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Abstract

Pre-trained language models have shown stel-
lar performance in various downstream tasks.
But, this usually comes at the cost of high
latency and computation, hindering their us-
age in resource-limited settings. In this work,
we propose a novel approach for reducing the
computational cost of BERT with minimal loss
in downstream performance. Our method dy-
namically eliminates less contributing tokens
through layers, resulting in shorter lengths and
consequently lower computational cost. To
determine the importance of each token rep-
resentation, we train a Contribution Predictor
for each layer using a gradient-based saliency
method. Our experiments on several diverse
classification tasks show speedups up to 22x
during inference time without much sacrifice
in performance. We also validate the quality
of the selected tokens in our method using hu-
man annotations in the ERASER benchmark.
In comparison to other widely used strategies
for selecting important tokens, such as saliency
and attention, our proposed method has a sig-
nificantly lower false positive rate in generat-
ing rationales. Our code is freely available
at https://github.com/amodaresi/
AdapLeR.

1 Introduction

While large-scale pre-trained language models ex-
hibit remarkable performances on various NLP
benchmarks, their excessive computational costs
and high inference latency have limited their us-
age in resource-limited settings. In this regard,
there have been various attempts at improving the
efficiency of BERT-based models (Devlin et al.,
2019), including knowledge distilation (Hinton
et al., 2015; Sanh et al., 2019; Sun et al., 2019,
2020; Jiao et al., 2020), quantization (Gong et al.,
2014; Shen et al., 2020; Tambe et al., 2021), weight

⋆ Equal Contribution.
† Work done as a Master’s student at IUST.

pruning (Han et al., 2016; He et al., 2017; Michel
et al., 2019; Sanh et al., 2020), and progressive
module replacing (Xu et al., 2020). Despite pro-
viding significant reduction in model size, these
techniques are generally static at inference time,
i.e., they dedicate the same amount of computation
to all inputs, irrespective of their difficulty.

A number of techniques have been also proposed
in order to make efficiency enhancement sensitive
to inputs. Early exit mechanism (Schwartz et al.,
2020b; Liao et al., 2021; Xin et al., 2020; Liu et al.,
2020; Xin et al., 2021; Sun et al., 2021; Eyza-
guirre et al., 2021) is a commonly used method
in which each layer in the model is coupled with
an intermediate classifier to predict the target la-
bel. At inference, a halting condition is used to
determine whether the model allows an example
to exit without passing through all layers. Vari-
ous halting conditions have been proposed, includ-
ing Shannon’s entropy (Xin et al., 2020; Liu et al.,
2020), softmax outputs with temperature calibra-
tion (Schwartz et al., 2020b), trained confidence
predictors (Xin et al., 2021), or the number of agree-
ments between predictions of intermediate classi-
fiers (Zhou et al., 2020).

Most of these input-adaptive techniques com-
press the model from the depth perspective (i.e.,
reducing the number of involved encoder layers).
However, one can view compression from the
width perspective (Goyal et al., 2020; Ye et al.,
2021), i.e., reducing the length of hidden states.
(Ethayarajh, 2019; Klafka and Ettinger, 2020).
This is particularly promising as recent analytical
studies showed that there are redundant encoded
information in token representations (Klafka and
Ettinger, 2020; Ethayarajh, 2019). Among these
redundancies, some tokens carry more task-specific
information than others (Mohebbi et al., 2021),
suggesting that only these tokens could be con-
sidered through the model. Moreover, in contrast
to layer-wise pruning, token-level pruning does not
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come at the cost of reducing model’s capacity in
complex reasoning (Sanh et al., 2019; Sun et al.,
2019). PoWER-BERT (Goyal et al., 2020) is one of
the first such techniques which reduces inference
time by eliminating redundant token representa-
tions through layers based on self-attention weights.
Several studies have followed (Kim and Cho, 2021;
Wang et al., 2021); However, they usually optimize
a single token elimination configuration across the
entire dataset, resulting in a static model. In addi-
tion, their token selection strategies are based on
attention weights which can result in a suboptimal
solution (Ye et al., 2021).

In this work, we introduce Adaptive Length
Reduction (AdapLeR). Instead of relying on at-
tention weights, our method trains a set of Contri-
bution Predictors (CP) to estimate tokens’ saliency
scores at inference. We show that this choice re-
sults in more reliable scores than attention weights
in measuring tokens’ contributions. The most re-
lated study to ours is TR-BERT (Ye et al., 2021)
which leverages reinforcement learning to develop
an input-adaptive token selection policy network.
However, as pointed out by the authors, the prob-
lem has a large search space, making it difficult for
RL to solve. To mitigate this, they resorted to extra
heuristics such as imitation learning (Hussein et al.,
2017) for warming up the training of the policy net-
work, action sampling for limiting the search space,
and knowledge distillation for transferring knowl-
edge from the intact backbone fine-tuned model.
All of these steps significantly increase the train-
ing cost. Hence, they only perform token selection
at two layers. In contrast, we propose a simple
but effective method to gradually eliminate tokens
in each layer throughout the training phase using
a soft-removal function which allows the model
to be adaptable to various inputs in a batch-wise
mode. It is also worth noting in contrast to our ap-
proach above studies are based on top-k operations
for identifying the k most important tokens during
training or inference, which can be expensive with-
out a specific hardware architecture (Wang et al.,
2021).

