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Abstract
The open-access dissemination of pretrained
language models through online repositories
has led to a democratization of state-of-the-art
natural language processing (NLP) research.
This also allows people outside of NLP to use
such models and adapt them to specific use-
cases. However, a certain amount of techni-
cal proficiency is still required which is an en-
try barrier for users who want to apply these
models to a certain task but lack the neces-
sary knowledge or resources. In this work, we
aim to overcome this gap by providing a tool
which allows researchers to leverage pretrained
models without writing a single line of code.
Built upon the parameter-efficient adapter mod-
ules for transfer learning, our AdapterHub Play-
ground provides an intuitive interface, allowing
the usage of adapters for prediction, training
and analysis of textual data for a variety of NLP
tasks. We present the tool’s architecture and
demonstrate its advantages with prototypical
use-cases, where we show that predictive per-
formance can easily be increased in a few-shot
learning scenario. Finally, we evaluate its us-
ability in a user study. We provide the code and
a live interface1.

1 Introduction

The success of transformer-based pretrained lan-
guage models (Devlin et al., 2019; Liu et al., 2019)
was quickly followed by their dissemination, gain-
ing popularity through open-access Python libraries
like Huggingface (Wolf et al., 2020), Adapter-
Hub (Pfeiffer et al., 2020a) or SBERT (Reimers
and Gurevych, 2019). Researchers and practition-
ers with a background in computer science are able
to download models and fine tune them to their
needs. They can then upload their fine-tuned model
and contribute to an open-access community of
state-of-the-art (SotA) language models for various
tasks and in different languages.

1https://adapter-hub.github.io/
playground

This has significantly contributed to the democ-
ratization of access to the latest NLP research as the
individual implementation process has been sim-
plified through the provision of easy-to-use and ac-
tively managed code packages. However, one still
needs a certain level of technical proficiency to ac-
cess these repositories, train models, and predict on
new data. This is a limiting factor for researchers in
disciplines who could benefit from applying SotA
NLP models in their field, but lack the technical
ability. Furthermore, there is growing interest for
text classification models in interdisciplinary re-
search (van Atteveldt et al., 2021; Boumans and
Trilling, 2016), although often the methods are not
SotA in NLP.

In this work, we hope to bridge this gap by
providing an application which makes the power
of pretrained language models available without
writing a single line of code. Inspired by the re-
cent progress on parameter-efficient transfer learn-
ing (Rebuffi et al., 2017; Houlsby et al., 2019),
our application is based on adapters which intro-
duce small and learnable task-specific layers into a
pretrained language model. During training, only
the newly introduced weights are updated, while
the pre-trained parameters are frozen. Adapters
have been successfully applied in machine transla-
tion Bapna and Firat (2019); Philip et al. (2020),
cross-lingual transfer (Pfeiffer et al., 2020b, 2021b;
Üstün et al., 2020; Vidoni et al., 2020), commu-
nity QA (Rücklé et al., 2020), task composition
for transfer learning (Stickland and Murray, 2019;
Pfeiffer et al., 2021a; Lauscher et al., 2020; Wang
et al., 2021) and text generation (Ribeiro et al.,
2021). Adapters are additionally computationally
more efficient (Rücklé et al., 2021a) and more ro-
bust to train (He et al., 2021; Han et al., 2021). In
our work, we build our application on top of the
AdapterHub (Pfeiffer et al., 2020a) library which
stores task-specific adapters with a large variety
of architectures and offers upload functionalities
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Figure 1: Diagram of the AdapterHub Playground work-
flow. 1⃝ Users upload their text data to GoogleSheets
and 2⃝ link it to a new project. 3⃝ In each project, users
can create multiple actions by selecting a specific ac-
tion type Training, Prediction, Clustering.
For the Training and Prediction action types,
the user needs to define the desired downstream task
(e.g. Sentiment Analysis). Information about
available pretrained adapters for the specified task are
dynamically retrieved from AdapterHub. 4⃝ After gen-
erating predictions, the user can visualize the results
within the project.

for community-developed adapter weights. We
leverage this library to allow no-code access to pre-
trained adapters for a many text classification tasks
using dynamic code generation. Finally, our appli-
cation enables the analysis of multi-dimensional an-
notations to further investigate model performance.

