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Abstract

Reasoning with preconditions such as “glass
can be used for drinking water unless the
glass is shattered” remains an open problem
for language models. The main challenge
lies in the scarcity of preconditions data and
model’s lack of support for such reasoning.
We present PInKS , Preconditioned Com-
monsense Inference with WeaK Supervision,
an improved model for reasoning with pre-
conditions through minimum supervision. We
show, both empirically and theoretically, that
PInKS improves the results on benchmarks fo-
cused on reasoning with the preconditions of
commonsense knowledge (up to 40% Macro-
F1 scores). We further investigate PInKS
through PAC-Bayesian informativeness analy-
sis, precision measures, and ablation study.1

1 Introduction

Inferring the effect of a situation or precondition on
a subsequent action or state (illustrated in Fig. 1)
is an open part of commonsense reasoning. It re-
quires an agent to possess and understand different
dimensions of commonsense knowledge (Wood-
ward, 2011), e.g. physical, causal, social, etc. This
ability can improve many knowledge-driven tasks
such as question answering (Wang et al., 2019;
Talmor et al., 2019), machine reading comprehen-
sion (Sakaguchi et al., 2020), and narrative predic-
tion (Mostafazadeh et al., 2016). It also seeks to
benefit a wide range of real-world intelligent appli-
cations such as legal document processing (Hage,
2005), claim verification (Nie et al., 2019), and
debate processing (Widmoser et al., 2021).

Multiple recent studies have taken the effort
on reasoning with preconditions of commonsense
knowledge (Rudinger et al., 2020; Qasemi et al.,
2022; Mostafazadeh et al., 2020; Hwang et al.,
2020). These studies show that preconditioned rea-
soning represents an unresolved challenge to state-

1Code and data on https://github.com/luka-group/PInKS

Figure 1: Examples on Preconditioned Inference and
the NLI format they can be represented in.

of-the-art (SOTA) language model (LM) based rea-
soners. Generally speaking, the problem of rea-
soning with preconditions has been formulated
as variations of the natural language inference
(NLI) task where, given a precondition/update,
the model has to decide its effect on a common
sense statement or chain of statements. For exam-
ple, PaCo (Qasemi et al., 2022) approaches the
task from the causal (hard reasoning) perspective
in term of enabling and disabling preconditions
of commonsense knowledge, and evaluate reason-
ers with crowdsourced commonsense statements
about the two polarities of preconditions of state-
ments in ConceptNet (Speer et al., 2017). Similarly,
δ−NLI (Rudinger et al., 2020) formulates the prob-
lem from soft assumptions’ perspective, i.e., weak-
eners and strengtheners, and justifies whether the
update sentence weakens or strengthens the textual
entailment in sentence pairs from sources such as
SNLI (Bowman et al., 2015). Obviously, both tasks
capture the same phenomena of reasoning with pre-
conditions and the slight difference in format does
not hinder their usefulness (Gardner et al., 2019).
As both works conclude, SOTA models generally
fall short of tackling these tasks.

We identify two reasons for such shortcomings
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of LMs on reasoning with preconditions: 1) rely-
ing on expensive direct supervision and 2) the need
for improved LMs to reason with such knowledge.
First, current resources for preconditions of com-
mon sense are manually annotated. Although this
yields high-quality direct supervision, it is costly
and not scalable. Second, off-the-shelf LMs are
trained on free-text corpora with no direct guid-
ance on specific tasks. Although such models can
be further fine-tuned to achieve impressive perfor-
mance on a wide range of tasks, they are far from
perfect in reasoning on preconditions due to their
complexity of need for deep commonsense under-
standing and lack of large-scale training data.

In this work, we present PInKS (see Fig. 2), a
minimally supervised approach for reasoning with
the precondition of commonsense knowledge in
LMs. The main contributions are 3 points. First,
to enhance training of the reasoning model (§3),
we propose two strategies of retrieving rich amount
of cheap supervision signals (Fig. 1). In the first
strategy (§3.1), we use common linguistic patterns
(e.g. “[action] unless [precondition]”) to gather
sentences describing preconditions and actions as-
sociated with them from massive free-text corpora
(e.g. OMCS (Havasi et al., 2010)). The second strat-
egy (§3.2) then uses generative data augmentation
methods on top of the extracted sentences to induce
even more training instances. As the second contri-
bution (§3.3), we improve LMs with more targeted
preconditioned commonsense inference. We mod-
ify the masked language model (MLM) learning
objective to biased masking, which puts more em-
phasis on preconditions, hence improving the LMs
capability to reason with preconditions. Finally,
for third contribution, we go beyond empirical
analysis of PInKS and investigate the performance
and robustness through theoretical guarantees of
PAC-Bayesian analysis (He et al., 2021).

