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Abstract

Writing computer programs is a skill that re-
mains inaccessible to most due to the barrier
of programming language (PL) syntax. While
large language models (LLMs) have been pro-
posed to translate natural language pseudocode
to PL code, they are costly in terms of data and
compute. We propose a lightweight alterna-
tive to LLMs that exploits the property of code
wherein most tokens can be simply copied from
the pseudocode. We divide the problem into
three phases: Copy, Generate, and Combine. In
the Copy Phase, a binary classifier is employed
to determine and mask the pseudocode tokens
that can be directly copied into the code. In
the Generate Phase, a Sequence-to-Sequence
model is used to generate the masked PL code
equivalent. In the Combine Phase, the gener-
ated sequence is combined with the tokens that
the Copy Phase had masked. We show that our
C3PO models achieve similar performance to
non-C3PO models while reducing the computa-
tional cost of training as well as the vocabulary
sizes.

1 Introduction

In recent years, computer programs have found
applications in almost every field, from scientific
to artistic fields. The demand and cost for pro-
grammers have gone up because writing code is a
specialised skill. Although people may be able to
describe the functionality of the required code, the
syntax of a programming language serves as a bar-
rier to writing code (Denny et al., 2011). Recently
there has been an increase in Low-Code applica-
tions that only require the functionality of code to
be specified as pseudocode in Natural Language
(NL), which is then translated to source code in a
Programming Language (PL). Pseudocode enables
people unfamiliar with a PL’s syntax to write the
functionality of the required code in NL, and al-
lows programmers to write PL-independent code,
which emphasizes functionality over syntax.

Translating pseudocode to code is cumbersome
due to the complex structures of programs that
result from their syntax, semantics and logic. Ex-
isting state-of-the-art Pseudocode-to-Code trans-
lators, like Codex (Chen et al., 2021), which is
used to power GitHub Copilot (GitHub, 2021), and
CodeT5 (Wang et al., 2021), are being powered
by complex transformer LLMs like GPT-3 (Brown
et al., 2020) and T5 (Raffel et al., 2020) respec-
tively. They are pre-trained on very large code
datasets like CodeSearchNet (Husain et al., 2019)
and CodeXGLUE (Lu et al., 2021). While these
transformer architectures are good at generalizing
to many downstream PL-related tasks, they require
high-performance computational resources, large
amounts of data, and significant time to train.

Our contributions are as follows: we propose
C3PO (Computationally efficient Copying mech-
anism for Conversion from Pseudocode to cOde),
a lightweight alternative to the current translators.
We exploit the property of code wherein a large
number of tokens (like identifiers and variable
names) are present in both pseudocode and its cor-
responding PL code. These tokens can therefore be
simply copied into the resultant PL code translation.
The remaining tokens can then be generated based
on PL syntax. We divide the task of pseudocode to
code translation into three phases: the Copy Phase,
Generate Phase and the Combine Phase.

In the Copy Phase, we use a Decision Tree Clas-
sifier to decide whether each token in the pseu-
docode needs to be copied or translated. In the Gen-
erate Phase, a Sequence-to-Sequence (Seq2Seq)
model takes in a pseudocode sequence, in which the
tokens that can be copied are masked, and generates
a masked PL sequence. In the Combine Phase, the
generated masked PL code is unmasked with the ap-
propriate true pseudocode tokens. C3PO has been
trained on the SPoC dataset (Kulal et al., 2019),
which consists of human-written pseudocode lines
in English with their corresponding C++ code lines.
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Figure 1: An illustrative example of pseudocode being translated to C++ code during training. The pseudocode
and code are tokenized (P and C) and preprocessed together to get the truth-label for training the Copy Classifier.
The binary tag sequence (T ) is used to mask the tokens (Pmasked) and generate the masked code sequence (Cmasked).
This is finally combined with the copied tokens from the input P , to result in the translation Combined.

2 Related Work

2.1 Pseudocode to Code translation

There have been many approaches taken to trans-
late natural language input into a programmatic
context. Some of the earlier works like Seq2SQL
(Zhong et al., 2017) focused on the simpler task
of generating SQL queries, where the query was
segmented into its constituent parts (like SELECT,
WHERE) with separate objectives for each part.

Kulal et al. (2019) approached the task as a
search-based line-by-line translation task using
LSTM Seq2Seq. With the introduction of large cor-
pora for code (Lu et al., 2021), transformer archi-
tectures like Code-T5 (Wang et al., 2021), Codex
(Chen et al., 2021) and CodeGen (Nijkamp et al.,
2022) have been pre-trained on various objectives
to generalize to various code related downstream
tasks such as Code Generation and Summarization.
While these facilitate fine-tuning, they require a lot
of computational resources for training as well as
inference.

