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Abstract

Many recent perturbation studies have found
unintuitive results on what does and does not
matter when performing Natural Language Un-
derstanding (NLU) tasks in English. Coding
properties, such as the order of words, can often
be removed through shuffling without impact-
ing downstream performances. Such insight
may be used to direct future research into En-
glish NLP models. As many improvements in
multilingual settings consist of wholesale adap-
tation of English approaches, it is important to
verify whether those studies replicate or not in
multilingual settings. In this work, we replicate
a study on the importance of local structure,
and the relative unimportance of global struc-
ture, in a multilingual setting. We find that the
phenomenon observed on the English language
broadly translates to over 120 languages, with
a few caveats.

1 Introduction

A recent research trend has explored the sensitivity,
or insensitivity, of neural language models to differ-
ent perturbations of texts (Pham et al., 2021; Sinha
et al., 2020, 2021; Gupta et al., 2021; O’Connor and
Andreas, 2021; Taktasheva et al., 2021; Clouatre
et al., 2022). Their findings may be central in direct-
ing future NLP research by providing insight into
which coding property (Kulmizev and Nivre, 2021)
of language are most valuable to performing Natu-
ral Language Understanding (NLU) tasks. As re-
search in English NLP tends to be adapted to other
languages, such as through single language adap-
tation of BERT-style models (Devlin et al., 2019;
Cui et al., 2019; Le et al., 2019; Martin et al., 2019;
Antoun et al., 2020; Carmo et al., 2020; de Vries
et al., 2019; Malmsten et al., 2020; Polignano et al.,
2019; Nguyen and Tuan Nguyen, 2020) or multilin-
gual adaptations of the same architecture (Lample
and Conneau, 2019; Clark et al., 2021; Xue et al.,
2020, 2021; Liu et al., 2020; Devlin et al., 2019),

it is vital that we verify how insights derived from
the English language generalize to other languages.

One such coding property, the local structure of
text, has recently been shown to be ubiquitously
relied upon by both neural language models (Cloua-
tre et al., 2022) and humans (Mollica et al., 2020)
to understand text in English. The global structure
of text only sometimes being necessary for a model
to perform NLU tasks (Clouatre et al., 2022). Such
results motivate hierarchical approaches to neural
language model development, where one would
first build meaning locally and then reason over
the global context if necessary. However, we must
verify that the importance of that coding property
is not merely an artifact of the English language.

In this short paper, our contributions are as fol-
lows:

• We adapt and replicate the findings of Cloua-
tre et al. (2022) in a multilingual setting to ver-
ify their generality and find that their conclu-
sions regarding both local and global structure
broadly apply to most of the 120 languages
surveyed.

• We provide analysis for why text using Chi-
nese Characters as its script may be more re-
silient to local perturbations and highlight the
importance of testing improvements in En-
glish neural modeling in other languages.

2 Related Work

Text Perturbations and Structure Probing Sev-
eral text perturbation schemes have been explored
to probe what kind of structure does and does not
matter for neural models performing NLU. Sankar
et al. (2019) explores both shuffling and revers-
ing utterances and words in a generative dialogue
setting, highlighting models’ insensitivity to the
order of conversational history. Pham et al. (2021)
explores shuffling n-grams for different values of
n, which highlights the insensitivity of pretrained
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Transformer models. Sinha et al. (2020) explores
shuffling of words on textual entailment tasks, high-
lighting models’ insensitivity to such perturbations.
Finally, Taktasheva et al. (2021) extend perturba-
tion studies to Swedish and Russian and performs
perturbations by shuffling syntactic phrases, rotat-
ing sub-trees around the root of the syntactic tree
of a sentence, or simply shuffling the words of the
text.

These approaches share the main limitation of re-
quiring automatic parsing tools or well-developed
tokenizers to define words. This limits their appli-
cability in a multilingual setting. Priors regarding
the form of the text, such as the presence of white-
space delimited words, limit the generalizability of
most of these studies.