Through extensive evaluation on five repre-
sentative datasets (ATOMIC2020 (Hwang et al.,
2020), WINOVENTI (Do and Pavlick, 2021), AN-
ION (Jiang et al., 2021), PaCo (Qasemi et al.,
2022) and DNLI (Rudinger et al., 2020)), we show
that PInKS improves the performance of NLI mod-
els, up to 5% Macro-F1 without seeing any task-
specific training data and up to 40% Macro-F1 af-
ter being incorporated into them (§4.1). In addi-
tion to the empirical results, using theoretical guar-
antees of informativeness measure in PABI (He
et al., 2021), we show that the minimally super-

vised data of PInKS is as informative as fully su-
pervised datasets (§4.2). Finally, to investigate the
robustness of PInKS and effect of each component,
we focus on the weak supervision part (§5). We
perform ablation study of PInKS w.r.t. the linguis-
tic patterns themselves, the recall value associated
with linguistic patterns, and finally contribution of
each section to overall quality and the final perfor-
mance.

2 Problem Definition

Common sense statements describe well-known
information about concepts, and, as such, they are
acceptable by people without need for debate (Sap
et al., 2019; Davis and Marcus, 2015). The pre-
conditions of common sense knowledge are even-
tualities that affect happening of a common sense
statement (Hobbs, 2005). These preconditions can
either allow or prevent the common sense state-
ment in different degrees (Rudinger et al., 2020;
Qasemi et al., 2022). For example, Qasemi et al.
(2022) model the preconditions as enabling and
disabling (hard preconditions), whereas Rudinger
et al. (2020) model them as strengthening and weak-
ening(soft preconditions). Beyond the definition of
preconditions, the task of inference with precondi-
tions is also defined differently among the litera-
ture. Some task definitions have strict constraints
on the format of statement, e.g. two sentence for-
mat (Rudinger et al., 2020) or being human-related
(Sap et al., 2019), whereas others do not (Do and
Pavlick, 2021; Qasemi et al., 2022).

To unify the definitions in available literature, we
define the preconditioned inference task as below:
Definition 1 Preconditioned Inference: given a
common sense statement and an update sentence
that serves as precondition, is the statement still
allowed or prevented?

This definition is consistent with definitions in the
literature (for more details see appx. §G). First,
similar to the definition by Rudinger et al. (2020),
the update can have different levels of effect on
the statement, from causal connection (hard) to
material implication (soft). Second, similar to the
one Qasemi et al. (2022), the statement can have
any format.

3 Preconditioned Inference with
Minimal Supervision

In PInKS, to overcome the challenges associated
with inference with preconditions, we propose two
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Figure 2: Overview of the three minimally supervised methods in PInKS.

sources of weak supervision to enhance the train-
ing of a reasoner: linguistic patterns to gather
rich (but allowably noisy) preconditions (§3.1),
and generative augmentation of the preconditions
data (§3.2). The main hypothesis in using weak-
supervision methods is that pretraining models
on large amount of weak-supervised labeled data
could improve model’s performance on similar
downstream tasks (Ratner et al., 2017). In weak
supervision terminology for heuristics, the experts
design a set of heuristic labeling functions (LFs)
that serves as the generators of the noisy label (Rat-
ner et al., 2017). These labeling functions can pro-
duce overlapping or conflicting labels for a single
instance of data that will need to be resolved either
with simple methods such as ensemble inference or
more sophisticated probabilistic methods such as
data programming (Ratner et al., 2016), or genera-
tive (Bach et al., 2017). Here, the expert still needs
to design the heuristics to query the knowledge
and convert the results to appropriate labels for the
task. In addition, we propose the modified lan-
guage modeling objective that uses biased masking
to improve the precondition-reasoning capabilities
of LMs (§3.3).

3.1 Weak Supervision with Linguistic
Patterns

We curate a large-scale automatically labeled
dataset for, both type of, preconditions of com-
monsense statements by defining a set of linguistic
patterns and searching through raw corpora. Fi-
nally, we have a post-processing filtering step to
ensure the quality of the extracted preconditions.