In summary, our contributions are threefold:

• We couple a simple Contribution Predictor
(CP) with each layer of the model to estimate
tokens’ contribution scores to eliminate redun-
dant representations.

• Instead of an instant token removal, we grad-
ually mask out less contributing token repre-

sentations by employing a novel soft-removal
function.

• We also show the superiority of our token
selection strategy over the other widely used
strategies by using human rationales.

2 Background

2.1 Self-attention Weights

Self-attention is a core component of the Trans-
formers (Vaswani et al., 2017) which looks for
the relation between different positions of a sin-
gle sequence of token representations (x1, ..., xn)
to build contextualized representations. To this
end, each input vector xi is multiplied by the corre-
sponding trainable matrices Q, K, and V to respec-
tively produce query (qi), key (ki), and value (vi)
vectors. To construct the output representation zi, a
series of weights is computed by the dot product of
qi with every kj in all time steps. Before applying
a softmax function, these values are divided by a
scaling factor and then added to an attention mask
vector m, which is zero for positions we wish to
attend and −∞ (in practice, −10000) for padded
tokens (Vaswani et al., 2017). Mathematically, for
a single attention head, the weight attention from
token xi to token xj in the same input sequence
can be written as:

αi,j = softmax
xj∈X

(
qik

⊤
j√
d

+mi

)
∈ R (1)

The time complexity for this is O(n2) given the
dot product qik⊤j , where n is the input sequence
length. This impedes the usage of self-attention
based models in low-resource settings.

While self-attention is one of the most white-box
components in transformer-based models, relying
on raw attention weights as an explanation could
be misleading given that they are not necessarily re-
sponsible for determining the contribution of each
token in the final classifier’s decision (Jain and Wal-
lace, 2019; Serrano and Smith, 2019; Abnar and
Zuidema, 2020). This is based on the fact that raw
attentions are being faithful to the local mixture of
information in each layer and are unable to obtain a
global perspective of the information flow through
the entire model (Pascual et al., 2021).

2.2 Gradient-based Saliency Scores

Gradient-based methods provide alternatives to at-
tention weights to compute the importance of a
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Figure 1: To reduce the inference computation, in each layer (1) the attribution score of the token representation is
estimated and (2) based on a reduced uniform-level threshold (δℓ = ηℓ

/n) token representations with low importance
score are removed. Since the final layer’s classifier is connected to the [CLS] token and it could act as a pooler
within each layer it is the only token that would remain regardless of its score.

specific input feature. Despite having been widely
utilized in other fields earlier (Ancona et al., 2018;
Simonyan et al., 2013; Sundararajan et al., 2017;
Smilkov et al., 2017), they have only recently be-
come popular in NLP studies (Bastings and Fil-
ippova, 2020; Li et al., 2016; Yuan et al., 2019).
These methods are based on computing the first-
order derivative of the output logit yc w.r.t. the
input embedding h0i (initial hidden states), where
c could be true class label to find the most impor-
tant input features or the predicted class to interpret
model’s behavior. After taking the norm of output
derivatives, we get sensitivity (Ancona et al., 2018),
which indicates the changes in model’s output with
respect to the changes in specific input dimensions.
Instead, by multiplying gradients with input fea-
tures, we arrive at gradient×input (Bastings and
Filippova, 2020), also known as saliency, which
also considers the direction of input vectors to de-
termine the most important tokens. Since these
scores are computed for each dimension of embed-
ding vectors, an aggregation method such as L2
norm or mean is needed to produce one score per
input token (Atanasova et al., 2020a):

Si =∥
∂yc
∂h0i
⊙ h0i ∥2 (2)

3 Methodology

As shown in Figure 1, our approach relies on drop-
ping low contributing tokens in each layer and
passing only the more important ones to the next.
Therefore, one important step is to measure the im-
portance of each token. To this end, we opted for
saliency scores which have been recently shown

as a reliable criterion in measuring token’s con-
tributions (Bastings and Filippova, 2020; Pascual
et al., 2021). In Section 5.1 we will show results
for a series quantitative analyses that supports this
choice. In what follows, we first describe how we
estimate saliency scores at inference time using a
set of Contribution Predictors (CPs) and then elab-
orate on how we leverage these predictors during
inference (Section 3.2) and training (Section 3.3).

3.1 Contribution Predictor

Computing gradients during inference is problem-
atic as backpropagation computation prolongs in-
ference time, which is contrary to our main goal.
To circumvent this, we simply add a CP after each
layer ℓ in the model to estimate contribution score
for each token representation, i.e., S̃ℓ

i . The model
then decides on the tokens that should be passed to
the next layer based on the values of S̃ℓ

i . CP com-
putes S̃ℓ

i for each token using an MLP followed
by a softmax activation function. We argue that,
despite being limited in learning capacity, the MLP
is sufficient for estimating scores that are more gen-
eralized and relevant than vanilla saliency values.
We will present a quantitative analysis on this topic
in Section 5.

