the frame have-rel-role-91,
where the relations :ARG0, :ARG1, and :ARG2
identify the first entity, the second entity, and the
role of the first entity, respectively. As importantly,
even though language-specific repositories simi-
lar to PropBank have been used to annotate non-
English sentences with structures comparable to
those of AMR (Aparicio et al., 2008; Xue and
Palmer, 2009), there is not an exact one-to-one
mapping between the frames they define, meaning
that, e.g., the frame have-rel-role-91 might
not be featured in the other inventories. Therefore,
with the aim of overcoming language specificity,
we replace PropBank with VerbAtlas as an alter-
native repository of predicate-argument structure
information, which, as explained above, inherently
accounts for multilingually-shared semantics.

To build the BMR 1.0 dataset, we exploit the
mapping provided by Di Fabio et al. (2019), which
links VerbAtlas frames and arguments to PropBank,
and use it to replace the original frames and se-
mantic roles in the AMR 3.0 dataset with those of
VerbAtlas (e.g., the frame take-01 corresponds
to MOVE_BY_MEANS_OF in VerbAtlas, and its
ARG0 to AGENT). However, this mapping is in-
complete and, as a result, several predicates found
within AMR 3.0 can not be transitioned directly.
Among these, two kinds of predicates can be identi-
fied, (i) predicates that OntoNotes labels as verbal,
and (ii) non-verbal predicates and special predi-
cates which AMR uses to define special semantic
structures (e.g., have-rel-role-91). To deal
with these predicates, we asked a linguist7 to create
a mapping between PropBank and VerbAtlas for
the missing verbal predicates, and, with respect to
the others instead, to map them to BMR adapting
previous semantic roles and creating new ones to
better accommodate their argument structures.8

4.2 Node Merging

Multiword expressions and idioms are rendered
word by word in AMR, using node composition.

7Annotators share effective operational English proficiency
and received a wage in line with their country of residence.

8See Appendix B for the list of BMR semantic roles, and
Appendix C for mapping examples.
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Figure 2: Equivalent sentences in different languages (left) and their shared BMR graph (right).

Nevertheless, such an approach is not feasible for
an interlingual representation, since the overall
meaning of an expression can not, as a general rule,
be compositionally inferred from the meanings of
its individual words. Therefore, in BMR we make
use of the available BabelNet synsets to identify
the meaning of a multiword expression or idiom,
and hence we represent it with a single node. As
a case in point, the idiom at the last minute which,
according to Wiktionary, is defined as “very close
to a deadline or potential crucial event”, does not
entail that something will happen precisely in the
last minute. This exact expression, that in AMR
3.0 is represented using two nodes (m and l) as:

(m / minute :mode (l / last))

appears in BMR as a single node m:

(m / at_the_last_minute / bn:00114428r)

As a result, we are both able to (i) abstract away
from language-specific lexicons making use of con-
cepts connected across languages and, concurrently,
to (ii) reduce the graph density, hence easing the
computational burden for systems.

Another intrinsic limit of AMR as an interlingual
representation is that, since the meaning of nodes
can only be partially identified using OntoNotes
frames, AMR maximizes their usage so as to ex-
press as many concepts as possible, even non-
verbal ones. The main reason this constitutes an
issue is that the OntoNotes frame composition used
to define a concept and the concept itself are not
semantically equivalent. For example, the con-
cept of student, which AMR represents as “a per-
son who studies” by means of the connection be-
tween the node of person with the OntoNotes frame

study-01, is arguably different from the defini-
tion of student as, quoting the BabelNet synset
gloss, “a learner who is enrolled in an educational
institution”. Additionally, these language-specific
rules are not transferable across languages, and
they are not consistent even within AMR itself, as,
whenever a verbalization is not viable (AMR does
not render professor as “a person who professes”),
the word is included in the graph as it is.

In the remainder of this Section, we describe the
strategies by means of which we remodel AMR 3.0
to obtain BMR 1.0 employing node merging.