Clouatre et al. (2022) proposes a suite of con-
trollable perturbations on characters and subwords,
which should be compatible with almost any writ-
ten language, as well as a metric quantifying per-
turbations to the local and global structure that
measures perturbations on a character-level.

3 Experiments

We extend the perturbation studies of Clouatre
et al. (2022) to a multilingual setting. We perform
those experiments on eight popular cross-lingual
tasks (Hu et al., 2020; Ponti et al., 2020; Liang
et al., 2020) covering over 120 languages. This
will shed light on what languages, if any, do not
share the same sensitivity to local structure and
insensitivity to global structure as English.

3.1 Metric and Perturbations

The CHRF-2 (chrF) (Popović, 2015) metric mea-
sures the amount of character bi-gram overlap be-
tween a perturbed text and the original text. This
measure represents the amount of local structure
that has not been perturbed in a text.

The Index Displacement Count (IDC) (Clouatre
et al., 2022) metric measures the average absolute
distance traversed by every character in a perturbed
text. An IDC of 0.3 would mean that, on average,
every character has traversed 30% of the length of
the text. This measure represents the amount of
global perturbations applied to a text.

The compression rate (Comp) (Xue et al., 2021)
represents the total length of the text in terms of
characters divided by the total length of the text
once tokenized. Since most of our models either
use subwords or tokenize characters directly, there

are no out-of-vocabulary tokens to be counted. The
compression rate is then used as a proxy for vocabu-
lary destruction of pretrained models, an important
confounder for the importance of local structure.

The scholar is typesetting.
ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

hT eshcoarl i stpyseteitn.g

The scholar is typesetting.
ng.cholThe ss tyar pesettii

ρ ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

Figure 1: From top to bottom: Neighbor Flipping with
ρ = 0.5, Phrase Shuffling with ρ = 0.5

We perform perturbations by altering the order
of subwords and characters present in the text.
Three types of perturbations are applied.

Full shuffling completely randomizes the order
of the subword or characters.

Neighbor flipping flips a subword or character
with its neighbor with a controllable probability
ρ , providing local perturbations while maintaining
much of the absolute position of the tokens.

Phrase shuffling randomly builds phrases of
subwords or characters of controllable average
length with a parameter ρ and shuffles those
phrases, providing a minimal amount of local per-
turbations for a large amount of change in absolute
position.

Simple examples of those perturbations are
shown in Figure 1, pseudocode and details are
present in the Appendix B.

Task n Languages Task Type Metric

PAWS-X 7 Paraphrase Detection ACC
XNLI 15 NLI ACC
QAM 3 Text Classification ACC

QADSM 3 Text Classification ACC
WPR 7 Page Ranking nDCG

XCopa 11 Commonsense Reasoning ACC
BUCC 5 Sentence Retrieval F1

Tatoeba 122 Sentence Retrieval F1

Table 1: Summary information of the different tasks
used.

3.2 Experimental Details
All experiments are conducted on three pre-
trained cross-lingual models. The XLM-RoBERTa-
Base (Lample and Conneau, 2019), BERT-Base-
Multilingual-Cased (Devlin et al., 2019) and the



287

0.2 0.4 0.6 0.8 1.0
Character bigram F-score

0.125

0.150

0.175

0.200

0.225

Av
g 

Sc
or

e
Benchmark
Full Shuffle
Phrase Shuffle
Neighbor Flip
Subword-Level Perturbations
Character-Level Perturbations

1.6 1.8 2.0 2.2
Compression Rate

0.00.10.20.3
IDC

Figure 2: Plotted are the relations between the different choices of metrics measuring the amount of perturbation
and the average performance of all 3 models on all tested datasets. Left is more perturbed, up is better performance.
The X-axis of the IDC metric is inverted for clearer comparison.

Canine-S (Clark et al., 2021) model are used. The
Canine model is a tokenization-free pretrained
model, which lets us isolate the impact of subword
destruction on the findings.