3.2 Model Inference

Most BERT-based models consist of L encoder
layers. The input sequence of n tokens is usually
passed through an embedding layer to build the
initial hidden states of the model h0. Each encoder
layer then produces the next hidden states using the
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ones from the previous layer:

hℓ = Encoderℓ(hℓ−1) (3)

In our approach, we eliminate less contribut-
ing token representations before delivering hidden
states to the next encoder. Tokens are selected
based on the contribution scores S̃ℓ obtained from
the CP of the corresponding layer ℓ. As the sum
of these scores is equal to one, a uniform level
indicates that all tokens contribute equally to the
prediction and should be retained. On the other
hand, the lower-scoring tokens could be viewed as
unnecessary tokens if the contribution scores are
concentrated only on a subset of tokens. Given
that the final classification head uses the last hid-
den state of the [CLS] token, we preserve this
token’s representation in all layers. Despite pre-
serving this, other tokens might be removed from
a layer when [CLS] has a significantly high esti-
mated contribution score than others. Based on this
intuition, we define a cutoff threshold based on the
uniform level as: δℓ = ηℓ · 1/n with 0 < ηℓ ≤ 1 to
distinguish important tokens. Tokens are consid-
ered important if their contribution score exceeds δ
(which is a value equal or smaller than the uniform
score). Intuitively, a larger η provides a higher δ
cutoff level, thereby dropping a larger number of
tokens, hence, yielding more speedup. The value
of η determines the extent to which we can rely
on CP’s estimations. In case the estimations of
CP are deemed to be inaccurate, its impact can be
reduced by lowering η. We train each layer’s ηℓ

using an auxiliary training objective, which allows
the model to adjust the cutoff value to control the
speedup-performance tradeoff. Also, since each
input instance has a different computational path
during token removal process, it is obvious that
at inference time, the batch size should be equal
to one (single instance usage), similarly to other
dynamic approaches (Zhou et al., 2020; Liu et al.,
2020; Ye et al., 2021; Eyzaguirre et al., 2021; Xin
et al., 2020).

3.3 Model Training
Training consists of three phases: initial fine-
tuning, saliency extraction, and adaptive length re-
training. In the first phase, we simply fine-tune the
backbone model (BERT) on a given target task. We
then extract the saliencies of three top-perfroming
checkpoints from the fine-tuning process and com-
pute the average of them to mitigate potential in-
consistencies in saliency scores (cf. Section 2.2).
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Figure 2: The soft-removal function plotted with
λ ∈ {3, 9, 27, 81} and δℓ = 0.25. As λ increases, the
removal region (1) gets steeper while the other zone (2),
which is almost horizontal, approaches the zero level.

The final step is to train a pre-trained model us-
ing an adaptive length reduction procedure. In
this phase, a non-linear function gradually fades
out the representations throughout the training pro-
cess. Each CP is jointly trained with the rest of
the model using the saliencies extracted in the pre-
vious phase alongside with the target task labels.
We also define a speedup tuning objective to deter-
mine the thresholds (via tuning η) to control the
performance-speedup trade-off. In the following,
we elaborate on the procedure.

Soft-removal function. During training, if to-
kens are immediately dropped similarly to the in-
ference mode, the effect of dropping tokens can-
not be captured using a gradient backpropagation
procedure. Using batch-wise training in this sce-
nario will also be problematic as the structure
will vary with each example. Hence, inspired by
the padding mechanism of self-attention models
(Vaswani et al., 2017) we introduce a new proce-
dure that gradually masks out less contributing to-
ken representations. In each layer, after predicting
contribution scores, instead of instantly removing
the token representations, we accumulate a nega-
tive mask to the attention mask vector M using a
soft-removal function:

m−
i (S̃

ℓ
i ) =


λadj(S̃

ℓ
i − δℓ)− β

λ
S̃ℓ
i < δℓ

(S̃ℓ
i − 1)β

(1− δℓ)λ
S̃ℓ
i ≥ δℓ

(4)

This function consists of two main zones (Figure
2). In the first term, the less important tokens with
scores lower than the threshold (δℓ) are assigned
higher negative masking as they get more distant
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from δ. The slope is determined by λadj = λ/δ,
where λ is a hyperparameter that is increased ex-
ponentially after each epoch (e.g., λ← 10× λ af-
ter finishing each epoch). Increasing λ makes the
soft-removal function stronger and more decisive
in masking the representations. To avoid under-
going zero gradients during training, we define
0 < β < 0.1 to construct a small negative slope
(similar to the well known Leaky-ReLU of Maas
et al. 2013) for those tokens with higher contribut-
ing scores than δℓ threshold. Consider a scenario in
which ηℓ sharply drops, causing most of S̃ℓ

i get over
the δℓ threshold. In this case, the non-zero value
in the second term of Equation 4, which facilitates
optimizing ηℓ.

