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Abstract

Despite the promising evaluation results by
knowledge distillation (KD) in natural lan-
guage understanding (NLU) and sequence-to-
sequence (seq2seq) tasks, KD for causal lan-
guage modeling (LM) remains a challenge. In
this paper, we present a novel perspective of
knowledge distillation by proposing plug and
play knowledge distillation (PP-KD) to im-
prove a (student) kNN-LM that is the state-of-
the-art in causal language modeling by lever-
aging external logits from either a powerful
or a heterogeneous (teacher) LM. Unlike con-
ventional logit-based KD where the teacher’s
knowledge is built-in during training, PP-KD is
plug and play: it stores the teacher’s knowledge
(i.e., logits) externally and uses the teacher’s
logits of the retrieved k-nearest neighbors dur-
ing kNN-LM inference at test time. In contrast
to marginal perplexity improvement by logit-
based KD in conventional neural (causal) LM,
PP-KD achieves a significant improvement, en-
hancing the kNN-LMs in multiple language
modeling datasets, showing a novel and promis-
ing perspective for causal LM distillation.

1 Introduction

The effectiveness of knowledge distillation (KD)
has been extensively validated in Natural Language
Processing (NLP) along with various distilled mod-
els (Sanh et al., 2019; Jiao et al., 2019; Wang et al.,
2020) as well as emerging KD approaches (Xu
et al., 2020; Pan et al., 2020). For causal language
modeling, however, it is so rare to see a success
of KD as it is in natural language understanding
(NLU) and sequence-to-sequence (seq2seq) tasks;
even the versatile logit-based KD (Hinton et al.,
2015), which appears to work in almost any KD
scenario with any model architecture with state-
of-the-art results (Zhao et al., 2022), still does not
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show a substantial improvement in the metrics of
causal language modeling itself (e.g., perplexity) al-
though it may benefit downstream task fine-tuning
for a causal LM (West et al., 2021).

With the motivation to advance the performance
boundary, we study the k-nearest neighbor lan-
guage model (kNN-LM) (Khandelwal et al., 2020)
which is the state-of-art in causal language mod-
eling, and propose plug and play knowledge dis-
tillation (PP-KD) to enhance its result, especially
for the small-size model, by leveraging kNN log-
its from a teacher LM. Unlike conventional logit-
based KD where the teacher’s knowledge is built-in
by training the student with an auxiliary loss to fit
the teacher’s logits, PP-KD stores the teacher’s log-
its externally and uses them only at test time; thus
it is plug and play.

As Figure 1 shows, PP-KD works during infer-
ence to enhance kNN results. Compared with the
vanilla kNN-LM, it is required to additionally store
the teacher’s logits besides context representations
and targets of training examples. After retrieving
the k nearest neighbors (i.e., training contexts), we
get both of their corresponding targets and log-
its from the datastore and aggregate them into the
kNN prediction. As PP-KD is plug and play, we can
easily enable/disable it by keeping/removing the ef-
fects of logits (in the red dashed boxes in Figure 1)
on kNN prediction during inference; moreover, we
can flexibly switch the teacher we want to employ
simply by using its logits instead without retraining
like conventional KD.

We study PP-KD with two kinds of teachers:
one is a more powerful causal LM; the other is a
heterogeneous masked LM (Devlin et al., 2018).
Extensive experiments in Wiki-103 and BookCor-
pus demonstrate that PP-KD can significantly ben-
efit causal language modeling, and that a stronger
teacher or a teacher ensemble by a causal LM and
a masked LM can further improve the perplexity.

The contribution of this paper is twofold:



464

Training Contexts Targets Logits Representations Distance

Steve Jobs, CEO of


Bill Gates co-founded


Steve Jobs invented the

Apple


Microsoft


iPhone

3


4


5

Testing Context Targets Representations

Steve Jobs is the co-founder of ?

Classification

Logits Weighting

0.7


0.2


0.1

Aggregation

Interpolation

kNN 

Retrieval

Logits

Lookup

Target Weighting

0.7


0.2


0.1

Target

Lookup

Figure 1: Overview of PP-KD for the kNN-LM. The red dashed boxes indicate the external plug and play logits
in PP-KD for enhancing kNN results at test time, which can be flexibly enabled/disabled or replaced with more
informative logits by a more powerful teacher. Please note that only logits are from the teacher model; the context
representation for kNN search is still by the student model.