The zero-shot cross-lingual setting (Hu et al.,
2020) is used for all experiments. The model is
first finetuned on the English version of the dataset
and evaluated without further tuning on all target
languages.

The English version on which the model is fine-
tuned is kept unperturbed, while the target language
text on which the model is evaluated goes through
several perturbations. We perform a total of 43 dif-
ferent perturbations on every task and language and
obtain their performance. All models are finetuned
on five different random seeds, and all perturba-
tions are performed on five different random seeds,
for a total of 25 evaluations for every model on
every task, every language present in the tasks, and
every perturbation setting. 1

A total of 8 cross-lingual tasks selected from the
most popular cross-lingual benchmarks (Hu et al.,
2020; Liang et al., 2020; Ponti et al., 2020) cover-
ing over 120 languages are used for evaluation. 2

Summary information of the tasks can be found in
Table 1. 3

3.3 Results and Discussion

In Figure 2, we observe the trends reported by
Clouatre et al. (2022) to be broadly true in a cross-

1Detailed training and testing hyperparameters and process
are present in the Appendix A and details on the specific
perturbations in Appendix A.

2Extractive tasks such as extractive QA are not compatible
with our perturbations, as the answer would also be perturbed
and were not considered.

3As we use all 122 languages in the Tatoeba dataset, which
vary from 100 to 1000 possible sentences to retrieve, the F1
score is more appropriate as an evaluation of performance than
the accuracy used in the XTREME benchmark.
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Figure 3: Rank-correlation matrix between the different
models’ performance to perturbed samples on the and
the perturbation quantified by the different metrics. The
higher the value the better the metric explains the degra-
dation in performance.

lingual setting. Specifically, the more local pertur-
bations are applied to a text, the more degradation
in the understanding of that text can be expected,
which shows that model does rely on the local
structure to build understanding. The perturbations
to the global structure are shown to be a much
poorer explanation for the degradation in perfor-
mance than the perturbation to the local structure.
The compression rate is highly correlated with a
model’s performance and the local structure, mak-
ing it a potential confounder for the degradation
in performance. However, the trend in local struc-
ture holds with subword-level perturbations, unlike
with the compression rate, which is not affected by
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Figure 4: Rank-correlation matrix between the different
task’s performance to perturbed samples and the pertur-
bation quantified by the different metrics. The higher
the value the better the metric explains the degradation
in performance.

perturbations to the order of subwords, as well as
holding for the vocabulary-free Canine model, as
shown in Figure 3. This makes it more likely that
the cause for the degradation in performance is the
local structure perturbation, the destruction of the
vocabulary being incidental.

3.3.1 PAWS-X
Figure 4 shows the rank-correlations of a model’s
performance over the different tasks with the dif-
ferent measures of perturbation. The overall trends
are stable in all but one task, PAWS-X. Much
like the CoLA task (Warstadt et al., 2019) in the
GLUE Benchmark (Wang et al., 2019), it is possi-
ble to build tasks that require the specific order of
words to be successfully completed. The PAWS-
X task comprises adversarial paraphrases contain-
ing a similar lexicon between paraphrase and non-
paraphrases. The performance is then highly sen-
sitive to perturbations causing displacement, such
as shuffling words, even if the local structure is
mostly kept intact. It is not that local structure is
unnecessary, but that global structure is. This phe-
nomenon is further explored by Mahowald et al.
(2022); Ravishankar et al. (2022); Papadimitriou
et al. (2022).

3.3.2 Chinese Character Script
Figure 5 show that the findings are consistent across
almost all text scripts, with the exception of lan-
guages using Chinese Characters as script.

This is most likely caused by how semantically
richer the smallest separable unit in Chinese tends
to be compared to characters in different scripts.
Where Chinese has a single indivisible character
meaning "water" the English equivalent "water"
can be perturbed to "rtawe". Even character-level
shuffling cannot strip Chinese text of all meaning,

which would explain some the differences. It is to
be noted that while weaker, the correlation between
local structure perturbations and performance re-
mains high.
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Figure 5: Rank-correlation matrix between the different
language script’s containing at least 3 languages perfor-
mance to perturbed samples on the and the perturbation
quantified by the different metrics. The higher the value
the better the metric explains the degradation in perfor-
mance.