Multiword Expression Identification To merge
nodes, we must first identify the words or multi-
word expressions that are represented by several
nodes in the AMR graph. In this regard, we proceed
by lemmatizing the original sentences in AMR 3.0
using the 3.1 version of the SpaCy software library
(Honnibal and Johnson, 2015). At this stage, for
each sentence, we check for the longest concate-
nations of lemmas that match a BabelNet synset
lexicalization in BabelNet 5.0. Once the expres-
sions have been identified, we use the automatic
AMR aligner of Flanigan et al. (2014) to get the
alignments between the tokens in the original sen-
tence (and, consequently, the identified words and
multiwords) and the graph nodes.

Manual Validation The automatic identification
of multiwords can be noisy and lead to poor node
merging choices which, in turn, can result in wrong
sense attributions. For instance, in the sentence
“the rest of the world knows the same”, the multi-
word rest of the world is identified, even though
its only meaning in BabelNet is that of “a team
of players from many countries”, which is clearly
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not appropriate in the reported context. To address
this issue, we asked our expert linguist to manually
inspect all of the automatically detected multiword
instances within the AMR 3.0 dataset in order to
maintain, modify or delete them.

Graph Conversion Finally, using the multi-
words and the alignments derived from the previous
steps, we navigate the AMR graphs bottom-to-top
and collapse together nodes referring to the same
word or multiword expression (i.e., first reducing
nodes closer to the graph leaves and then moving
towards the graph root).

As a result, we move from the original figure of
936, 769 nodes of AMR 3.0 to 828, 483 in BMR
1.0, reducing the graph density by a notable 11.6%.

4.3 Number, Tense and Aspect

Even though AMR is able to encode textual infor-
mation in its semantic structure, its formalism does
not account for the inclusion of word components
that are crucial for understanding meaning, and
that languages express via the grammatical cate-
gories of number, tense and aspect. This, along
with the fact that the importance of incorporating
such details in Semantic Parsing formalisms has al-
ready been stressed in the literature (Donatelli et al.,
2018; Bonial et al., 2019), leads us to implement
these features to further enhance the representative
power of BMR. To this end, we employ SpaCy in
order to retrieve the Penn Treebank part-of-speech
tags (Marcus et al., 1993), which inherently pro-
vide information with respect to number, tense, and
aspect, for all the words and multiword expressions
aligned with a node in the graphs. In practice, we
account for tense by enriching each verbal node
with the semantic role :timing showing a value
of + or − to indicate events that will take place in
the future or that happened in the past, respectively.
Similarly, we handle plurality of the nominal nodes
by adding the :quantity relation followed by
a + value (see Figure 2). Lastly, we account for
aspect by adding the relation :ongoing followed
by a + mark to verbal nodes expressing the imper-
fective aspect (ongoing or usual actions).

4.4 Graph Disambiguation

An interlingual representation of meaning has the
basic requirement of being fully linked to an in-
ventory of meanings which can be expressed in
multiple languages. For this reason, in order to
make nodes in BMR graphs language-independent,

we enhance them with BabelNet synsets informa-
tion. An example of why this is needed is provided
in Figure 1, where the predicate take-01 em-
ployed in AMR is defined in OntoNotes with the
very coarse-grained gloss of “take, acquire, come
to have, choose, bring with you from somewhere,
receiving, internalizing, bringing along, enacting”,
and the ambiguous word plane is merely repre-
sented as a lexical node, which provides no cues
for understanding whether it refers to an airplane,
a geometric plane, or a carpenter’s plane, inter alia.
Moreover, the combination of the two does not clar-
ify whether “take the plane” means “to take a flight”
or “to take the carpenter’s plane somewhere”.

Lacking a pointer to a more fine-grained and
multilingual word sense inventory also has the dis-
advantage of preventing the use of the formalism
as a means of moving across languages effectively.
For example, if the word parents is not assigned
the proper word sense, it would lead to ambiguous
translations in languages such as Spanish, where
the corresponding word padres can indicate both
the meaning of “parents”, but also the meaning
of “fathers”. Therefore, the advantages that come
from the disambiguation of nodes with BabelNet
are twofold: (i) resolving language ambiguity while
representing word meaning explicitly, and (ii) inter-
connecting the same meanings across languages.

