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Abstract

The IMPRESSIONS section of a radiology re-
port about an imaging study is a summary
of the radiologist’s reasoning and conclusions,
and it also aids the referring physician in con-
firming or excluding certain diagnoses. A cas-
cade of tasks are required to automatically gen-
erate an abstractive summary of the typical
information-rich radiology report. These tasks
include acquisition of salient content from
the report and generation of a concise, eas-
ily consumable IMPRESSIONS section. Prior
research on radiology report summarization
has focused on single-step end-to-end mod-
els – which subsume the task of salient con-
tent acquisition. To fully explore the cascade
structure and explainability of radiology report
summarization, we introduce two innovations.
First, we design a two-step approach: ex-
tractive summarization followed by abstractive
summarization. Second, we additionally break
down the extractive part into two independent
tasks: extraction of salient (1) sentences and
(2) keywords. Experiments on English radiol-
ogy reports from two clinical sites show our
novel approach leads to a more precise sum-
mary compared to single-step and to two-step-
with-single-extractive-process baselines with
an overall improvement in F1 score of 3-4%.

1 Introduction

A diagnostic radiology report about an examina-
tion includes FINDINGS in which the radiologist
describes normal and abnormal imaging results of
their analysis (Dunnick and Langlotz, 2008). It also
includes IMPRESSIONS or a summary that commu-
nicates conclusions about the findings and sugges-
tions for the referring physician; a sample report is
shown in Table 1. FINDINGS are often lengthy and
information-rich. According to a survey of refer-
ring physicians, IMPRESSIONS may be the only part
of the report that is read (Wallis and McCoubrie,
2011). Overall, referring physicians seem to appre-
ciate the explainability (or self-explanitoriness) of

FINDINGS
ψthere is no evidence of midline shift or mass effect.
there is soft tissue swelling or hematoma in the right frontal
or supraorbital region.
underlying sinus walls and calvarium are intact.
there is no obvious laceration.
ψthere is subtle thickening of the falx at the high convexity
with its mid to posterior portion.
there is no associated subarachnoid hemorrhage.
ψthis likely reflects normal prominence of the falx in a
patient of this age.
ψremote consideration would be a very thin subdural col-
lection.

IMPRESSIONS

1) no definite acute intracranial process.
2) mild prominence of the falx is likely normal for this
patient.
3) remote possibility of very thin subdural collection has
not been entirely excluded.

Table 1: FINDINGS (top) and IMPRESSIONS (bottom)
sections of a radiologist’s report. ψ indicates a sentence
in FINDINGS that overlaps with sentences in IMPRES-
SIONS. Italicized words in FINDINGS are core concepts
(e.g., disorder and procedure) that assist in answering
clinical questions.

IMPRESSIONS as it helps them evaluate differential
diagnoses while avoiding additional conversations
with the radiologist or the need for repeat proce-
dures.

A well known end-to-end method for text sum-
marization is two-step: extractive summarization
followed by abstractive summarization. For in-
stance, Chen and Bansal (2018) initially train ex-
tractive and abstractive systems separately and then
use the extractive system as an agent in a single-
agent reinforcement learning (RL) setup with the
abstractive system as part of the environment. Their
extractive system extracts salient sentences and the
abstractive system paraphrases these sentences to
produce a summary. This summary is in turn used
to compute the reward for RL training. However,
this single-agent setup often fails to extract some
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salient sentences or it extracts irrelevant ones, lead-
ing to the generation of incomplete/incorrect IM-
PRESSIONS. We hypothesize that granular cate-
gories of core concepts (e.g., abnormalities, proce-
dures) can be leveraged for generating more com-
prehensive summaries. Thus, a separate RL agent
is dedicated to the task of extracting salient key-
words (core concepts) in the two-step system. The
novelty in this approach is that the new, second
agent can now collaborate with the first one and
the two can influence each other in their extraction
decisions.

Multiagent reinforcement learning (MARL) re-
quires that an agent coordinate with the other
agents to achieve the desired goal. MARL often
has centralized training and decentralized execu-
tion (Foerster et al., 2016; Kraemer and Banerjee,
2016). There are several protocols for MARL train-
ing, such as sharing parameters between agents and
explicit (Foerster et al., 2016, 2018; Sukhbaatar
et al., 2016; Mordatch and Abbeel, 2018) or im-
plicit (Tian et al., 2020) communication between
agents by using an actor-critic policy gradient with
a centralized critic for all agents (Foerster et al.,
2018). The aim of these protocols is to correctly
assign credits so that an agent can deduce its con-
tribution to the team’s success. To train our co-
operative agents that extract salient sentences and
keywords, we propose a novel Differentiable Multi-
agent Actor-Critic (DiMAC) RL learning method.
We learn independent agents in an actor-critic setup
and use a communication channel to allow agents
to coordinate by passing real-valued messages. As
gradients are pushed through the communication
channel, DiMAC is end-to-end trainable across
agents.

The novelties in the paper are threefold:

• a summarization system that leverages core
concepts via keywords, refines them and
makes them the basis for more fine-grained
explainability

• a multi-agent RL (MARL) based extractive
component for a two-step summarization
framework,

• a Differentiable Multi-agent Actor-Critic (Di-
MAC) with independent actors leveraging a
communication channel for cooperation

The remaining paper is structured as follows. In
Section 2, we provide a detailed description of our

Notations
General MLE RL

F FINDINGS E encoder network a agent (actors)
I IMPRESSIONS D pointer network c critic
K Keywords w2w word LSTM u action
w word s2s sentence LSTM m message value
s sentence α attention score r reward
p position c context vector G discounted reward
m total words v trainable vector V value function
n total sentences q switch value Q action value function
h hidden vector W trainable matrix A advantage function
y train label Conv CNN network

Table 2: Notation used in this paper: general notation
and notation for two-step maximum likelihood estima-
tion (MLE) and reinforcement learning (RL). Notations
are often combined, e.g., hEw2w refers to the word en-
coder’s hidden state vector and aw to the word agent.

two-step framework. In Section 3, we introduce
the DiMAC training algorithm. In Section 4, we
describe training data and experiments. In Section
5, we discuss the results. In Section 6, we dis-
cuss related work. In Section 7, we present our
conclusions.