Our application supports both NLP and inter-
disciplinary researchers who want to evaluate the
transferability of existing pretrained adapters to
their specific domains and use cases. We intend this
application for both zero-shot as well as few-shot
scenarios where a user annotates a small number
of data points and monitors model improvements.
This is especially interesting for intermediate task
training (Phang et al., 2018) where models trained
on a compatible task are utilized and fine-tuned on
the target task.

Some efforts are being made to abstract away
engineering requirements to use SotA NLP (Akbik
et al., 2019), but their usage still requires certain
technical skills. Existing no-code (or AutoML)
applications like Akkio2, Lobe3, or Teachable Ma-

2https://www.akkio.com/
3https://lobe.ai/

chines4 allow users to upload data, annotate it using
self-defined labels, and train a model for predic-
tion. Most approaches focus on vision tasks and
follow commercial goals. To the best of our knowl-
edge, we are the first to provide a non-commercial,
no-code application for text classification. Our ap-
plication is transparent (i.e. details about usable
pretrained adapters are traceable), and extendable
via the community-supported AdapterHub library.
Finally, we enable execution on third party com-
putational servers for users without access to the
required GPU hardware for efficient training and
prediction (Rücklé et al., 2021b), while also pro-
viding the necessary scripts to setup a self-hosted
computing instance, mitigating technical dependen-
cies.

Our contributions are: 1) The AdapterHub Play-
ground application which enables no-code infer-
ence and training by utilizing pretrained adapters;
2) Prototypical showcase scenarios from social sci-
ences using our application for few-shot learning;
3) An elaborate user study that analyzes the usabil-
ity of our proposed application.

2 AdapterHub Playground

The AdapterHub Playground is a lightweight web
application offering no-code usage of pretrained
adapters from the AdapterHub library. A user in-
terface accompanied by dynamic code generation
allows the utilization of adapters for inference and
training of text classification tasks on novel data.
Below, we describe the application workflow5, pro-
vide details on the specific functionalities and high-
light the technical architecture.

2.1 Workflow
The workflow of the AdapterHub Playground is
depicted in Figure 1. First, a user creates a
GoogleSheet6 and uploads the input data for the
desired classification task. If applicable, additional
metadata, for example, annotations or timestamps,
can be added. Next, a new project can be created
and linked to the data via the GoogleSheet sharing
functionality. Within a project, the user can define
an action, resembling a computational unit (e.g.
training an adapter). Upon submission of a new
action, the input text data is downloaded and the
specified computation is performed. The user is

4https://tinyurl.com/teachablemachines
5We provide information about user requirements in the

Appendix A.
6https://docs.google.com/spreadsheets/
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Figure 2: Screenshot of the action creation dialogue. A
user has to provide a name for the action, the action
type (here Prediction), the column in GoogleSheet
where results are written to and the downstream task
(here Sentiment Analysis). In the expert mode,
the user has additional options for the pretrained adapter,
i.e. the dataset which was used for pretraining and the
specific architecture. The available options are dynami-
cally retrieved from AdapterHub. Alternatively a self-
provided adapter can be uploaded.

informed visually about the status of the execution
in the application. After finishing the computation,
the results are written directly into the GoogleSheet
by the system and evaluation details are provided in
the action interface. By default the system supports
accuracy and macro-F1 evaluation metrics. To aid
users in estimating model performance we addition-
ally provide the results for random and majority
prediction.

A user can create multiple projects, and within
each project, multiple actions can be triggered us-
ing the same input data.7 Finally, within a project
a user can explore the predictions on the data using
different visualization methods.

7This allows direct comparison among multiple adapters.

2.2 Actions

Our application focuses on three main ac-
tions, namely Prediction, Training and
Clustering. For each action, the respective
code is dynamically generated by merging static
code snippets with parameters defined by the user
(e.g. the specific adapter architecture). In the fol-
lowing we describe the procedure of each action.

Prediction. Pretrained task-specific adapters can
be utilized for predictions on proprietary data. The
user creates a new action in the project detail page
and selects as action type Prediction, defines
the column of the GoogleSheet in which the predic-
tions should be written, and selects the respective
downstream task which is dynamically retrieved
from the AdapterHub.8 Execution triggers the back-
end program to load the specified adapter and data,
and produce task-specific labels for the data. A
screenshot of the action creation dialogue is pro-
vided in Figure 2.

