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Abstract

Neural machine translation (NMT) models are
known to be fragile to noisy inputs from auto-
matic speech recognition (ASR) systems. Exist-
ing methods are usually tailored for robustness
against only homophone errors which account
for a small portion of realistic ASR errors. In
this paper, we propose an adversarial example
generation method based on confusion sets that
contain words easily confusable with a target
word by ASR to conduct adversarial training
for NMT models. Specifically, an adversarial
example is generated from the perspective of
acoustic relations instead of the traditional uni-
form or unigram sampling from the confusion
sets. Experiments on different test sets with
hand-crafted and real-world noise demonstrate
the effectiveness of our method over previous
methods. Moreover, our approach can achieve
improvements on the clean test set.

1 Introduction

Neural machine translation (NMT) has been
widely used and deployed as a “de facto standard”
(Gehring et al., 2017; Vaswani et al., 2017). In
many application scenarios, NMT models translate
sentences generated by automatic speech recogni-
tion (ASR) systems. Although current ASR sys-
tems have made substantial progress, texts recog-
nized by them still suffer from a variety of recogni-
tion errors, i.e., deletion, insertion or substitution
of tokens, where substitution errors are the most
common errors among them (Xue et al., 2020).
These errors will result in severe degradation of
translation quality due to the discrepancy between
training and test data (Di Gangi et al., 2019; Cui
et al., 2021).

In order to mitigate the negative impact of substi-
tution errors on NMT models, many studies explore
external phonetic information as extra representa-
tion or training objective. Liu et al. (2019) improve
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ASR-Ref
wǒ   shēn  biān   haí   yǒu   gè     lì    zī

 我     身      边     还    有     个   例  子

wǒ   xiān   biān   haí   yǒu   gè     lì    zī

 我     先      边     还    有     个   例  子
ASR-Hyp

Trans-Base There is another example around me.

Trans-Base I had another example before.

Trans-Pron I have another example at the beginning.

Figure 1: An example in BSTC corpus.1 The orig-
inal character ‘身’ (‘body’) is recognized as a non-
homophonous character ‘先’ (‘first’). Trans-Base and
Trans-Pron represent the translation of the vanilla Trans-
former and the robust Transformer with external pho-
netic information, respectively.

NMT robustness to homophone errors with joint
textual and phonetic embeddings. Xue et al. (2020)
utilize a gating mechanism to integrate phonetic
information into the final output of the encoder to
alleviate homophone errors. Qin et al. (2021) ex-
ploit a noise detector to convert homophone errors
tokens into syllables and use a syllable-aware NMT
model to translate the mixed sequences into target
texts.

These methods are usually designed for deal-
ing with noisy tokens with same or similar pro-
nunciation. However, realistic substitution noises
in ASR-generated texts are not only limited to
homophone errors due to complicated acoustics-
linguistics relations, as shown in Figure 1. When
the correct character ‘身 (shēn)’ is recognized as
a non-homophonous character ‘先 (xiān)’ by an
ASR system, previous methods fail to provide cor-
rect translation with the help of external phonetic
information, indicating that employing phonetic in-
formation is not sufficient to handle realistic ASR
errors.

To tackle this issue, we propose an adversarial
example generation method based on confusion
sets, where words in a confusion set for a target

1A Chinese-English speech translation corpus introduced
in Section 3.1.
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Figure 2: Illustration of the proposed method. The right most part denotes the embedding space for a confusion set.
g is the gradient of input token x. Gradient descent is performed to change the original embedding x to x. Then a
token farthest from x is selected for substitution.

word are those that make ASR confusing with the
target word semantically, lexically, or phonitically.
Close to our work, Sperber et al. (2017) generate
noisy training examples by uniformly selecting to-
kens from a sampled vocabulary. Martucci et al.
(2021) propose a lexical noise model to emulate
noisy transcripts by artificially corrupting clean
transcripts. While they focused on heuristics for
introducing noise to clean transcripts, without any
explicit knowledge of acoustics or NMT models,
which can not develop generalized and aggressive
samples (Ebrahimi et al., 2018). In this paper, we
propose to generate adversarial examples from the
perspective of acoustic relations (Shivakumar and
Georgiou, 2019). The acoustic relations reflect the
acoustic similarity between words, and modeling
the acoustic relations of confusing tokens is benefi-
cial to mitigate the negative impact of ASR errors
(Shivakumar et al., 2019).