Training the Contribution Predictors. The CPs
are trained by an additional term which is based
on the KL-divergence1 of each layer’s CP output
with the extracted saliencies. The main training
objective is a minimization of the following loss:

L = LCE + γLCP (5)

Where γ is a hyperparameter which that specifies
the amount of emphasis on the CP training loss:

LCP =

L−1∑
ℓ=0

(L− ℓ)DKL(Ŝ
ℓ||S̃ℓ)

=
L−1∑
ℓ=0

(L− ℓ)
N∑
i=1

Ŝℓ
i log(

Ŝℓ
i

S̃ℓ
i

)

(6)

Since S is based on the input embeddings, the
[CLS] token usually shows a low amount of con-
tribution due to not having any contextualism in
the input. As we leverage the representation of
the [CLS] token in the last layer for classification,
this token acts as a pooler and gathers information
about the context of the input. In other words, the
token can potentially have more contribution as it
passes through the model. To this end, we amplify
the contribution score of [CLS] and renormalize
the distribution (Ŝℓ) with a trainable parameter θℓ:

Ŝℓ
i =

θℓSℓ
11[i = 1] + Sℓ

i1[i > 1]

θℓSℓ
1 +

∑n
i=2 S

ℓ
i

(7)

By this procedure, the next objective (discussed
in the next paragraph) will have the capability of
tuning the amount of pooling, consequently con-
trolling the amount of speedup. Larger θ push the

1Inclusive KL loss. Check Appendix A.

CPs to shift the contribution towards the [CLS] to-
ken to gather most of the task-specific information
and avoids carrying redundant tokens through the
model.

Speedup Tuning. In the speedup tuning process,
we combine the cross-entropy loss of the target
classification task with a length loss which is the
expected number of unmasked token representa-
tions in all layers. Considering that we have a
non-positive and continuous attention mask M ,
the length loss of a single layer would be the
summation over the exponential of the mask val-
ues exp(mi) to map the masking range [−∞, 0]
to a [0 (fully masked/removed), 1 (fully retained)]
bound.

LSPD./PERF. = LCE + ϕLLENGTH

LLENGTH =

L∑
l=1

n∑
i=1

exp(mℓ
i)

(8)

Equation 8 demonstrates how the length loss is
computed inside the model and how it is added to
the main classification loss. During training, we
assign a separate optimization process which tunes
η and θ to adjust the thresholds and the amount of
[CLS] pooling2 alongside with the CP training.

The reason that this objective is treated as a sep-
arate problem instead of merging it with the pre-
vious one, is because in the latter case the CPs
could be influenced by the length loss and try to
manipulate the contribution scores for some tokens
regardless of their real influence. So in other words,
the first objective is to solve the task and make it
explainable with the CPs, and the secondary objec-
tive builds the speedup using tuning the threshold
levels and the amount of pooling in each layer.

4 Experiments

4.1 Datasets

To verify the effectiveness of AdapLeR on infer-
ence speedup, we selected eight various text classi-
fication datasets. In order to incorporate a variety
of tasks, we utilized SST-2 (Socher et al., 2013) and
IMDB (Maas et al., 2011) for sentiment, MRPC
(Dolan and Brockett, 2005) for paraphrase, AG’s
News (Zhang et al., 2015) for topic classification,
DBpedia (Lehmann et al., 2015) for knowledge
extraction, MNLI (Williams et al., 2018) for NLI,

2Since θ is not in the computational DAG, we employed a
dummy variable inside the model. See Appendix B.
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Model
SST-2 IMDB HateXplain MRPC MNLI QNLI AG’s news DBpedia

Acc. Speedup Acc. Speedup Acc Speedup F1. Speedup Acc. Speedup Acc. Speedup Acc. Speedup Acc. Speedup

BERT 92.7 1.00x 93.8 1.00x 68.3 1.00x 87.5 1.00x 84.2 1.00x 90.3 1.00x 94.4 1.00x 99.3 1.00x

DistilBERT 92.2 2.00x 92.9 2.00x 68.2 2.00x 88.0 2.00x 81.8 2.00x 88.1 2.00x 94.2 2.00x 99.3 2.00x

PoWER-BERT 92.1 1.18x 92.2 1.70x 66.9 2.69x 88.0 1.07x 82.9 1.10x 89.7 1.23x 92.1 12.50x 98.1 14.80x
TR-BERT 92.1 1.46x 93.2 2.90x 67.9 2.23x 81.9 1.16x 84.8 1.00x 89.0 1.09x 93.2 10.20x 98.9 10.01x

AdapLeR 92.3 1.49x 91.7 3.21x 68.6 4.73x 87.6 1.27x 82.9 1.42x 89.3 1.47x 92.5 17.10x 98.9 22.23x

Table 1: Comparison of our proposed method (AdapLeR) with other baselines in eight classification tasks in terms
of performance and speedup. For each dataset the corresponding metric has been reported (Accuracy: Acc., F1: F-1
Score). In the MNLI task, the speedup and performance values are the average of the evaluations on the matched
and mismatched test sets.

QNLI (Rajpurkar et al., 2016) for question answer-
ing, and HateXplain (Mathew et al., 2021) for hate
speech.3 Evaluations are based on the test split of
each dataset. For those datasets that are in the
GLUE Benchmark (Wang et al., 2018), test results
were acquired by submitting the test predictions to
the evaluation server.

4.2 Experimental Setup

As our baseline, we report results for the pre-
trained BERT model (base-uncased) (Devlin et al.,
2019) which is also the backbone of AdapLeR.
We also compare against three other approaches:
DistilBERT (uncased) (Sanh et al., 2019) as a
static compression method, PoWER-BERT and
TR-BERT as two strong length reduction methods
(cf. Sec. 1). We used the provided implemen-
tations and suggested hyperparameters4 to train
these baselines. To fine-tune the backbone model,
we used same hyperparameters over all tasks (see
Section D for details). The backbone model and
our model implementation is based on the Hug-
gingFace’s Transformers library (Wolf et al., 2020).
Trainings and evaluations were conducted on a dual
2080Ti 11GB GPU machine with multiple runs.

