
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 437–443

November 20–23, 2022. ©2022 Association for Computational Linguistics

437

An Empirical Study of Pipeline vs. Joint Approaches to Entity and Relation
Extraction

Zhaohui Yan*, Zixia Jia* and Kewei Tu
School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

{yanzhh, jiazx, tukw}@shanghaitech.edu.cn ∗

Abstract

The Entity and Relation Extraction (ERE) task
includes two basic sub-tasks: Named Entity
Recognition and Relation Extraction. In the
last several years, much work focused on joint
approaches for the common perception that
the pipeline approach suffers from the error
propagation problem. Recent work reconsid-
ers the pipeline scheme and shows that it can
produce comparable results. To systematically
study the pros and cons of these two schemes.
We design and test eight pipeline and joint
approaches to the ERE task. We find that
with the same span representation methods, the
best joint approach still outperforms the best
pipeline model, but improperly designed joint
approaches may have poor performance. We
hope our work could shed some light on the
pipeline-vs-joint debate of the ERE task and
inspire further research.1

1 Introduction

The Entity and Relation Extraction (ERE) task aims
to extract entities and their relations from unstruc-
tured text and is a fundamental task in the area
of information extraction. There are two typical
approaches to the ERE task: one is the pipeline
approach (Chan and Roth, 2011) consisting of two
models for the two sub-tasks, Named Entity Recog-
nition (NER) and Relation Extraction (RE), respec-
tively. Another is the joint approach that models
the two sub-tasks jointly (Miwa and Sasaki, 2014;
Zheng et al., 2017; Wang and Lu, 2020; Eberts and
Ulges, 2020).

Pipeline approaches do not share any parameters
between sub-tasks and decode sequentially. For
joint approaches, one typical method is to share en-
coders across sub-tasks and performs pipelined de-
coding (Miwa and Bansal, 2016). Another method

∗ Authors with symbol * have equal contributions and
Kewei Tu is the corresponding auther.

1Source code is availabel at https://github.com/
yanzhh/JointERE.

uses joint inference in addition to shared encoders,
for example, Wang and Lu (2020) cast the ERE task
into a table-filling problem. Among these joint ap-
proaches, some span-based joint approaches (Sun
et al., 2019) have different task-dividing strategy.
Span-based models embed each span for an input
sentence and there are O(n4) possible span pairs.
To reduce the high complexity, previous span-based
joint approaches pre-identify entity spans and then
use a cross-task module for the entity and relation
type deduction. To clarify the definitions, we define
a purely joint approach as a method with only a
cross-task module for sub-tasks, a purely pipelined
approach has no cross-task module.

It is generally believed that the pipeline approach
suffers from the problem of error propagation,
while the joint approach could leverage interactions
between sub-tasks. However, recent research from
Zhong and Chen (2021) shows that the feature con-
fusion problem of the joint model may negate its
benefits.There is also some work (Yan et al., 2021)
that disagree with their conclusion and propose a
new state-of-the-art approach. However, these stud-
ies are based on different settings and hence cannot
be directly compared.

The debate on pipeline vs. joint approaches mo-
tivates us to perform a systematically empirical
study. For a fair comparison, we design pipeline
and joint approaches with similar settings. the
pipeline works recently (Zhong and Chen, 2021;
Ye et al., 2022) use span-based models to better
leverage span-level features, we also adopt this
setting. For previous span-based joint approaches
(Sun et al., 2019) divide the NER task into two
sub-tasks, this leads to a second level of pipeline
vs. joint dilemma which we also wish to investi-
gate. Specifically, we consider four sub-tasks for
ERE: entity identification (Eid), entity classifica-
tion (Ecls), relation identification (Rid) and relation
classification (Rcls). We design ten modules for
these sub-tasks and connect them to build eight

https://github.com/yanzhh/JointERE
https://github.com/yanzhh/JointERE

438

Module
No.