4 Conclusion

We first explored and confirmed the importance of
local structure, the limited importance of global
structure, and controlled for the potential of vocab-
ulary destruction being the main explanatory factor
in 8 NLU tasks covering over 120 languages. In ag-
gregate, the findings of Clouatre et al. (2022) hold
for many different pretrained cross-lingual models
and NLU tasks in a multilingual setting. Local
structure sensitivity and global structure insensitiv-
ity do not seem to be an artifacts of the English
language.

A significant exception is when grammatical
cues are essential to complete the task, such as in
the PAWS-X task. While many tasks can be solved
purely with the information obtained from the lo-
cal structure, reasoning over the global context is
necessary for many problems.

Languages using Chinese characters as their
script also deviate from the norm. This is likely
caused by how semantically rich their characters
are.

It will be important that any NLP improvements
derived from English experiments are verified to
also generalize to other languages. As we have ob-
served that languages written in Chinese Character
Script are differently impacted by perturbations to
different coding properties, it is possible that im-
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provements to the way our model understand those
properties in English will not generalize.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Vinit Ravishankar, Mostafa Abdou, Artur Kulmizev,
and Anders Søgaard. 2022. Word order does matter
(and shuffled language models know it).

Chinnadhurai Sankar, Sandeep Subramanian, Chris Pal,
Sarath Chandar, and Yoshua Bengio. 2019. Do neu-
ral dialog systems use the conversation history ef-
fectively? an empirical study. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 32–37, Florence, Italy.
Association for Computational Linguistics.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional hy-
pothesis: Order word matters pre-training for little.
arXiv preprint arXiv:2104.06644.

Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau,
and Adina Williams. 2020. Unnatural language infer-
ence. arXiv preprint arXiv:2101.00010.

Ekaterina Taktasheva, Vladislav Mikhailov, and Ekate-
rina Artemova. 2021. Shaking syntactic trees on the
sesame street: Multilingual probing with controllable
perturbations. CoRR, abs/2109.14017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2021. Byt5: Towards a token-free
future with pre-trained byte-to-byte models. CoRR,
abs/2105.13626.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2020. mt5: A massively multi-
lingual pre-trained text-to-text transformer. CoRR,
abs/2010.11934.

http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2004.01401
http://arxiv.org/abs/2001.08210
http://arxiv.org/abs/2001.08210
https://doi.org/10.48550/ARXIV.2201.12911
https://doi.org/10.48550/ARXIV.2201.12911
https://doi.org/10.48550/ARXIV.2201.12911
http://arxiv.org/abs/2007.01658
http://arxiv.org/abs/2007.01658
http://arxiv.org/abs/1911.03894
http://arxiv.org/abs/1911.03894
https://doi.org/10.1162/nol_a_00005
https://doi.org/10.1162/nol_a_00005
https://doi.org/10.18653/v1/2020.findings-emnlp.92
https://doi.org/10.18653/v1/2020.findings-emnlp.92
https://doi.org/10.48550/ARXIV.2203.06204
https://doi.org/10.48550/ARXIV.2203.06204
https://doi.org/10.48550/ARXIV.2203.06204
https://doi.org/10.48550/ARXIV.2005.00333
https://doi.org/10.48550/ARXIV.2005.00333
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.48550/ARXIV.2203.10995
https://doi.org/10.48550/ARXIV.2203.10995
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/P19-1004
https://doi.org/10.18653/v1/P19-1004
http://arxiv.org/abs/2109.14017
http://arxiv.org/abs/2109.14017
http://arxiv.org/abs/2109.14017
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2010.11934
http://arxiv.org/abs/2010.11934


291

A Experiment Details

Model Hyperparameters and Training We finetune each pretrained models on the English version of
each dataset for a total of 10 epochs, checkpointing the model after each epochs. The English version
is never perturbed, the finetuning is done on unperturbed data. This finetuning is done 5 times with
different random seeds for each model and each datasets. For 8 datasets and 3 models we have a total of
3∗8∗5 = 120 finetuning and 1200 checkpoints, one for each epoch. A learning rate of 2e-5, a batch size
of 32 and a weight decay of 0.1 is used in all finetuning. All experiments used a warmup ratio of 0.06, as
described in Liu et al. (2019).