2 Model

Problem statement. We design a two-step sum-
marization framework that takes the FINDINGS (F )
section of a radiology report (consisting of a se-
quence of sentences) and a set of keywords (K) as
input and produces an IMPRESSIONS (I) section
(consisting of a sequence of sentences).

In the first step of the framework, the two extrac-
tors independently select words and sentences from
FINDINGS F but also coordinate such that the se-
lection of salient words is followed by the selection
of the sentence comprising these words. In the next
step, a seq2seq abstractor paraphrases the selected
sentences to generate IMPRESSIONS I . Figure 1
illustrates the proposed framework. We refer to
Table 2 for basic notations used in this paper. We
often combine notations to indicate a framework
component concisely.

Two-step summarization framework. The
proposed system includes encoder networks to en-
code words and sentences into vector representa-
tions. It also includes two pointer extractor net-
works (Vinyals et al., 2015) to determine salient
words and sentences by selecting their indices.
Both extractor networks run for the same number
of steps; however, at each step, the output index of
one extractor network is chosen while the other is
set as empty (∅). When the input is ∅, an extractor
pauses its activity and guides the other extractor in
an optimal direction.

Encoder. A bi-directional LSTM based word
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Figure 1: Our two-step summarization framework. DiMAC components (actors/extractors, communicator (m),
environment and communication between them) are indicated by blue dashed lines and arrows. (i) The first step
of the framework consists of encoder-extractor networks. Left side: sentence (Es2s) and word (Ew2w) encoders.
Right side: sentence (Ds2s) and word (Dw2w) extractors. Word and sentence encoders are bi-directional LSTMs
with word (vw) and sentence (hs) embeddings as input. A convolutional network (Conv) obtains a sentence embed-
ding (hs) from word (vw) and position (vp) embeddings. An extractor is an LSTM pointer network with context
vectors as input and either empty (∅) or a source position as output at each step. (ii) In the second step of the
framework, the seq2seq abstractor paraphrases selected sentences. During DiMAC reinforcement learning, the
communicator takes contexts and actor hidden states and sends them back messages (m). The critic is omitted.
Abstracted sentences (ŝ) and selected words are used to compute rewards. Figure best viewed in color.

encoder, Ew2w, is run on m word embeddings of
FINDINGS sentences to obtain word representations,
{hEw2w

1 , · · · , hEw2w
m }. A convolutional network

(Conv) is run on concatenated word (vw) and po-
sition (vp) embeddings in a sentence to obtain an
intermediate sentence representation (hs). Then, a
bi-directional LSTM sentence encoder, Es2s, lever-
ages the intermediate representations to obtain the
final sentence representations, {hEs2s1 , · · · , hEs2sn }.

Extractors. Two LSTM based pointer extrac-
tors, i.e., word, Dw2w, and sentence, Ds2s, select
a source word and sentence index at each step of
decoding respectively. At any step j of decoding,
each extractor independently uses its hidden state
hDw2w
j and hDs2sj to compute an attention score

over its source item wi and sk as:

αwi,j = softmax(vTφ(WDhDw2w
j + WEhEw2w

i ))

αsk,j = softmax(v̂Tφ(Ŵ
D
hDs2sj + Ŵ

E
hEs2sk ))

where WD, WE , v, Ŵ
D

, Ŵ
E

and v̂ are trainable pa-
rameters, T and φ are transpose and tanh functions
respectively, and softmax normalizes the scores.
Word and sentence context vectors are computed us-
ing attention scores and encoder representations as
cwj =

∑m
i=1 α

w
i,jh

Ew2w
i and csj =

∑n
k=1 α

s
k,jh

Es2s
k

respectively.
Additionally, at step j, the decision on whether

word or sentence extractor output is set to
∅ is based on a switch probability qj =
σ(switch(hDw2w

j , cwj , h
Ds2s
j , csj)), where switch is

a feed-forward network (omitted in Figure 1). The
switch value of 0 or 1 indicates whether to set the
output of sentence or word extractor to ∅.

Based on its current cell state hDs2sj , Ds2s com-
putes the next cell state, both the context vectors cwj
and csj and the selected source item encoder repre-
sentation, hEs2s· . Sharing context vectors between
extractors is similar to the cross attention mech-
anism as described by Jadhav and Rajan (2018).
In case Ds2s is at pause (i.e., qj=0), the Es2s end
representation is taken as the selected item rep-
resentation. Dw2w follows the same approach to
compute its next state.

As we lack gold standard FINDINGS keywords
and sentence-wise one-to-one match between
IMPRESSIONS and FINDINGS to train networks to
perform selection, we heuristically obtain such la-
bels. See Section 4.2 for details. We perform a
maximum-likelihood (ML) end-to-end training of
the encoder-extractor networks to minimize the
following loss;

∑t
j=1−(1 − yqj )(y

w
j logαwj ) −

yqj (y
s
j logαsk)− y

q
j log qj , where t is the step when

Ds2s selects a dummy END, which indicates end
of the extraction, and yqj , ysj and ywj are heuristi-
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cally obtained switch, word and sentence selection
labels at step j respectively.