Adding the disambiguation information to AMR
3.0 graphs is our last step in order to complete its
conversion to BMR 1.0. To this end, we employ a
set of different strategies: (a) we exploit the map-
ping from VerbAtlas frames to BabelNet synsets
to assign word senses to nodes based on their lem-
mas, (b), we use the Wikipedia page information
featured in AMR nodes representing named enti-
ties to retrieve the corresponding synset BabelNet
identifies that page with, and (c), we make use
of ESCHER (Barba et al., 2021),9 a state-of-the-
art system for Word Sense Disambiguation, i.e.,
the task of automatically assigning a meaning to
a word in context (Bevilacqua et al., 2021b), to
disambiguate the nodes without word senses.

As a result, we succeed in assigning a BabelNet
synset to an overall figure of 92% AMR content
nodes (i.e., nodes aligned with content words), with
42, 549 fully disambiguated graphs out of 59, 255.

9We employ the code available at https://github.
com/SapienzaNLP/esc.
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5 Experimental Setup

To demonstrate the importance of BMR’s semantic
framing, its aptness at preserving lexical informa-
tion, and its effectiveness in acting as an interlin-
gual representation, we devise three experiments to
assess its performance in comparison with AMR.
Before delving into their details (Section 5.2), as
well as describing our models and the evaluation
measures we employ (Sections 5.3 and 5.4, respec-
tively), we first provide thorough information re-
garding the datasets used in our experiments.

5.1 Datasets

Aside from the original AMR 3.0 and BMR 1.0
datasets described in Section 4,10 the following
datasets are employed in our experiments, namely:
(i) AMR+, which features the set of enhancements
applied to the English AMR 3.0, as described from
Section 4.1 to 4.3 (excluding node disambiguation),
and (ii) BMR*, i.e., a version of BMR 1.0 that does
not include lemma information.

For each dataset, we also create language-
specific versions in German (DE), Italian (IT) and
Spanish (ES): starting from the English AMR 3.0,
we followed Blloshmi et al. (2020) and create train-
ing and development sets for these languages by us-
ing gold AMR graphs – and their converted AMR+,
BMR and BMR* versions – and pairing them with
silver sentences translated with the machine trans-
lation models of Tiedemann and Thottingal (2020,
OPUS-MT). As test data, we use the 1, 371 parallel
sentences of Abstract Meaning Representation 2.0
- Four Translations,11 that translate into our set of
non-English languages their English (EN) counter-
parts (a subset of AMR 3.0) found in the AMR 2.0
test split.12

5.2 Tasks

Graph-to-Text (GtoT) Our first experiment con-
cerns the Graph-to-Text generation task, i.e., the
task of transforming graph meaning representations
into their corresponding text, and has the goal of
appraising the effectiveness of BMR as a tool for
generating texts in different languages. In this con-
text, we also conduct an ablation study on AMR+

10We use the training/development/test splits of AMR 3.0
for both AMR 3.0 and BMR 1.0 datasets.

11https://catalog.ldc.upenn.edu/
LDC2020T07

12https://catalog.ldc.upenn.edu/
LDC2017T10

to assess the individual impact brought about by
each feature described in Section 4.

Text-to-Graph (TtoG) Our second experiment
deals instead with the Text-to-Graph generation
task (Semantic Parsing), i.e., the task of generating
a graph according to a given formalism, starting
from raw text. The aim of TtoG is to assess the
complexity of generating BMR graphs compared
to AMR ones.

Text-to-Graph-to-Text (TGT) Finally, in the
third experiment, we evaluate the suitability of
AMR and BMR to be used as interlingual repre-
sentations by means of the combination of Text-
to-Graph and Graph-to-Text parsing going from a
source to a target language. In the same context, we
also conduct an ablation study on BMR to assess
the impact of the disambiguation in the graphs.

5.3 Models

All models employed in our experiments are built
on top of SPRING (Bevilacqua et al., 2021a), an
auto-regressive model for AMR parsing and gen-
eration based on the BART (Lewis et al., 2020)
pretrained language model. Since the original
SPRING works with pairs of sentences and lin-
earized versions of the graphs, we modify its tok-
enizer to account for BMR nodes, since they con-
tain BabelNet synset IDs too. Furthermore, we add
all synsets that appear more than once13 within
BMR 1.0 to the model’s vocabulary and adapt
SPRING to the mBART language model (Liu et al.,
2020) in order to account for multiple languages in
the GtoT and TGT experiments.