• We propose an effective knowledge distilla-
tion approach – PP-KD that can significantly
improve causal language modeling, especially
for small-size models.

• The proposed PP-KD demonstrates a novel
perspective on knowledge distillation with
many promising results analog to conven-
tional “built-in” KD approaches.

2 Plug and Play Knowledge Distillation
for kNN-LM

2.1 Basic Concept
Unlike the vanilla kNN-LM (Khandelwal et al.,
2020) that builds its datastore (K, V) using the hard-
label targets, PP-KD additionally builds a datastore
U for corresponding logits from the teacher model.

Formally, PP-KD needs to build datastore (K,
V , U) that stores context vectors, hard targets and
logits from the teacher respectively. (K, V) are used
in the same way as in the vanilla kNN-LM:

Phard-kNN(w∗|c∗) ∝
∑

(c,w)∈N

1w=w∗ exp
−d(c∗, c)

T
(1)

where N ⊆ (K,V) is the set of retrieved nearest
contexts c with hard targets w by querying with c∗,
d(c∗, c) is the distance1 of c∗ and c, and T is the

1As the previous work, context is represented by the Trans-
former’s last layer’s FFN input states, and distances between
contexts are the FAISS (Johnson et al., 2019) squared L2

distances.

temperature in softmax.
After retrieving the kNN training contexts, we

get their corresponding logits from U :

Plogit-kNN(w∗|c∗) ∝
∑

(c,u)∈Ñ

u× exp
−d(c∗, c)

T
(2)

where Ñ = {(c,u)|(c, ·) ∈ N} ⊆ (K,U), u ∈
R|V | is the teacher’s prediction logits given context
c.

The final kNN prediction is linearly aggregated
from Phard-kNN and Plogit-kNN:

PkNN(·) = µPhard-kNN(·) + (1− µ)Plogit-kNN(·) (3)

PkNN will be then linearly interpolated with the
backbone neural LM’s prediction PLM :

P (·) = λPkNN(·) + (1− λ)PLM (·) (4)

After the datastore (K, V , U ) are all built offline
in advance, we can perform PP-KD that is plug and
play during inference: if we want to disable it, then
we can just skip Eq (2) and set µ in Eq (3) to 1.0,
which will degrade into the vanilla kNN-LM; if we
want to switch the teacher, we can simply replace
U storing the original teacher’s logits with U ′ that
stores the new teacher’s logits.

2.2 Logits: Homogeneous VS Heterogeneous
The most straightforward way to generate logits is
using a powerful homogeneous (i.e., causal) LM
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Figure 2: The comparison of logits by (a) a causal LM and (b) a masked LM.

to generate the probability distribution over the
vocabulary for building the datastore U , as shown
in Figure 2(a).

In addition to homogeneous LMs that have simi-
lar perspectives for causal language modeling, we
propose to use a heterogeneous LM – a masked
LM – to generate logits from a different view. As
Figure 2(b) shows, for generating the logits for the
target “Microsoft” in the training example to build
datastore U , a masked LM will use both its leftward
and rightward context.

Please note it is valid to use the masked LM’s
logits in the datastore U because using masked
LM’s logits of training examples DOES NOT leak
rightward context information of test examples dur-
ing inference (see Appendix A for more details).

3 Experiments

3.1 Experimental Setting
Data Following Khandelwal et al. (2020), we use
the well-known language modeling benchmark –
WIKITEXT-103 (Merity et al., 2017) which is a
subset of English Wikipedia, consisting of 28K
selected Wikipedia articles. We follow the orig-
inal train/validation/test split of WIKITEXT-103
which contains 103M, 250K and 250K tokens re-
spectively, and use word-level perplexity as our
evaluation metric.

Model We mainly test PP-KD on the most pop-
ular GPT-style (Radford et al., 2018) architecture
which is a decoder-only Transformer with 3 dif-
ferent sizes shown in Appendix B. We tune the
hyperparameters T , µ and λ in Eq (1-4) on the
validation set.