There have also been approaches to translating
code using code search techniques rather than syn-
thesising code (Feng et al., 2020), (Neelakantan
et al., 2022). These approaches generate embed-
dings using a variation of the BERT encoder and
then use similarity metrics to search for the most se-
mantically similar code from a corpus of code such
as CodeSearchNet (Husain et al., 2019). For an-
other such BERT model (Norouzi et al., 2021), the
authors also proposed two new evaluation metrics
namely copy accuracy and generation accuracy,
and maximise each of these separately.

2.2 Copying Mechanism

CopyNet (Gu et al., 2016) describes a copy mecha-
nism for natural language text, where the decoder
in a Seq2Seq model is modified to probabilisti-
cally predict words from either the copy-mode
or generate-mode. A related methodology called
Pointer Networks (Vinyals et al., 2015) uses the
attention mechanism to create pointers to the in-
put words. The deobfuscation objective in DOBF
(Roziere et al., 2021) provides an alternative to
masked language modelling (MLM) for identifier
names during pre-training.

3 Problem Definition

As we handle the task on a line-by-line basis, the
task can be formulated as follows: The input sen-
tence consists of a sequence of m pseudocode to-
kens P = P1, P2...Pm, and the objective is to trans-
late this into its corresponding sequence of n code
tokens C = C1, C2, ...Cn. We additionally split
the pseudocode tokens P into 2 sets of tokens —
Pcpy and Pgen — where P = Pcpy ∪ Pgen.

The main idea for the copying mechanism stems
from the fact that a good number of the code tokens
(identifier names, constants and keywords) in the
code translation are also present in the pseudocode
input. Since such tokens can be simply copied into
the translation, generating them from a Seq2Seq
model is not necessary. Such tokens are referred
to as the set of copied tokens denoted by Pcpy. In
the SPoC dataset, we observed that the mean ratio
of copied tokens to sequence length in pseudocode
was around 60%.
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Pseudocode Ground-Truth Code Generated Code
if x is even if(x % 2 == 0) if(x % 2 == 0)
n,b = integers with b=0 int n, b=0; int n, b=0;
while read n while(cin >> n) while n cin >> ;
print "NO" cout << "NO" << endl; cout << "NO" << "\n";

Table 1: Examples of pseudocode, corresponding true code and generated code (correct in green, wrong in red)

The tokens that are not common to the pseu-
docode and code, referred to as the set of generated
tokens and denoted by Pgen, describe code func-
tionality in natural language and would have to be
generated by a Seq2Seq model. For instance the
token read will correspond to cin in C++.

4 Methodology

We devise a three-stage solution, which we call
C3PO, to the above-defined problem. The three
phases – Copy, Generate and Combine – are de-
fined in an attempt to reduce the complexity of the
model. The stages of C3PO are illustrated with an
example in Fig. 1.

4.1 Copy Phase
We use a Binary Classifier to determine which to-
kens in the pseudocode are present in the code. For
each token Pi in the pseudocode input, the binary
classifier would discriminate which type of token it
is – whether the token can be copied into the code
output (Pi ∈ Pcpy), or whether it would have to be
generated by the Seq2Seq model (Pi ∈ Pgen).

The binary classifier acts as a tagger on the pseu-
docode, generating a tag sequence. We define two
different representations for the tag sequence. The
first, named binary tag sequence (T ) is a binary
array – 1s referring to copied tokens, and 0s refer-
ring to generated tokens. An example of the binary
tag sequence is shown in the output of the Copy
classifier in Fig. 1.

The second, named masked tag sequence
(Pmasked) is a processed form of the input pseu-
docode sequence P . To facilitate this masking, we
assign a special token which we call the Copy Mask
Token, represented as [CPY]. We mask all tokens
that belong to set Pcpy by replacing such tokens
with the [CPY] tag, before passing the sequence
as input to the Seq2Seq model.

4.2 Generate Phase
The masked tag sequence (Pmasked) is provided as
input to a Seq2Seq model, which would generate

the corresponding masked code output (Cmasked).
Cmasked is also masked with [CPY] tags when the
output corresponds to a token that was originally
masked in the pseudocode. The Seq2Seq model
would only influence the position of copied tokens
in the output code, and not the token itself.