Abstractor. The abstractor condenses each se-
lected sentence to a concise summary. We employ
a pointer generator network (See et al., 2017) for
this purpose. It uses a copy mechanism to solve
the out-of-vocabulary (OOV) problem and a cov-
erage mechanism to solve the repetition problem.
See (See et al., 2017) for details. We indepen-
dently train the abstractor using heuristically ob-
tained one-to-one matches between FINDINGS and
IMPRESSIONS sentences.

3 DiMAC

As extractor and abstractor are separately trained
in a two-step framework, Chen and Bansal (2018)
proposed using RL training with the extractor as-
suming the agent role and the abstractor as part of
the environment to address the separation. Further-
more, as RL loss is computed out of final summary
and ground-truth IMPRESSIONS, RL training ad-
dresses the error due to heuristic labels in the pre-
trained networks. Unlike Chen and Bansal (2018),
our setup involves multiple extractors, so we use
MARL for the coordination. In other words, the
word and sentence extractors Dw2w and Ds2s oper-
ate as RL agents aw and as (Figure 1, right sidie).

In (Foerster et al., 2018), an actor-critic MARL
has a centralized critic and parameter-sharing ac-
tors. In contrast, our extractors have different char-
acteristics, e.g., amount of selection (salient words
greater than sentences) and size of source represen-
tations; therefore, we exclude parameter sharing
between actors. Additionally, to not have actors
influence each other’s policies, we have a critic that
estimates the value function by not conditioning
on the actions of other agents, thereby ensuring
actor independence. Furthermore, we introduce a
communicator (m) that coordinates actors through
message passing. The dedicated channel m ad-
dresses the issue of the environment appearing non-
stationary due to independent agents; see (Foerster
et al., 2016; Sukhbaatar et al., 2016; Mordatch and
Abbeel, 2018). The channel allows gradients to
flow between actors, transforming the setup into an
end-to-end Differentiable Multi-agent Actor Critic
(DiMAC). The actors and the communicator are ini-
tialized with the maximum-likelihood (ML) trained
extractors and switch network, respectively.

Actions. Actors aw and as have action spaces
of source words {w1, · · · , wm} and sentences

{s1, · · · , sn}, respectively. At any decoding step
j, actors choose actions (i.e., source selection) uaw

j

and uas
j by using policy networks πaw and πas and

hidden states haw
j and has

j . Due to the commu-
nication between actors in DiMAC training, we
intuitively expect some correlation in the actions.

Reward. For any decoding step j, if the commu-
nicator indicates sentence selection (m = 0), a sen-
tence reward ras

j is computed using R1 (ROUGE
unigram recall) between the abstract summary ŝas

j

of selected sentence sas
j (out of action uas

j ) from
the abstractor and a ground-truth IMPRESSIONS

sentence. We sequentially match summary and IM-
PRESSIONS sentences such that as learns to select
relevant sentences sequentially. Similarly, word
reward raw

j for selected word waw
j out of action

uaw
j is 1 if the word is in the subset of keywords in

FINDINGS, KF , else it is 0. Again, we match se-
lected and FINDINGS keywords sequentially. When
an agent selects extra items, the reward for those
selections is 0, and thus, the agent learns to select
only relevant sentences and keywords.

In addition, joint actions of actors eventually
generate a global reward in a multi-agent coopera-
tive setting as: rg =R1({ŝas

1 , · · · , ∅, · · · , ŝ
as
t }, I)+

λR1({waw
1 , · · · , ∅, · · · , waw

t },KF ), where t is the
step when as selects END and λ is a hyperparam-
eter to adjust the global word reward contribution.
As KF keywords are not gold-standard, we set
λ = 0.1; this means that generated summary sen-
tences drive most of the global learning. rg is in-
cluded as the reward at the last step t for both
actors.

Action value functions Qaw
j and Qas

j for ac-
tions uaw

j and uas
j are estimated as Euaw

j:t ,h
aw
j:t

[Gaw
j |

haw
j , uaw

j ] and Euas
j:t,h

as
j:t

[Gas
j | has

j , u
as
j ], respec-

tively, where Gaw
j and Gas

j are discounted rewards
computed as

∑t−j
l=0 γ

lraw
j+l and

∑t−j
l=0 γ

lras
j+l and

γ = 0.99 is a hyperparameter.
Critic. Like the actors, the critic c is an LSTM

based network. It runs for the same number of
steps as the actors and estimates gradients to train
them. As the critic is used only in training, at
each step j, the critic conditions on the actors’
ground-truth selection indices, ysj and ywj , as the
actions and uses these indices to obtain word and
sentence encoder representations. In addition to
source representations, it uses its state, hc

j , and
attends to all encoder states, {hEw2w

1 , · · · } and
{hEs2s1 , · · · }) to estimate a value function Vj . Vj
is then used to compute advantage functions Aaw

j
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Algorithm 1 Differentiable Multi-Agent Actor
Critic
1: procedure TRAIN-DIMAC
2: Initialize parameters of actors (aw and as), critic (c)