Datastore, Indexing and kNN search We first
create the (K,V) following Khandelwal et al.
(2020), and their corresponding datastore U that
stores the teacher’s logits. We then build FAISS

index using 1M randomly sampled keys (quantized
to 64 bytes) to learn 4K cluster centroids. During
inference, we look up 32 cluster centroids for the
1K nearest neighbors.

Baselines As there is little work studying KD
for causal language modeling, as Li et al. (2021)
notes, we mainly compare PP-KD with the kNN-
LM trained from scratch as well as the conventional
logit-based KD approach which is adopted by the
most famous distilled causal LM – DistilGPT-22.

As we see causal language modeling as an end
task in this paper, we use perplexity as the metric
for evaluation. The details of model architecture,
training, evaluation and datastores are shown in
Appendix B.

3.2 Results

Table 1 shows the results of PP-KD for LMs of
different sizes. In contrast to conventional KD that
has little improvement in perplexity over the model
trained from scratch as observed by Rajbhandari
et al. (2022), PP-KD with a powerful teacher can
significantly improve the perplexity, and a more
powerful teacher tends to result in a larger improve-
ment, which is a very rare success in KD for causal
language modeling. Interestingly, even if we use
the teacher with the same size as the student, we
can still observe an improvement, which aligns
well with previous work’s observation regarding
self distillation (Furlanello et al., 2018).

After confirming that PP-KD can effectively im-
prove causal language modeling with a powerful
homogeneous (i.e., causal LM) teacher, we study
whether a heterogeneous (i.e., masked LM) teacher
can be used for PP-KD, and show the results in Ta-
ble 2. Surprisingly, the heterogeneous logits whose
perspective is different from causal LM can also

2https://huggingface.co/distilgpt2

 https://huggingface.co/distilgpt2
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Size Model Perplexity Perplexity (KD) Perplexity (PP-KD)
From scratch (no teacher) Small Mid Large Small Mid Large

Small LM 35.24 35.31 35.15 35.04 - - -
(4L-384-6H) kNN-LM 28.50 28.75 28.54 28.33 27.47∗ 26.32∗ 25.74∗

Mid LM 28.55 - 28.40 28.33 - - -
(6L-768-8H) kNN-LM 23.76 - 23.75 23.61 - 23.25∗ 22.72∗

Large LM 25.25 - - 25.35 - - -
(12L-768-12H) kNN-LM 21.76 - - 21.79 - - 21.37∗

Table 1: Results of PP-KD for models of various sizes with different causal LM teachers (we do not use a teacher
that is smaller than the student for distillation). ∗ denotes the result of PP-KD significantly (p < 0.05) outperforms
the corresponding kNN-LM trained from scratch and via conventional logit-based KD. aL-b-cH denotes the model
has a layers with dimension of b and c heads.

Model (large-size) Perplexity

LM 25.25
kNN-LM 21.76
PP-KD (homogeneous logits) 21.37
PP-KD (heterogeneous logits) 21.02
PP-KD (mixed logits) 20.83

Table 2: Perplexity of the large-size kNN-LM distilled
with logits by the large-size homogeneous (causal) and
heterogeneous (masked) teachers. Mixed refer to aver-
aging homogeneous and heterogeneous logits.

Model Cross-entropy
causal LM 4.58

masked LM 1.81

Table 3: Cross-entropy of the large-size causal and
masked LM on training examples.

benefit PP-KD, and is even marginally better than
the homogeneous teacher. The reason we suppose
is that the heterogeneous logits are more infor-
mative (reflected by much lower cross entropy as
shown in Table 3) owing to the bi-directional at-
tention that can access the rightward context in the
retrieved training example. Moreover, we mix the
homogeneous and heterogeneous logits by simply
averaging them, and observe that the mixed logits
can even further improve the result. We suspect
this is because the mixed logits play a similar role
as teacher ensemble which can benefit results, as
widely confirmed by previous KD literature.

We then verify PP-KD with mixed logits by a
larger teacher (Baevski and Auli, 2018) on the
kNN-LM with the famous DistilGPT-2 and GPT2-
small (Radford et al., 2019) architecture on both
Wiki-103 and BookCorpus3 (Zhu et al., 2015). Ac-
cording to Table 4, PP-KD significantly outper-

3We split the corpus with the ratio of 90/5/5 for train-
ing/validation/test.