4.3 Combine Phase

The generated masked code output (Cmasked)
needs to be transformed into actual code (C). To
simplify our model, we assume that the order in
which the masked tokens appear in the true code is
the same as the order in which they appear in the
final code, although this might not be the case at
all times. This is a fair assumption to make in most
cases as shown in Section 7.1. We replace only the
[CPY] tags in Cmasked directly with the copied
tokens in set Pcpy in their order of occurrence in P .
This simple combination of the two previous two
phases leads to the resultant translation.

5 Models and Experiments

5.1 Dataset

The SPoC dataset (Kulal et al., 2019) is used for
our experiments. It contains 18,356 C++ programs
and their human-authored pseudo-code in English
language. The dataset covers a wide variety of pro-
grams with multiple programs for a single problem
statement sourced from CodeForces contests.

5.2 Copy Model

For the copy phase, a decision tree is used
to predict whether or not each token gets di-
rectly copied into the code. The decision tree
was created using sklearn’s (Buitinck et al.,
2013) DecisionTreeClassifier API and
was trained on pseudocode (input) sequence from
the entire SPoC training dataset, as shown in Fig.
1. For every token in every sentence, the following
explicit features were passed as input to the tree:
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Figure 2: Average loss per epoch for the models and their 2 versions. (Left) Plot for Vanilla Seq2Seq versions,
(Right) Plot for Attention Seq2Seq versions

• Token and its length
• If the token is numeric or alphabetical
• If the token is alphanumeric
• If the token is a punctuation mark
• The previous 2 tokens in that sentence
• The next 2 tokens in that sentence

The target or ground-truth prediction (0 or 1) for
each token was generated by comparing the tokens
of pseudocode sequence P and code sequence C,
as a preprocessing step. If the current pseudocode
token Pi also appeared in C, the target for binary
tag sequence Ti would be 1. If it does not appear
in C, the target would be 0. During inference, only
the pseudocode sequence P is used and the features
are passed as input to the decision tree.

5.3 Generate Model

To test the validity of the C3PO copy mechanism,
it has been tested in conjunction with two dif-
ferent generate phase models – Vanilla Seq2Seq
(Sutskever et al., 2014) and Attention Seq2Seq
(Bahdanau et al., 2015). The models were built
using PyTorch (Paszke et al., 2019). We will not
review these popular architectures in detail.

For each generate model, two different versions
have been trained. The first version, referred to as
non-C3PO version, is trained on the non-masked
input P with the target C. The second version,
referred to as C3PO version, is trained with the
masked tag sequence Pmasked provided as input
with target Cmasked. The non-C3PO version pro-
vides a baseline to justify the C3PO version.

For the C3PO version, the input pseudocode vo-
cabulary (denoted by PVocmasked) is built after
masking the copied tags, hence the copied tokens
will not be included in the input vocabulary. This
reduces the input vocabulary size to 30% of the

original vocabulary size without masking (denoted
by PVoc). Similarly, the output code vocabulary
built after masking (denoted by CVocmasked), also
reduces the size to 20% of the original output vo-
cabulary size without masking (denoted by CVoc)
The vocabulary sizes are presented in Table 3

We additionally also experimented with C3PO
and non-C3PO versions of a Vanilla Transformer
model (Vaswani et al., 2017) trained from scratch.

5.4 Combine Model
To convert the C3PO model’s output into the re-
quired code output, the masked tokens in the
Cmasked need to be unmasked. This is achieved
by performing a one-to-one replacement of the
masked tokens in their order of occurrence in P . If
the model generates a [CPY] token, it is replaced
with Pj which corresponds to one of the tokens
in P that were masked (Pj ∈ Pcpy). If the model
generated any other token, it is left as is.

Combined i =

{
Pj Cmaskedi = [CPY]
Cmaskedi Cmaskedi != [CPY]

5.5 Experimental Setting
All our experiments were conducted using an
NVIDIA GTX 1650 GPU with 4 GB of VRAM.
The hyperparameters chosen for each Seq2Seq
model for optimal performance on the GPU are
as follows. For the Vanilla Seq2Seq models, an
embedding size of 300, an LSTM hidden state size
of 1024 and a batch size of 64 were chosen. For the
Attention Seq2Seq models, an embedding size of
100, an LSTM hidden state size of 256 and a batch
size of 32 were chosen. The hyperparameters were
kept consistent across both versions (non-C3PO
and C3PO) of each model. All models were trained
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Trainable Parameters Training Time BLEU
Model (Version) non-C3PO C3PO non-C3PO C3PO non-C3PO C3PO
Vanilla Seq2Seq 20.3 M 12.8 M 21 h 13 h 0.44 0.51
Attention Seq2Seq 4.5 M 2.5 M 12 h 7 h 0.75 0.69
Vanilla Transformer 18.7 M 11.7 M 13 h 10 h 0.01 0.19

Table 2: Comparing non-C3PO and C3PO versions of the two models, in terms of the number of trainable parameters
(in millions), training times (in hours) and BLEU score

for 100 epochs, using the Adam optimizer with
a learning rate of 0.001, Cross-Entropy loss and
teacher-forcing rate of 0.5.