For the evaluation, we perform the same perturbations on the validation and testing data of the different
target languages. We evaluate the perturbed validation data on each of the 10 checkpoints, chose the
best checkpoint on the perturbed validation data, and evaluate that checkpoint on the perturbed test data.
This process is repeated for each perturbations, each of the 5 random seed and 5 times with different
perturbation random seeds for each finetuned models. In total, for each language in each task on each
model for each perturbation setup we average results over 25 random seeds.

For the sentence retrieval tasks, such as Tatoeba, we do not perform any finetuning. We simply obtain
the nearest neighbour using cosine similarity on the final hidden representation. (Hu et al., 2020) First,
we obtain the representation of the unperturbed English side of the dataset. This is done by feeding
the English text through the model and averaging the final layers hidden representation of the text. We
then perform our perturbations on the target language text, feed those perturbed text through the same
pretrained cross-lingual model and obtain it’s representation through the same process. We now have a
set of English representation and a set of target language representation, on which we find the nearest
neighbour as measured by the Cosine Distance on the pooled hidden representations. If the nearest
neighbour is the sentence that was to be retrieved, we consider this an hit, else it is a miss. The reported
results are over the average of 5 random seeds of those perturbations.

Perturbations A total of 43 perturbations are used for all experiments. The first one is the Benchmark,
which is simply the unperturbed text. We perform a full-shuffling on both the subwords and characters.
On the subword-level perturbations we perform phrase-shuffling with ρ values of: [0.9, 0.8, 0.65, 0.5,
0.35, 0.2, 0.1] and neighbour-flip shuffling with ρ values of: [0.9, 0.8, 0.6, 0.5, 0.4, 0.2, 0.1]. On the
character-level perturbations we perform phrase-shuffling with ρ values of: [0.975, 0.95, 0.9, 0.8, 0.65,
0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.075, 0.05] and neighbour-flip shuffling with ρ values of: [0.8, 0.65, 0.5, 0.4,
0.3, 0.2, 0.1, 0.075, 0.05, 0.035, 0.025, 0.01]. A total of 15 subword-level experiments, 27 character-level
experiments and the unperturbed benchmark are evaluated for a grand total of 43 different perturbation
settings .
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B Pseudocode for Metric and Perturbations

Function IDC(Xp):
X len

p ← Xp.length();
IDC_list← list()
for i← 0 and i≤ X len

p do
abs_distortion← abs(i-Xp [i]);
IDC_list.append(abs_distortion);

end
IDC_agg← IDC_list.mean();
IDC← IDC_agg

X len
p

;

return
Algorithm 1: Pseudocode to compute IDC metric.

Function PhrasePerturbation(ρ ← 0.5, text←list):
all_phrases← list();
phrase← list(text[0])
for token in text[1 :] do

p ∼Uni f ([0,1]);
if p < ρ then

all_phrases.append(phrase);
phrase← list(token)

else
phrase← [phrase, token];

end
end
all_phrases.append(phrase);
perturbed_text← ‘’.join(shuffle(all_phrases))

return perturbed_text
Algorithm 2: Pseudocode for PhraseShuffle.

