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Abstract

Recent progress of abstractive text summa-
rization largely relies on large pre-trained
sequence-to-sequence Transformer models,
which are computationally expensive. This
paper aims to distill these large models into
smaller ones for faster inference and with
minimal performance loss. Pseudo-labeling
based methods are popular in sequence-to-
sequence model distillation. In this paper,
we find simply manipulating attention temper-
atures in Transformers can make pseudo la-
bels easier to learn for student models. Our
experiments on three summarization datasets
show our proposed method consistently im-
proves vanilla pseudo-labeling based methods.
Further empirical analysis shows that both
pseudo labels and summaries produced by
our students are shorter and more abstractive.
Our code is available at https://github.
com/Shengqiang-Zhang/plate.

1 Introduction

Automatic document summarization is the task of
rewriting a long document into its shorter form
while still retaining its most important content. In
the literature, there are mainly two kinds of meth-
ods for summarization: extractive summarization
and abstractive summarization (Nenkova and McK-
eown, 2011). In this work, we focus on abstractive
summarization, which is viewed as a sequence-to-
sequence (Seq2Seq) learning problem, since re-
cent abstractive models outperform their extrac-
tive counterparts and can produce more concise
summaries (Raffel et al., 2020; Lewis et al., 2020;
Zhang et al., 2020; Liu and Lapata, 2019). Recent
progress of abstractive summarization largely relies
on large pre-trained Transformer models (Raffel
et al., 2020; Lewis et al., 2020; Zhang et al., 2020;
Liu and Lapata, 2019; Bao et al., 2020). With these
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extremely large models, we can obtain state-of-the-
art summarization results, but they are slow for
online inference, which makes them difficult to
be used in the production environment even with
cutting-edge hardware. This paper aims to distill
these large Transformer summarization models into
smaller ones with minimal loss in performance.

Knowledge distillation is a class of methods that
leverage the output of a (large) teacher model to
guide the training of a (small) student model. In
classification tasks, it is typically done by minimiz-
ing the distance between the teacher and student
predictions (Hinton et al., 2015). As to Seq2Seq
models, an effective distillation method is called
pseudo-labeling (Kim and Rush, 2016), where the
teacher model generates pseudo summaries for all
documents in the training set and the resulting
document–pseudo-summary pairs are used to train
the student model.

In this paper, we argue that attention distribu-
tions of a Seq2Seq teacher model might be too
sharp. As a result, pseudo labels generated from
it are sub-optimal for student models. In the sum-
marization task, we observe that 1) pseudo sum-
maries generated from our teacher model copy
more continuous text spans from original docu-
ments than reference summaries (56% 4-grams in
pseudo summaries and 15% 4-grams in reference
summaries are copied from their original docu-
ments on CNN/DailyMail dataset); 2) pseudo sum-
maries tend to summarize the leading part of a
document (measured on CNN/DailyMail, 74% of
sentences in pseudo summaries and 64% of sen-
tences in reference summaries are from the leading
40% sentences in original documents). We obtain
the two numbers above by matching each sentence
in a summary with the sentence in its original doc-
ument that can produce maximum ROUGE (Lin,
2004) score between them. We call the two bi-
ases above the copy bias and the leading bias. In
order to have an intuitive feeling, we select a rep-
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resentative example 1 and visualize its cross atten-
tion weights 2 (see the left graph in Figure 1). We
observe that attention weights form three “lines”,
which indicates very time the decoder predicts the
next word, its attention points to the next word in
the input document. That may be the reason why
multiple continuous spans of text are copied. An-
other phenomenon we observe is that all high-value
attention weights (in deeper color) concentrate on
the first 200 words in the input document, which
reflects the leading bias. In either case, the atten-
tion distribution is too sharp (i.e., attention weights
of the next word position or the leading part is
much larger than other positions), which means our
teacher model is over-confident.

Based on the observations above, we pro-
pose a simple method called PLATE (as short-
hand for Pseudo-labeling with Larger Attention
TEmperature) to smooth attention distributions of
teacher models. Specifically, we re-scale attention
weights in all attention modules with a higher tem-
perature, which leads to softer attention distribu-
tions. Figure 1 intuitively shows the effect of using
higher attention temperatures. Compared with the
left graph, the right graph with higher attention tem-
perature has shorter lines (less copy bias) with high
attention weights, and positions of high attention
weights extend to the first 450 words (less leading
bias). Less copy bias in pseudo summaries encour-
ages student models to be more abstractive, while
less leading bias in pseudo summaries encourages
student models to take advantage of longer context
in documents.

Experiments on CNN/DailyMail, XSum, and
New York Times datasets with student models of
different sizes show PLATE consistently outper-
forms vanilla pseudo-labeling methods. Further
empirical analysis shows that, with PLATE, both
pseudo summaries generated by teacher models
and summaries generated by student models are
shorter and more abstractive, which matches the
goal of abstractive summarization.

2 Related Work

Large pre-trained Seq2Seq Transformer models
largely improve results of generation tasks includ-
ing text summarization (Song et al., 2019; Lewis
et al., 2020; Bao et al., 2020; Raffel et al., 2020;

1See the detailed example in Appendix E.
2We use cross attention because we can see how words in

documents are selected during generation.
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Figure 1: Visualization of teacher cross attention
weights when generating pseudo labels with normal
(left) and smoothed (right) attention weights. This ex-
ample is generated by the BART teacher trained on
CNNDM (see §4.4). Its training and inference hyper-
parameters are described in detail in §4.2.