Our key idea is to make the representations of
confusing tokens close to those of corresponding
golden tokens in the embedding space so as to
model the acoustic relations of confusing tokens.
To this end, we craft adversarial examples that have
weak acoustic relations with original sentences to
attack the NMT model according to both the gra-
dient of the source token and the distance between
token embeddings. With the generated adversarial
examples, we conduct adversarial training to im-
prove the robustness of NMT models against ASR
errors.

To sum up, our contributions are as follows:

• We propose an adversarial example genera-
tion method from the perspective of acoustic
relations based on confusion sets to handle
realistic ASR errors.

• Experimental results show that our method
can not only make NMT models resilient to

ASR errors in both hand-crafted and real-
world scenarios, but also outperform the base-
lines on the clean test sets.

2 Approach

We follow previous practice of using adversarial
training to improve the robustness of NMT (Be-
linkov and Bisk, 2018; Cheng et al., 2020) by itera-
tively adding generated adversarial examples to the
training set. In this section, we will introduce our
approach (illustrated in Figure 2) in detail.

2.1 ASR Confusion Sets

Previous works (Xue et al., 2020; Cui et al., 2021)
employ an external pronunciation dictionary to
heuristically construct noisy candidates for each
word. Some candidates generated in this way
would not confuse ASR systems in real scenar-
ios. Inspired by prior work (Wang et al., 2020), we
construct confusion sets based on a corpus of ASR
hypotheses and corresponding manual transcripts.
Specifically, we first align each ASR hypothesis
and its reference transcript at the word level by
minimizing the Levenshtein distance between them.
Then, we collect substitutions based on alignments.

2.2 Adversarial Example Generation

In order to improve the robustness of an NMT
model against ASR errors, we generate adversar-
ial examples with weak acoustic relations to the
original source inputs to attack the victim NMT
model, maintaining the acoustic rationality of gen-
erated sentences. In detail, we first randomly select
a certain proportion of tokens to be replaced in
source inputs and then choose candidate tokens for
substitution from the corresponding confusion set
constructed before. The chosen candidate tokens
are farthest from the source input tokens in the
embedding space.
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Moreover, to make adversarial examples more
generalized and aggressive, we take the gradients
of the NMT model with respect to the source in-
put tokens into account during adversarial example
generation. Specifically, as shown in Figure 2, we
first update token embeddings in the embedding
space by gradient descent before choosing the re-
placement tokens, aiming to make the substitution
based on the newly updated NMT model.

Formally, let x = (x1, x2, ..., xN ) and y =
(y1, y2, ..., yM ) be the source input and target trans-
lation, respectively. The training loss of a single
example is defined as:

L(x,y;θ) = − 1

M

M∑
t=1

logP (yt|y<t,x;θ) (1)

where y<t = (⟨s⟩, y1, y2, ..., yt−1) is the partial
target input and θ denotes the parameters of the
NMT model. With this the forward loss, we define
∇xL(x,y;θ) = (g1, g2, ..., gN ) as the gradients
of the input sentence x and gi = ∇xiL(x,y;θ) as
the gradient for the ith token xi.

We then induce an appropriate substitution token
x

′
i for token xi from the corresponding confusion

set Cxi :

x
′
i = argmax

ti∈Cxi

Dist2(eti , exi − λgi) (2)

where e represents token embeddings, Dist(.,.) de-
notes the euclidean distance between token embed-
dings, and λ is a hyperparameter.

For further analysis, we denote eti−exi as d, and
remove factors that have no effect on the choice of
candidates. We then get:

Dist2(eti , exi − λgi) = ∥eti − exi + λgi∥2

= [d+ λgi]
T [d+ λgi]

= dTd+ 2λdT gi + λ2gTi gi

∝ ∥d∥2 + 2λdT gi (3)

where we can see the substitution criterion is deter-
mined by two factors. The L2 norms of d represent
the distance between token embeddings, and the
second term is exactly the substitution strategy of
Cheng et al. (2019). λ is a trade-off between the
two factors. As demonstrated by our experiments
(see Appendix A), small values of λ are preferred
to improve the robustness of NMT models against
ASR errors.

Dataset Utterances WER
Train 37,901 27.90%
Valid 956 15.21%

Top5-hyp.(asr) 188,317 19.09%†

Table 1: Statistics of the BSTC corpus. † denotes that
the WER is calculated using the same tool reported in
(Zhang et al., 2021) on the top-5 ASR hypotheses and
corresponding manual transcripts provided by the BSTC
corpus.

3 Experiments

3.1 Dataset

To be in line with previous work (Xue et al., 2020),
we evaluated our approach on two Chinese-English
datasets and constructed noisy test sets by ran-
domly replacing tokens (more details in (Xue et al.,
2020)).