Given the datasets described in Section 5.1,
we confront models trained on AMR 3.0, BMR
1.0, AMR+ and BMR* for each language
(AMR/BMR/AMR+/BMR*EN,DE,IT,ES). As re-
gards the ablation study of the GtoT experiment,
we apply each modification introduced to AMR
3.0 one at a time, and obtain several versions of
the dataset, each of which is used to train ad-
ditional models, namely, AMR 3.0 (i) including
self-explanatory relations (AMRREL), (ii) includ-
ing self-explanatory relations and node merging
(AMRNOD), (iii) featuring the number category
(AMRNUM ), (iv) featuring the tense and aspect cat-
egories (AMRTEN ), and (v) featuring the number,
tense and aspect categories together (AMRNT ).

13Based on model tuning.
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Language English (EN) German (DE) Italian (IT) Spanish (ES)

Model AMR AMR+ BMR BMR∗ AMR AMR+ BMR BMR∗ AMR AMR+ BMR BMR∗ AMR AMR+ BMR BMR∗

BLEU 44.8 49.8 50.7 45.7 23.2 24.3 24.8 22.2 29.0 31.3 31.4 29.1 34.6 36.8 37.3 35.5
chrF++ 73.4 76.0 76.3 72.1 55.8 57.0 57.1 54.7 60.7 62.1 62.2 60.0 64.0 65.2 65.5 63.7
METEOR 42.2 43.9 44.3 42.4 25.4 26.4 26.4 25.3 28.9 30.4 30.5 29.2 32.4 33.5 33.7 32.8
Rouge-L 68.2 71.7 72.8 69.7 49.3 50.7 51.1 49.7 51.9 54.2 54.3 52.4 57.4 60.9 61.0 59.8

Table 1: Results for the GtoT experiment. Row blocks: models (EN, DE, IT, ES), measures. Bold is best.

Model BLE CH+ MET R-L

AMREN 44.8 73.4 42.2 68.2

AMRREL 44.9 73.8 42.4 68.7
AMRNOD 45.5 73.8 42.5 68.9
AMRNUM 46.9 74.3 42.9 69.8
AMRTEN 47.6 74.9 43.0 70.2
AMRNT 49.0 75.4 43.5 71.1

AMR+EN 49.8 76.0 43.9 71.7

BMREN 50.7 76.3 44.3 72.8

Table 2: Results for the ablation study of the GtoT
experiment. Left to right: model, BLEU (BLE), chrF++
(CH+), METEOR (MET), ROUGE-L (R-L). Bold is
best.

Model SMT. unlab. noWSD conc. NER neg. reent.

AMREN 82.1 85.3 82.6 88.0 89.0 67.0 73.0
AMR+EN 82.1 85.8 82.1 90.0 89.0 75.0 70.0
BMREN 78.6 82.2 78.6 82.0 83.0 63.0 65.0
BMR∗EN 78.7 82.2 78.6 82.0 83.0 63.0 65.0

Table 3: Results for the TtoG experiment. Left to right:
models, Smatch (SMT.), fine-grained scores (Damonte
et al., 2017). Bold is best.

5.4 Evaluation Measures

To evaluate the text generation tasks (i.e., GtoT
and TGT), we use five standard Natural Language
Generation measures, namely, BLEU (Papineni
et al., 2002), chrF++ (Popović, 2017), METEOR
(Banerjee and Lavie, 2005), and ROUGE-L (Lin,
2004), tokenizing system predictions with the
JAMR script (Flanigan et al., 2014). For the TtoG
experiment, instead, as is customary, we employ
the Smatch measure (Cai and Knight, 2013).

