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Abstract
Typical financial documents consist of tables,
texts, and numbers. Given sufficient training
data, large language models (LM) can learn the
tabular structures and perform numerical rea-
soning well in question answering (QA). How-
ever, their performances fall significantly when
data and computational resources are limited.
This study improves this performance drop by
infusing explicit tabular structures through a
graph neural network (GNN). We proposed
a model developed from the baseline of a fi-
nancial QA dataset named TAT-QA. The base-
line model, TagOp, consists of answer span
(evidence) extraction and numerical reasoning
modules. As our main contributions, we intro-
duced two components to the model: a GNN-
based evidence extraction module for tables
and an improved numerical reasoning module.
The latter provides a solution to TagOp’s arith-
metic calculation problem specific to opera-
tions requiring number ordering, such as sub-
traction and division, which account for a large
portion of numerical reasoning. Our evaluation
shows that the graph module has the advantage
in low-resource settings, while the improved
numerical reasoning significantly outperforms
the baseline model.

1 Introduction

Working with tables and numerical reasoning is es-
sential to understanding financial documents. How-
ever, off-the-shelf pre-trained LMs generally do
not understand tables and numbers. Previous QA
studies on tabular data either add specialized com-
ponents to LMs then finetune or modify the LMs’
architecture and pre-train with tables. The issue
with these approaches is that they are not flexible to
hybrid table-text data. Yet, and crucially, the model
must be able to handle both data types, or it will
fail to capture all the information in the documents.

In 2021, (Zhu et al., 2021) introduced TAT-QA,
a dataset with the abovementioned challenges. It
is a collection of financial reports with questions,

some requiring arithmetic operation – as part of nu-
merical reasoning – on the evidence extracted from
the table, text, or both. The authors also published
a model named TagOp, an LM with multiple clas-
sification heads for table and text-based evidence
extraction and numerical reasoning. The model
combines table and text as an input, performs evi-
dence extraction, then applies numerical operations
if needed. Our experimentation with TagOp led to
two proposed components presented in this study.

The first component stems from how TagOp han-
dles tables. The model takes a flattened table – a
sequential concatenation of table cells – as an input
without additional tabular structure information.
Given sufficiently large training data, the model
can learn the structure well by itself. However, it
appears to struggle to understand tables with fewer
training samples. Thus, we explicitly introduced
graph-based tabular structural information through
GNN, aiming to help the model understand tables
without needing extensive labeling.

The second part of this study involves a spe-
cific classification head that determines the number
order required for certain arithmetic operations, in-
cluding subtraction and division. TagOp has this
classifier, but its algorithm unintentionally intro-
duces noise (irrelevant or invalid samples) that de-
ters the model from recognizing meaningful pat-
terns to generalize. Our solution selects relevant
data, eliminates the noise, and includes an algo-
rithm that handles this operation during training
and inference. These operations account for a large
part of numerical reasoning, emphasizing the im-
portance of this problem.

Both methods have proved effective in different
settings, thus designating our main contributions.
The tabular graph module improves the model’s
understanding of tables in low-resource settings
(small model and sample sizes). The number order
classification component helps the model gener-
alize, resulting in better performance. This work
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benefits QA and other relevant tasks that involve
tables, especially in combination with texts, par-
ticularly in low-resource settings. It also advances
QA models’ numerical reasoning ability through a
better training approach.

2 Background

This financial QA study proposes two methods to
the baseline model of the TAT-QA dataset (TagOp).
In this section, we will explain both the dataset and
the baseline model, together with relevant works in
tabular QA and numerical reasoning. Afterward, in
the next section, we will revisit TagOp to present
the problems and our approaches to improve the
model.

2.1 Hybrid dataset

While there have been QA datasets focusing on
texts (Rajpurkar et al., 2016), tables (Iyyer et al.,
2017), and a combination of both (Chen et al.,
2020), TAT-QA took a step closer to an actual ap-
plication in the financial domain. Not only that
it is a large-scale collection of hybrid text and ta-
ble data with QA, but it also requires numerical
reasoning. These properties make it even more
challenging than the other datasets, and the authors
showed that existing methods still left a large gap
for improvement.