Hyperparameter Selection. Overall, we intro-
duced four hyperparameters (γ, ϕ, λ, β)5 which are
involved in the training process. Among these, ϕ
and γ are the primary terms that have considerable
effects on AdapLeR’s downstream performance
and speedup. This makes our approach comparable
to existing techniques (Goyal et al., 2020; Ye et al.,
2021) which usually have two or three hyperpa-
rameters adjusted per task. We used grid search to

3See the statistics of datasets in Table 5 in Appendix.
4Since some of the datasets were not used originally, we

had to search the hyperparameters based on the given ranges.
5Note that θ and η are trainable terms that are tuned by the

model during training.

find the optimal values for these two terms, while
keeping the other hyperparameters constant over
all datasets. Hyperparamter selection is further
discussed in Section D.

FLOPs Computation. We followed Ye et al.
(2021) and Liu et al. (2020) and measured com-
putational complexity in terms of FLOPs, i.e., the
number of floating-point operations (FLOPs) in
a single inference procedure. This allows us to
assess models’ speedups independently of their op-
erating environment (e.g., CPU/GPU). The total
FLOPs of a given model is a summation of the
measured FLOPs over all test examples. Then, a
model’s speedup can be defined as the total FLOPs
measured on BERT (our baseline) divided by the
corresponding model’s total FLOPs. To have a fair
comparison, we also computed FLOPs for PoWER-
BERT in a single instance mode, described in Sec-
tion C.

4.3 Results

Table 1 shows performance and speedup for
AdapLeR and other comparison models across
eight different datasets. While preserving the same
level of performance, AdapLeR outperforms other
techniques in terms of speedup across all tasks
(ranging from +0.2x to +7.4x compared to the best
model in each dataset).

It is noteworthy that the results also reveal some
form of dependency on the type of the tasks. Some
tasks may need less amount of contextualism dur-
ing inference and could be classified by using only
a fraction of input tokens. For instance, in AG’s
News, the topic of a sentence might be identifiable
with a single token (e.g., soccer → Topic: Sports,
see Figure 6 in the Appendix for an example).
PoWER-BERT adopts attention weights in its to-
ken selection which requires at least one layer of
computation to be determined, and TR-BERT ap-
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Figure 3: Accuracy-Speedup trade-off curve for
AdapLeR and two other state-of-the-art reduction meth-
ods; TR: TR-BERT, PoWER: PoWER-BERT on two
different tasks.

plies token elimination only in two layers to reduce
the training search space. In contrast, our proce-
dure performs token elimination for all layers of
the model, enabling a more effective removal of re-
dundant tokens. On the other hand, we observe that
TR-BERT and PoWER-BERT lack any speedup
gains for tasks such as QNLI, MNLI, and MRPC
which need a higher degree of contextualism dur-
ing inference. However, AdapLeR can offer some
speedups even for these tasks.

Speedup-Performance Tradeoff. To provide a
closer look at the efficiency of AdapLeR in com-
parison with the other state-of-the-art length re-
duction methods, we illustrate speedup-accuracy
curves in Figure 3. We provide these curves for
two tasks in which other length reduction methods
show comparable speedups to AdapLeR. For each
curve, the points were obtained by tuning the most
influential hyperparameters of the corresponding
model. As we can see, AdapLeR significantly out-
performs the other two approaches in all two tasks.
An interesting observation here is that the curves
for TR-BERT and AdapLeR are much higher than
that of PoWER-BERT. This can be attributed to
the input-adaptive procedure employed by the for-
mer two methods for determining the number of
reduced tokens (whereas PoWER-BERT adopts a
fixed retention configuration in token elimination).

Movie Reviews MultiRC

Strategy Acc. Speedup Acc. Speedup

Full input 93.3 1.0x 67.7 1.0x
Human rationale 96.7 3.7x 76.6 4.6x

Saliency 92.3 3.7x 66.4 4.4x
Attention ALL 78.5 3.7x 62.9 4.4x
Attention [CLS] 70.3 3.7x 63.7 4.4x

Table 2: Accuracy and speedup when the most impor-
tant input tokens during fine-tuning are computed based
on attention and saliency strategies and human rationale
(the upper bound). The bold values indicate the best
corresponding strategy for each task (the closest perfor-
mance to the upper bound).

5 Analysis

In this section, we first conduct an experiment to
support our choice of saliency scores as a super-
vision in measuring the importance of token rep-
resentations. Next, we evaluate the behavior of
Contribution Predictors in identifying the most im-
portant tokens in the AdapLeR.