& communicator (m) as θas := Ds2s, θaw := Dw2w,
θc := Dw2w & θm := switch

3: for each training episode i do
4: step j ← 1
5: while action uas

j 6= END do
6: compute actors & critic states
7: sample actions uas

j & uaw
j

8: compute rewards raw
j & ras

j for uas
j & uaw

j

9: compute message mj & value function Vj
10: j ← j + 1

11: compute global reward rg

12: for j = t to 1 do
13: compute discounted reward Gas

j and Gaw
j

14: estimate action-value functions Qaw
j & Qas

j

15: compute advantages Aas
j & Aaw

j

16: accumulate critic gradient ∆θc

17: accumulate actor gradients ∆θas&∆θaw

18: update critic θc
i+1 = θc

i − α∆θc

19:
update actors as θas

i+1 = θas
i + α∆θas &

θaw
i+1 = θaw

i + α∆θaw

20: return θas , θaw & θm

and Aas
j for actors as Qaw

j − Vj and Qas
j − Vj . At

any step, one of the two ground-truth actions ysj /
ywj is empty. Therefore, the computed value and
action-value functions Vj and Qj at that step intu-
itively become agent-specific, resulting in indepen-
dent agent learning. Finally, agent specific advan-
tage functions are used to compute actor gradients
as ∇θaw log πaw

j Aaw
j and ∇θas log πas

j A
as
j . Impor-

tantly, value, action-value and advantage can be
calculated in a single forward pass of the actor and
critic for each agent. See appendix for details and
proofs.

Communication. The communicator m (Fig-
ure 1, red circles) passes messages between the
actors. Actor previous hidden states and contexts,
has
j , haw

j , csj and cwj , are fed to m and a sigmoidal
mj is obtained. Value mj is fed to as while 1−mj

is fed to aw. The gradient of mj flows between
actors during backpropagation and provides rich
training signal that minimizes the learning effort.

See Algorithm 1 for DiMAC training algorithm
details.

4 Experiments

4.1 Dataset

We preprocessed and filtered radiology reports
from two medical centers in the USA (Courtesy
of Princeton Radiology, Princeton and University

FINDINGS IMPRESSIONS
#w per sentence 10.54 (06.53) 8.52 (05.80)
#s per report 8.23 (04.68) 1.75 (01.16)
#w per report 86.77 (64.72) 14.89 (15.81)

Table 3: Dataset statistics: number of words/sentences
per sentence/report. Standard deviation in parentheses.

of Colorado Health). 1 The resulting dataset
comprises 37,408 radiology reports, which we
randomly split into training (31,808), validation
(3,740) and test sets (1,860). Table 3 gives dataset
statistics.

4.2 Experimental Setup

Training labels. Given an IMPRESSIONS sentence,
we find a unique FINDINGS sentence with the high-
est sentence similarity score. We follow Chen and
Bansal (2018) and Liu and Lapata (2019) and use
ROUGE-L as the sentence similarity scorer. Fur-
thermore, they use a greedy matching algorithm
that takes similarity scores of all IMPRESSIONS

and FINDINGS sentence combinations and yields
a sequence of unique FINDINGS indices {ys1, · · · }
of size equivalent to the length of IMPRESSIONS.
There is a 1-to-1 correspondence between FIND-
INGS sentences at indices and IMPRESSIONS sen-
tences. We refer to the papers for more details.
These 1-to-1 correspondence are used for abstrac-
tor pretraining.

We use AutoPhrase (Shang et al., 2018) to ex-
tract keywords from training reports automatically.
We select only high-quality keywords, K, and
avoid too frequent ones as these can bias the system
to only perform keyword selection. We implement
an empirical threshold determined by hyperparam-
eter search experiments.2 We then find a subset of
keywords, KF , in FINDINGS F and compile their
indices {yw1 , · · · }.

As the two extractors run for the same number of
steps, we interleave the above sentence and word
indices {ys, · · · } and {yw, · · · } into one sequence.
In more detail, given a sentence index, all keywords
indices within that sentence are placed in the se-
quence, followed by its index. A binary switch
variable yq (with values 0 and 1) distinguishes the

1Sentences split using Stanford CoreNLP (Manning et al.,
2014). The following reports are excluded: (a) no FINDINGS
and/or IMPRESSIONS; (b) FINDINGS has fewer than 3 words;
(c) FINDINGS has fewer words or fewer sentences than IM-
PRESSIONS. We replace special tokens like numbers, dates
and abbreviations and used scispacy lemmatization.

2AutoPhrase ranks keywords using a quality score based
on frequency. The threshold is set on this score.
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index type in the sequence, i.e., index refers to sen-
tence vs. keyword. Both extractors require, during
a decoding step j, training labels ysj and ywj ; we
set the value of “non-available type” as indicated
by yqj to ∅. For example, when yqj is 0, ywj is ∅.
Overall, an element in the final sequence is a tuple
of yq, ys and yw and provides training labels for
the switch, word and sentence extractor networks.
See Appendix A for details on the interleaving of
indices.

Hyperparameters. Included in Appendix C.
Evaluation measure. We follow standard prac-

tice and evaluate the quality of generated IMPRES-
SIONS by comparing against ground-truth IMPRES-
SIONS using ROUGE (Lin, 2004).

4.3 Baseline Models

In this section we describe the baselines we com-
pare our model against: a wide variety of extractive
and abstractive systems.

Extractive systems
LexRank (Erkan and Radev, 2011) is a graph-

based method for computing relative importance in
extractive summarization.

Abstractive systems
PTGEN (See et al., 2017) introduces an encoder-

decoder model that can copy words from the source
text via pointing, while retaining the ability to pro-
duce novel words through the generator.

PTGEN+Coverage (See et al., 2017) intro-
duces a coverage mechanism to the original PT-
GEN model to avoid repetition.

Zhang et al. (2018) provides an automatic gen-
eration system for radiology IMPRESSIONS using
neural seq2seq learning. The model encodes back-
ground information of the radiology study and uses
this information to guide the decoding process.