For the Vanilla Transformer model, we used a
batch size of 32, an embedding size of 512, 8 at-
tention heads and 3 encoder and decoder layers
each.

6 Results

BLEU-4 score (Papineni et al., 2002) is chosen
as the evaluation metric and reported in Table 2,
along with the model’s training time and parame-
ters. Some example translations generated by the
C3PO model are demonstrated in Table 1.

The BLEU score for the non-C3PO version was
0.44 and for the C3PO was 0.51. Therefore we
can say that using the C3PO mechanism, the model
performed relatively better than the non-C3PO ver-
sion. As for the Seq2Seq with Attention model,
the BLEU score for the non-C3PO version is 0.75
and for the C3PO version is 0.69. In this case, the
non-C3PO version performs better, but it comes at
the cost of high training time and model size.

Further, we point out the significant difference
in the number of parameters, and hence the training
time, for both the versions in Table 2. The C3PO
version has significantly fewer parameters owing
to the decrease in vocabulary size. For the Vanilla
Seq2Seq, this is a win on two counts; it achieved a
higher BLEU score and it was more efficient.

The BLEU scores of the non-C3PO and C3PO
Transformers are 0.01 and 0.19, respectively. Since
transformers are data and compute-heavy architec-
tures and we trained them on limited resources,
they perform much worse than the RNN models.

In Fig 2, we can notice that in both Vanilla and
Attention models, the C3PO version converges
much faster than the non-C3PO version. This
would lead us to believe that the C3PO versions
would perform similarly, even if they were trained
for lesser epochs than the non-C3PO version. It

Version Pseudocode Code
non-C3PO version 6495 5647
C3PO version (ours) 1984 1080

Table 3: Input (pseudocode) and Output (code) vocabu-
lary sizes in the two versions

should also be noted that while the C3PO versions
perform similarly, if not better, than the non-C3PO
versions, they do so while using only 20% of the
original vocabulary for both inputs and outputs, as
shown in Table 3. This shows that the C3PO ver-
sions are both computationally efficient as well as
data-efficient.

7 Auxiliary Experiments

7.1 Numbered CPY tags
A possible problem with the C3PO is that the us-
age of the naive algorithm for combining in Section
5.4, assumes the order of copied tokens is the same
in both pseudocode and code. To handle this, an
attempt was made to use the Seq2Seq model it-
self to generate the CPY tags and put them in the
right order. Instead of using a single [CPY] token,
each unique variable was given a token [CPY_n],
where n is a unique number. For the example
in Fig 1, the Cmasked sequence would instead be
create integer [CPY1] [CPY2].

With numbered tags, the Vanilla Seq2Seq and
Attention Seq2Seq obtained BLEU scores of 0.54
and 0.66 respectively. As this is only a marginal dif-
ference from the initial results, numbering the tags
doesn’t offer a significant benefit. However, it is in-
teresting to note that the BLEU score increases for
Vanilla Seq2Seq but reduces for Attention Seq2Seq
when tags are numbered.

7.2 Pretrained CodeT5 model
A pretrained CodeT5 model was used on the text
data (without CPY tags). It was fine-tuned on our
data from 3 hours (4 epochs) using beam search.
The results were encouraging, with a BLEU score
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of 0.85. The disadvantage of this approach lies only
in its space and time complexity, which is suited
for large datasets and high-performance compute.
For computational efficient training on commodity
hardware and a small amount of data, the C3PO
versions of Attention and Vanilla Seq2Seq would
be the best choice.

8 Conclusion and Future Work

We have introduced C3PO, a copying mechanism
that emphasises computational and data efficiency.
The methodology exploited the property of code
where most tokens remain consistent across input
and output. By masking such tokens, the vocab-
ulary sizes are reduced significantly, which also
reduced the training times. In future works, the
method for filling masked tokens in output can be
improved to fill the tokens while handling cases
where the assumption that the order of masked to-
kens would remain consistent fails.
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