5.1 Rationale as an Upper Bound

A natural question that arises when dealing with
token pruning is that of importance measure: what
is the most appropriate criterion for assessing the
relative importance of tokens within a sentence?
We resort to human rationale as a reliable up-
per bound for measuring token importance. To
this end, we used the ERASER benchmark (DeY-
oung et al., 2020), which contains multiple tasks
for which important spans of the input text have
been highlighted as supporting evidence (aka “ra-
tionale”) by human. Among the tasks in the
benchmark, we opted for two diverse classifica-
tion tasks: Movie reviews (Zaidan and Eisner,
2008) and MultiRC (Khashabi et al., 2018). In
the former task, the model predicts the sentiment
of the passage. Whereas the latter contains a pas-
sage, a question, and multiple candidate answers,
which is cast as a binary classification task of
passage/question/answer triplets in the ERASER
benchmark.

In order to verify the reliability of human ratio-
nales, we fine-tuned BERT based on the rationales
only, i.e., by excluding those tokens that are not
highlighted as being important in the input. In Ta-
ble 2, the first two rows show the performance of
BERT on the two tasks with full input and with hu-
man rationales only. We see that fine-tuning merely
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SST-2	(dev)	-	Label:	Negative

QNLI	(dev)	-	Label:	Entailment

Figure 4: The illustration of contribution scores obtained by CPs in three different layers of the model for two input
examples from SST-2 (sentiment) and QNLI (Question-answering NLI) tasks. The contribution scores are shown by
color intensity. Only the highlighted token representations are processed in each layer. See more full-layer plots in
the appendix 6.

on rationales not only yields less computation cost,
but also results in a better performance when com-
pared with the full input setting. Obviously, human
annotations are not available for a whole range of
downstream NLP tasks; therefore, this criterion is
infeasible in practice and can only be viewed as an
upper bound for evaluating different strategies in
measuring token importance.

5.2 Saliency vs. Attention

We investigated the effectiveness of saliency and
self-attention weights as two commonly used strate-
gies for measuring the importance of tokens in
pre-trained language models. To compute these,
we first fine-tuned BERT with all tokens in the
input for a given target task. We then obtained
saliency scores with respect to the tokens in the
input embedding layer. This brings about two ad-
vantages. Firstly, representations in the embedding
layer are non-contextualized, allowing us to mea-
sure the importance of each token independently
from the others. Secondly, the backpropagation
of gradients through layers to the beginning of the
model provides us with aggregated values for the
relative importance of each token based on the
entire model. Similarly, we aggregated the self-
attention weights across all layers of the model
using a post-processed variant of attentions called
attention rollout (Abnar and Zuidema, 2020), a pop-
ular technique in which the attention weight matrix
in each layer is multiplied with the preceding ones
to form aggregated attention values.

To assign an importance score to each token, we
examined two different interpretation of attention
weights. The first strategy is the one adopted by
PoWER-BERT (Goyal et al., 2020) in which for
each token we accumulate attention values from

other tokens. Additionally, we measured how much
the [CLS] token attends to each token in the sen-
tence, a strategy which has been widely used in
interpretability studies around BERT (Abnar and
Zuidema, 2020; Chrysostomou and Aletras, 2021;
Jain et al., 2020, inter alia). For a fair comparison,
for each sentence in the test set, we selected the
top-k salient and attended words, with k being the
number of words that are annotated as rationales.

Results in Table 2 show that fine-tuning on the
most salient tokens outperforms that based on the
most attended tokens. This denotes that saliency
is a better indicator for the importance of tokens.
Nonetheless, recent length reduction techniques
(Goyal et al., 2020; Kim and Cho, 2021; Wang
et al., 2021) have mostly adopted attention weights
as their criterion for selecting important tokens.
Computing these weights is convenient as they
are already computed during the forward pass,
whereas computing saliency requires an additional
backpropagation step. Note that in our approach,
saliency scores are easily estimated within infer-
ence time by the pre-trained CPs.

5.3 Contribution Predictor Evaluation

In this section we validate our Contribution Predic-
tors in selecting the most contributed tokens. Fig-
ure 4 illustrates two examples from the SST-2 and
QNLI datasets in which CPs identify and gradually
drop the irrelevant tokens through layers, finally
focusing mostly on the most important token rep-
resentations; pedestrian (adjective) in SST-2 and
tesla coil in the passage part of QNLI (both of
which are highly aligned with human rationale).

In order to quantify the extent to which
AdapLeR’s CPs can preserve rationales without
requiring direct human annotations in an unsuper-
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Figure 5: Agreement with human rationales in terms
of mean Average Precision and False Positive Rate for
Contribution Predictor (CP) and three alternative tech-
niques.

vised manner we carried out the following exper-
iment. To investigate the effectiveness of trained
CPs in predicting human rationales we computed
the output scores of CPs in AdapLeR for each to-
ken representation in each layer. We also fine-tuned
a BERT model on the Movie Review dataset and
computed layer-wise raw attention, attention roll-
out, and saliency scores for each token represen-
tation. Since human rationales are annotated at
the word level, we sum the scores across tokens
corresponding to each word to arrive at word-level
importance scores. In addition to these soft scores,
we used the uniform-level threshold (i.e., 1/n) to
reach a binary score indicating tokens selected in
each layer.

As for evaluation, we used the Average Precision
(AP) and False Positive Rate (FPR) metrics by com-
paring the remaining tokens to the human rationale
annotations. The first metric measures whether the
model assigns higher continuous scores to those
tokens that are annotated by humans as rationales.
Whereas, the intuition behind the second metric
is how many irrelevant tokens are selected by the
model to be passed to subsequent layers. We used
soft scores for computing AP and binary scores for
computing FPR.