Ei
1
Ec
2
Ri
3
Rc
4
Ner

5
Re
6
EcRi

7
NerRi

8
EcRe

9
NerRe

10

NEREid • • • •
Ecls • • • • • •

RE Rid • • • • • •
Rcls • • • •

No. Approaches No. Approaches
a1 Ei- Ec- Ri- Rc a5 Ei- EcRi
a2 Ei- Ec- Re a6 Ei- EcRe
a3 Ner- Ri- Rc a7 NerRi- Rc
a4 Ner- Re a8 NerRe

Table 1: The upper half is the list of ten modules. The
dot in columns indicates the sub-tasks of a module. The
lower half is the list of eight approaches

approaches as shown in Table 1. Following the
recent work (Jia et al., 2022a), we use high-order
inference to better exploit the correlation between
sub-tasks. To experiment with the full joint span-
based approach, we use span pruner in addition
to an entity pre-identifier for our joint approaches.
With the high recall of the span pruner, our last ap-
proach a8 can be viewed as a full joint approach.

Our empirical study shows that with the same
embedding method, the pipeline approach could
achieve competitive results even compared to some
joint approaches, but the full joint approach still
outperforms all the pipeline approaches.

2 Our methods

As mentioned above, there are ten modules solv-
ing different sub-task combinations and eight ap-
proaches. The former four approaches are fully
pipelined, the final one is the fully joint approach
and the others are approaches with cross-task mod-
ules. We first introduce all the modules and then
describe the training and decoding processes of the
approaches.

We denote an input sequence with n tokens as
X = {x1, x2, ..., xn}. m candidate spans of these
tokens can be denoted as S = {si|1 ≤ i ≤ m},
START(i) and END(i) represent the head and tail
token indices of si. The gold entity label set and
the gold relation label set are represented as E and
R respectively.

2.1 Encoding

For each module, we feed the token sequence into
a pre-trained language model. For each token xi,
we use the embedding of the first sub-token from
the last layer as the contextualized representations
xi.

Follow Zhong and Chen (2021), for a given span

si ∈ S, the span representation bi is defined as:

bi = [xSTART(i);xEND(i);ϕ(si)]

where ϕ(si) ∈ Rdl is a learned embedding of the
span length. For each module, we feed the span
representations into a two-layer MLP to get an
Rds-dimension hidden vector hi and for modules
involving RE, we obtain span pair representations
in a similar way:

hi = MLPspan(bi), hij = MLPrel([bi;bj])

2.2 Single-task modules
For modules 1-6, the span or span pair representa-
tions are fed into a linear layer to score the span or
span pair for each label.

gi = Linearent(hi), gij = Linearrel(hij)

gi ∈ Rdent and gij ∈ Rdrel . For classification
modules Ec and Rc, dent = |E| and drel = |R|.
For module Ner involving both entity identifica-
tion and classification, we add a Null label repre-
senting that the span is not an entity, so we have
dent = |E| + 1. Similarly, we have drel = |R|+ 1
for module Re. For the identification modules Ei
and Ri, we set dent = drel = 1, meaning that we
only score the existence of an entity or relation and
fix the non-existence score to zero. The prediction
of a span or a span pair is the label with the largest
score among the gold label set, or we identify the
span or relation with a score larger than 0.

2.3 Cross-task modules
Our cross-task modules adopt high-order inference
(Jia et al., 2022b). There are two types of scores in
the modules: unary scores and ternary scores.

The unary score of a span or a span pair captures
the prior distribution information and is computed
solely based on the feature of the variable. The
unary score gi for the span or gij for the span pair
is the same as defined in single-task modules.