Zhang et al., 2020). These models are pre-trained
using unsupervised text-to-text objectives. For ex-
ample, T5 (Raffel et al., 2020) is pre-trained by
predicting corrupted text spans. BART (Lewis
et al., 2020) employs denoising auto-encoding ob-
jectives such as text infilling and sentence permuta-
tion during its pre-training. The pre-training objec-
tive of PEGASUS (Zhang et al., 2020) is tailored
for the summarization task, which predicts the most
“summary worthy” sentences in a document. Our
method aims to make these large models faster.

In knowledge distillation, besides learning from
gold labels in the training set, student models
can learn from soft targets (Ba and Caruana,
2014; Hinton et al., 2015), intermediate hidden
states (Romero et al., 2014), attentions (Zagoruyko
and Komodakis, 2017; Wang et al., 2020), and tar-
get output derivatives (Czarnecki et al., 2017) of
teacher models. Recent work for distillation of
pre-trained Transformers (e.g., DistilBERT (Sanh
et al., 2019), TinyBERT (Jiao et al., 2020), Mobile-
BERT (Sun et al., 2020), BERT-of-Theseus (Xu
et al., 2020a), MINILM (Wang et al., 2020)) fo-
cuses on natural language understanding tasks such
as GLUE (Wang et al., 2018) or SQuAD (Rajpurkar
et al., 2016) benchmarks. Most methods above are
designed for classification models.

In Seq2Seq learning tasks such as summariza-
tion, we can apply distillation methods above to
each step of sequence model predictions. How-
ever, the sequence-level knowledge of teacher mod-
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els is not well utilized. Therefore, Kim and Rush
(2016) introduce a sequence-level knowledge distil-
lation method (i.e., pseudo-labeling), where a stu-
dent model is trained with pseudo labels generated
by the teacher model using beam search decoding.
Kim and Rush (2016) and later work (Kasai et al.,
2020; Gu et al., 2017; Denkowski and Neubig,
2017) show pseudo-labeling achieves competitive
performance for Seq2Seq tasks such as machine
translation. Shleifer and Rush (2020) propose the
shrink and fine-tune (SFT) approach for pre-trained
summarization distillation, which re-finetunes a
teacher model with some layers removed, and they
show SFT outperforms pseudo-labeling and a mod-
ification of direct knowledge distillation (Jiao et al.,
2020) on one of their datasets, but not others. Our
method, which builds on top of pseudo-labeling, is
conceptually simple and improves pseudo-labeling
across different summarization datasets.

There is an interesting line of work called self-
distillation or self-training (Furlanello et al., 2018;
Xie et al., 2020; Deng et al., 2009; Liu et al.,
2020; He et al., 2019), where the size of the stu-
dent model is identical to the size of the teacher
model. Our method can also be applied in self-
distillation and can potentially be combined with
the self-distillation methods above.

3 Summarization Distillation

3.1 Transformer based abstractive
summarization

Abstractive summarization aims to rewrite a docu-
ment into its shorter form (i.e., summary), which is
a typical Seq2Seq learning problem. We adopt the
Seq2Seq Transformer (Vaswani et al., 2017) model.
Given a document X = (x1, x2, . . . , x|X|) and its
gold summary Y = (y1, y2, . . . , y|Y |), we estimate
the following conditional probability:

p(Y |X; θ) =

|Y |∏
t=1

p(yt|y<t, X; θ) (1)

where θ is the model parameter and y<t
stands for all tokens before position t (i.e.,
(y1, y2, . . . , yt−1)).

The Seq2Seq Transformer model can be trained
by minimizing the negative log-likelihood of gold
document-summary pairs:

LG(θ) = −
1

|Y |
log p(Y |X; θ) (2)

where |Y | is the number of tokens in summary Y .

3.2 Distillation with pseudo labels

Knowledge distillation refers to the task of trans-
ferring knowledge of a large teacher model (or a
group of large teacher models) into a small stu-
dent model. As to Seq2Seq learning tasks such as
machine translation and summarization, pseudo-
labeling based methods are usually used to imitate
teacher predictions at the sequence level. Specif-
ically, suppose we have a document X , and Ŷ =
(ŷ1, ŷ2, . . . , ŷ|Ŷ |) is a pseudo summary generated
by a teacher model using beam search. The stu-
dent can be trained by minimizing the negative log-
likelihood of document-to-pseudo-summary pairs.

LPL(θ) = −
1

|Ŷ |

|Ŷ |∑
t=1

log p(ŷt|ŷ<t, X; θ) (3)

Strictly, all possible pseudo summaries from X
should be taken into account. Unfortunately, the
computational cost is prohibitive. We therefore use
a single sample Ŷ (which takes a large portion of
probability mass from the teacher) instead as in
Kim and Rush (2016).

3.3 Re-scaling attention temperatures

Both our teacher and student models are Seq2Seq
Transformer models. The core part of a Trans-
former model is the attention module:

Attention(Q,K, V ) = softmax(
QKT

τ
)V (4)

where Q, K, V are linear projections of hidden
states of a layer and τ is the temperature of the
attention module which is usually

√
d (d is the

hidden dimension size of that attention head).
Our distillation method PLATE works as fol-

lows. Assume we have a teacher model trained
with τ =

√
d. When the teacher generates pseudo

labels with beam search, we use a higher attention
temperature and set τ =

√
λ d where λ > 1 (λ

is the attention temperature coefficient). Note that
we only change the teacher’s attention temperature
during inference time. When we train our student
model with pseudo labels, we still use a normal
temperature (i.e., τ =

√
d). We find that adjusting

the student’s attention temperature does not work.
Probably because the student can easily adapt to
the scaled attention temperature during training.

We find that λ = 1.5 or λ = 2.0 usually works
well in practice. To encourage teacher models to
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generate pseudo labels with more diversity, we fur-
ther propose to use a random λ for each input doc-
ument (λ ∼ U [a, b]). Note that U [a, b] is a uni-
form distribution and we typically set a = 1.0 and
b = 2.0.