Model Wiki-103 BookCorpus
PPL PPL

Teacher kNN-LM 16.1 11.7

DistilGPT-2 kNN-LM 23.2 17.9
DistilGPT-2 kNN-LM (KD) 23.1 17.3
DistilGPT-2 kNN-LM (PP-KD) 21.9 16.1

GPT2-small kNN-LM 21.8 15.9
GPT2-small kNN-LM (KD) 21.6 15.6
GPT2-small kNN-LM (PP-KD) 20.9 14.9

Table 4: A comparison between the kNN-LMs with
PP-KD (mixed logits) and those trained from scratch
and with conventional logit KD. The teacher’s architec-
ture adopted is Baevski and Auli (2018). The config-
uration details of the teacher, DistilGPT-2 and GPT2-
small are presented in Appendix B. We follow Baevski
and Auli (2018) to use adaptive input and softmax spe-
cially for Wiki-103 to handle the large vocabulary; while
for BookCorpus, we use the same BPE and vocabulary
as GPT2. PP-KD clearly outperforms the counterparts
trained from scratch or via KD for both the DistilGPT-2
and GPT2-small kNN-LMs, while it introduces negli-
gible latency overhead compared with time-consuming
kNN retrieval.

forms the counterparts trained from scratch, or via
conventional logit KD, with negligible latency over-
head, demonstrating a rare success in knowledge
distillation for causal language modeling.

4 Conclusion and Future Work

We present PP-KD – a novel perspective for lever-
aging more powerful (teacher) models to improve
state-of-the-art kNN-LMs for causal language mod-
eling. Compared with conventional “built-in” KD,
PP-KD leverages the teacher’s logits stored exter-
nally to enhance the prediction at test time and
achieves a rare success in causal LM distillation.

As a preliminary and focused study, this work
shows promising results of PP-KD in language
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modeling (as an end task), while it still has much
room for improvement (e.g., more efficient imple-
mentation, more effective and informative logits
as well as more in-depth analyses for PP-KD) and
great potential to benefit downstream tasks. We
leave these for future work and look forward to
building a connection between PP-KD and the
emerging retrieval augmented modeling in a bigger
picture.
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A Details of Logits

As mentioned in Section 2.2, logits generated by a
masked LM do not leak information. We use Figure
2 as the example to demonstrate how logits by a
masked LM are generated and used:

Bill Gates co-founded [Microsoft] Cor-
poration.

We build datastore (K, V , U) as in Table 5. At
test time, assume that we find a retrieved nearest
neighbor is the 4th entry in Table 5, meaning that
the representation of the context at test time f(ctest)
is very similar to f ("Bill Gates co-founded"), we
can use its corresponding logits generated by either
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http://arxiv.org/abs/1911.00172
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Context K V Uleft Ubi

[BOS] f ("[BOS]") Bill uleft(Bill) ubi(Bill)
Bill f ("Bill") Gates uleft(Gates) ubi(Gates)
Bill Gates f ("Bill Gates") co-founded uleft(co-founded) ubi(co-founded)
Bill Gates co-founded f ("Bill Gates co-founded") Microsoft uleft(Microsoft) ubi(Microsoft)
Bill Gates co-founded Microsoft f ("Bill Gates co-founded Microsoft") Corporation uleft(Corporation) ubi(Corporation)
... ... ... ... ...

Table 5: The datastore built for the example in Figure 2 where f(c) is the representation of context c computed
by the backbone LM, uleft and ubi are the logits generated for the token to be predicted by the causal LM
conditioned on the leftward context and the masked LM conditioned on both the leftward and rightward context,
respectively. For example, in the 4th row, uleft(Microsoft) = Pleft-to-right(w|Bill Gates co-founded) ∈ R|V | and
ubi(Microsoft) = Pmasked(w|Bill Gates co-founded [MASK] Corporation.) ∈ R|V |.