The ternary score is defined cover a span pair that
captures the three-way correlation between their
entity labels and the label of the relation between
them. Specifically, for each span pair (si, sj), we
calculate a score tensor fij ∈ R(dent)2(drel) as fol-
lows. First, two separate linear transformations
project the head and tail span representations into
dt-dimension hidden space:

ht
i = Lineart

head(bi), ht
j = Lineart

tail(bj)

439

Then a weight tensor Wt ∈ Rdt×(dent)2(drel) is used
to transform the element-wise product ht

i ◦ ht
j into

the score tensor fij :

fij = (ht
i ◦ ht

j)Wt

High-order Inference The first-order inference
is based solely on the unary score and the high-
order inference is based on both the unary score
and the tenary score. We follow Jia et al. (2022a)
and the Mean-field Variational Inference (MVFI)
for high-order inference which iteratively updates
a factorized variational distribution Q to approxi-
mate the posterior label distribution. Specifically,
Qi(e) represents the probability of span si having
entity type e and Qij(r) represents the probabil-
ity of spans si, sj having a relation of type r. For
simplicity, we use gi(a), gj(b), gij(r), fij(a, b, r)
to represent the unary and ternary scores of spans
si, sj having entity types a, b and a relation of type
r between them. Messages delivered for entity and
relation types are updated as follows:

F T
i (a)

=
∑
j

∑
b

QT−1
j (b)

∑
r

(
QT−1

ij (r)fij(a,b,r)+QT−1
ji (r)fji(b,a,r)

)
F T
ij(r) =

∑
ei

∑
ej

QT
i (ei)Q

T−1
j (ej)fij(ei,ej ,r)

The messages are then used to update the poste-
rior distributions Q:

QT
i (e) ∝ exp(gi(e) + F T

i (e))

QT
ij(r) ∝ exp(gij(r) + F T

ij(r))

With the distribution Q, we choose the label with
the highest probability. For EcRi and NerRi,
the Qij > 0.5 represents that the relation exists
between the span pair (si, sj).

2.4 Training and decoding
Training With the modules defined above, we
build eight approaches as shown in Table 1. a8
is an end-to-end joint model consisting of only
NerRe and all the other approaches are pipelines
of two or more modules. We train different
modules in an approach independently without
sharing any parameters. We train module Ei and
Ner on all possible O(nL) spans with a span
length limit L. For a7 and a8, we cannot train
the cross-task modules NerRi and NerRe on all
spans for the high complexityO(n2L2|E|2|R|) , so
we use a pre-trained pruner (see Appendix A for

details) which identifies O(n) most likely spans
for both approaches and reduce the computational
complexity to O(n2|E|2|R|). For the downstream
modules in a1-a7, we train them on the gold entity
set or the span pair set built by enumerating all the
spans si, sj in the gold entity set following Zhong
and Chen (2021). For example, with the span set
S = {s1, s2, ..., sm}, we build the span pair set
{(s1, s2), ..., (s1, sm), ..., (si, si+1), ..., (si, sm), ...}.

There are two loss functions for these modules:

Lent = −
∑
si∈S

logPi(e
∗
i), Lrel = −

∑
si,sj∈S,i̸=j

logPij(r
∗
ij)

e∗i and r∗ij are the gold labels for span si
and span pair (si, sj) respectively. For cross-
task modules, we have Pi(ei) = Qi(ei) and
Pij(rij) = Qij(rij); for the other modules, we
have Pi(ei) = Softmax(gi(ei)) and Pij(rij) =
Softmax(gij(rij)). The training objective of a
module is to minimize L = IentLent+IrelLrel where
the Ient, Irel indicate whether the module predicts
entities and relations respectively. High-order in-
ference with the MFVI is end-to-end differentiable.

Decoding For the pipeline approaches a1-a7 ,
the decoding is a cascade process. The upstream
module is decoded first and each downstream mod-
ule builds the input using the output of the upstream
module.

3 Experiments

3.1 Experimental settings

Datasets We experiment on two popular relation
extraction datasets: ACE2005 (Christopher Walker
and Maeda, 2006) and SciERC (Luan et al., 2018).
We adopt the official training/validation/testing
splits.

Evaluations We follow previous works and use
the F1 scores with micro-averaging as the evalua-
tion metric.