Training. To allow for continual training of
adapters on labeled data, the user creates a new
action of type Training. When executed, the
backend process loads the specified adapter, down-
loads both data and target labels, and starts the
training procedure. Once training is completed,
the user can download the fine-tuned adapters as a
zipped file. This makes fine-tuned adapter weights
available for another Prediction action.

The choice of hyperparameters can have substan-
tial influence on task performance but evaluating
these effects is out of scope for this work. Defaults
are set based on the literature (Pfeiffer et al., 2021a),
however, if necessary, the user can modify training
hyperparameters through various dropdown fields.
This allows to compare multiple adapters trained
with different hyperparameters.

Clustering. Discovering recurrent patterns in
text data is a common procedure in various research
disciplines. To allow for deeper text analysis,
we additionally provide the Clustering action
which enables users to apply clustering algorithms
on the data based on their textual similarity. We
provide K-Means and hierarchical clustering (Pe-
dregosa et al., 2011) as algorithm choices and sup-
port Tf-Idf and SBERT embeddings (Reimers and
Gurevych, 2019) as text representations.

8We currently focus on (pairwise) text classification tasks.

63



+

Figure 3: The AdapterHub Playground architecture

2.3 Architecture

The architecture of the AdapterHub Playground
(Figure 3) is designed to be easy to setup and re-
quires a minimal set of dependencies. The tool
is based on three main components; Frontend,
Backend and Data Storage. A user interacts
with the frontend and triggers various actions as
described in §2.2. The backend receives instruc-
tions via the frontend and manages the execution
on the computational resource. Our application ad-
ditionally hosts a local database for user and project
management.

We chose GoogleSheet as text data storage com-
ponent due to its similarity to established easy-to-
use spreadsheet applications. It supports a variety
of import and export mechanisms which simplify
the data management process, especially for non-
technical users. GoogleSheet also reduces storage
requirements on the local computational resource,
keeping the application lightweight and manage-
able. Finally, the Sheets API9 provides a program-
matic interface for communication. Although this
requires users to use a Google account, we argue
the advantages compensate for this restriction.

Below, we describe the technical details of the
implementation for the specific components.

Frontend. The frontend provides the visual inter-
face for management (i.e. creation, editing, dele-
tion) of projects and their respective actions. After
login with an authentication token10, a webpage
lists all user projects. By selecting a project, a cor-
responding details page allows actions to be man-
aged (see §2.2) and visualizations to be created

9https://tinyurl.com/SheetsAPI
10Depending on the chosen backend solution, this can be a

JSON file provided by the system administrator of the backend
server or the authentication token provided by Kaggle.

using project-specific data storage.
The frontend is implemented using the React11

framework and is written in TypeScript12. The fron-
tend design is based on Bootstrap13. Communica-
tion with the backend is realized via the GraphQL
query language. The data is retrieved using the
Sheets API and can be visualized via Recharts14

which offers seamless integration of the D315 visu-
alization library within the React framework.

Backend. The backend organizes the storage of
application-relevant objects (i.e. users, projects,
tasks) and manages both dynamic code generation
and execution. User credentials, projects, and tasks
are stored in a SQL database. When an action is
executed in the frontend, the backend server loads
the task-specific code template and dynamically
integrates parameter information provided for the
individual task. Depending on the choice of the
computational node, the generated Python script
is scheduled for execution either locally or on a
Kaggle compute node via the KaggleAPI16.

The backend is implemented using Node.js17

and TypeScript. For application-relevant data, any
TypeORM18-supported database (e.g. MySQL,
PostgreSQL, etc.) can be used. Communication
with data storage is realized via Sheets API.

3 Few-shot scenario

Several prominent tasks in NLP such as senti-
ment analysis (Socher et al., 2013; Rosenthal
et al., 2017), stance detection (Mohammad et al.,
2016; Schiller et al., 2021) or identifying semanti-
cally similar texts (Cer et al., 2017; Agirre et al.,
2012) are of great interest in social science re-
search (Boumans and Trilling, 2016; Beck et al.,
2021; van Atteveldt and Peng, 2021). We there-
fore replicated two scenarios, namely sentiment
analysis and semantic textual similarity.

We envision a situation where a user has col-
lected textual data (e.g. sentence-level) for a given
task and wishes to perform analysis using a text
classification pipeline. A labeled test set to eval-
uate the performance of the classifier, and further
training data is available.