Size #Layer dmodel dffn h (K,V) U
small 4 384 1024 6 149GB 148GB
mid 6 768 1536 8 297GB 296GB
large 12 768 3072 12 297GB 296GB

DistilGPT-2 6 768 3072 12 297GB 296GB
GPT2-small 12 768 3072 12 297GB 296GB

Baevski and Auli (2018) 16 1024 4096 16 445GB 444GB

Table 6: The detailed model architecture configuration of the GPT-style language models trained on WIKI-103 in
our experiments. dmodel and dffn are the dimensions of input/output and feed-forward inner layers respectively;
h denotes the number of attention heads. All the models use a shared input/output vocabulary and embeding. For
masked LMs, we use the same model size configuration (e.g., the number of layers and dimensionality). The last
two columns report the disk size of datastores where the size of (K, V) depends on the backbone LM’s hidden
size while the size of U depends on the hidden size of the LM for logit generation. Please note that “large” and
“GPT2-small” are actually identical.

a causal LM uleft(Microsoft) ∈ R|V | or a masked
LM ubi(Microsoft) ∈ R|V | for PP-KD.

Therefore, it is clear that the logits by the masked
LM will not leak the rightward context of the test
example during inference.

B Details of Experiments

Table 6 shows the detailed model architecture in-
formation as well as the disk space cost for build-
ing datastore. Note that in practice, we save the
final layer hidden representation for storing the
logits, which can be simply mapped into proba-
bility distribution over the vocabulary by a linear
transformation with softmax activation at a negligi-
ble time cost compared with kNN search, instead
of directly saving the final probability distribution
whose space cost is huge. As shown in Table 6,
the datastore U’s space cost is on par with (K,V),
meaning that the PP-KD only needs twice as much
space as the original kNN-LM. Moreover, as we do
not perform search operations over U (remember
that we get logits from U by using indices that are
obtained by kNN search – see the example in Table
5 in Appendix A), we do not even have to load

Configurations Values
Train

Number of epochs 100
Devices 8 Nvidia V100 GPU
Max tokens per GPU 3,072
Optimizer Nesterov Accelerated Gradient

momentum = 0.99
Learning rate 1e-5, 5e-5, 1e-4, 3e-4
Learning rate scheduler cosine
Warmup 16,000

Evaluation
Maximum Context Length 512 tokens

Table 7: Detailed configuration for training and evalua-
tion.

the whole datastore U into memory4. Therefore,
given that hard disks are cheap and easy to scale,
the additional space cost for U will not a problem
in practice.

Table 7 elaborates the hyperparamters for train-
ing and evaluating models in Table 7. For the hyper-
paramters T , µ and λ, we tune them on the valida-
tion set. Specifically, for the vanilla kNN-LM, the
best configurations are: T = 10, λ = 0.25; for the
PP-KD, the best configurations are: T = 10, µ =

4For example, we can split the datastore U into many small
file pieces offline in advance. During inference, we only load
the small pieces that cover the indices.
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Context Target PLM Phard-kNN Plogit-kNN #Hit(hard)

Homarus gammarus, know as
the European lobster, is a

spieces 0.176 0.025 0.137 33

This may occur several times a
year for young lobsters, but de-
creases to once every

1 0.002 0.003 0.125 6

The two species can be distin-
guished by

a 0.046 0.031 0.121 84

Served as Officer Commanding
North - Western Area in 1946,
and as

Director 0.017 0.013 0.114 33

Air Vice Marshal Frank Head-
lam, CB, CBE (15

July 0.048 0.036 0.093 78

He took over as Air Officer Com-
manding (AOC) OPCOM from
Air Vice Marshal

Val 0.000 0.002 0.199 8

Table 8: The cases that logits help improve perplexity. Phard-kNN and Plogit-kNN refer to Eq (1) and Eq (2) respectively.
#Hit(hard) denotes the number of neighbors whose targets are correct among the the retrieved k (k = 1024) nearest
neighbors.

0.4, λ = 0.5.
Finally, we present more concrete examples in

Table 8 where hard-label kNN-LM cannot perform
well but the PP-KD works well. For these exam-
ples, Phard-kNN for the correct target is either al-
most equivalent or even lower than the backbone
LM’s probability PLM because very few retrieved
neighbors’ targets are the correct one. However, the
PP-KD addresses this problem by fully utilizing
the logits information, substantially promoting the
correct targets.