Function NeighborFlip(ρ ← 0.5,text←list):
perturbed_tokens← list();
held_token← list(text[0])
for token in text[1 :] do

p ∼Uni f ([0,1]);
if p < ρ then

perturbed_tokens.append(held_token);
held_token← list(token)

else
perturbed_tokens← [perturbed_tokens, token];

end
end
perturbed_tokens.append(held_token);
perturbed_text← ‘’.join(perturbed_tokens)

return perturbed_text
Algorithm 3: Pseudocode for NeighborFlip.
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C Additional Results

Language Family Figure 6 shows the aggregated correlations between the different language families
and the different metrics. Results seem to be consistent across all families, with the exception of Sino-
Tibetan languages. This was generally adressed in Section 3.3.2.

IE
: I

ta
lic

IE
: G

er
m

an
ic

Si
no

-T
ib

et
an

IE
: B

al
to

-S
la

vi
c

Tu
rk

ic

Af
ro

-A
sia

tic

Au
st

ro
as

ia
tic

Kr
a-

Da
i

IE
: I

nd
o-

Ira
ni

an

Ni
ge

r-C
on

go

Ur
al

ic

Au
tro

ne
sia

n

Dr
av

id
ia

n

Co
ns

tru
ct

ed

IE
: C

el
tic

IDC

Comp

chrF

0.48 0.46 0.74 0.43 0.44 0.47 0.44 0.44 0.42 0.48 0.43 0.43 0.35 0.40 0.39

0.82 0.84 0.52 0.89 0.88 0.77 0.85 0.94 0.88 0.82 0.89 0.91 0.93 0.86 0.85

0.96 0.96 0.84 0.96 0.94 0.94 0.95 0.93 0.94 0.92 0.94 0.93 0.93 0.93 0.90 0.50

0.75

Figure 6: Rank-correlation matrix between the different language family’s containing at least 3 languages perfor-
mance to perturbed samples on the and the perturbation quantified by the different metrics. The higher the value the
better the metric explains the degradation in performance.

PAWS-X To determine whether it is that the local structure is not essential on PAWS-X, or simply that
perturbations to the order of words are equally important, we observe the performance of models using
only neighbor flipping perturbations, limiting the displacement of words to a minimum. In Figure 7, we
show that if we only perturb the local structure, performance is highly correlated with the amount of
local perturbations. This implies that it is not that the model is insensitive to local perturbations, rather
for certain tasks where grammatical queues are necessary any change to the order of words will lead to
failure.

Chinese Character Script Languages using Chinese characters and derivatives obtain a relatively
weaker correlation with local perturbations. Figure 8 illustrates the perturbation to performance curve
while only taking into account languages using Chinese characters as their script, compared to those using
the Latin script in Figure 9.

A few major divergences from the global trend are present. First, the average compression ratio is
under 1, meaning that the tokenizer adds to the sequence length on average. While counter-intuitive, this
is caused by the fact that the vast majority of Chinese characters’ tokenization defaults to tokenizing the
character directly, thus yielding almost no compression. The tokenizer adds a few special characters for
the Transformer model to use, yielding longer sequences on average than the raw text. This can be verified
by the fact that, unlike with other scripts, subword-perturbations are sufficient to explore almost the whole
spectrum of local perturbations, which would only be possible if most subwords were of length 1.

While the phrase shuffling perturbations seem to behave as expected, it seems that text written in
chinese script are especially resilient to neighbour flipping. We compare the performance of Chinese
character scripts and Latin scripts in Figure 9 and find that Chinese scripts are, on average, more resilient
to perturbations, going from an average score of 0.18 to 0.08 while the Latin Script performance drops
all the way to an aggregate score of 0.03.
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Figure 7: Plotted is the relations between the local structure perturbation and the average performance on the
PAWS-X dataset. Only the neighbour flipped perturbations are shown to isolate the impact of perturbations to the
local structure.
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Figure 8: Plotted are the relations between the different metrics measuring the amount of perturbation and the
average performance of all 3 models on all tested datasets on languages using chinese characters or derivatives as
their scripts.
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Figure 9: Plotted are the relations between the different metrics measuring the amount of perturbation and the
average performance of all 3 models on all tested datasets on languages using a latin script.