Self supervised learning has recently gained pop-
ularity as parameters of large models can be trained
with little to no labeled data. Pre-trained language
models in which a transformer encoder is trained
to reconstruct the original text from masked text,
e.g., BERT (Devlin et al., 2018), have become an
important component in recent summarization mod-
els (Liu and Lapata, 2019; Zhang et al., 2020; Za-
heer et al., 2020). We also present results from
experiments using these summarization models.
Additionally, we experimented with a pre-trained
seq2seq model which is learned using different
self supervised techniques to reconstruct the origi-
nal text, e.g., BART (Lewis et al., 2019).

BertSumExtAbs (Liu and Lapata, 2019) is an
encoder-decoder summarization framework that
adopts BERT as its encoder. BERT is replaced
by ClinicalBERT (Alsentzer et al., 2019) in all our
experiments as it is adapted for the medical do-
main. At the first stage, a model with the BERT
encoder accomplishes an extraction task. Then, the
trained BERT encoder and a 6-layered transformer
(Vaswani et al., 2017) are combined to form an ab-
stractive system. As the encoder in the abstractive
system is pre-trained multiple times in compari-
son to the decoder, two separate Adam optimizers
(each with different warm-up steps and learning
rates) are used during training. As the training is
performed in two stages, BertSumExtAbs serves
as the two-stage abstractive summarization system
baseline for our experiments.3 We also include re-
sults from BERTSUMAbs, a single-stage version
in which encoder and decoder are trained only on
the abstractive task.

BART (Lewis et al., 2019) is a state of the art
transformer-based seq2seq model similar to BERT-
SUMAbs. However, unlike BERTSUMAbs’s fine-
tuning of the encoder and denovo training of the
decoder, for BART, both encoder and decoder are
only fine-tuned.

Sentence Rewrite (Chen and Bansal, 2018) is
a two-step summarization model that initially ex-
tracts and then rewrites the sentences. This model
serves as a two-step single agent baseline system
for our experiments.

5 Results

In this section, we compare results from our model
and various baselines using both automatic and
human evaluation.

Automatic Evaluation. Table 4 shows report
summarization results of various models trained
and tested on the same data. Our DiMAC model
surpasses extractive-only and abstractive-only base-
lines, including LexRank and PTGEN+Coverage.
It also outperforms the two-step single agent base-
line model (Sentence Rewrite (Chen and Bansal,
2018)) and the two-stage BERTSUMExtAbs (Liu
and Lapata, 2019). Besides the pre-trained encoder

3We require hyperparameters somewhat different from the
standard setup due to the small radiology report data size.
Hyperparameter tuning yielded the following values. Batch
size and initial learning rate of BERTSumExt are set to 16 and
5e-4, batch size in BERTSumExtAbs is 8 and initial learning
rates of BERT and transformer decoder in BERTSumExtAbs
are 0.0005 and 0.005.
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Models ROUGE-1 ROUGE-2 ROUGE-L
LexRank (Erkan and Radev, 2011) 27.33 14.78 29.8
PTGEN (See et al., 2017) 39.82 17.35 38.04
PTGEN+Coverage (See et al., 2017) 41.22 19.61 40.87
Zhang et al. (2018) 44.16 22.67 43.07
BERTSUMAbs (Liu and Lapata, 2019) 49.82 41.02 49.39
BERTSUMExtAbs (Liu and Lapata, 2019) 52.70 43.21 52.19
BART (Lewis et al., 2019) 41.23 29.02 40.02
Sentence Rewrite (Chen and Bansal, 2018) 59.82 48.54 59.11
DiMAC 62.65 51.55 61.06

Table 4: Results for baseline methods and DiMAC on the test split of the medical reports. The experimental setup
is the same for all methods, i.e., the same train/validation/test split of the medical reports was used. Additionally,
as DiMAC is a multi-agent two-step system built on top of Sentence Rewrite (Chen and Bansal, 2018) (a single-
agent two-step setup), we keep abstractor and all hyperparameters except those specific to DiMAC the same for a
fair comparison. All ROUGE scores have a 95% confidence interval of at most ±0.50 as calculated by the official
ROUGE script.

of BertSumExtAbs, which is an advantage com-
pared to other baselines, a denovo training of a
large size decoder with a relatively small number of
radiology reports may have led to overfitting. This
might explain the scores compared to the two-step
systems. Furthermore, a highly sophisticated semi-
supervised training of the encoder and decoder of
BART-base resulted in lower performance com-
pared to our model, despite the relatively larger size
(100x) of BART. We hypothesize that pre-training
mostly on a different domain text (e.g., Wikipedia,
Books Corpus and News) and fine-tuning on small
data could have adversely affected BART’s perfor-
mance in our setting. The domain difference may
also contribute to the relatively lower performance
of BART-base versus BERTSUMExtAbs, thereby
signifying the importance of pre-training with rele-
vant domain text.

Moreover, DiMAC offers approximately 18 to
28% performance gains over (Zhang et al., 2018), a
single-step single-agent summarization system de-
signed specifically for the radiology domain. In our
opinion, the performance improvements observed
with DiMAC are likely driven by the extract-then-
abstract mechanism combined with auxiliary (and
salient) information from keywords, which mimics
the actual reasoning process of radiologists.

It is important to note that our model supports
user-level validation by linking the predicted IM-
PRESSIONS sentences to sentences in FINDINGS,
making the results explainable to radiologists and
referring physicians.