The dataset contains 16,552 questions with 2,757
hybrid contexts from 182 financial reports, split-
ting into 80% training set, 10% development set,
and 10% test set. Each context includes one table
and at least two associated paragraphs. Many ques-
tions require numerical reasoning, such as addi-
tion, subtraction, multiplication, division, counting,
and comparison. The annotators created question-
answer pairs from the contexts, together with
derivations, which explain the steps taken to de-
rive the answers.

2.2 TAT-QA’s baseline

The authors of the TAT-QA dataset published
a baseline model named TagOp along with the
dataset. TagOp is an LM (they used RoBERTa;
(Liu et al., 2019)) with multiple classification heads
fine-tuned to extract evidence and determine the
reasoning operations. The model first locates sup-
porting evidence from table cells or text spans
using the Inside-Outside (IO) sequence tagging
approach (Ramshaw and Marcus, 1995). The in-
put concatenates a question, flattened table by row

(Herzig et al., 2020), and associated paragraphs
sorted by TF-IDF scores. The tagging classifier
is a two-layer feed-forward network (FNN) with
GELU (Hendrycks and Gimpel, 2016) activation
function. Given a sub-token t’s representation ht,
the classifier outputs:

ptag
t = softmax(FFN(ht)) (1)

Once the model has identified the evidence, it
determines the operation and calculates the answer
if needed. This reasoning step involves three clas-
sifiers for the operator, number order, and scale; all
are two-layer FFN with GELU activation function.
There are ten operators in TagOp: span-in-text,
cell-in-table, spans, sum, count, average, multi-
plication, division, difference, and change ratio.
Three of the ten operators are number-order sen-
sitive, including division, difference, and change
ratio. Since TAT-QA also requires a scale of the
answer, TagOp’s scale classifier outputs thousand,
million, billion, percent, or no scale. The three
classifiers take different inputs as follows:

pop = softmax(FFN(hcls)) (2)

porder = softmax(FFN(avg(ht1, ht2))) (3)

pscale = softmax(FFN([hcls;htab;hp])) (4)

hcls is the representation of a sentence-level classi-
fication token. ht1 and ht2 are the output represen-
tations of the top two subtokens by the evidence
extraction scores. htab and hp averages table and
paragraphs’ subtoken respectively.

2.3 Related works
We compared our model to several baselines, in-
cluding those reported in the TagOp study. The
first baseline is BERT-RC (Devlin et al., 2019), or
BERT for reading comprehension (RC). Another
RC model is NumNet+ V2 (Ran et al., 2019), which
performs well on DROP, a QA dataset with numer-
ical reasoning on textual data (Dua et al., 2019).
While these two models work well on texts, TaPas
is an LM tailored to tabular input (Herzig et al.,
2020), pre-trained on large-scale tables and asso-
ciated texts from Wikipedia. The model in com-
parison is TaPas for WikiTableQuestion (WTQ).
HyBrider (Chen et al., 2020), on the other hand,
can handle both tables and texts without the limita-
tions the previously mentioned models have.

In addition to the abovementioned baselines, we
considered two post-TagOp models named KIQA
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Figure 1: An example of a tabular graph linking tokens
in the question through the table’s row and column heads
to a particular cell. The entire graph consists of these
connections for all cells in the table. There are no links
to tokens in the paragraphs.

and FinMath. KIQA (Nararatwong et al., 2022) is
an entity retrieval model that replaces RoBERTa
with LUKE (Yamada et al., 2020) to infuse exter-
nal knowledge extracted by GENRE (Cao et al.,
2021) into the LM. FinMath enhances the numer-
ical reasoning capability by injecting a numerical
expression tree into the model for the multi-step
calculation (Li et al., 2022). Both models outper-
form TagOp on the TAT-QA dataset.

3 Methodology

We proposed two approaches developed from the
TagOp model, each tackling a different problem
but combined as a single complete model. The first
three subsections will elaborate on the issues and
methods; the last one explains the challenges of
integrating the new components into the model and
our final, most effective approach to achieve this
objective.

3.1 Graph-based tabular evidence extraction
The issue with a typical LM is their lack of ability
to understand tables. Directly including tables in
the pre-training stage is expensive and inflexible
to future changes to the underlying model architec-
ture. The alternative is finetuning, which appears
to work well given enough data, but that strategy
alone could also come at a high cost. Therefore,
we hypothesized that if the problem was because
the model needs more to learn, we could help it
learn by injecting our knowledge.