4 Experiments

4.1 Datasets

We conduct our experiments on three pop-
ular document summarization datasets:
CNN/DailyMail (Hermann et al., 2015),
XSum (Narayan et al., 2018), and New York
Times (Sandhaus, 2008). All datasets are tokenized
with the GPT-2 tokenizer (Radford et al., 2019),
which is based on UTF-8 BPE (Sennrich et al.,
2016).

CNNDM The CNN/DailyMail dataset
(CNNDM; Hermann et al., 2015) contains
online news articles from the CNN and DailyMail
websites paired with their associated highlights
as reference summaries. We follow the standard
pre-processing steps described in See et al.
(2017); Liu and Lapata (2019). 3 The resulting
numbers of document-summary pairs for training,
validation, and test are 287,227, 13,368, and
11,490, respectively.

XSum The XSum dataset is collected by harvest-
ing online articles from the BBC with single sen-
tence summaries, which is professionally written.
The summaries are extremely abstractive. We use
the official splits of Narayan et al. (2018). There
are 204,045 articles for training; 11,332 articles for
validation; and 11,334 articles for test.

NYT The New York Times dataset (NYT; Sand-
haus, 2008) is composed of articles published by
New York Times, and the summaries are written by
library scientists. After applying the pre-processing
procedures described in Durrett et al. (2016); Liu
and Lapata (2019), we first obtain 110,540 articles
with abstractive summaries. The test set is con-
structed by including the 9,076 articles published
after January 1, 2007. The remaining 100,834 ar-
ticles are further split into training and validation
sets. After removing articles with summaries less
than 50 words, we obtain the final dataset with
38,264 articles for training; 4,002 articles for vali-
dation; and 3,421 articles for test.

3Scripts are available at https://github.com/
abisee/cnn-dailymail.

Model # Param.
Latency (Millisecond)

CNNDM XSum NYT

BART 406M 1975 903 3272
BART 12-6 306M 1279 438 1692
BART 12-3 255M 924 289 1488
Transformer 70M 1028 406 1462

Table 1: Latency (in Milliseconds) on a V100 GPU and
number of parameters (million) of our models.

4.2 Implementation details

Teacher/Student model settings We use BART
Large (Lewis et al., 2020) as our teacher model,
which has 12 layers in the encoder and decoder.
The hidden size of each layer is 1024, and each
layer contains 16 attention heads with a hidden size
of 64. We have four kinds of student models. The
first three student models are initialized from BART
weights (therefore, their hidden sizes are the same
as that of BART). All the three students have the 12
layers of BART encoder and differ in the number of
decoder layers. They are denoted by BART 12-6,
BART 12-3, and BART 12-12 with 6, 3, and
12 decoder layers, respectively. For BART 12-6
(or BART 12-3), the decoder is initialized from
the first 6 (or 3) layers or the maximally spaced
6 (or 3) layers of BART decoder. The fourth stu-
dent is the Transformer base model (Vaswani et al.,
2017), which has 6 layers in each of the encoder
and decoder. Each layer has a hidden size of 512
and 8 attention heads. This student is randomly
initialized and denoted by Transformer. The
latency statistics (Milliseconds) and numbers of
parameters of above four models are in Table 1.

Training and inference Hyper-parameters for
BART, BART 12-6, BART 12-3, and BART
12-12 are similar. Specifically, all models are
optimized using Adam (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.999. Learning rates are
tuned on validation sets (choose from 1e-5, 3e-
5, 5e-5, 7e-5). We truncate all documents and
summaries to 1024 sub-word tokens. We use a
batch size of around 80 documents (we limit the
max number of tokens on each GPU to 2048) and
train our models for 20,000/15,000/6,000 steps
with 500 warmup steps for CNNDM, XSum, and
NYT, respectively. We also employ a weight
decay of 0.01. For Transformer, the hyper-
parameters of the Adam optimizer is a bit differ-
ent, and we use β1 = 0.9, β2 = 0.98. Learning
rates are picked from 1e-4, 3e-4, 5e-4, 7e-4 accord-
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ing to validation sets. The weight decay is set to
0.0001. The warmup step we use is 4000. We train
Transformer for 100 epochs and select the best
model w.r.t. their ROUGE scores on validation sets.
For all models above we apply a label smoothing
of 0.1 to prevent overfitting (Pereyra et al., 2017).

During inference, as common wisdom, we apply
beam search. The beam size, length penalty, and
minimal length are 4, 2.0, and 55 on CNNDM;
6, 0.1, and 1 on XSum; and 4, 0.7, and 80 on
NYT, respectively. All our models are trained on
8 NVIDIA V100 GPUs. The training is fairly fast.
Training on CNNDM with the teacher model (i.e.,
BART) is most time-consuming. It takes about 45
minutes for one epoch, and we need 6 epochs in
total.

4.3 Evaluations

We evaluate the quality of different summariza-
tion systems using ROUGE. On CNNDM and
XSum datasets, we report full-length F1 based
ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-
L (RL) scores. Following Durrett et al. (2016);
Liu and Lapata (2019), we report limited-length
recall based ROUGE-1, ROUGE-2, and ROUGE-
L, where generated summaries are truncated to the
lengths of gold summaries. All ROUGE scores are
computed using the ROUGE-1.5.5.pl script 4.