Human Evaluation. To assess the overall qual-
ity and factual correctness (Zhang et al., 2019) of
the IMPRESSIONS generated by DiMAC, we ob-
tained evaluations from two board-certified radiol-

Gwet
Win Tie Lose AC1

DiMAC vs. Base model
Overall quality 25.00 59.37 15.63 .305
Factual correctness 12.50 84.37 03.13 .711

DiMAC vs. Ground Truth
Overall quality 25.00 46.87 28.13 .082
Factual correctness 21.87 53.13 25.00 -.080

Table 5: Percentage of 16 radiology reports for which
human evaluators rated DiMAC better than (win), the
same as (tie) or worse than (lose) the base model and
ground truth on overall quality and factual correctness.
We also provide Gwet’s Agreement Coefficient as a
measure of agreement between raters; values below 0.2
indicate poor agreement, values above 0.8 indicate very
good agreement.

ogists. We randomly selected 16 radiology reports
from the test set. For each radiology report, we
presented to the evaluators its FINDINGS and three
(blinded) versions of the summary, i.e., IMPRES-
SIONS: (1) the ground truth, (2) Sentence Rewrite
(Chen and Bansal, 2018) and (3) DiMAC. As Sen-
tence Rewrite has a similar two-step approach, i.e.,
extract-then-abstract, we evaluate the qualitative
performance of DiMAC with Sentence Rewrite as
the base model (instead of BERTSUMExtAbs as it
is a two-stage single-step system and also had lower
Rouge scores compared to Sentence Rewrite).

We shuffled the three summaries such that the
order cannot be guessed. Each radiologist rated the
summaries on two measures in relation to the FIND-
INGS: (1) overall quality and (2) factual correctness
and completeness. For example, the phrase “pleu-
ral effusions” is a fact (or imaging finding); but
the phrase “small bilateral pleural effusions” is a
more precise description and should therefore have
a better overall quality score. For each measure,
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we asked the radiologists to score the summary as
1, 2 or 3 for bad, borderline or good. Then we com-
bined the assigned scores under two comparisons:
(1) our model versus the base model and (2) our
model versus ground truth.

We have 32 evaluations in total: 2 radiologists
× 16 reports. We compared the scores provided by
the radiologists to determine if they were the same
(tie), higher (win) or lower (lose) for our model vs.
ground truth and our model vs. base model. Table 5
shows that DiMAC has clearly better factual cor-
rectness than the base model: 12.5% of cases are
better, 3.13% are worse; gwet AC1 (Gwet, 2008)
inter-rater agreement for this result is strong. Di-
MAC exceeds the base model in 25% (vs. 15.6%
“lose”) of evaluations for overall quality with mod-
erate inter-rater agreement. DiMAC is only slightly
worse than ground truth in overall quality (win:
25%, lose: 28.13%) and factual correctness (win:
21.87%, lose: 25%) – although inter-rater agree-
ment is low in this case.

5.1 Qualitative Results Analysis

Table 6 shows a radiology report from our dataset
(FINDINGS and IMPRESSIONS) and IMPRESSIONS

generated by DiMAC and the base model. Due to
the hierarchical connections between words and
sentences, there is significant overlap between the
extracted sentences and words. This phenomenon
eventually contributes to the RL sentence extrac-
tion reward and helps to extract sentences with
more keywords. The keywords include disease
or clinical diagnoses (e.g., nodule, lymphadenopa-
thy, effusion), anatomical concepts (e.g., hepatic)
and qualifiers (e.g., recent, multiple, bilateral).
The baseline model (Chen and Bansal, 2018) erro-
neously states “right greater than left pleural effu-
sions”, i.e., it hallucinates. In the sentence “There
is no axillary or hilar lymphadenopathy”, the sen-
tence reward is low and eventually it is not ex-
tracted despite having the keyword “lymphadenopa-
thy”.

6 Related Works

Abstractive Summarization. An abstractive sum-
mary is a text consisting of novel phrases describ-
ing the content of the original text. Abstractive
summarization involves a cascade of topic fusion
and text generation (Hovy et al., 1999). Each task
in this cascade typically requires expert-derived
annotations, which is labor-intensive and time-

FINDINGS from the report from a medical site
There are multiple bilateral lung nodules , most consistent

with metastatic disease .
There are more nodules on the right than the left .
An enlarged prevascular lymph node measures 0.6 x 0.4 cm .
There is no axillary or hilar lymphadenopathy .
No pleural or pericardial effusion is seen .

There is calcification in the aortic valve and coronary arteries .
There are numerous large hepatic masses which have been

better described on recent ct scan of the abdomen .
There is degenerative disease in the thoracic spine with mild
compression of the superior endplate of a lower thoracic ver-
tebral body .
No suspicious osseous lesion is seen .
IMPRESSIONS from the report from a medical site
Multiple bilateral lung nodules , consistent with metastatic
disease .
Mediastinal lymphadenopathy .
Multiple liver masses .
IMPRESSIONS generated by DiMAC
Multiple bilateral lung nodules , most consistent with
metastatic disease .
No pleural effusions .
Numerous hepatic masses , better described on recent ct scan
of the abdomen .
IMPRESSIONS generated by base model
Multiple bilateral lung nodules, most consistent with
metastatic disease .
right greater than left pleural effusions .
enlarged right paratracheal lymph node .
numerous hepatic masses .

Table 6: FINDINGS and IMPRESSIONS of a radiology
report from the report from a medical site and IMPRES-
SIONS generated by base model and DiMAC. Extracted
sentences are highlighted in blue. Extracted words are
shown in bold and underlined. The base model (Chen
and Bansal, 2018) erroneously states “right greater than
left pleural effusions”, i.e., it hallucinates.

consuming. Thus, many recent abstractive sum-
marization approaches focus on supervised/semi-
supervised single-step end-to-end trainable models
that implicitly address the sub-tasks of content ac-
quisition and paraphrasing.