11https://reactjs.org/
12https://www.typescriptlang.org/
13https://getbootstrap.com/
14https://recharts.org
15https://d3js.org/
16https://www.kaggle.com/docs/api
17https://nodejs.org
18https://typeorm.io/

64

https://tinyurl.com/SheetsAPI
https://reactjs.org/
https://www.typescriptlang.org/
https://getbootstrap.com/
https://recharts.org
https://d3js.org/
https://www.kaggle.com/docs/api
https://nodejs.org
https://typeorm.io/


3.1 Experiments

Data. For demonstration purposes, we recre-
ated the above-mentioned scenario using existing
datasets for both tasks. For sentiment analysis, we
use the dataset by Barbieri et al. (2020). In par-
ticular, we retrieve text for the Twitter Sentiment
Analysis dataset which was originally used for the
Semeval2017 Subtask A (Rosenthal et al., 2017).
At time of writing, the AdapterHub provides mostly
pretrained adapters for binary sentiment classifi-
cation (positive, negative). Thus, we discarded
all items labeled as neutral from the dataset and
are left with 24,942 Tweets for training and 6,347
Tweets for testing.

For semantic textual similarity, we use the
dataset by Lei et al. (2016) which is a set of pair-
wise community questions from the AskUbuntu19

forum annotated for duplicates. Specifically, we
use the question titles of the human-annotated de-
velopment (4k) for training and the test instances
(4k) for testing.

Setup. For binary sentiment classification, we use
the AdapterHub to obtain three different adapters
which were previously trained (Pfeiffer et al.,
2021a) on English datasets from the movie review
domain. The IMDB adapter was fine-tuned on the
dataset by Maas et al. (2011), the RT adapter was
trained on the Rotten Tomatoes Movie Reviews
dataset by Pang and Lee (2005), and the SST-2
adapter was trained using a binarized dataset pro-
vided by Socher et al. (2013).

For semantic textual similarity, we obtained the
MRPC adapter trained on the paraphrase dataset by
Dolan and Brockett (2005) and the QQP adapter
trained on the Quora Duplicate Question dataset.20

The experiments were conducted using the
AdapterHub Playground without writing any code.
We experiment with different training dataset sizes,
repeated three times with different subsets of the
training data randomly selected for each run.21.
We evaluated statistically significant differences
(p < 0.05) between zero-shot and few-shot results
of each adapter using a paired Bootstrap test (Efron
and Tibshirani, 1994).

3.2 Results

The results for both tasks are shown in Table 1.

Sentiment Analysis. The overall best performance
19https://askubuntu.com/
20https://tinyurl.com/quora-qp
21See Appendix B for experimental details.

is achieved by the SST-2 adapter, simultaneously
the most robust performance in terms of the stan-
dard deviation across different runs and varying
amounts of training data. This is most likely due
to the substantially larger size of the initial train-
ing data (SST-2: 67k, RT: 8k, IMDB: 25k) for the
adapter. Although, on average, for all adapters zero-
shot performance could be outperformed using a
minimum of 10 instances, the differences between
individual runs vary largely and statistically sig-
nificant improvements are only achieved using a
larger number of training instances (e.g., at least
N≥100 for SST-2). We find using a small num-
ber of annotated examples (N≤50) leads to worse
performance compared to zero-shot performance
(N=0) and to less robust results across runs with
randomly sampled training data. Providing 1,000
training samples leads to significant improvements
for adapters IMDB and SST-2 but only providing
the full dataset results in statistically significant
improvements for all adapters.

Semantic Textual Similarity. The performance
gap between both adapters is large, with a differ-
ence of 42.10 in the zero-shot setting, favoring
QQP. The results for the MRPC adapter show no
clear tendency to improve as the training data size
grows, with performance peaking at 50 training
instances. Most surprisingly, using 1,000 or all
available training samples (4k) leads to a severe
performance decrease. For the QQP adapter, per-
formance variations are minimal and none of the
few-shot experiment settings leads to a significant
improvement over zero-shot performance.

Summary. Poth et al. (2021) investigated the ef-
fects of intermediate task fine-tuning in adapter
settings. They showed that domain similarity, task
type match and dataset size are good indicators for
the identification of beneficial intermediate fine-
tuning tasks. Our experiments confirm this finding
although we cannot observe consistent improve-
ment with larger training data size. Thus, more
research on robust few-shot learning is necessary.