Raw Text Corpora: In our experiments, we ac-
quire weak supervision from two corpora: Open
Mind Common Sense (OMCS) (Singh et al., 2002)
and ASCENT (Nguyen et al., 2021a). OMCS is a
large commonsense statement corpus that contains
over 1M sentences from over 15,000 contributors.
ASCENT has consolidated over 8.9M common-
sense statements from the Web.

First, we use sentence tokenization in
NLTK (Bird et al., 2009) to separate individual
sentences in the raw text. Each sentence is then
considered as an individual statement to be fed
into the labeling functions. We further filter out the
data instances based on the conjunctions used in
the common sense statements after processing the
labeling functions (discussed in Post-Processing
paragraph).

Labeling Functions (LF): We design the LFs re-
quired for weak-supervision with a focus on the
presence of a linguistic pattern in the sentences
based on a conjunction (see Tab. 1 for examples).
In this setup, each LF labels the training data as
Allowing, Preventing or Abstaining (no label as-
signed) depending on the linguistic pattern it is
based on. For example, as shown in Tab. 1 the pres-
ence of conjunctions only if and if, with a specific
pattern, suggests that the precondition Allows the
action. Similarly, the presence of the conjunction
unless indicates a Preventing precondition. We
designed 20 such LFs based on individual conjunc-
tions through manual inspection of the collected
data in several iterations, for which details are de-
scribed in appx. §A.1.
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Text Label Action Precondition
A drum makes noise only if you beat it. Allow A drum makes noise you beat it.
Your feet might come into contact with some-
thing if it is on the floor.

Allow Your feet might come into contact with some-
thing

it is on the floor.

Pears will rot if not refrigerated Prevent Pears will rot refrigerated
Swimming pools have cold water in the win-
ter unless they are heated.

Prevent Swimming pools have cold water in the win-
ter

they are heated.

Table 1: Examples from the collected dataset through linguistic patterns in §3.1.

Extracting Action-Precondition Pairs Once
the sentence have an assigned label, we extract
the action-precondition pairs using the same lin-
guistic patterns. This extraction can be achieved
by leveraging the fact that a conjunction divides a
sentence into action and precondition in the follow-
ing pattern “precondition conjunction action”, as
shown in Tab. 1.

However, there could be sentences that contain
multiple conjunctions. For instance, the sentence
“Trees continue to grow for all their lives except
in winter if they are not evergreen.” includes two
conjunctions “except” and “if”. Such co-occurring
conjunctions in a sentence leads to ambiguity in
the extraction process. To overcome this challenge,
we further make selection on the patterns by mea-
suring their precisions2. To do so, we sample 20
random sentences from each conjunction (400 to-
tal) and label them manually on whether they are
relevant to our task or not by two expert annotators.
If a sentence is relevant to the task, it is labeled as
1; otherwise, 0. We then average the scores of two
annotators for each pattern/conjunction to get its
precision score. This precision score serves as an
indicator of the quality of preconditions extracted
by the pattern/conjunction in the context of our
problem statement. Hence, priority is given to a
conjunction with a higher precision in case of am-
biguity. Further, we also set a minimum precision
threshold (=0.7) to filter out the conjunctions hav-
ing a low precision score (8 LFs), indicating low
relevance to the task of reasoning with precondi-
tions (see Appx. §A.1 for list of precision values).

Post-Processing On manual inspection of sen-
tences matched by the patterns, we observed a few
instances from random samples that were not rel-
evant to the context of commonsense reasoning
tasks, for example: How do I know if he is sick? or,
Pianos are large but entertaining. We accordingly
filter out sentences that are likely to be irrelevant
instances. Specifically, those include 1) questions

2The amounts of labeled instances (non-abstaining) for
each labeling function are relevant

which are identified based on presence of question
mark and interrogative words (List of interrogative
words in Appx. §A.4), or 2) do not have a verb in
their precondition. Through this process we end up
with a total of 113,395 labeled action-precondition
pairs with 102,474 Allow and 10,921 Prevent asser-
tions.

3.2 Generative Data Augmentation

To further augment and diversify training data, we
leverage another technique of retrieving weak su-
pervision signals by probing LMs for generative
data augmentation. To do so, we mask the nouns
and adjectives (pivot-words) from the text and let
the generative language model fill in the masks
with appropriate alternatives.