GNN was our choice due to its compatibility
with tables: It can model the cells’ relations to their
respective row/column headers, is flexible to var-
ious structures, and does not require pre-training.
Our simple heuristic algorithm can locate column
headers with sufficiently high accuracy, and in most
tables, only the first column is the row header.
Specifically, the algorithm makes use of patterns
we observed from the tables. It checks the table
from top to bottom to identify the first row that
meets particular criteria, such as containing num-
bers or empty, as a non-header. Complete detail
of the rules is available as the supplemental ma-
terial and source code. We manually annotated
the header rows for evaluation, and the algorithm
achieved 99.1% accuracy. These two findings, al-
though not perfect, give us enough information to
build the tabular graphs. We used GraphSAGE
(Hamilton et al., 2017), which computes node em-
beddings by sampling and aggregating features
from a node’s local neighborhood.

As shown in Figure 1, the tabular graph maps
each cell to its row/column headers with directed
edges connecting all tokens in the header cell to
those in the target cell. We only link header cells
at the bottom of the hierarchy to the target cells for
complex tables with hierarchical column headers.
Cells in column headers have links to all header
cells at the higher level (row), regardless of whether
or not they have any actual connection. This strat-
egy relies on the GNN to determine relationships
among columns instead of explicitly telling the
model which header cells to merge since the dataset
does not provide such information.

Cells in the first column connect differently from
column headers and the rest of the table. Row head-
ers can also have a hierarchy, and it is as challeng-
ing to identify their links since they are not always
explicit. We again linked every cell row-by-row
from top to bottom and let the GNN decide what
the hierarchy looks like through message passing.
Lastly, we created full token-level links from the
question to all row/column header cells.

3.2 Number order problem

Before introducing our method for the number or-
der classification, first, we will clarify the problem
and why it is crucial. TagOp’s operator classifier
is remarkably accurate for TAT-QA’s simple math
problems. Still, subtraction and division (also in
extension, the change-ratio operation) require the
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operands to be in a specific order. The issue we
found was that the number order classifier did not
always get the correct operands to train. Instead, it
learned from noisy inputs interfering with its gen-
eralization ability. To make this problem clear, we
will first explain the original algorithm.

Once the LM outputs token representations, the
evidence extraction classifier computes the final
scores to choose the answer spans. The number
order module ranks these scores and picks the top
two words, including numbers, from the entire in-
put sequence, which covers the question, flattened
table, and paragraphs. The algorithm then selects
the ranked inputs from samples with the opera-
tor predicted as subtraction, division, or change-
ratio. Finally, the number order classifier deter-
mines whether or not it should reverse the operand
order. At this point, the module calculates the loss
before combining it with other losses.

There are two problems with this algorithm.
First, the number order classifier should only get
the representations of relevant operands during
training; otherwise, it would simply be learning
noises. Second, relying on the operator classi-
fier’s predictions means that some irrelevant sam-
ples could also interfere with the training process,
adding to the noises already caused by the first
problem. Thus, our algorithm aims to ensure that
we train the model with all relevant samples and
numbers and filter out those that are not.

3.3 Number order classification

Instead of ranking by the evidence extraction
scores, we masked all the irrelevant tokens, leaving
only the two operands. The model then classifies
the numbers into two classes for the first and second
positions. We can now compute the cross-entropy
loss, which concludes the forward pass.

During inference, however, we cannot create
masks from the labels. Instead, the algorithm pro-
duces them on the fly from the evidence extraction
step. First, the preprocessing step identifies num-
bers in the input sequence. Once the evidence ex-
traction module assigns prediction scores to all to-
kens, the intermediate algorithm chooses two num-
bers with the highest scores, i.e., most likely to be
the answers. It then masks all subtokens that do
not belong to the selected numbers before inputting
the masked representations into the number order
classifier, which outputs the order prediction.

While this approach relies on the operator classi-

fier, it only does so during inference, which means
it will not affect the training. The intuition is that
if the evidence were wrong, the reasoning would
not matter, but the model should now reason more
reliably given the correct evidence.