6 Results

6.1 GtoT

Results for the GtoT experiment are reported in
Table 1. As can be seen, BMR obtains the high-
est scores for all the measures across the board,
testifying to its effectiveness at generating text in
multiple languages. Interestingly, when BMR is
confronted with AMR+, the benefits of featuring
disambiguation information immediately become

evident, with highest scores on each measure.
Results for the ablation study are, instead, shown

in Table 2. Even though the impact of self-
explanatory relations is not striking in this scenario
(AMRREL model), the use of node merging al-
ready leads to an evident performance boost, par-
ticularly for BLEU and ROUGE-L (AMRNOD).
Not surprisingly, the addition of the grammatical
categories of number, tense, and aspect to AMR
3.0 corroborates the thesis of Donatelli et al. (2018)
and Bonial et al. (2019), with results for the dif-
ferent measures growing between 1.3 to 4.2 points
for AMRNT compared to the baseline AMREN

model. Moreover, demostrating the beneficial in-
teraction of all features described in Section 4,
the AMR+EN model significantly outperforms the
baseline model by 1.7 points on METEOR (low-
est) and 5.0 points on BLEU (highest), while also
outscoring each other model featuring only specific
modifications.

6.2 TtoG

Results for this experiment are shown in Table 3
and provide evidence for the high degree of com-
plexity that BMR graphs have in comparison to
their AMR counterparts. In particular, AMR+EN

(which, except for the disambiguated nodes, has
the same graph structure as BMREN ) outperforms
BMREN by 3.5 Smatch points, demostrating that
the extra layer represented by the inclusion of
disambiguation information makes BMR graphs
harder to generate automatically starting from raw
text. As a matter of fact, a model attempting to gen-
erate BMR graphs needs to provide disambiguation
for each node (and not just for the verbal predi-
cates), hence it faces a much more difficult task.

6.3 TGT

Finally, in Table 4 we report the scores for the TGT
experiment, by means of which we appraise the
capability of formalisms to act as bridges to trans-
late sentences, first, performing a Text-to-Graph
step, and then a Graph-to-Text one. Despite having
shown lower performances in comparison to AMR
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Pairs EN – EN EN – DE EN – IT EN – ES

Model AMR AMR+ BMR BMR∗ AMR AMR+ BMR BMR∗ AMR AMR+ BMR BMR∗ AMR AMR+ BMR BMR∗

BLEU 45.3 49.3 50.1 45.1 23.0 25.1 24.4 22.8 29.0 30.7 30.9 29.1 34.0 36.5 36.6 35.4
chrF++ 73.5 75.2 75.4 71.4 55.6 56.8 56.1 54.1 60.2 61.4 61.2 59.8 63.3 64.6 64.8 63.3
METEOR 42.3 43.5 43.7 41.9 25.4 26.4 26.0 25.1 28.7 29.8 29.9 29.1 32.0 33.3 33.2 32.6
Rouge-L 68.8 71.8 73.0 69.5 49.6 50.8 50.8 49.3 51.9 53.5 53.2 52.6 57.2 61.1 62.2 59.7

Table 4: Results for the TGT experiment. Row blocks: language pairs (EN-EN, EN-DE, EN-IT, EN-ES), models
(AMR, AMR+, BMR, BMR*), generation measures. Bold is best.

Pairs EN – EN EN – DE EN – IT EN – ES

Model AMR+* BMR AMR+* BMR AMR+* BMR AMR+* BMR

BLEU 47.7 50.1 23.4 24.4 30.2 30.9 35.4 36.6
chrF++ 74.2 75.4 55.5 56.1 60.8 61.2 63.7 64.8
METEOR 42.8 43.7 25.6 26.0 29.6 29.9 32.5 33.2
Rouge-L 70.8 73.0 49.8 50.8 53.2 53.2 59.6 62.2

Table 5: Results for the ablation study on the TGT exper-
iment . Row blocks: language pairs (EN-EN, EN-DE,
EN-IT, EN-ES), models (AMR+*, BMR), generation
evaluation measures. Bold is best.

in the TtoG experiment, the high scores obtained by
BMR in this experiment demonstrate that it is bet-
ter suited as an interlingua. Nevertheless, AMR+
outperforms BMR in a few settings, likely due to
the higher complexity entailed by BMR parsing, as
explained in Section 6.2. Corroborating this the-
sis are the results shown in Table 5, where BMR
scores are compared against a model (AMR+*) in
which, to perform the Graph-to-Text step, AMR+
uses a BMR parser with the synset information re-
moved, rather than its own parser. The outcome of
this ablation study, with BMR now systematically
outscoring its competitor, sheds further light upon
the effectiveness of synset-driven disambiguation
for encoding valuable sentence information.