Summaries generated by abstractive models may
be ungrammatical or unfaithful to the original doc-
ument. Additionally, we also measure the quality
of generated summaries by eliciting human judge-
ments. We randomly sample 50 documents from
the test set of CNNDM. 12 annotators are invited
(they are either native English speakers or gradu-
ate students with IELTS test score over 6.5). In
the evaluation, participants are presented with a
document and a list of outputs by different models.
First, they are asked to evaluate the summaries on
three dimensions: fluency (is the summary gram-
matically correct?), faithfulness (is the summary
faithful to the original document?), and coverage
(does the summary coverage important information
of the document?). Then, they are asked to rank
the summaries from best to worst as a way of de-
termining the overall quality of summaries. Each
document is ensured to be annotated by 3 different
subjects.

4.4 Results

Our main results are shown in Table 2. The first
block includes several recent abstractive summa-
rization models based on large pre-trained Trans-
formers. BERTSUM (Liu and Lapata, 2019) em-
ploys BERT (Devlin et al., 2019) as its encoder
and uses randomly initialized decoder. T5 (Raffel
et al., 2020), PEGASUS (Zhang et al., 2020) and
BART (Lewis et al., 2020) are three popular large
Seq2Seq Transformer models with different pre-
training objectives. Our own fine-tuning version
of BART (BART (ours)) is comparable or slightly
better than the original reported BART results, and
we use it as the teacher model on the three datasets.

The second block presents results of student
models. Shleifer and Rush (2020) compare pseudo-
labeling (BART-PL), knowledge distillation using
both output and intermediate layers (BART-KD) as
well as shrink and fine-tuning (BART-SFT) meth-
ods. They also use BART as teacher models. Note
their settings of student models are BART 12-6
on CNNDM and BART 12-3 on XSum.

Results of our BART 12-3 and BART 12-6
student models are in the third and fourth block.
We present results of students trained with gold la-
bels (Gold) and regular pseudo labels (Regular) as
well as pseudo labels with higher and random atten-
tion temperatures (PLATEB12-3

λ=1.5, PLATEB12-3
λ=2.0 and

PLATEB12-3
rnd ). PLATEB12-3

λ=1.5 means that the student
uses attention temperature coefficient λ = 1.5 with
architecture setting BART 12-3. PLATEB12-3

rnd
means that we use random attention tempera-
ture of λ ∼ U [1.0, 2.0]. We observe that using
pseudo-labeling methods with higher attention tem-
peratures consistently improves over its counter-
part with normal attention temperatures (Regular)
across all three datasets, and the differences be-
tween them are almost always significant measured
with the ROUGE script 5 (see details in Table 2).
Interestingly, our student models PLATEB12-3

λ=2.0 and
PLATEB12-6

λ=2.0 outperform all models in comparison
(including student models and even the teacher
model) on CNNDM. Our best performing student
model PLATEB12-3

λ=1.5 outperforms BART-PL, BART-
SFT, and BART-KD on XSum. Meanwhile, our
method is conceptually simpler and can further be
combined with their methods with additional train-

4with -c 95 -r 1000 -n 2 -a -m arguments.
5The script uses bootstrap re-sampling technology (Davi-

son and Hinkley, 1997) to compute the 95% confidence inter-
val following Lin (2004).
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Model/Dataset
CNNDM XSum NYT

R1 R2 RL R1 R2 RL R1 R2 RL
Teacher

BERTSUM (Liu and Lapata, 2019) 42.13 19.60 39.18 38.81 16.50 31.27 49.02 31.02 45.55
T5-11B (Raffel et al., 2020) 43.52 21.55 40.69 – – – – – –
PEGASUS (Zhang et al., 2020) 44.17 21.47 41.11 47.21 24.56 39.25 – – –
BART (Lewis et al., 2020) 44.16 21.28 40.90 45.14 22.27 37.25 – – –
BART (ours) 44.71 21.52 41.44 45.50 22.26 36.98 55.41 36.59 51.11

Student
BART-PL (Shleifer and Rush, 2020) – 19.93 – – 21.38 – – – –
BART-KD (Shleifer and Rush, 2020) – 20.95 – – 21.63 – – – –
BART-SFT (Shleifer and Rush, 2020) – 21.21 – – 21.08 – – – –

BART 12-3

Gold 44.28 21.31 41.18 44.33 21.60 36.73 54.75 35.52 50.56
Regular 43.65 21.10 40.40 44.40 21.63 36.44 53.82 35.12 49.45

PLATEλ=1.5 44.54∗ 21.70∗ 41.41∗ 44.40 21.92 36.92∗ 54.47∗ 35.65 50.39∗

PLATEλ=2.0 44.65∗ 21.78∗ 41.71∗ 43.50 21.45 36.47 54.96∗ 35.72 51.05∗
PLATErnd 44.27∗ 21.50∗ 41.15∗ 44.21 21.70 36.81∗ 54.60∗ 35.70 50.53∗

BART 12-6

Gold 44.00 21.08 40.76 44.88 21.75 36.72 55.07 35.91 50.69
Regular 44.00 21.08 40.29 44.87 21.65 36.47 53.85 35.08 49.36

PLATEλ=1.5 44.29∗ 21.57∗ 41.13∗ 45.13 22.07∗ 37.13∗ 54.41∗ 35.61∗ 50.29∗

PLATEλ=2.0 44.84∗ 21.95∗ 41.77∗ 44.51 21.79 36.92∗ 55.07∗ 35.92∗ 51.05∗
PLATErnd 44.38∗ 21.65∗ 41.27∗ 45.00 22.09∗ 37.09∗ 54.74∗ 35.88∗ 50.66∗

BART 12-12

Regular 43.58 21.14 40.33 44.55 21.42 36.01 54.36 35.74 49.97
PLATEλ=1.5 44.72∗ 21.88∗ 41.55∗ 45.22∗ 22.30∗ 37.22∗ 54.90 36.17 50.84∗