Since our number order classification module
uses number masks, we now classify every token
into three classes: the first and second operand and
non-operand. We, therefore, revised Equation 3 to:

porder = softmax(FFN(ht)) (5)

where ht is a token representation. The algorithm
chooses the numbers most likely belong to the first
and second classes as the operands. If it chose
both numbers and the first operand, the less likely
number would become the second operand.

3.4 The complete model
Multi-task learning can have positive, negative, or
no effect on the tasks involved (Fifty et al., 2021;
Aghajanyan et al., 2021; Aribandi et al., 2022).
As we integrated our modules into the existing ar-
chitecture, we kept track of changes to the other
classifiers. We found that using GNN’s output
for classification other than predicting evidence
from the table can cause varying detrimental ef-
fects. This problem is likely because the graphs
only map the tabular relationship. Passing the LM’s
output through another layer of neural network that
does not serve any purpose other than handling a
table can only add to the error. Therefore, as shown
in Figure 2, the scale, operator, and text-based ev-
idence classifiers remain the same; they process
information passed directly from the LM.

The only change the GNN module affects is the
number order module since it depends on the ex-
tracted evidence for classification. In this case, we
used the token representations from the GNN mod-
ule instead of directly from the LM. To sum up, we
proposed two solutions to make the model more
robust in low-resource settings and perform numer-
ical reasoning better while maintaining minimal
impact on the other classifiers.

4 Experiments

We developed four models for evaluation, one as
a reimplementation of TagOp, and the other three
for the methods proposed. This section will ex-
plain the changes we have made to TagOp that are
not part of the proposed methods, including the
preprocessing of the data and the prediction steps.
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Figure 2: The proposed model develops from TagOp by adding the GNN module and introducing our number order
classification modules, highlighted in orange. The tabular graph component automatically extracts a table structure
and transforms it into a graph.

We used our reimplementation as the baseline for
comparison to isolate the differences our modules
cause and ensure a strictly controlled environment.
The section will begin with the dataset and how we
prepared it for low-resource settings, followed by
model variation and evaluation metrics, three ex-
periments we conducted, and the comparison with
the baselines.

4.1 Dataset

The TAT-QA dataset has 16,552 questions extracted
from 182 financial reports and split into 80% train-
ing, 10% development, and 10% test sets. Along
with the answers are manually annotated deriva-
tions explaining the calculation, which we used
to construct machine-readable labels following the
baseline implementation. Consider the following
question: "What was the percentage change in the
number of appliances in 2019 from 2018?" The
annotator labeled "(680 - 774) / 774" as the deriva-
tion, given that 680 and 774 are the numbers of ap-
pliances. Automatically determining the operator
from this derivation is relatively straightforward.

However, we could not convert all derivations
into tags since some do not constitute patterns suit-
able for automatic extraction (4.3% of the training
and 5.2% of the development sets). For example,
we could not automatically convert the following
derivation into tags: "locate and analyze estimated
grant date fair value per ordinary share in row

7." The annotators wrote the instructions for these
derivations in their own words, which led to in-
consistency, rendering the conversion impractical.
We omitted these samples and ensured that the rest
could produce correct answers.

Once the dataset was ready, we randomly se-
lected 1%, 2.5%, 5%, 10%, 25%, and 50% of the
training set for the low-resource evaluation. These
small samples and the development set remain the
same throughout the experiment for a fair compari-
son. Since we do not have direct access to the test
set, we only conducted a detailed evaluation with
all the metrics on the development set.

4.2 Experiment setup

In addition to our reimplementation of TagOp, we
created three models for evaluation. The first model
(GEE: Graph Evidence Extraction) includes the
GNN module for tabular graph input; the second
model (NOC: Number Order Classifier) has the
new number order module, but no GNN module;
and the third model (GANO: Graph And Num-
ber Order) combines both methods. We chose
three underlying LMs with different sizes, includ-
ing RoBERTa-large (376M parameters; (Liu et al.,
2019)), RoBERTa-base (136M parameters), and
DistilBERT (78M parameters; (Sanh et al., 2019)).
All dataset sizes, models, and LM choices make
252 training instances.