Figure 5 shows the agreement between human
rationales and the selected tokens based on the
two metrics. In comparison with the other widely
used strategies for selecting important tokens, such
as salinecy and attention, our CPs have signifi-
cantly less false positive rate in preserving ratio-

nales through layers. Despite having similar FPRs
at the final layer, CP is preferable to attention in
that it can better identify rationales at the earlier
layers, allowing the model to combine the most
relevant token representations when building the
final one. This in turn results in better performance,
as was also shown in the previous experiment in
Section 5.2. Also, we see that the curve of mAP for
saliency is consistently higher than other strategies
in terms of alignment with human rationales which
supports our choice of saliency as a measure for
token importance.

Finally, we note that there is a line of research
that attempts at guiding models to perform human-
like reasoning by training rationale generation si-
multaneously with the target task that requires hu-
man annotation (Atanasova et al., 2020b; Zhao
et al., 2020; Li et al., 2018). As a by-product of the
contribution estimation process, our trained CPs
are able to generate these rationales at inference
without the need for human-generated annotations.

6 Conclusion

In this paper, we introduced AdapLeR, a novel
method that accelerates inference by dynamically
identifying and dropping less contributing token
representations through layers of BERT-based mod-
els. Specifically, AdapLeR accomplishes this by
training a set of Contribution Predictors based on
saliencies extracted from a fine-tuned model and
applying a gradual masking technique to simulate
input-adaptive token removal during training. Em-
pirical results on eight diverse text classification
tasks show considerable improvements over exist-
ing methods. Furthermore, we demonstrated that
contribution predictors generate rationales that are
highly in line with those manually specified by
humans. As future work, we aim to apply our
technique to more tasks and see whether it can be
adapted to those tasks that require all token rep-
resentations to be present in the final layer of the
model (e.g., question answering). Additionally,
combining our width-based strategy with a depth-
based one (e.g., early exiting) might potentially
yield greater efficiency, something we plan to pur-
sue as future work.

Broader Impact

Using our proposed method, pre-trained language
models can use fewer FLOPs, reducing energy use
and carbon emissions (Schwartz et al., 2020a).
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A Inclusive KL Loss Consideration

We opted for an inclusive KL loss since CPs should
be trained to cover all tokens considered important
by saliency and not to be mode seeking (i.e., cover-
ing a subset of high contributing tokens considered
by the saliency scores.). Suppose an exclusive KL
is selected. Due to the limited learning capacity
of the CP and miscalculation possibility from the
saliency, the CP may be trained to maximize its
contribution on noninformative tokens. While in
an inclusive setting, it trains to extend its coverage
over all high-saliency tokens.

Additionally, our initial research indicated that
using a symmetric loss (e.g. Jensen-Shannon di-
vergence) would produce similar results but with a
significantly longer convergence time.

B Optimization of θ

In Section 3.3, we introduced θℓ as a trainable pa-
rameter that increases the saliency score of [CLS].
We can deduce from Equations 6 and 7 that this pa-
rameter does not exist in the model’s computational
DAG and we need to compute the derivative of S̃ℓ

w.r.t. θℓ to train this parameter. Hence, first we
assume that S̃ℓ is a close estimate of Ŝℓ (due to the
CPs’ training objective). Second, using a dummy
variable θℓd—that is involved in the computational
graph and is always equal to 1—we reformulate
S̃ℓ:

Ŝℓ
i ≈ S̃ℓ

i =
θℓdS̃

ℓ
11[i = 1] + S̃ℓ

i1[i > 1]

θℓdS̃
ℓ
1 +

∑n
i=2 S̃

ℓ
i

(9)

This reformulation is valid due to θℓd = 1 and∑n
i=1 S̃

ℓ
i = 1. Now we compute the partial deriva-

tive w.r.t. θℓd which is the gradient that is computed
in the backpropagation:

∂S̃ℓ
i

∂θℓd
=

S̃ℓ
1(
∑n

i=2 S̃
ℓ
i1[i = 1]− S̃ℓ

i1[i > 1])

(θℓdS̃
ℓ
1 +

∑n
i=2 S̃

ℓ
i )

2

(10)
By knowing that θℓd = 1:

∂S̃ℓ
i

∂θℓd
= S̃ℓ

1((1− S̃ℓ
1)1[i = 1]− S̃ℓ

i1[i > 1]) (11)

Now using our initial assumption (Ŝℓ
i ≈ S̃ℓ

i ), we
can substitute S̃ℓ

i with Ŝℓ
i based on Equation 7:

∂S̃ℓ
i

∂θℓd
= Ŝℓ

1((1− Ŝℓ
1)1[i = 1]− Ŝℓ

i1[i > 1])

=
θℓSℓ

1(
∑n

i=2 S
ℓ
i1[i = 1]− Sℓ

i1[i > 1])

(θℓSℓ
1 +

∑n
i=2 S

ℓ
i )

2

(12)
In addition, the gradient of Ŝℓ

i w.r.t. θℓ is as follows
(cf. Equation 7):

∂Ŝℓ
i

∂θℓ
=

Sℓ
1(
∑n

i=2 S
ℓ
i1[i = 1]− Sℓ

i1[i > 1])

(θℓSℓ
1 +

∑n
i=2 S

ℓ
i )

2

(13)
By comparing Equations 12 and 13, these deriva-
tives are related with a term of θℓ:

∂Ŝℓ
i

∂θℓ
≈ ∂S̃ℓ

i

∂θℓ
=

1

θℓ
∂S̃ℓ

i

∂θℓd
(14)
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Therefore, during training, we can compute the
gradient w.r.t. the dummy variable θℓd and then
divide it by θℓ.