PLATEλ=2.0 45.08∗ 21.98∗ 42.07∗ 44.76 22.06∗ 37.09∗ 55.70∗ 36.28 51.70∗
PLATErnd 44.65∗ 21.80∗ 41.53∗ 44.60 21.86∗ 36.69∗ 55.15∗ 36.28 51.11∗

Transformer

Gold 40.29 17.49 36.71 29.04 9.21 22.18 49.44 29.04 45.07
Regular 41.00 18.35 37.65 30.19 9.79 22.88 49.97 31.00 45.88

PLATEλ=1.5 41.19 18.33 38.01∗ 29.40 10.11∗ 22.95∗ 50.21 31.14 46.25
PLATEλ=2.0 41.15 18.41 38.00∗ 28.56 10.02∗ 22.83∗ 50.35 30.75 46.39

Table 2: Results of various models on CNNDM, XSum, and NYT datasets. ROUGE scores on CNNDM and XSum
are F1 based; and ROUGE scores on NYT are limited-length recall based. BART (ours) is our own implementation
of BART fine-tuning. * indicates the model significantly outperforms the regular pseudo-labeling model (Regular).

ing objectives.
In Section 3.3, we also propose a variant of our

method, which employs random attention tempera-
tures (PLATErnd in Table 2). We can see that though
random temperature based method is not as good
as our best fixed-temperature method, it in general
produces decent results. Therefore, we recommend
using this method when the computing budget is
limited. Note that we also tried more extreme λ
values as shown in Appendix B, and we find the
value of 1.5 or 2.0 works better than others.

In the fifth block, we additionally conduct self-
distillation experiments, which is not the focus of
this work. Our method improves the teacher model
on CNNDM; ROUGE-2/L scores are improved on
XSum; while on NYT, there are improvements on
ROUGE-1/L.

Results with the Transformer student (the
sixth block) follow a similar trend, although the im-
provements are smaller. It may because the model-

Ref Regular PLATEB12-6
λ=1.5 PLATEB12-6

λ=2.0

rank 2.4 2.1 2.4 2.7∗

Table 3: Human Evaluation on CNNDM dataset. *
means significantly better than Regular.

ing power of Transformer without pre-training
is not large enough to effectively model the dif-
ferences in pseudo labels. It is also interesting
to see that students distilled with pseudo-labeling
do improve gold label based students using ran-
domly initialized Transformer, but not with
pre-trained models (i.e., BART 12-6 and BART
12-3), which may also be due to the strong mod-
eling power of large pre-trained Transformers.

Human evaluation We randomly sample 50
documents from the test set of CNNDM. We com-
pare our best student model PLATEB12-6

λ=2.0 against the
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Attention Setting R1 R2 RL

λenc = λcross = λdec = 2.0 45.65 22.59 42.60
– with λenc = 1.0 45.65 22.57 42.55
– with λcross = 1.0 44.45 21.52 41.22
– with λdec = 1.0 45.08 22.25 42.02

Table 4: Effects of re-scaling attention temperatures for
encoder self-attention, decoder self-attention, and de-
coder cross-attention on the validation set of CNNDM.

Method R1 R2 RL

Sampling (Edunov et al., 2018) 43.70 20.83 40.56
Nucleus Sampling 43.86 20.95 40.68
Output Layer T = 0.5 43.80 21.20 40.59
Regular 44.00 21.08 40.29
PLATEλ=2.0 (Ours) 44.84 21.95 41.77

Table 5: Comparison with sampling and output layer
temperature based distillation methods.

regular pseudo-labeling model (Regular), another
model PLATEB12-6

λ=1.5 and human reference (Ref). We
ask human judges to rank the outputs of these mod-
els from best to worst. We convert the ranks to
rank ratings (rank i to 5 − i) and further conduct
student t-test on these ratings. As shown in Table
3, PLATEB12-6

λ=2.0 obtains the best ranking score and
the difference between PLATEB12-6

λ=2.0 and the regular
pseudo-labeling based method Regular is signif-
icant (p < 0.05), which indicates our proposed
method PLATE indeed produces better summaries.

Ablation study In a Transformer, there are three
types of attention modules (i.e., encoder self-
attention, decoder self-attention and decoder cross-
attention), and we can scale attention temperatures
for all of them or some of them. Let λenc, λcross,
and λdec denote the attention temperature coef-
ficient of the encoder self-attention module, the
decoder cross-attention module, and the decoder
self-attention module, respectively. As shown in
Table 4, using large attention temperature coeffi-
cients (2.0) for all three types of attention modules
leads to the best result. When setting the coefficient
of the cross attention module to λcross = 1.0, the
ROUGE scores drop most. Perhaps this is not sur-
prising, since cross attentions are directly related
to the selection of document contents for summa-
rization. Besides, the attention temperature of the
decoder self-attention is also crucial but not as im-
portant as the cross-attention (see the fourth row).

Comparison with sampling and tuning output
layer temperature Sampling based methods can
produce more diverse and richer outputs than its
beam search based counterpart and has been proven
useful in back translation (Edunov et al., 2018). We
implement the sampling method in Edunov et al.
(2018) and Nucleus Sampling (Holtzman et al.,
2019), a more advanced sampling method, to gener-
ate pseudo labels for distillation. We use the BART
12-6 as the student model, and the distillation re-
sults on CNNDM are in Table 5. As can be seen,
both of the sampling based methods above perform
worse than the regular beam search based pseudo-
labeling method (Regular), let alone ours. Besides
the attention temperatures, we can also tune the
temperature T in the decoder output softmax layer.
With a proper T (i.e., T = 0.5) during pseudo la-
bel generation, the resulting student model slightly
outperforms the baseline student model with reg-
ular pseudo labeling method on ROUGE-2/L (see
Table 5), but worse than PLATEλ=2.0. More results
with different T s are in Appendix C.