In contrast to relying on off-the-shelf tools for au-
tomated content analysis, our application enables
direct evaluation of both zero-shot and few-shot
performance of existing pretrained adapters. This
is especially helpful for assessment of the appli-
cability of such models for interdisciplinary re-
search (Grimmer and Stewart, 2013) but can also
be used to test robustness with varying hyperpa-
rameter configurations.
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Adapter 0 5 10 20 50 100 1,000 N

IMDB 71.99 65.40 ±2.08 72.25 ±14.78 67.51 ±11.25 71.37 ±4.93 81.87 ±2.49 84.10 ±5.34 88.36
RT 76.24 72.33 ±0.97 76.76 ±10.08 67.38 ±10.09 67.44 ±5.57 76.88 ±4.22 82.64 ±6.01 90.50
SST-2 84.61 84.53 ±0.15 86.23 ±2.91 84.22 ±0.53 82.33 ±2.41 83.54 ±0.61 88.19 ±2.08 92.04

MRPC 31.18 31.64 ±5.37 29.22 ±0.08 28.46 ±1.30 38.57 ±3.66 36.66 ±8.54 28.31 ±3.18 26.23
QQP 73.28 73.10 ±0.16 73.19 ±0.06 72.79 ±0.44 71.08 ±1.17 69.60 ±0.48 73.01 ±0.30 73.68

Table 1: Few-shot performance of various pretrained adapters from AdapterHub using increasing size of training
data. Underlined scores are significantly (p < .05) better than their zero-shot counterpart. Bold scores resemble
experiments with minimum training data required for outperforming zero-shot performance of respective adapter.
All numbers are accuracy scores. N is for using all available training data.

4 Usability Study

AdapterHub Playground is designed to be simple
to use, requiring minimal training effort and tech-
nical knowledge. While we followed these princi-
ples throughout the conception and implementation
of the application, we also evaluated the usability
with users from our target group. Therefore, we
followed the approach by Hultman et al. (2018)
and let study participants conduct a series of tasks
which were designed to reflect a use-case scenario
as described in §3. Afterwards, we used a question-
naire to capture their experiences.

Participants. We recruited study participants
(N=11) from the communication science field, the
majority of whom were (post)graduate-level re-
searchers at a university (two Professors, two Post-
Docs, six PhDs, one B.Sc.). Our data suggests that
the participants have limited or no understanding
of the technical computer science concepts but can
envision themselves using the AdapterHub Play-
ground (for details see Appendix D). Thus, our
participants belong to one of the target groups we
aim to aid with this application.

Procedure. The participants were provided a tex-
tual description of several tasks to be completed.22

Users were asked to complete a Training and
Prediction action in a sentiment analysis sce-
nario. We provided both labeled test data and unla-
beled training data again using the dataset by (Bar-
bieri et al., 2020).23 After completing the tasks, we
asked the participants to complete a questionnaire
targeting their experience with the tool.

Results The participants were asked to assess the
difficulties they faced on a five-point Likert scale,
specifically, their experience with the overall task,

22We provide the full task description in the Appendix D.
23Our focus is to evaluate the usability of the AdapterHub

Playground application. Therefore, we did not require the
participants to import the data on their own but rather provided
them links to Google Docs containing the imported data.

Figure 4: Participants’ estimation of difficulty.

the navigation of the application, and the difficulty
of the task description (see Figure 4). The majority
of participants found the task and the navigation of
the application to be simple.

Three participants found the task description dif-
ficult to understand. We note here that the task
description did not explain each individual naviga-
tion step in the application. This was designed on
purpose - both to reduce the reading volume of the
task description and to evaluate the accessibility of
each feature of the application.

We further asked the participants about the diffi-
culty of each individual task they had to solve, i.e.
prediction, annotation, and training, on a five-point
Likert scale ranging very difficult (1) to very easy
(5). Participants had the least trouble with the pre-
diction action (91% voted either category 5 or 4;
none voted category 1 or 2). Despite the training
action being technically similar to the prediction
action, participants perceived it as more difficult
with only 64% selecting easier categories (4 and
5) and 27% of the participants being undecided
(category 3). This is most likely due to some par-
ticipants having issues finding the downloadable
zip file which required opening the action detail
page after training (we received this information as
feedback in a free-answer form).
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5 Conclusion and Future Work

Open-access dissemination of SotA NLP models
has accelerated their use and popularity, yet the re-
quired technical proficiency to apply them remains
a limiting factor for their democratisation. To mit-
igate this, we introduced the AdapterHub Play-
ground application which provides an easy-to-use
web interface for no-code access to light-weight
adapters for text classification tasks. Our system is
built on-top of the open-source AdapterHub library
and uses a dynamic code generation approach. We
demonstrated the features of the application using
two exemplary use-case scenarios and evaluated
its usability in a user study with researchers from
communication sciences. In addition to providing
execution on third-party hardware, we also enabled
a self-hosted computational instance.