Furthermore, to verify the effectiveness of our
method in real-world scenarios, we used the pub-
lic BSTC Chinese-English speech translation (ST)
corpus2 (Zhang et al., 2021) where the training set
contains ASR results and corresponding manual
transcripts and target sentences. Since the test set
is not publicly available, we randomly excluded 1k
pairs from the training data as our test set and used
the public validation set to select the best check-
point.

We constructed ASR confusion sets using all
ASR hypothesis-reference pairs from the BSTC
corpus. As shown in Table 1, to be consistent with
the word error rate (WER) of real-world scenarios,
we randomly selected 20% tokens of sentences
for replacement to generate adversarial examples
during training.

For all experiments, we segmented Chinese
sentences into Chinese characters and employed
Moses tokenizer for English tokenization. We
learned byte pair encoding (BPE) (Sennrich et al.,
2016) with 32K operations on the target side. We
followed (Vaswani et al., 2017) to set the remain-
ing configuration and implemented all NMT sys-
tems with Fairseq3. The NIST task was trained
for 50K steps while the WMT17 task was trained
for 150K steps due to larger training data. We re-
port case-insensitive tokenized BLEU scores for
NIST and WMT17 tasks and case-insensitive Sacre-
BLEU (Post, 2018)4 for BSTC.

2https://aistudio.baidu.com/aistudio/competition/detail/44
3https://github.com/pytorch/fairseq
4SacreBLEU hash: BLEU+case.mixed+lang.zh-

https://aistudio.baidu.com/aistudio/competition/detail/44
https://github.com/pytorch/fairseq
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Method NIST WMT17
Clean Noise ∆ Clean Noise ∆

Vaswani et al. (2017) 45.05 39.40 - 23.27 20.35 -
Cheng et al. (2019) 45.32 43.72 +4.32 23.61 23.00 +2.65
Wang et al. (2020) 45.01 43.22 +3.82 23.52 22.20 +1.85
Martucci et al. (2021) 45.17 43.43 +4.03 23.52 22.88 +2.53
Ours 45.65 44.24∗ +4.84 23.94 23.35∗ +3.00

Table 2: Experiment results on the NIST (average BLEU scores on nist02,03,04,05,06,08) and WMT17 task.
Results on noisy test sets are calculated by averaging BLEU scores on three artificial noisy test sets generated by
randomly substituting one, two and three tokens in clean source sentences based on confusion sets. ∆ represents
BLEU improvements over Transformer on the noisy test sets. Results with mark ∗ are statistically (Koehn, 2004)
better than (Cheng et al., 2019) with p < 0.05.

Method Test-Ref Test-Hyp
Vaswani et al. (2017) 20.48 15.51
Sperber et al. (2017) 20.46 16.11
Cheng et al. (2019) 20.92 15.75
Wang et al. (2020) 20.38 16.21
Martucci et al. (2021) 20.39 16.28
Ours 21.17 16.66

Table 3: Results of different methods on the BSTC ST
corpus. Hyp and Ref represents ASR hypotheses and
corresponding manual transcripts, respectively.

3.2 Main Results
We first compared against other noisy example gen-
eration methods proposed by Sperber et al. (2017)
and Martucci et al. (2021). Besides, Cheng et al.
(2019) present a gradient-based method to generate
adversarial examples tightly guided by the training
loss. Wang et al. (2020) simulate ASR hypotheses
based on n-gram confusions where n can vary.

Results are shown in Table 2. Firstly, the vanilla
Transformer suffers a great performance drop on
the noisy test data, which is consistent with previ-
ous findings (Belinkov and Bisk, 2018). Secondly,
among all methods trained with adversarial exam-
ples, our approach achieves the best performance
on noisy test sets on the two corpora, i.e., 4.84
and 3.00 BLEU points over vanilla Transformer
respectively, which suggests that adversarial exam-
ples generated by our strategy are more effective
to make NMT models robust against ASR errors.
Thirdly, our approach obtains higher BLEU scores
on clean test sets than Cheng et al. (2019) that is the
most related to our method, by 0.33 BLEU points
on average, indicating that our adversarial exam-
ples can be used to improve translation quality as a
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Figure 3: Average similarities between confusing tokens
in the confusion set and corresponding ground-truth
tokens. The confusion set size is the number of tokens
in the confusion set.

regularization, whereas other methods only achieve
small improvements or even drop.