We trained the models for 50 epochs using differ-
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ent learning rates for each data size, ranging from
5e-5 to 5e-3, with a batch size of 16. We used the
same hyperparameter settings for each LM-data-
size pair to ensure a fair comparison of all models
(TagOp, GEE, NOC, and GANO). The number
order classifier module in NOC and GANO is a
two-layer feed-forward network with a 0.1 dropout
rate. The GNN module in GEE and GANO is a
single GraphSAGE layer with the same dropout
rate. We used PyTorch Geometric’s implementa-
tion of GraphSAGE1 with the mean operator for
the aggregator function.

This paper reports F1 scores for tabular evidence
extraction and overall performance for this exper-
iment, plus the accuracy score for number order
classification. First, we will begin by comparing
the performance of each proposed method to the
baseline model individually, then conclude with the
complete model with both modules. Due to access
restrictions on the test set, the results are from the
development set. However, we also included our
final model’s scores on the test set for comparison
with the baselines. We published our source code
for data preparation and all experimental settings,
along with the full results involving all metrics, on
our GitHub repository2.

4.3 Tabular graph and GNN

The first experiment measures the differences the
GNN module makes to the baseline model when
training using different data sizes. Figure 3 com-
pares three-run average scores between the TagOp
model and our variation with the GNN module
(GEE). Here we report the tabular evidence extrac-
tion scores since the component only changes this
part of the model. Focusing on these scores iso-
lates the module’s effects on the outcome specific
to tables (without the texts and reasoning involved),
which could have implications for tabular QA.

The results on the development set show consis-
tent advantages of the GNN module over the base-
line model. Although, as anticipated, the margins
are relatively lower in high-resource settings; larger
models can learn and generalize tabular structures
better, and more data makes recognizing patterns
easier. The margins range from 0.41 to 5.05 for
RoBERTa-large, 0.38 to 10.89 for RoBERTa-base,
and 2.67 to 13.28 for DistilBERT.

Although the gap does not always increase with

1https://github.com/pyg-team/pytorch_geometric
2https://github.com/ichise-laboratory/finqa-gano

Figure 3: Three-run averages of F1 scores for tabu-
lar evidence extraction comparing the baseline model
(TagOp), represented by dotted lines, to the tabular
graph model (GEE), represented by solid lines. We
trained the models with 1% to 100% of the training data
(horizontal axis).

smaller data sizes, the model performs better at tab-
ular evidence extraction when given fewer training
samples. Nevertheless, the advantage is consis-
tent across all data sizes and particularly noticeable
when combined with small-scale models.

4.4 Number order classifier

The second experiment evaluates the number order
classifier alone without the GNN component. Un-
like the GNN module, the number order classifier
is part of the reasoning. Therefore, we measured
the accuracy of the classifier separately for NOC
and GANO, then compared NOC to TagOp’s over-
all scores. The first evaluation aims to determine
how well the classifier learns and generalizes; the
other measures how well the model performs with
the proposed number order classifier.

When comparing NOC with TagOp (Table 1),
the benefit of using our number order classifier is
consistent, except for one case where we used Dis-
tilBERT with 1% of the data. In this case, because
the overall F1 score is much lower than those of
other settings, it tends to be less stable and reli-
able. Regardless, the average margins are 6.55,
4.92, and 4.27 for RoBERTa-large, RoBERTa-base,
and DistilBERT, respectively.
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Sample RoBERTa-large RoBERTa-base DistilBERT
Size TagOp NOC GANO TagOp NOC GANO TagOp NOC GANO

1% 132 17.18 17.87 18.25 11.19 14.77 14.62 6.94 6.50 10.30
2.5% 330 26.26 28.19 28.97 26.01 30.18 31.80 13.19 14.32 20.90
5% 660 32.96 49.56 51.33 34.95 38.46 41.75 22.11 23.01 28.64

10% 1,321 46.92 53.87 54.80 41.60 45.52 45.95 29.10 31.48 36.53
25% 3,303 56.45 65.22 66.02 49.22 56.67 54.35 38.32 44.15 46.98
50% 6,607 65.08 70.54 70.89 50.51 57.62 60.48 45.85 50.62 53.37
All 12,769 72.98 78.43 77.78 66.52 71.24 70.95 58.19 63.72 64.21

Table 1: Three-run averages of overall F1 scores comparing the baseline model (TagOp), the model with the
proposed number order classification module (NOC), and the complete model (GANO). The highest scores for each
training sample size and LM are in bold.