As future work, we plan to extend the appli-
cation with dynamic user control over all hy-
perparameter specifications in the expert mode.
To support users in efficient sampling of prof-
itable training instances, we plan to investigate
the integration of active learning methods (Yuan
et al., 2020). A running instance of our tool
can be found under https://adapter-hub.
github.io/playground. and the open-
source code24 under https://github.com/
Adapter-Hub/playground.

Broader Impact Statement

Intended Use Our proposed application can be
used in several ways and by different audiences.
First of all, it allows evaluating the performance
of already existing fine-tuned adapters for vari-
ous prominent text classification tasks on hold-
out data, possibly from another domain. Further,
one can provide annotated data for any of the sup-
ported tasks and continue training the correspond-
ing adapter. Training procedures can be repeated
using different hyperparameters to investigate the
effect of those on the prediction performance. This
makes our application interesting for both our tar-
get group, i.e. researchers outside of NLP using
text classification methods, as well as NLP re-
searchers interested in comparing various adapter
models without setting up the required codebase to
do so.

Possible Risks Primarily, the goal of our appli-
cation is to lower the technical entry barrier for

24Licensed under Apache License 2.0.

users interested in using state-of-the-art text clas-
sification models. These users usually also lack
the expertise to evaluate all aspects of the language
understanding capabilities of such a model, as com-
pared to researchers from within the NLP domain.
Rightfully, one can argue that publishing such an
application increases the opportunities to develop
more bad black box models, caused by limited
evaluation and missing expertise. This can lead
to severe misjudgements if conclusions are drawn
based on predictions of such a model.

While we cannot eliminate this risk, we would
like to raise some points which, in our opinion, put
it into perspective with regard to the benefits of
having such an application.

From a broader perspective, the AdapterHub
Playground contributes to the democratization of
access to the latest NLP research by simplifying
the process of applying language model adapters
for training and prediction. This is especially help-
ful for interdisciplinary research where the applied
text classification tools often rely on outdated meth-
ods (Stoll et al., 2020) or off-the-shelf tools (Sen
et al., 2020). As a consequence, details about the
model architecture, training procedure or out-of-
domain performance are mostly omitted. While
this does not imply low performance on hold-out
data per se, it limits the possibilities for model eval-
uation and demands a certain level of trust from
the end user. In many cases, adapting the model to
the target domain is not possible or requires some
technical proficiency. In addition, these models
are often trained once-and-for-all while our frame-
work allows for an interactive approach to eval-
uate model performance and offers the rich vari-
ety of pretrained adapters being available from the
community-driven AdapterHub.

Further, we argue that advancements in NLP re-
search should be made available to the researchers
most profiting from them as soon as possible - not
only for the sake of accelerating research outside
of NLP but also to enable a feedback loop inform-
ing NLP researchers about the shortcomings of
such models. While the generalization capabili-
ties of state-of-the-art language models are subject
to increased scrutiny within NLP (Sanchez et al.,
2018; Gururangan et al., 2020; Tu et al., 2020),
the datasets and tasks to test them often originate
from within the same community, thereby intro-
ducing a selection bias (Ramponi and Plank, 2020).
By enabling interdisciplinary researchers to eval-
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uate NLP models without the technical barriers
involved, we are able to gain more insights about
the robustness and out-of-domain performance of
these models. Our application is a first step into
this direction.
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A Frequently Asked Questions

What are the requirements to use the Adapter-
Hub Playground? The most basic usage require-
ment is an up-to-date modern web browser25. To
use the application without setting up your own
computing instance, one needs to create a Kag-
gle account and download the API Token for lo-
gin. We provide information on setting up a
local compute instance at https://github.
com/Adapter-Hub/playground. As we
use GoogleSheet as data hosting platform, the user
needs an active Google account.

If used for prediction, textual target data must
be uploaded to a GoogleSheet and linked with a
project within the application. For training, each
text must be additionally labelled according to the
target task’s label matching schema. While we also
provide information about each supported task on a
separate page in the application, we expect the user
to have a basic understanding of the procedure of
the targeted task (e.g. Sentiment Analysis is about
predicting the sentiment tone of a given text).