Returning to the results given in Table 4, even
though performances for BMR* models are the
lowest (yet competitive, and sometimes higher than
AMR) on the board, it is worth remarking that this
setting does not feature the lemma information. In
fact, in order to be purely semantic, BMR graphs
should solely feature the BabelNet synset infor-
mation. However, given that state-of-the-art Se-
mantic Parsing and generation models make use
of pre-trained language models such as BART and
mBART, which are trained with data in human lan-
guage (hence devoid of synset information), the
performance of fully-semantic models drops if lem-
mas are not taken into account. Additionally, cur-
rently available text generation metrics are sub-
optimal when employed to assess semantics, since
these measures evaluate similarities at the lemma
level. Therefore, though a fully-semantic model

could infer the meaning of a BabelNet synset, its
performances will be penalized for not generating
specific lemmas while outputting perfectly suitable
synonyms. In view of this, BMR 1.0 incorporates
the lemma information along with the BabelNet
synset specifying its meaning (see also Appendix
A), demostrating that lexical-semantic representa-
tions improve over purely lexical ones.

7 BMR*: A Case Study

Results for the experiments we conducted depict
BMR* as the model that, on the whole, achieves the
lowest scores. With the aim of showing how such
results might arise due to inadequate evaluation
measures (see Section 6.3), we propose a focused
case study in which we qualitatively inspect the dif-
ferences between graphs and sentences generated
by means of the AMR and BMR* models. Starting
from the sentence “My friend did not tolerate his fa-
ther’s behaviour” (Figure 3), it can be seen how the
grammatical categories of number and tense for the
words friend and tolerate are correctly preserved by
BMR* only. Additionally, it can be noted how the
complex structure that defines child in AMR can
confuse the model when there is a reentrant node
(in this case, the model does not know to whom
the father is related). As interestingly, the sentence
generated via BMR* replaces tolerate with the syn-
onym put up with, which worsens its performance
according to exact string matching metrics, but, at
the same time, provides an insight of a higher level
of abstraction when lemmas are omitted.

8 Error Analysis

Although the experiments reported in Section 5 tes-
tify to the quality of BMR, following an in-house
behavioral analysis inspired by the work of Ribeiro
et al. (2020), we identify three main classes of er-
rors that undermine the application of BMR as an
interlingua, one concerning the formalism (reposi-
tory contraints), one tied to the data contained in
the BMR 1.0 dataset (disambiguation constraints),
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and one concerning the language-specific lexicons
(language-specific constraints).

Repository constraints BabelNet features a
wealth of synsets covering content words in a mul-
tilingual setting, but, at the same time, does not pro-
vide information regarding parts of speech other
than nouns, verbs, adjectives and adverbs. As a
result, BMR uses language-specific lemmas to rep-
resent conjunctions or ambiguous pronouns such as
anyone, which can mean either “not a single person”
or “everyone”, depending on the use of negative or
positive phrasing. On a different note, with roughly
6,500 languages spoken in the world and Babel-
Net 5.0 featuring a subset of them, the definition of
BMR as an interlingua is actually constrained to the
number, albeit large, of 500 BabelNet languages.

Disambiguation constraints The creation of
BMR 1.0 is based upon the Word Sense Disam-
biguation task carried out via a state-of-the-art sys-
tem (Barba et al., 2021, ESCHER). And yet, this
neural architecture is trained to predict word senses
featured in the WordNet 3.0 sense inventory only.
By virtue of the fact that, following the node merg-
ing strategy (Section 4.2), we can obtain polyse-
mous multiwords found in BabelNet but not in
WordNet (as is the case of run off at the mouth), we
cannot provide disambiguation for such instances.
This justifies the fact that 8% of content nodes in
BMR are not disambiguated (see also Section 4.4).

Language-specific constraints The number of
items in a lexicon and the degree of word polysemy
vary from language to language (Talmy, 2000). Us-
ing BabelNet synsets to represent abstract concepts
and connect them multilingually is certainly a de-
sirable feature. However, there are concepts and
expressions that exist in a given language only, e.g.,
owing to their being culturally connoted. For ex-
ample, the Spanish word espeto, which refers to a
traditional way of cooking freshly-caught sea fish,
has no equivalent in English. Though the concept
is featured in BabelNet, it has no lexicalizations in
other languages and, as such, it would need to be
paraphrased in order to be rendered.