4.5 The complete model

In the previous sections, we evaluated our proposed
methods individually, and the results showed sig-
nificant and consistent improvements in both mod-
ules. This third experiment measures the overall
performance with both components integrated into
the model. We compared our implementation of
TagOp to NOC and GANO in Table 1.

GANO, which includes both modules, performs
better than TagOp in every setting, regardless of the
data and model size. The margins range from 1.07
to 18.37 (average 7.17) for RoBERTa-large, 3.43 to
9.97 (average 5.7) for RoBERTa-base, and 3.36 to
17.24 (average 8.15) for DistilBERT. We observed
no clear difference in the margins between small
and large data sizes, indicating contributions from
both components; the GNN module tends to per-
form well with fewer training samples, while the
number order classifier does the opposite.

When comparing NOC and GANO, we observed
a somewhat mixed result. While GANO performs
better in most settings, four cases go the opposite.
The first case, RoBERTa-base with 1% of the data,
sees NOC achieves a slightly higher score (0.15),
which we deemed insignificant and did not pursue
further investigation. The second and third cases
are RoBERTa-large and RoBERTa-base with all
data. These two cases indicate that the models
are already capable of recognizing tabular struc-
tures given enough training data. The last case,
RoBERTa-base with 25% of the data, is an outlier
caused by a jump in the scale classifier’s accuracy
in one of the NOC training instances.

In addition to the overall scores, we also mea-
sured how well the number order classifier per-
formed and the GNN module’s effect on the clas-

Figure 4: Three-run averages of the number order clas-
sifier’s accuracy when trained with 1% to 100% of the
data. Each chart compares the model with the classifier
(NOC), represented by dotted lines, and the complete
model (GANO), represented by solid lines.

sifier. Figure 4 shows that the classifier performs
reasonably well on the development set (78.81% to
91.33% accurate across three LMs and model vari-
ations). The GNN module slightly harms the clas-
sifier’s performance in smaller models, but overall,
the accuracies are still high in both settings. It is
clear from the result that the classifier is less accu-
rate with smaller data sizes, which we anticipated
since there are fewer samples to train.

Interestingly, while GANO almost consistently
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underperforms NOC in predicting number order, as
shown in Figure 4, the overall result in Table 1 in-
dicates the opposite. We attribute this discrepancy
to the magnitude of the differences the NOC mod-
ule makes compared to the tabular graph module
in GANO. There are 1,279 questions in the devel-
opment set with answers in the tables, while only
457 questions require NOC. Our follow-up anal-
ysis shows that GANO achieved better F1 scores
on tabular evidence extraction than NOC, similar
to GEE and TagOp in Figure 3. The difference
margins are 0.9 - 3.9 for RoBERTa-large, 0.4 - 9.6
for RoBERTa-base, and 2.4 - 15.8 for DistilBERT.
GANO’s large gain in the case of DistilBERT, com-
bined with the number of questions involved, ev-
idently outweighs its loss of up to 1.9 in number
order classification accuracy.

4.6 Comparison with baselines

Although we could not conduct detailed experi-
ments on the test set due to access restrictions, we
submitted six outputs from our reimplementation of
TagOp and the complete model (GANO) for evalu-
ation. Since we implemented our data preparation
algorithm differently from TagOp, we needed to
evaluate our TagOp’s outputs for a fair comparison.
The algorithm converts the answers and derivations
into evidence tags, operators, number orders, and
scales to train and evaluate the models. We manu-
ally checked and corrected any questions that the
algorithm could not produce the correct answers
from the derivations — all of these steps we took
raised TagOp’s scores and, thus, need separate re-
porting.

Table 2 shows that GANO achieved the best
scores compared to all baseline models on the de-
velopment and test sets. The textual, tabular, and
hybrid QA models are TagOp’s baselines. Accord-
ing to TagOp’s analysis, the authors attributed Num-
Net+ V2’s superior performance over BERT-RC to
the possibly more robust numerical reasoning ca-
pability. TaPas only learned to handle tabular data,
not the hybrid table and text, and HyBrider can-
not perform numerical reasoning well. Although
KIQA and FinMath can outperform TagOp, GANO
surpasses them significantly.