How is a user able to identify label mismatch?
For each supported task, we provide the necessary
label matching information within the dialogue to
create a new Action (e.g. in Figure 2). If the user-
provided labels in the Google data sheet do not
match the selected task or adapter architecture, an
error message will be provided giving information
about the indices of the mismatched data points.

How could a new user determine the task for
their data? In general, this application is in-
tended for users who know what type of predic-
tions (i.e. the task) they want to apply on their data.
We provide support for a subset of (pairwise) text
classification tasks from AdapterHub.ml with the
goal to cover the most prominent ones used in in-
terdisciplinary research. However, we also provide
basic information about each supported task on a
separate page in the application.

What if my task is not supported in the Adapter-
Hub Playground? In general, we can only pro-
vide support for the classification tasks which are
covered on Adapterhub. We have selected a sub-
set of tasks which we deem to be of interest in
interdisciplinary research (e.g. computational so-
cial science). Integration of new tasks is possible

25We tested the application using Desktop Firefox and Desk-
top Chrome.

by extending the application which requires some
technical background in coding and web develop-
ment. If you are a researcher and lack the technical
proficiency to do so, we encourage you to get into
contact with us to find out if and how we can inte-
grate your task.

Which pretrained adapter should be used?
This is still an open research question and we re-
fer to the literature for more details (Phang et al.,
2018; Pruksachatkun et al., 2020; Poth et al., 2021).
However, there are some heuristics which can be
followed. Regarding adapters, it has been shown
that domain similarity (e.g. training and test data
are both from Twitter) and training dataset size (the
more the better) can be indicators for good transfer
performance (Poth et al., 2021).

How should hyperparameters be set? Hyper-
parameter optimization for machine learning is a
research field of its own and there is no one-size-
fits-all solution to this. Especially for users without
experience in tuning ML models identifying rea-
sonable hyperparameter values might seem rather
arbitrary.

Currently, we support tuning the learning rate
and the number of epochs. In general, if the learn-
ing rate is high the training may not converge or
even diverge. The changes in the weights might
become too big such that the optimizer will not find
optimal values. A low learning rate is good, but the
model will take more iterations to converge because
steps towards the minimum of the loss function are
tiny. In practice it is good strategy to test different
(high and low) learning rates to identify their effect
on the model performance.

One epoch describes a full cycle through the en-
tire training dataset. A single epoch can sometimes
be enough to improve performance significantly
and training text classification adapters longer than
for 10 epochs rarely provides substantial improve-
ments. We recommend testing different numbers
of epochs (between 2 and 5) to evaluate if longer
training is beneficial for the task at hand.

B Training Details

We did not perform any hyperparameter optimiza-
tion for our experiments and used the default
settings in the AdapterHub Playground applica-
tion. We adopted a learning rate of 1e-4 from re-
lated work (Pfeiffer et al., 2020a) and trained each
adapter for three epochs. In Table 2 we provide the
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Adapter Task Pretrained Language Model Identifier Architecture

IMDB Sentiment Analysis distilbert-base-uncased Pfeiffer
RT Sentiment Analysis distilbert-base-uncased Pfeiffer
SST-2 Sentiment Analysis bert-base-uncased Houlsby

MRPC Semantic Textual Similarity bert-base-uncased Houlsby
QQP Semantic Textual Similarity bert-base-uncased Houlsby

Table 2: Adapter architecture details for each specific task.

respective adapter architectures which were used
for each specific adapter.

C Extensibility

Extending the AdapterHub Playground with a new
text classification task requires adaptations to both
the frontend and backend.

The repository supports a deployment workflow
which will update a configuration file with all rel-
evant information from the AdapterHub. This en-
ables that all tasks and their corresponding pre-
trained adapters (with a classification head) are
potentially available within the AdapterHub Play-
ground. The tasks for these adapters are filtered
based on a predefined set of tasks which should
be available to users of the application. Within the
application, the filter list needs to be adapted such
that the new task is not filtered during startup of
the application. Additionally, the task name and
its description need to be added to the frontend
code as well as the label mapping information. In
the backend we need to add the label mapping and
the list of supported tasks such that the evaluation
computation is correct.

We provide the technical details within the
code repository at https://github.com/
Adapter-Hub/playground.