9 Conclusion

Current Semantic Parsing formalisms share tight
dependencies with semantic repositories which
are both language-specific and isolated from word
senses in other languages. As a result, they are
not fit to be used as interlingual representations of

Figure 3: AMR and BMR* graph representations and
generated sentences for the original sentence “My friend
did not tolerate his father’s behaviour”. Best seen in
color.

meaning. In this paper, we put forward BMR, a
new language-independent formalism that abstracts
away from language-specific constraints thanks to
two multilingual semantic resources, namely, Ba-
belNet and VerbAtlas. To put our formalism into
practice, we also created BMR 1.0, the first dataset
labeled according to BMR.

Our experiments demostrate the impact that the
fully-semantic framing of our formalism has in
comparison to the widely-employed formalism of
AMR, as well as showing its ability to be a better
tool at encoding textual information, and a much
more effective interlingua in a text-to-graph-to-text
machine translation task.

As future work, we plan to (i) create a sin-
gle multilingual model to parse graphs and gen-
erate text in any language, (ii) apply BMR cross-
lingually to other downstream tasks such as text
summarization, (iii) evolve the formalism to pre-
vent the inclusion of lexical information of any
kind. We make our code and data available to
the research community at https://github.
com/SapienzaNLP/bmr.
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A Reading BMR Graphs

The BMR formalism renders graphs in a text-
friendly fashion following the AMR custom.
Specifically, edges are represented by means of
standardized semantic relations names preceded
by a colon (e.g. :agent, or its inverse relation
:agent_of), and nodes are identified by triplets:

(id / lemma / Babel synset id)

Left to right, the triplet shows: (i) the unique iden-
tifier (id) of the node,14 (ii) the lemma for the word
(or multiword expression) in the original sentence,
and (iii) the BabelNet synset id taken from Babel-
Net 5.0 that is assigned to disambiguate the node.15

Lastly, node hierarchy in BMR is represented by
means of open and closed round brackets, and spe-
cial characters such as + indicate special features
of some nodes, such as, e.g., grammatical tense
information. Figure 4 shows an example of a BMR
graph (bottom) in comparison to the AMR graph
(top) for the same sentence, in text-friendly format.

B Semantic Roles in BMR

Semantic roles in BMR (Table 6) are largely based
on the VerbAtlas inventory and have been mod-
ified to account for non-verbal entities drawing
inspiration from property lists available in the liter-
ature (Dixon, 2010; Leone et al., 2020). Similarly
to AMR, each relation has its inverse, expressed
by appending _of to it (e.g., :purpose versus
:purpose_of). Roles in AMR which are not
listed in Table 6 are preserved in BMR (e.g., :age,
:degree, :frequency or :manner).

C AMR 3.0 to BMR 1.0 Manual Mapping
Examples

Non-verbal predicates, as well as special predi-
cates found within AMR 3.0 have been mapped
to the BMR formalism according to the set of se-
mantic relations described in Appendix B (see also
Section 4.1) by means of an in-house annotation
interface. The choice of BabelNet synsets to ex-
press the meaning of the original predicates fol-
lowed a simple set of annotation strategies, sorted

14Similarly to AMR, if a node is referred to anew in the
same BMR graph, only the id is used to identify it.

15Note that, even though the lemma changes according to
the source language used to produce the graph, it is the synset
information that serves as the interlingual component. In fact,
graphs for the same sentence translated in different languages
will show different lemmas, but the same BabelNet synsets.