As part of two-stage but single step abstractive
summarization, a pretrained encoder first learns the
extraction task independently. Then the pretrained
encoder is embedded into an encoder-decoder ab-
stractive summarization model to assist in better
referencing the source content, e.g., Liu and Lap-
ata (2019); Hsu et al. (2018). On the other hand,
in two-step abstractive summarization, extractive
summarization is followed by abstractive summa-
rization and is trained end-to-end, e.g., Chen and
Bansal (2018). Contrary to the two-stage single-
step approach, both extractive and abstractive sum-
marization are pretrained (and function) separately
in a two-step approach; however, an RL-based end-
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to-end training enables alignment between them to
generate better summaries. DiMAC is a two-step
abstractive system.

Multi-agent Reinforcement Learning
(MARL). In a single-agent actor-critic (Sutton
et al., 1999; Konda and Tsitsiklis, 2000) policy
gradient method, an agent policy θπ is optimized
by following a gradient computed using a value
function estimated by a critic. The simplest MARL
setup applies policy gradients independently (each
agent with its own actor and critic) and thereby
restricts each agent to learn only from its own
action history (Tan, 1993). From each agent’s
point of view in this setting, the environment is
not stationary and therefore, the RL stationary
environment assumption is violated.

MARL with communication or collaboration
protocols. Foerster et al. (2018) proposed coun-
terfactual policy gradients, which is an actor-critic
policy gradient that leverages a centralized coun-
terfactual critic that estimates value function for
each actor by using actions performed by the other
agents. However, unlike our setting, actors in (Fo-
erster et al., 2018) are similar and share parameters.
Additionally, the parameter sharing scheme has the
limitation that the agents lack tighter coordination.
Foerster et al. (2016), Sukhbaatar et al. (2016) and
Mordatch and Abbeel (2018) proposed to tightly
coordinate independent agents rather than use a
dedicated channel. As incorporating an explicit
communication channel mimics human (bidirec-
tional) interactions, we design a similar Differen-
tiable Multi-agent Actor-Critic (DiMAC) RL for
our setup. In DiMAC, each agent selects one of its
actions and communicates with the others at every
point in time. Thus, the resulting joint action (influ-
enced by the agents’ communication) would aim to
reach the desired (optimal) goal. In the future, we
will experiment with more variations of MARL
(such as counter-factual critic) and transformer-
based networks.

7 Conclusion

In this work, we introduce a novel extractive ap-
proach into a two-step RL-based summarization
task (extractive-then-abstractive). This approach is
a MARL (rather than the traditional single-agent
RL) which includes a new agent that extracts salient
keywords from the source text and collaborates
with an agent that extracts salient sentences. We
also present a Differentiable Multi-agent Actor-

Critic (DiMAC) learning method, a novel yet sim-
ple MARL training for independent agents com-
municating via a dedicated channel. We apply the
proposed two-step summarization model with Di-
MAC MARL training to English radiology reports.
Results from our experiments indicate, based on
automatic and human expert evaluations, that the
DiMAC summarization model can outperform ex-
isting baseline models for text summarization. Our
summarization model generates the IMPRESSIONS

to reflect human-level inference and actionable in-
formation (e.g., salient sentences and keywords)
towards supporting improved workflow efficiency
and better-informed clinical diagnosis based on
medical imaging findings.
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Appendix

A Training Labels

In any training episode, we use Rouge-L and com-
pute similarity scores between sentences in FIND-
INGS and IMPRESSIONS. Then, for each IMPRES-
SIONS sentence, we find the FINDINGS sentence
that has the highest similarity score, and we com-
pile its index. Furthermore, index compilation is
a selection without replacement process, i.e., each
sentence will only be selected once. This yields
a sequence of unique sentence indices {ys1, · · · }
of a size equivalent to the length of IMPRES-
SIONS. Additionally, we flatten FINDINGS sen-
tences {s1, · · · , sn} to a long sequence of words
{w1, · · · , wm}. We then find words that are in the
given keywords set K and compile their indices
{yw1 , · · · }. For example, in Table 1, salient sen-
tence and word indices are {1, 7, 8} and {6, 7, 9,
10, · · · , 81, 82} respectively.

Finally, we interleave sentences and word in-
dices {ys1, · · · } and {yw1 , · · · } into one sequence to
train extractors. Basically, given a sentence index,
all keywords indices within that sentence are placed
in the sequence. In addition, we use a binary switch
variable yq (with values 0 and 1) to distinguish the
index type in the sequence, i.e., yq=0 implies sen-
tence index and yq=1 implies word index. Thus,
the length of the binary switch variables sequence

is the same as the interleaved indices. As extractors
run for the same number of steps, training requires
the labels ysj and ywj at any step j. However, the in-
terleave sequence at any step includes only one out
of the two. So, we set the value of "non-available
type" as indicated by yqj to ∅. Overall, an element
in the final sequence is a tuple of yq, ys and yw.
For Table 1, the final sequence of training labels is
{(1, ∅, 6), (1, ∅, 7), (1, ∅, 9), (1, ∅, 10), (0, 1, ∅),
· · · , (1, ∅, 81), (1, ∅, 82), (0, 8, ∅)}.

B Encoder-Extractor Training

Algorithm. 2 shows the training of word encoder
(Ew2w), sentence convolutional network (Conv),
sentence encoder (Es2s), word extractor (Dw2w),
sentence extractor (Ds2s) and switch network
(switch).