Specifically, for the NER task, a predicted en-
tity is considered correctly identified (Ent-I) if its
boundary matches the corresponding gold entity
and correctly classified (Ent-C) if its type also
matches. For RE tasks, the predicted relation is
correctly identified (Rel-I) if the boundaries of its
endpoints are correct and correctly classified (Rel-
C) if the relation type matches the corresponding
gold relation. To evaluate both tasks, the strict
evaluation (Rel+-I and Rel+-C) requires correctly

440

Approaches
ACE2005 SciERC

Ent-I Ent-C Rel-I Rel-C Rel+-I Rel+-C Ent-I Ent-C Rel-I Rel-C Rel+-I Rel+-C
a1 Ei- Ec- Ri- Rc 94.41 88.29 71.52 66.56 66.53 62.75 79.17 67.06 51.47 47.03 38.10 35.39
a2 Ei- Ec- Re 94.41 88.29 72.01 67.30 67.30 63.66 79.17 67.06 51.41 47.52 38.04 35.56
a3 Ner- Ri- Rc 94.51 88.53 71.75 66.88 67.02 63.18 79.44 67.41 51.63 47.37 37.79 35.11
a4 Ner- Re 94.51 88.53 71.99 67.50 67.35 63.73 79.44 67.41 52.43 48.68 38.32 35.86
a5 Ei- EcRi- Rc 94.41 88.14 71.30 66.37 67.09 63.12 79.17 66.75 49.90 45.51 37.15 34.20
a6 Ei- EcRe 94.41 87.94 71.09 66.46 67.06 63.81 79.17 66.42 50.10 46.31 37.36 34.84
a7 NerRi- Rc 94.55 88.60 70.31 66.20 67.01 63.51 79.31 67.63 47.31 43.75 36.70 34.25
a8 NerRe 94.57 88.51 71.50 67.34 67.71 64.66 79.37 68.01 51.26 47.51 40.05 37.42

Table 2: F1 scores on ACE2005 and SciERC

Rel+-C ACE2005 SciERC
P R F1 P R F1

Ri-Rc 73.83 69.30 71.49 65.22 66.35 65.75
Re 74.60 69.81 72.10 67.71 67.37 67.52

Table 3: The result of Rel+-C for experiments of Ri-Rc
and Re with gold entities.

predicted boundaries of its endpoints and the cor-
rectness of both entities and relation types (or rela-
tion existence).

Implementation details Following previous
work, we use bert-base-uncased (Devlin et al.,
2019) for experiments on ACE2005 and scibert-
scivocab-uncased (Beltagy et al., 2019) for exper-
iments on SciERC. We consider max span length
L = 8 for ACE2005 and L = 12 for SciERC. We
run each experiment setting six times and report
the average F1 scores. More hyper-parameters and
details are in Appendix B. A significance analysis
is done with the permutation test for the results
of every two approaches and we reject the null
hypothesis when p < 0.05.

3.2 Experimental results
The main results of the eight approaches are shown
in Table 2. We compare the classification F1 scores
and the identification results are shown.

The results of purely pipeline approaches
Comparing the results of a1-a4, we can see that
a4 is the best pipeline approach for almost all clas-
sification evaluations. We can conclude that divid-
ing the NER or RE task into pipelines does not
help the entire ERE task. From the results of a2,
a3 and a4, we could find out that the dividing
of RE (a3 vs. a4) leads to a larger performance
drop than the dividing of NER (a2 vs. a4). To
exclude the effect of error propagation from NER
task, we do extra experiments with gold entities for
Ri-Rc and Re. The results are shown in Table 3

and Ri-Rc has a large performance drop with Re.
Dividing RE task brings a negative effect to the
approaches. We guess because the identification
and classification are highly correlated sub-tasks, if
they are both difficult, then solving them jointly in
one module can promote the performance of both.
The entity sub-tasks are not so difficult, especially
on ACE2005, so the improvement of a3 or a4 over
a1 or a2 on Ent-C is not significant.