Figure 4: AMR (top) and BMR (bottom) text-friendly
form of the graphs for the sentence “The students and
their parents will take the plane at the last minute".

by desired priority: using the predicate name as
a query to look for available synsets, (i) pick a
nominal synset also featured in WordNet 3.0 (e.g.,
querying with the lemma liberality for the predi-
cate liberal.02), (ii) pick an adjectival synset
featured in WordNet 3.0, (iii) pick a nominal synset
not featured in WordNet 3.0, (iv) pick an adjectival
synset not featured in WordNet 3.0, (v) pick a syn-
onym to query for available synsets (e.g., querying
with the lemma correct for predicate be_it.07).
See Table 7 for a random sample of AMR 3.0 to
BMR 1.0 mappings.
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BMR AMR VerbAtlas examples
agent - AGENT marryV >manN ; suggestV >mumN

appearance mod - complexionN>paleA; roadN>snowyA

cause cause CAUSE/STIMULUS issueN>societyN ; killV >evilN

co-agent accompanier CO_AGENT (same as agent)

co-patient accompanier CO_PATIENT (same as patient)

co-theme accompanier CO_THEME (same as theme)

composition consist-of MATERIAL cupN>metalN ; armyN>idiotN

context location, topic TOPIC/ATTRIBUTE boldnessN>missionN ; excellenceN>sportsN

cost cost ASSET computerN>euroN ; tuitionN>freeA

experiencer - EXPERIENCER badnessN>customerN ; reactV >sectorN

extent duration, extent EXTENT tripN>mileN ; workV >dayN

identity domain/meaning/role/example - boyfriendN>lawyerN ; dogN>animalN

instrument instrument INSTRUMENT bookN>eyeN ; pastaN>forkN

interactor - - bookN>librarianN ; treatyN>actorN

location location LOCATION hotelN>beachN ; waterN>jarN

membership employed-by/have-org-role-91 - friendN>companyN ; nurseN>hospitalN

part part/subset/superset - bookN>beginningN ; carN>wheelN

patient - PATIENT dryV >skinN ; kickV >ballN

physical_prop mod - handN>coldA; trainN>fastA

property poss - patientN>healthN ; professorN>bookN

purpose purpose PURPOSE treatyN>extraditionN ; bookN>coloringN

quality mod - bookN>availableA; cityN>beautifulA

quantity quant VALUE cowN>fewA; degreeN>42

related have-rel-role-91 - cityN>suburbN ; fatherN>sonN

result - PRODUCT, RESULT becomeV >farmerN ; revolutionN>overthrowV

source source SOURCE bookN>authorN ; tripN>San DiegoN

target beneficiary/destination/direction BENEFICIARY/DESTINATION/GOAL/RECIPIENT brutalityN>personN ; foodN>dogN

theme - THEME readV >bookN ; requireV >vitaminN

timing time TIME marryV >thenR; struggleN>currentA

url hyperlink-91 - websiteN>https://verbatlas.org/

Table 6: Semantic roles in BMR. Left to right: BMR role names (BMR), AMR role(s) equivalent (AMR), VerbAtlas
role(s) equivalent (VerbAtlas), role usage example(s). Examples read as follows: father nodePoS>child nodePoS .

be_temporally_at.91 (reification of :time)
ARG1 (entity); ARG2 (time)
AMR_ARG1 :theme_of (bn:00083185v :timing (AMR_ARG2))

explicit.03 (clear, detailed)
ARG0 (causer of clarification); ARG1 (thing becoming clearer); ARG2 (explained to)
AMR_ARG1 :quality (bn:00019459n :cause (AMR_ARG0) :experiencer (AMR_ARG2))

loose.04 (not tight fitting or compacted)
ARG0 (causer of looseness); ARG1 (non-compact substance, may be abstract); ARG2 (instrument of loosening, if in addition to ARG0)
AMR_ARG1 :quality (bn:00106169a :cause (AMR_ARG0) :instrument (AMR_ARG2))

regular.02 (occurring on a consistent schedule; periodic)
ARG1 (thing occurring regularly); ARG2 (specific activity/aspect of ARG1 that occurs regularly, if in addition; ARG3 (measurement of the period)
AMR_ARG1 :part (AMR_ARG2 :timing (bn:00066931n :extent (AMR_ARG3)))

sterile.02 (inhospitable to the growth of life)
ARG1 (sterile location/entity); ARG2 (new life)
AMR_ARG1 :physical_prop (bn:00046772n :context (AMR_ARG2))

Table 7: Mapping examples from AMR 3.0 to BMR 1.0. Each row block lists (top to bottom) original OntoNotes
predicate names and glosses, original glosses for the predicate arguments, predicate rendering in BMR. AMR_ARGX
is a placeholder that is replaced with the name of the node having the relation AMRX in the AMR 3.0 graph.
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