4.5 Analysis

Why does our distillation method work? To an-
swer this question, we first try to analyze the rea-
sons from both the external characteristics of the
summaries generated by the teacher model and the
internal characteristics of the teacher’s attention
mechanism. Then, we will give an in-depth expla-
nation.

Length and novel n-grams We first analyze the
pseudo summaries generated by the teacher models.
We calculate novel n-grams and lengths of gener-
ated summaries. Note that if an n-gram appears
in the summary, but not in the original document,
we call it a novel n-gram. Proportions of novel
n-grams are used to measure the abstractiveness
of summaries (See et al., 2017; Liu and Lapata,
2019). As shown in Table 6, when using a larger
λ, pseudo summaries are shorter 6 and contain a
larger portion of novel n-grams. It indicates that the
teachers can produce more concise and abstractive
summaries, which matches the goal of abstractive
summarization. Are these pseudo summaries of
good quality? The performance of the teacher with
different attention temperatures on CNNDM test

6We also try changing the length penalty during teach-
ers’ inference to make pseudo summaries shorter, but we find
this method does not help summarization distillation (see Ap-
pendix D for more details).
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CNNDM XSum NYT
λ Setting gold 1.0 1.5 2.0 gold 1.0 1.5 2.0 gold 1.0 1.5 2.0

Average Length

Teacher Avg. Len. 48.03 64.78 56.81 52.16 21.10 20.33 17.28 15.66 78.61 105.83 88.58 79.05
Student Avg. Len. 67.51 82.31 73.10 65.92 21.01 22.46 18.69 16.84 92.61 109.78 98.16 88.52

Novel n-grams Ratio(%)

Teacher

1-gram 25.24 7.89 9.15 12.56 46.78 38.68 39.05 39.33 12.96 4.04 4.34 6.25
2-grams 61.08 23.60 27.38 36.81 87.83 80.50 81.91 82.70 45.90 22.54 23.14 28.95
3-grams 77.49 35.43 40.54 52.77 97.17 93.09 94.27 94.91 65.12 39.20 39.88 46.93
4-grams 85.13 44.10 49.66 62.56 99.08 96.78 97.64 98.07 75.21 51.09 51.63 58.36

Student

1-gram 23.55 4.58 5.07 6.56 46.80 37.33 38.01 38.07 10.36 3.46 3.37 3.64
2-grams 58.52 15.16 16.64 21.40 87.89 78.74 80.56 81.28 41.16 21.21 20.50 21.93
3-grams 75.50 24.36 26.58 33.67 97.21 91.99 93.55 94.18 60.65 37.60 36.67 38.71
4-grams 83.49 31.70 34.36 42.74 99.12 96.10 97.25 97.70 71.48 49.56 48.47 50.56

Table 6: Statistics on outputs of teachers and students with different attention temperature coefficient λ. The
student models are all with the BART 12-6 setting. Inference hyper-parameters on the same dataset are the same.

λ R1 R2 RL

1.0 44.71 21.52 41.44
1.5 44.92 21.72 41.84
2.0 44.38 21.02 41.50

Table 7: ROUGE of teacher models with different atten-
tion temperature coefficient λ on test set of CNNDM.

set is shown in Table 7. Their results are all decent
and close to each other (at least for ROUGE-1 and
ROUGE-L). Interestingly, compared with λ = 1.0,
the performance of the teacher with λ = 2.0 is
worse, but the resulting student is much better (see
Table 2). Perhaps not surprisingly, the styles of
summaries from students are similar with these
from their teachers. Concise and abstractive teach-
ers lead to concise and abstractive students (see
Table 6). Conciseness and abstractiveness are good
properties for summarization, which however may
not be the case for other generation tasks such
as machine translation. We apply PLATE to the
WMT16 (Bojar et al., 2016) English-German trans-
lation task and use Transformer-big as the teacher
and Transformer-base as the student. With λ = 1.5,
we obtain a BLEU of 27.90, while the result of the
regular pseudo-labeling is 27.79 (more details are
in Appendix A).

Attention We have shown earlier in Figure 1 that
with higher attention temperature, cross-attention
modules of a teacher can attend to later parts in
documents. We observe that students behave simi-
larly, and we put more cross attention visualization
of students in Appendix F. To obtain corpus-level
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Figure 2: Distributions of evident cross attention
weights (≥ 0.15) when teachers generate pseudo labels
with different attn. temperatures w.r.t. token positions.

statistics, we further calculate the evident cross-
attention weight distributions of the teacher when
generating pseudo labels on the training set of CN-
NDM. Note that an attention weight is evident if
it is greater than 0.15, and these evident attention
weights account for around 15% of all attention
weights. Specifically, we normalize the token po-
sitions of each document to (0.0, 1.0] and divide
the normalized positions into five bins. The mean
proportions of evident attentions for all bins are
shown in Figure 2. Compared to the teacher with
normal attention temperature (pink bar), teachers
with higher attention temperatures (blue and green
bars) attend less on the heading parts of documents
while more on the tail parts of documents.

To sum up, teachers with higher attention temper-
atures can generate more concise and abstractive
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pseudo summaries, which makes the teacher pro-
vide more summary-like pseudo labels to students.
High-temperature teachers can alleviate the lead-
ing bias problems by providing pseudo labels with
better coverage of source documents to students.

More explanation According to the study of Xu
et al. (2020b), the prediction entropy correlates
strongly with whether the model is copying or gen-
erating, as well as where in the sentence the token
is (content selection). The decoder tends to copy
when the model has a low prediction entropy and
generate novel bigrams when the model has a high
prediction entropy. They also find that high entropy
of attention distribution strongly correlates with the
model’s high prediction entropy.