Furthermore, we conducted experiments on the
BSTC speech translation dataset to verify the ef-
fectiveness of our approach in real-world scenarios.
We first trained the NMT model on the WMT17
Chinese-English corpus and then fine-tuned it on
the BSTC training set. As shown in Table 3, we can
see that most other methods improve the robustness
of NMT, but slightly degrade the translation perfor-
mance on the clean test set. Instead, the consistent
improvements achieved by our approach on clean
test sets and realistic ASR noise test set suggest
that our method is also applicable and outstanding
in real application scenarios with complex errors.

3.3 Acoustic Relations

To further analyse acoustic relations between
words, we chose the checkpoint achieving the best
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Method Clean HP Noise ASR Noise ADV Noise
Vaswani et al. (2017) 45.05 39.65 (5.40 ↓) 39.40 (5.65 ↓) 39.29 (5.76 ↓)
Li et al. (2018) 45.16 44.87 (0.29 ↓) 41.42 (3.74 ↓) 40.00 (5.16 ↓)
Liu et al. (2019) 45.26 42.47 (2.79 ↓) 40.47 (4.79 ↓) 39.79 (5.47 ↓)
Xue et al. (2020) 45.07 44.74 (0.33 ↓) 41.22 (3.85 ↓) 39.96 (5.11 ↓)
Qin et al. (2021) 45.29 44.99 (0.30 ↓) 41.37 (3.92 ↓) 40.37 (4.92 ↓)
Ours 45.65 44.79 (0.86 ↓) 44.24 (1.41 ↓) 44.06 (1.59 ↓)

Table 4: Results of different methods handling homophone errors on the NIST translation dataset. HP Noise and
ASR Noise test sets are generated based on homophones and confusing tokens in the confusion sets, respectively.
ADV Noise test set is generated by our substitution strategy. Note that the way of noisy test sets construction and
the results calculation are consistent with those described in the main paper.

robustness on the NIST02 noise validation set. Fol-
lowing (Shivakumar and Georgiou, 2019), we em-
ploy the cosine similarity between confusing to-
kens to reflect the acoustic relations between words
modeled by our method in the embedding space.

As shown in Figure 3, the worst results calcu-
lated by vanilla Transformer (Vaswani et al., 2017)
show that the traditional approach can not capture
the acoustic similarity between confusing tokens.
Over all different size of confusing sets, our method
achieves higher similarities than baselines, sug-
gesting that our method can effectively model the
acoustic relations for confusing tokens. This makes
NMT models be able to alleviate the influence of
real ASR errors by learning to adjust to similar
representations of these erroneous tokens. More-
over, we can also see that the degree of similarity
between confusing tokens is also consistent with
the NMT model robustness in real-world scenarios
shown in Table 2, which further validates our mo-
tivation of generating adversarial examples in the
perspective of acoustic relations.

3.4 Homophone Errors vs. ASR Errors
We also examined the performance of our method
in solving homophone errors. As shown in Table
4, we can see that these methods can greatly re-
duce the negative impact of homophone errors on
NMT models but drop a lot when dealing with real-
word errors, which indicates that ASR errors are
not limited to homophone errors and the robust-
ness of NMT models improved by exploiting ex-
ternal phonetic information fail to generalize over
real errors. Additionally, previous methods achieve
much worse performance than our method on the
ADV noise test set and the performance gap from
our method is enlarged to 3.88 BLEU, which sug-
gests that adversarial examples generated by our
method can attack NMT models more effectively.

On the contrary, our method not only obtain higher
performance on the clean test set and make NMT
more robust to various real noises, but also can
achieve competitive results on the HP noise test set
compared with previous methods only tailored for
homophone errors.

4 Conclusion

In this paper, we have presented an adversarial
example generation method based on confusion
sets to make NMT models robust against real ASR
errors. The acoustic relations between confus-
ing tokens modeled by our approach can make
NMT models more resilient to ASR errors. Ex-
perimental results on two Chinese-English text
translation tasks and one Chinese-English speech
translation task prove that the effectiveness of our
method. Moreover, our method does not require
any changes to models. It could be therefore or-
thogonal and complementary to other methods to
further improve the robustness of NMT model.
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Test set λ =
0.0 0.1 0.5 1.0 5.0

Clean 45.45 45.65 45.60 45.43 45.46
Noise 43.92 44.24 44.06 43.90 43.88

Table 5: Effect of λs on the NIST clean and noisy test
sets.

token and ground-truth token embeddings is critical
to handle ASR errors. Moreover, the poor result ob-
tained when λ = 0.0 on the noisy test set indicates
that gradient information of the victim model bene-
fits the robustness of NMT to ASR noise. We con-
jecture the addition of NMT gradient information
can help generate diversified adversarial examples.
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