C Evaluating PoWER-BERT in Single
Instance Mode

Due to the static structure of PoWER-BERT, the
speedup ratios reported in Goyal et al. (2020) are
based on wall time acceleration with batch-wise
inference procedure. This means that some inputs
might need extra padding to make all inputs with
the same token length. However, since our ap-
proach and other dynamic approaches are based
on single instance inference, in our procedure in-
puts are fed without being padded. To even out
this discrepancy, we apply a single instance flops
computation on the PoWER-BERT, which means
we compute the computational cost for all input
lengths that appear in the test dataset. Some in-
stnaces may have shorter input length than some
values in the resulting retention configuration (num-
ber of tokens that are retained in each layer). To
overcome this issue, we update the retention con-
figuration by selecting the minimum between the
input length and each layers’ number of tokens re-
tained, to build a new retention configuration for
each input length. For instance, if the retention con-
figuration trained model on a given task be (153,
125, 111, 105, 85, 80, 72, 48, 35, 27, 22, 5), for an
input with 75 tokens length, the new configuration
which is used for speedup computation will be: (75,
75, 75, 75, 75, 75, 72, 48, 35, 27, 22, 5).

D AdapLeR Training Hyperparameters

For the initial step of fine-tuning BERT, we used the
hyperparameters in Table 3. For both fine-tuning
and training with length reduction, we employed an
AdamW optimizer (Loshchilov and Hutter, 2019)
with a weight decay rate of 0.1, warmup proportion
6% of total training steps and a linear learning rate
decay which reaches to zero at the end of training.

For the adaptive length reduction training step,
we also used the same hyperparameters in Table
3 with two differences: Since MRPC and CoLA
have small training sets, to prolong the gradual soft-
removal process, we increased the training duration
to 10 epochs. Moreover, we increase the learning
rate to 3e-5. Other hyperparameters are stated in
Table 4. To set a trend for λ, it needs to start from
a small but effective value (10 < λ < 100) and
grow exponentially per each epoch to reach an ex-

Dataset Epoch LR MaxLen. BSZ

SST-2 5 2e-5 64 32
IMDB 5 2e-5 512 16
HateXplain 5 3e-5 72 32
MRPC 5 2e-5 128 32
MNLI 3 2e-5 128 32
QNLI 5 2e-5 128 32
AG’s News 5 2e-5 128 32
DBpedia 3 2e-5 128 32

Table 3: Hyperparameters in each dataset; LR: Learn-
ing rate; BSZ: Batch size; MaxLen: Maximum Token
Length

tremely high amount at the end of the training to
mimic a hard removal function (1e+5 < λ). Hence,
datasets with the same amount of training epochs
have similar λ trends.

Dataset γ ϕ λ

SST-2 5e-3 5e-4 10Epoch

IMDB 5e-3 5e-4 10Epoch

HateXplain 5e-2 2e-2 50Epoch

MRPC 3e-2 5e-2 10× 3Epoch

MNLI 5e-3 5e-4 50Epoch

QNLI 5e-3 1e-4 10Epoch

AG’s News 1e-1 1e-1 10Epoch

DBPedia 1e-1 1e-1 50Epoch

Table 4: AdapLeR hyperparameters in each dataset;
Since λ increases exponentially on each epoch the coor-
responding formula is written.

E Statistics of Datasets

F Additional Qualitative Examples

14



SST-2	(dev)	-	Label:	Negative

AG's news (test) - Label: Sports
Layer 1:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 2:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 3:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 4:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 5:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 6:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 7:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 8:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 9:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 10:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 11:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP] 
Layer 12:   [CLS] league of development major league soccer plans to start a new league to develop young players , part of its 10 - year sponsorship deal with adi ##das . [SEP]

Figure 6: The illustration of contribution scores obtained by CPs in each layers of the model for different input
examples from QNLI (Question-answering NLI), SST-2 (sentiment), and AG’s news (topic classification) tasks. The
color intensity indicates the degree of contribution scores. Only the highlighted token representations are processed
in each layer

Number of Examples Number of Tokens

Task Train Test Mean / Median

SST-2 67349 1821 14 / 11
IMDB 25000 25000 275 / 233
HateXplain 15383 1924 30 / 27
MRPC 3668 1725 53 / 53
MNLI 392702 9796† / 9847‡ 40 / 37
QNLI 104743 5463 50 / 47
AG’s News 120000 7600 53 / 51
DBPedia 560000 70000 64 / 64

Table 5: The statistics of datasets: number of training
and test examples and average and median of sequence
length (number of tokens) of test examples based on
BERT’s tokenizer. † and ‡ indicate matched and mis-
matched versions of MNLI test split, respectively.
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