Our method with a higher attention temperature
makes attention distributions of the teacher model
smoother and leads to a higher entropy of attention
distributions, which results in a higher prediction
entropy. Therefore, the model with higher atten-
tion temperature tends to copy less and generate
more novel tokens. The conclusion from Xu et al.
(2020b) is in accordance with our observation in
Table 6.

5 Conclusions

In this work, we propose a simple but effective
extension of pseudo-labeling method PLATE for
summarization distillation. Experiments on three
datasets demonstrate that our method can con-
sistently outperform the vanilla pseudo-labeling
method. Further empirical analysis shows that by
using our method, teacher models can generate
more concise and abstractive summaries. As a re-
sult, summaries produced by student models also
become more concise and abstractive. In the fu-
ture, we would like to explore our method to other
generation tasks as well as self-training with unla-
beled data. We are also interested in combining our
method with other distillation methods and extend-
ing our method for better teacher model training.
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Model λ BLEU

Transformer-Big (teacher) – 28.51

Student

Transformer-Base 1.0 27.79
Transformer-Base 1.5 27.90
Transformer-Base 2.0 27.85

Table 8: Results of WMT En-De machine translation
task on newstest2014. Student models are distilled
from pseudo labels generated by the teacher with dif-
ferent attention temperatures (λ).

A Experiments of Applying PLATE to the
Machine Translation Task

We apply our method on the WMT16 En-De trans-
lation task. We use Transformer-Big model
as the teacher and Transformer-Base as the
student. Our results on newstest2014 are shown
in Table 8. The student models with our method
(λ = 1.5 and λ = 2.0) slightly outperform
the student with regular pseudo-labeling method
(λ = 1.0). Note that the improvement is not as
significant as in summarization tasks.

We speculate the reason may be that, unlike sum-
marization, outputs of the machine translation task
are relatively fixed. The strength of our method–
conciseness and abstractiveness are good properties
for summarization but seem not very beneficial to
the translation task.

B Experiments of More λ Values

Besides the λ values of 1.5 and 2.0, we also try
more values in a broader range. Table 9 shows the
distillation performance of BART 12-6 student
models with more values of λ we try on CNNDM
dataset (we also include the values of 1.0, 1.5, and
2.0 in table for convenient comparison). As can
be seen, both lower and larger λ values are not
helpful to the distillation. Though the suitable λ
values may vary across datasets, we recommend
considering the λ value 1.5 or 2.0 firstly in most
cases.

C Experiments of Changing the Softmax
Temperature in the Final Decoder
Layer

It’s a more direct idea to change the softmax tem-
perature in the final decoder layer rather than at-
tention temperatures, namely changing the T in

λ R1 R2 RL

0.75 43.13 20.60 39.62
1.0 44.00 21.08 40.29
1.5 44.29 21.57 41.13
2.0 44.84 21.95 41.77
2.5 43.99 21.19 41.21
3.0 42.32 19.28 39.67

Table 9: ROUGE scores of BART 12-6 student mod-
els with more values of λ on CNNDM dataset.

T R1 R2 RL

0.5 43.80 21.20 40.59
1.0 44.00 21.08 40.29
1.5 42.81 20.43 39.56
2.0 42.76 20.34 39.53

Regular 44.00 21.08 40.29
PLATEλ=2.0 (Ours) 44.84 21.95 41.77

Table 10: Distillation experiment results of changing
the softmax temperature in the final decoder layer.

equation 5 to some other values rather than the
default value 1.0.

qi =
exp(zi/T )∑
j exp(zj/T )

(5)

However, our experiments demonstrate that this
method does not help summarization distillation
much. We use BART teacher models with different
softmax temperatures in the final decoder layers
to generate pseudo summaries and use the BART
12-6 as student models. The experiment results
are shown in table 10.

D Experiments of Shorter Pseudo
Summaries with Smaller Length
Penalty

Our method can make pseudo summaries shorter
and more abstractive, so one natural idea is
that whether just changing the inference hyper-
parameter length penalty to a smaller value, which
can also make pseudo summaries shorter, can ben-
efit abstractive summarization distillation. The ex-
periment results are shown in Table 11, where the
teacher is BART, and the student is BART 12-6.
As can be seen from the table, teachers with smaller
length penalty (i.e., 1.0 or 0.5) cannot teach better
students than the Regular pseudo-labeling or our
method.
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Length Penalty Avg. Len. R1 R2 RL

1.0 64.39 42.96 20.67 39.76
0.5 60.26 43.49 20.89 40.14

Regular 64.78 44.00 21.08 40.29
PLATEλ=2.0 (Ours) 52.16 44.84 21.95 41.77

Table 11: Distillation results of changing the teacher’s
inference hyper-parameter length penalty on CNNDM
dataset. Avg. Len. represents the average length of the
teacher generated pseudo summaries.

E The Example in Section 1

We present the detailed content of the example in
Section 1 in table 12.

F Attention Visualization

We present more examples of student models’ out-
puts and cross attention visualization here. The
student models are with the BART 12-6 setting
and are trained on CNNDM and the following ex-
amples are from the validation set of CNNDM.

Example 1 Table 13 shows system outputs from
different student models and Figure 3 illustrates
the corresponding cross attention weights of these
student models. Compared with the regular pseudo-
labeling method ([Regular]), the summary gen-
erated by our method PLATEB12-6

λ=1.5 omits the mod-
ifier "Nirvana frontman" and "Nirvana bassist" of
the person "Kurt Cobain" and "Krist Novoselic",
respectively and the resulting summary is shorter
and more abstractive. The summary generated by
our method PLATEB12-6

λ=2.0 contains the text "will pre-
miere on HBO on May 4", which is at the end
of the source document and included in the ref-
erence (i.e., summary worthy), but is ignored by
[Regular]. It indicates that our method can al-
leviate the leading bias problem. Figure 3 also
shows that PLATEB12-6

λ=2.0 can access the tail part of
the document.