Algorithm 2 Encoder-Extractor Training
1: procedure TRAIN-JOINT-EXTRACTORS
2: Random Initialize: Ew2w,Conv, Es2s, Dw2w, Ds2s

& switch
3: for 1 to | Reports | do
4: {h1, · · · , hn} ← Conv({s1, · · · , sn})
5: {hEs2s

1 , · · · } ← Es2s({h1, · · · })
6: {hEw2w

1 , · · · , } ← Ew2w({w1, · · · })
7: Loss← Array()

8: hDw2w
1 , hDs2s

1 ← hEw2w
m , hEs2s

n

9: for j = 1 to t do
10: αw ← Attn(hDw2w

j , {hEw2w
1 , . . . })

11: cwj ←
∑m
i=1 α

w
i × hEw2w

i

12: αs ← Attn(hDs2s
j , {hDs2s

1 , . . . })
13: csj ←

∑n
k=1 α

s
k × hEs2s

k

14: qj ← switch(hDw2w
j , cwj , h

Ds2s
j , csj))

15: hDw2w
j+1 ← Dw2w(hDw2w

j , cwj , c
s
j)

16: hDs2s
j+1 ← Ds2s(h

Ds2s
j−1 , c

w
j , c

s
j)

17: Loss.ADD(−(1− yqj )(ywj logαw))

18: Loss.ADD(−yqj (ysj logαs))

19: Loss.ADD(−yqj log qj)

20: compute gradients, {∆Ew2wLoss, · · · }
21: update Ew2w,Conv, Es2s, Dw2s, Ds2s & switch
22: return Ew2w,Conv, Es2s, Dw2s, Ds2s & switch

C Hyperparameter

We set the maximum limit for words in a report to
800 tokens, and the maximum number of sentences
is truncated to 60 per report. We use word2vec
(Mikolov et al., 2013) on the training set to gen-
erate word embeddings of 128 dimensions. The
vocabulary is 50,000 most common words in the
training set. The dimension of each intermediate
sentence representation is 300 after using 1-D con-
volution filters with 3 different windows sizes (i.e.
3, 4, and 5). The dimension of all the LSTMs in
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our framework is 256. The optimizer used is Adam
with a learning rate of 0.001 in the pre-training
phase and 0.0001 in the RL training phase. We ap-
ply gradient clipping to alleviate gradient explosion
using a 2-norm of 1.5. We adopt the early stopping
method on the validation set. In the RL setting, the
discounted factor γ is set as 0.95. At test time, we
use beam size 5 for beam search.

D Single Agent Actor-Critic

In the case of a single agent actor-critic RL, for any
training episode, actor a uses its policy network πa

and samples actions {ua
1, · · · , ua

t} for t time steps
with each action ua

k receiving a reward ra
j . Further-

more, at step j, a discounted reward is computed
as Ga

j =
∑t−j

l=0 γ
lra
j+l.

A batch of training episodes is used to esti-
mate the actor’s action value at step j as Qa

j =
Eua

j:t,h
a
j:t

[Ga
j | ha

j , u
a
j ]. Similarly, the critic (c)

estimates a value function for step j as Vj =
Eha

j
[Ga

j | ha
j ]. An advantage function is computed

as Aa
j = Qa

j − Vj . Policy gradient theorem com-
putes the gradient to update the actor parameter θa

as

∆θa = Eθa

[
t∑

j=1

∇θa log πa
jA

a
j

]
(1)

The value function component Vj in the policy
gradient helps to reduce the variance without chang-
ing the expectation as

−Eθa

[
∇θa log πa

jVj

]
= −

∑
h

dπ
a
j (h)

∑
ua

∇θaπa
jVj

= −
∑
h

dπ
a
j (h)Vj∇θa

∑
ua

πa
j

= 0

where dπ
a
j (h) is the discounted ergodic state distri-

bution (Sutton et al., 1999). Vj is a function of state
and not action, thus moved outside ∇, and since∑

ua πa
j=1, the gradient becomes 0. ∆θa is em-

pirically estimated using N episodes in a training
batch as

∆θa ≈ 1

N

N∑
i=1

[
t∑

j=1

∇θa log πa
jA

a
j

]
(2)

E Multi Agent Actor-Critic

In the case of multi-agent actor-critic RL with a
set of actors, a={· · · , ak, · · · }, for any training

episode, an actor ak uses its policy network πak and
samples actions {uak

1 , · · · , u
ak
t } for t time steps

with each action uak
j receiving a reward rak

j . Fur-
thermore, at step j, a discounted reward for ak is
computed as Gak

j =
∑t−j

l=0 γ
lrak
j+l.

Like the single agent actor-critic, a batch of train-
ing episodes is used to estimate the action value of
ak at step j as Qak

j = Euak
j:t,h

ak
j:t

[Gak
j | h

ak
j , u

ak
j ].

The contribution of value function from a cen-
tralized critic at any step j in the overall gradient
is computed as

− Eθa

[
∇θa log πa

jVj

]

where θa and πa are the actors’ a joint parameters
and policies respectively. Vj is the value function
computed by the critic at step j. We drop the step
notation j subsequently as all notations are specific
to step j. The agent-wise break of policies and
the contribution of the value function in the overall
gradient is

= −
∑
h

dπ
a
(h)

∑
ak

∑
uak

∇
θakπ

akV

= 0

where dπ
a

is the discounted ergodic state distribu-
tion, uak is agent ak action and V is the estimated
value function by the critic. Although two actors
are running at each step in our DiMAC training,
only one of them is active while the other is on
pause (∅ selection). Therefore, the contribution of
the term

∑
a
∑

uak ∇θakπ
akV is similar to a single-

agent scenario, and therefore, the gradient is 0. Fur-
thermore, the critic estimated value ensures that the
active agent gets rewarded for its action leading to
the overall success.
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