The results of approaches with cross-task We
compare the results of all the joint approaches: a5
to a8. We observe that a8 is better than the other
three on almost all the evaluations except for Ent-C
on ACE2005. We first compare EcRi and NerRi
to EcRe and NerRe. The Ent-C results of a5 are
higher than those of a6 on both datasets and a7
is better than a8 on ACE2005, but for the results
of Rel-I and Rel+-I, a8 outperforms a7 and a6
outperforms a5 on most evaluations. We can con-
clude that EcRe and NerRe are better than EcRi
and NerRi. We guess it is the reason that the en-
tity labels of a span pair have a stronger correlation
with their relation label than with the existence of
their relation. Then from the results of a5 vs. a7
and a6 vs. a8, we wish to investigate the effect
of a separate entity identifier. For a5 and a7, we
cannot clearly judge which is better, but for a6
and a8, a8 significantly outperforms a6 on most
evaluations which shows that the separate Ei hurt
the performance of the cross-task module for the
error propagated to the downstream modules. Ei
has much lower performance on SciERC than on
ACE2005, so we guess it brings more performance
drop on SciERC than on ACE2005. Comparing
the results of a1 vs. a5, a2 vs. a6, and we can
see that the EcRi and EcRe modules have lower
the evaluation results of Ent-C and Rel-I and the
performance gap between a1 and a5, a2 and a6
of Rel+on SciERC is also more than on ACE2005.
This gives us the insight that the cross-task module

441

ACE2005 SciERC
P R F1 P R F1

Pruner
train 34.47 99.89 51.25 25.13 99.98 40.17
dev 33.89 99.60 50.34 24.92 99.01 39.82
test 34.17 99.65 50.89 25.35 99.05 40.37

Ei
train 99.92 99.93 99.92 99.91 99.96 99.94
dev 93.23 94.16 93.69 78.78 82.48 80.58
test 93.94 94.87 94.41 78.43 79.93 79.17

Table 4: Comparison of Ei and the pruner on both
datasets

may be more sensitive to input error than the single-
task module at least for our high-order inference.

The comparison of pipeline and joint ap-
proaches Comparing all the pipeline and joint
approaches, the common pipeline structure a4 is
comparable to all the other approaches except for
a8. In particular, a4 outperforms a6, which has
a similar structure to some previous joint models
(Sun et al., 2019), on almost all evaluations. It
shows that pipeline and joint approaches could have
comparable performance with the same embedding.
But even with the same embedding method, the
fully joint approach a8 with the pruner has signifi-
cantly better performance than a4 on Rel+.

3.3 Analysis
To further investigate the effect of the input error
on the joint modules, we conduct extra experiments
on the following approaches:

• Ei-NerRe: In this approach, we replace the
pruner with a pre-trained Ei module in ap-
proach a8. We could treat the Ei module as
an entity pruner with lower recall but much
higher precision compared to the pruner we
used (refer to Table 4). Meanwhile, as the
NerRe module could identify the existence
of entities, it could fix some input errors com-
pared to EcRe in a6.

• NerRe*: It is the NerRe module with no
joint inference. NerRe* only shares encoders
across NER and RE sub-tasks and it could be
treated as a less complex joint module com-
pared to NerRe.

From the results of Ei-EcRe vs. Ei-NerRe in
Table 5, we observe that, as NerRe could reduce
the impact of wrongly predicted entities, the latter
approach has a slight but not significant advantage
over the former on SciERC. When there are only
a small amount of input errors, NerRe has a sig-
nificant advantage over Ei-EcRe and Ei-NerRe

ACE2005 SciERC
Ent-C Rel-C Rel+-C Ent-C Rel-C Rel+-C

Ei-EcRe 87.94 66.46 63.81 66.42 46.31 34.84
Ei-NerRe 88.21 66.97 64.65 65.92 46.71 35.05
NerRe 88.51 67.34 64.66 68.01 47.51 37.42

Table 5: The F1 scores of Ri-EcRe, Ri-NerRe and
NerRe.