5 Discussion

5.1 Implications

The GEE’s superior tabular evidence extraction
scores justify its potential application in tabular

QA. Our tabular graph approach is highly flexible
to varying graph structures and complexities, es-
pecially when structural information is available.
Since tables are typically simple and similar to
each other when obtained from a collection of doc-
uments, a simple heuristic algorithm should suffice
to produce such information. Although, human
involvement may be necessary in supposedly rare
cases where tables are highly complicated. How-
ever, since our method targets low-resource scenar-
ios, the entire process should still be efficient.

The new number order classifier has changed our
understanding of how much a hybrid QA model
could achieve. We showed that the model could ef-
fectively learn to perform order-sensitive arithmetic
operations with the right training strategy. The key
difference here from TagOp is that the training sam-
ples need to be relevant and with minimum noise.
Although the model in its current form cannot solve
arbitrary math problems in natural language, as that
has never been the intention, it has sufficient abili-
ties to reason within the scope of TAT-QA, where
financial documents are the objective.

5.2 Lessons learned

This section compiles our observations during im-
plementation and experimentation as technical rec-
ommendations that we believe could be useful for
future research and application. Our first recom-
mendation concerns the use of the GNN module.
As our experimental result indicated, adding the
module may not always lead to the desired improve-
ment when trained with large-scale data and LM.

The second suggestion is about the length of
training. While the model could quickly recog-
nize and generalize most tables, it took many more
iterations to learn the rest. This phenomenon is
not new to deep neural network models, especially
LMs (Tänzer et al., 2022), and is why we chose to
train for 50 epochs following TagOp’s configura-
tion. However, training for longer, e.g., 100 epochs,
did not result in noticeable improvement.

Lastly, not only can multi-task learning benefit
or harm the overall performance, but how infor-
mation flows in the model pipeline can also signif-
icantly affect the outcome. As we experimented
with different model variants before concluding the
final architecture, we found that using the output
representations from the GNN module for the oper-
ator and scale classifiers worsened the accuracy of
both components. Thus, only the tabular evidence
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Dev Test
EM F1 EM F1

Human - - 84.1 90.8

Textual QA
BERT-RC 9.5 17.9 9.1 18.7
NumNet+ V2 38.1 48.3 37.0 46.9

Tabular QA
TaPas for WTQ 18.9 26.5 16.6 22.8

Hybrid QA
HyBrider 6.6 8.3 6.3 7.5

TagOp
Original 55.2 62.7 50.1 58.0
Ours†

DistilBERT 45.9 58.2 40.5 52.7
RoBERTa-base 55.5 66.6 50.0 60.3
RoBERTa-large 63.1 73.0 56.6 66.5

Hybrid & Num
KIQA - - 58.2 67.4
FinMath 60.5 66.3 58.6 64.1
GANO†

DistilBERT 51.8 64.2 46.0 58.5
RoBERTa-base 59.8 71.0 53.6 64.6
RoBERTa-large 68.4 77.8 62.1 71.6

Table 2: Comparison with the baselines on the test
set. †The scores of our implementation of TagOp and
our complete model (GANO) are three-run averages.
TagOp’s original scores are as reported in their paper.

tagger takes the GNN’s output as input.

6 Conclusion

We proposed two approaches to help with a hybrid
table-text QA model with numerical reasoning abil-
ities. We added the two components to improve the
baseline model’s performance in low-resource set-
tings and enhance the reasoning. The first module
automatically constructs a tabular graph and uses
a GNN to integrate the structure of a table into the
model’s pipeline. This method is beneficial to the
scenario where there are limited training samples
or computational resources. The second module
solves the number ordering problem in certain arith-
metic operations, which account for a large part of
the reasoning. This module works regardless of
training data or model sizes.

We conducted experiments that evaluated the
proposed modules individually and collectively
with four model variations, three LMs, and seven

training sample sizes. Both modules demonstrated
their advantages over the baseline model. The
GNN module performs better with limited data and
model sizes; the NOC module generally enhances
the model regardless of the conditions. The exper-
imental results also show that our tabular graph
solution works with table and hybrid QA, high-
lighting its flexibility for future uses, potentially
including other NLP tasks. The NOC module en-
hances the model’s ability to reason on numbers,
which is crucial for financial QA and other applica-
tion domains.
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