Example 2 The second example is shown in Ta-
ble 14 (outputs) and Figure 4 (attention visualiza-
tion). In this example, the source document is
relatively long (over 700 words). As shown in
Figure 4, the summary generated with the regular
pseudo-labeling method Regular mainly focuses
on the heading part of the source document (around
the first 150 words), but our method PLATEB12-6

λ=2.0

takes into account the tokens in the front, middle
and tail of the source document. In Table 14, the

[Reference]: Mentally ill inmates in Mi-
ami are housed on the “forgotten floor” </s>
Judge Steven Leifman says most are there as a
result of “avoidable felonies” </s> While CNN
tours facility, patient shouts: “I am the son of
the president” </s> Leifman says the system is
unjust and he’s fighting for change.
[PseudoLBL]: Mentally ill inmates in Mi-
ami are housed on the "forgotten floor" of a
pretrial detention facility. </s> Judge Steven
Leifman says about one-third of all peo-
ple in Miami-Dade county jails are mentally
ill. </s> He says they face drug charges or
charges of assaulting an officer, which are
“avoidable felonies” </s> He says the arrests
often result from confrontations with police,
which exacerbate their illness.
[Smoothed ]: Mentally ill inmates in Mi-
ami are housed on the “forgotten floor” </s>
Judge Steven Leifman says they are there be-
cause of “avoidable felonies” </s> He says
many of them are in jail for drug or assault
charges. </s> He says the system is unjust and
he’s trying to change it.

Table 12: Examples of reference summary
([Reference]), pseudo summary from the teacher
model ([PseudoLBL]) and pseudo summary from
the teacher with smoothed attention ([Smoothed ]).
Text spans in bold are copied spans (with more than
four words) from the original document.

summary from PLATEB12-6
λ=2.0 contains the key sen-

tence "Peter Bergen: Pilots are not different from
other people, but they can be careless, lazy, inat-
tentive and reckless", which is similar to the refer-
ence sentence "Peter Garrison: Pilots don’t exist
on different moral plane than the rest of us". The
sentence "the human mind is the blackest of boxes"
in the reference, which appears at the tail of the
source document, is also included in summaries of
PLATEB12-6

λ=2.0. This example again demonstrates that
our method can alleviate the leading bias problem
and can make the generated summary have better
coverage of source documents.
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Figure 3: Example 1 of visualization of cross attention weight when the student generate summary with different
attention temperatures.
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Figure 4: Example 2 of visualization of cross attention weight when the student generate summaries with different
attention temperatures.
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[Reference]: The trailer surfaced on
Wednesday. The documentary is winning raves.
It premieres on HBO on May 4.
[Regular ]: "Montage of Heck" is directed
by Brett Morgen and offers an intimate portrayal
of Nirvana frontman Kurt Cobain. The trailer
features interviews with those closest to the per-
former, including family members, Courtney
Love and Nirvana bassist Krist Novoselic. A
companion book containing art and archival doc-
uments from Cobain is being produced to accom-
pany the film.
[PLATEB12-6λ=1.5 ]: "Montage of Heck" is directed
by Brett Morgen and offers an intimate portrayal
of Kurt Cobain. The trailer features bits of
interviews with those closest to the performer,
including family members, Courtney Love and
Krist Novoselic. A companion book containing
art and archival documents from Cobain is being
produced to accompany the film.
[PLATEB12-6λ=2.0 ]: "Montage of Heck" is directed
by Brett Morgen and will premiere on HBO
on May 4. A companion book containing art
and archival documents from Cobain is being
produced to accompany the documentary. The
soundtrack will include "a mind-blowing 12-
minute acoustic Cobain unheard track," Morgen
says.

Table 13: Example 1 of reference summary
([Reference]), summary generated from stu-
dent with the regular pseudo-labeling method
([Regular]), and summaries generated from stu-
dents with PLATE ([PLATEB12-6λ=1.5] and [PLATEB12-6λ=2.0].

[Reference]: Experts suspect first officer
Andreas Lubitz locked pilot out of the cockpit
of plane. Peter Garrison: Pilots don’t exist on
different moral plane than the rest of us, and
the human mind is the blackest of boxes.
[Regular ]: Germanwings first officer An-
dreas Lubitz is one of a handful of airline pilots
who have used their airplanes to combine sui-
cide with mass murder. Frida Ghitis: Why is this
thought at once so fascinating and so horrifying?
It is because of the incompatibility between what
we want to believe about flying and what we now
see.
[PLATEB12-6λ=1.5 ]: Andre Lubitz joins the short
and infamous list of airline pilots who have used
their airplanes to combine suicide with mass mur-
der. Frida Ghitis: Why is this thought at once so
fascinating and so horrifying? It is because of
the incomp compatibility between what we want
to believe about flying and what we now see.
[PLATEB12-6λ=2.0 ]: Germanwings first officer An-
dreas Lubitz is one of a handful of pilots who
have used their airplanes to combine suicide
with mass murder. Peter Bergen: Pilots are
not different from other people, but they can
be careless, lazy, inattentive and reckless. He
says the human mind is the blackest of boxes;
no one can peer inside it.

Table 14: Example 2 of reference summary
([Reference]), summary generated from stu-
dent with the regular pseudo-labeling method
([Regular]), and summaries generated from stu-
dents with PLATE ([PLATEB12-6λ=1.5] and [PLATEB12-6λ=2.0].

141