ACE2005 SciERC
Ent-C Rel-C Rel+-C Ent-C Rel-C Rel+-C

Ei-NerRe 88.21 66.97 64.65 65.92 46.71 35.05
Ei-NerRe* 88.25 66.90 64.15 67.34 47.25 36.01
NerRe 88.51 67.34 64.66 68.01 47.51 37.42
NerRe* 88.63 66.67 64.05 67.64 47.02 36.72

Table 6: The F1 scores of NerRe, NerRe* with differ-
ent entity pruner. “Ei-” means using a pre-trained Ei
module; otherwise, we use the pruner.

on SciERC. Surprisingly, the result is different on
ACE2005. NerRe and Ei-NerRe achieve compa-
rable performance. This may come from the differ-
ent recalls of Ei on the two datasets. According to
Table 4, Ei has a much lower recall on the SciERC
test dataset than on ACE2005 in comparison to the
pruner.

For the same reason, we also see a similar phe-
nomenon in the results of NerRe vs. NerRe* in
Table 6. Replacing the pre-trained Ei with the
pruner, we could find large performance improve-
ment on the Rel+-C metric for both NerRe and
NerRe* on SciERC. On the other hand, the pruner
does not show any advantage over Ei on ACE2005.
Ei-NerRe performs much worse on SciERC than
on ACE2005 in comparison to Ei-NerRe*, which
also shows that the NerRe module is more sensi-
tive to the input error than the NerRe* module.

4 Conclusion

In this paper, we empirically study several pipeline
and joint approaches of the ERE task. We find
that pipeline approaches could achieve quite com-
petitive results with some joint approaches, but
with span pruning and high-order inference, the full
joint model could still outperforms the pipeline ap-
proaches. We observe that if the tasks have strong
correlations, a properly designed joint approach
tends to have higher performance.

Acknowledgements

This work was supported by the National Natural
Science Foundation of China (61976139).

442

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-

ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Yee Seng Chan and Dan Roth. 2011. Exploiting
syntactico-semantic structures for relation extraction.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 551–560, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Julie Medero Christopher Walker, Stephanie Strassel
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Markus Eberts and Adrian Ulges. 2020. Span-based
joint entity and relation extraction with transformer
pre-training. In ECAI 2020, pages 2006–2013. IOS
Press.

Zixia Jia, Zhaohui Yan, and Kewei Tu. 2022a. High-
order inference for entity recognition, relation extrac-
tion. and event extraction. In Technical report.

Zixia Jia, Zhaohui Yan, Haoyi Wu, and Kewei Tu.
2022b. Span-based semantic role labeling with ar-
gument pruning and second-order inference. In
Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pages 10822–
10830. AAAI Press.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh
Hajishirzi. 2018. Multi-task identification of entities,
relations, and coreference for scientific knowledge
graph construction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3219–3232, Brussels, Belgium.
Association for Computational Linguistics.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using LSTMs on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1105–1116, Berlin,
Germany. Association for Computational Linguistics.

Makoto Miwa and Yutaka Sasaki. 2014. Modeling joint
entity and relation extraction with table represen-
tation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1858–1869, Doha, Qatar. Associa-
tion for Computational Linguistics.

Changzhi Sun, Yeyun Gong, Yuanbin Wu, Ming Gong,
Daxin Jiang, Man Lan, Shiliang Sun, and Nan Duan.
2019. Joint type inference on entities and relations
via graph convolutional networks. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1361–1370, Florence,
Italy. Association for Computational Linguistics.

Jue Wang and Wei Lu. 2020. Two are better than
one: Joint entity and relation extraction with table-
sequence encoders. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1706–1721, Online. As-
sociation for Computational Linguistics.

Zhiheng Yan, Chong Zhang, Jinlan Fu, Qi Zhang, and
Zhongyu Wei. 2021. A partition filter network for
joint entity and relation extraction. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 185–197, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Deming Ye, Yankai Lin, Peng Li, and Maosong Sun.
2022. Packed levitated marker for entity and relation
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4904–4917, Dublin,
Ireland. Association for Computational Linguistics.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing
Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction
of entities and relations based on a novel tagging
scheme. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1227–1236, Vancouver,
Canada. Association for Computational Linguistics.