D Usability Study

D.1 Participants

As can be seen in Figure 5, most participants have
only a basic understanding of the technical con-
cepts related to machine learning or natural lan-
guage processing. However, it is likely they have
experience with annotating data. We further asked
them if they can envision using the AdapterHub
Playground application in their research. Slightly
more than half gave a positive answer (54%) and
the rest were undecided; no participant claimed
they would never use our application.

Figure 5: Participants’ experience with underlying tech-
nical concepts.

Thus, we conclude that our participants belong
to our target group.

D.2 Instructions
We provide the instructions for the usability study
in Figure 6.

73

https://github.com/Adapter-Hub/playground
https://github.com/Adapter-Hub/playground


User study for the AdapterHub:Playground
application

Study Details

This study is conducted for research purposes by the Ubiquitous Knowledge Processing (UKP) Lab of
the Technical University of Darmstadt. Your participation is completely voluntary and you are allowed to
cancel at any time. The goal of this study is to evaluate the usability of the Adapterhub:Playground
application. The whole study will take approximately 25 minutes. During the study you will be asked to
complete certain tasks in the application and fill out a questionnaire afterwards.

Contact Person:
Tilman Beck, M.Sc.
S2|02 B104
Hochschulstraße 10
64289 Darmstadt
beck@ukp.informatik.tu-darmstadt.de
+49 6151 16-25294

Preliminary

To take part in this study, you need to register on Kaggle.com. After registering, click on your profile
picture in the top right corner and choose Account in the menu. Then, scroll down to the Phone
verification field and provide your mobile number for verification (Important: without verification we
can’t use Kaggle as computational resource). Next, scroll to the API field, click Create new API
token and download the kaggle.json file to your computer. You are now ready to take part in the
study.

Data:
User ID: <user-ID>
D1: <url-to-data-D1>
D2: <url-to-data-D2>
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Task Description

Prediction

You are provided a set of Social Media posts and are asked to analyze the sentiment in these texts. The
AdapterHub:Playground offers you a tool which allows you to make use of machine learning models to
analyze these Social Media posts. They are specialized on a variety of natural language processing
tasks such as sentiment analysis.
Please evaluate the performance of those models on the first set of Social Media posts we provided (see
D1 above). This Googledocs file does not only contain the Social Media posts, but also their respective
sentiment label (positive or negative). Log into the AdapterHub:Playground tool, create a new
project and insert the above mentioned link to the Googlesheet. Enter your new project by clicking on
your chosen name in the list, then start a new task with type Prediction for Sentiment Analysis.
In the expert mode you can specify additional details about the model selection like the dataset the
model was trained on (e.g. SST-2) or the model architecture (e.g. bert-base-uncased |
pfeiffer). Upon starting the task, the tool will write its predictions directly into the provided
Googledocs in the column you provided. This may take some minutes. Once the task is finished, you can
investigate the performance of the task using the measures Accuracy and F1.

Training

To further improve the performance of the models, the AdapterHub:Playground tool allows you to train
existing models with annotated data. Therefore, you are provided a second set of Social Media posts
without labels (see D2 above).
Please, visit this Googledocs and start with providing labels (type positive or negative) in the
column annotation for the corresponding texts in the first column (input1). We recommend
annotating at least 10-15 texts, but you are free to annotate more texts.
After you finish your annotation, return to the AdaterHub:Playground tool and create a new project. To do
so, please insert the link to the Googledocs (D2 above) where you have made annotations on your own
(please be aware, the link is different to the first Googledocs).
Now, create a new Training task for Sentiment Analysis. Choose the same model selection
details as for the previous prediction task and start the training task by submitting. Once the training is
finished, download the trained model (trained_adapter.zip) to your computer. Congratulations, you
have just trained your own sentiment analysis model! Now, please evaluate if your own model achieves
better performance than the off-the-shelf model from AdapterHub:Playground. Please, use it to create
predictions on your initial set of Social Media posts. Therefore, repeat the process of the first part of this
study (Prediction), i.e. create a new project, start a new task with type Prediction for Sentiment
Analysis. However, this time make use of the Upload Adapter function in the expert mode and
upload the previously downloaded file (trained_adapter.zip). After completion of the task,
investigate the performance measures again.

Now, please answer the questions in this questionnaire:
<url-to-questionnaire>

Thank you very much for your participation!

Figure 6: Instructions for the participants of the user
study.
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