Zexuan Zhong and Danqi Chen. 2021. A frustratingly
easy approach for entity and relation extraction. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 50–61, Online. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/P11-1056
https://aclanthology.org/P11-1056
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://ojs.aaai.org/index.php/AAAI/article/view/21328
https://ojs.aaai.org/index.php/AAAI/article/view/21328
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/D18-1360
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.18653/v1/P16-1105
https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.3115/v1/D14-1200
https://doi.org/10.18653/v1/P19-1131
https://doi.org/10.18653/v1/P19-1131
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.18653/v1/2020.emnlp-main.133
https://doi.org/10.18653/v1/2021.emnlp-main.17
https://doi.org/10.18653/v1/2021.emnlp-main.17
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/2022.acl-long.337
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.18653/v1/P17-1113
https://doi.org/10.18653/v1/2021.naacl-main.5
https://doi.org/10.18653/v1/2021.naacl-main.5

443

A Pruner

Pruning strategy For a given token sequence
X = {x1, x2, ..., xn}, the pruner scores the exis-
tence for each possible spans with the length limita-
tion L. We rank the spans by their scores and filter
out top K as the candidate spans. Basically we filter
out the spans according to a ratio to the length of
the sentence. As the gold span number is not strict
linear with the sentence length, there is a upper
bound of the gold span number for each sentence.
We set a upper limit mu for candidate span number
of each sentence and a lower limit ml to avoid the
zero candidate span for very short sentences. So
the number of candidate spans of a sentence length
n is K = max(ml,min(mu, α ∗ n)), where α is
the top-K ratio. For both ACE2005 and SciERC
datasets, we take α = 0.5,ml = 3,mu = 18.

Span representation and scoring The model
first embed each token, then products the span rep-
resentations by the tokens inside the spans. The
first sub-token embeddings from the last layer of a
pre-trained language model is used as the contextu-
alized representation xi for each token xi.

We use two kinds of embedding layers: bi-affine
and self-attention pooling for span encoding. For a
span si with its tokens (xSTART(i), ..., xEND(i)), its
bi-affine representation is a dbiaf-dimension vector:

hb(si) = [xSTART(i); 1]
⊤Wb[xEND(i); 1]

The self-attention pooling function use the span’s
token representations as the keys and values, and a
linear layer scores the keys to get the weight of the
values.

wj ∝ Linearatt(xj)

ha(si) =
∑

START(i)≤j≤END(i)

wjxj

Then a two-layers MLP projects the concatenation
of these representations into a dcat-dimension hid-
den space for the final span representation:

h(si) = MLP([hb(si);ha(si)])

The span representation of si is feed into a linear
layer to get the score gi:

gi = Linear(h(si))

Training and evaluation We train the pruner as
an identifier, the training loss is the binary cross-
entropy:

Loss = −
∑
i

pi log(qi) + (1− pi) log(1− qi)

pi = 1 if the span si is an entity span otherwise
pi = 0 and qi = Sigmoid(gi).

For the evaluation, the pruner produces a can-
didate span set and calculates the f1 score. We
choose the best model on dev sets.

B Hyper-parameters and Implementation
Details

We tune the hidden size of MLPspan and MLPrel
among [200, 300, 400] for each module. The learn-
ing rate is tuned among [1e-5, 2e-5, 5e-5] and
dropout rate is tuned among [0.1,0.2,0.3].

Setting Value
Pruner

dbiaf 768
dcat 768
α 0.5
ml 3
mu 18

Modules encode
MLPspan 200
MLPrel 400

High-order inference
iterate step 3
dt 200

Other settings
epochs for
Ei, Ec, Ri,Rc, Ner, Re

200(SciERC)
100(ACE2005)

epochs for
EcRi, EcRe

200(SciERC)
100(ACE2005)

epochs for
NerRe

300(SciERC)
200(ACE2005)

batch size 20
dropout rate 0.1

learning rate 1e-5(SciERC)
2e-5(ACE2005)

lr decay 1e-05
warm-up rate 0.5
gradient clipping 5

Table 7: Summary of hyper-parameters