After masking the pivot-word and filling in the
mask using the LM, we filter out the augmenta-
tions that change the POS tag of the pivot-word
and then keep the top 3 predictions for each mask.
In addition, to keep the diversity of the augmented
data, we do not use more than 20 augmented sen-
tences for each original statement (picked ran-
domly). For example, in the statement “Dogs
are pets unless they are wild”, the pivot-words
are “dogs”, “pets” and “wild”. Upon masking
“dogs”, using RoBERTa (large) language model,
we get valid augmentations such as “Cats are pets
unless they are wild”. Using this generative data
augmentation, we end up with 7M labeled action-
precondition pair with 11% prevent preconditions.

3.3 Precondition-Aware Biased Masking

To increase the LM’s attention on preconditions, we
used biased masking on conjunctions as the clos-
est proxies to preconditions’ reasoning. Based on
this observation, we devised a biased masked lan-
guage modeling loss that solely focuses on mask-
ing conjunctions in the sentences instead of ran-
dom tokens. Similar to Dai et al. (2019), we mask
the whole conjunction word in the sentence and
ask the LM to fulfill the mask. The goal here
is to start from a pretrained language model and,
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through this additional fine-tuning step, improve
its ability to reason with preconditions. To use
such fine-tuned LM in a NLI module, we further
fine-tune the “LM+classification head” on subset of
MNLI (Williams et al., 2018) dataset. For full list
of conjunctions and implementation details check
Appx. §A.3.

4 Experiments

This section first showcases improvements of
PInKS on five representative tasks for precondi-
tioned inference (§4.1). We then theoretically
justify the improvements by measuring the infor-
mativeness of weak supervision by PInKS using
PABI (He et al., 2021) score and then experiment
on the effect of precision (discussed in §3.1) on
PInKS using PABI score (§4.2). Additional analy-
sis on various training strategies of PInKS is also
provided in Appx. §C.

4.1 Main Results

Comparing the capability for models to reason
with preconditions across different tasks requires
canonicalizing the inputs and outputs in such tasks
be in the same format. We used natural lan-
guage inference (NLI) as such a canonical format.
PaCo (Qasemi et al., 2022) and δ-NLI (Rudinger
et al., 2020) are already formulated as NLI and
others can be converted easily using the ground-
work laid by Qasemi et al. (2022). In NLI, given
a sentence pair with a hypothesis and a premise,
one predicts whether the hypothesis is true (en-
tailment), false (contradiction), or undetermined
(neutral) given the premise (Williams et al., 2018).
Each task is preserved with equivalence before
and after any format conversion at here, hence
conversion does not seek to affect the task perfor-
mance, inasmuch as it is discussed by Gardner et al.
(2019). More details on this conversion process are
in Appx. §B, and examples from the original target
datasets are given in Tab. 8.

Setup To implement and execute labeling func-
tions, and resolve labeling conflict, we use
Snorkel (Ratner et al., 2017), one of the SOTA
frameworks for algorithmic labeling on raw data
that provides ease-of-use APIs.3 For more details
on Snorkel and its setup details, please see Ap-
pendix A.2.

3Other alternatives such as skweak (Lison et al., 2021) can
also be used for this process.

For each target task, we start from a pretrained
NLI model (RoBERTa-Large-MNLI (Liu et al.,
2019)), fine-tune it according to PInKS (as dis-
cussed in §3) and evaluate its performance on the
test portion of the target dataset in two setups: zero-
shot transfer learning without using the training
data for the target task (labeled as PInKS column)
and fine-tuned on the training portion of the target
task (labeled as Orig.+PInKS). To facilitate com-
parison, we also provide the results for fully fine-
tuning on the training portion of the target task and
evaluating on its testing portion (labeled as Orig.
column; PInKS is not used here). To create the test
set, if the original data does not provide a split (e.g.
ATOMIC and Winoventi), following Qasemi et al.
(2022), we use unified random sampling with the
[0.45, 0.15, 0.40] ratio for train/dev/test. The exper-
iments are conducted on a commodity workstation
with an Intel Xeon Gold 5217 CPU and an NVIDIA
RTX 8000 GPU. For all the tasks, we used the pre-
trained model from huggingface (Wolf et al., 2020),
and utilized PyTorch Lightning (Falcon and The Py-
Torch Lightning team, 2019) library to manage the
fine-tuning process. We evaluate each performance
by aggregating the Macro-F1 score (implemented
in Pedregosa et al. (2011)) on the ground-truth la-
bels and report the results on the unseen test split
of the data.

Target Task Orig. PInKS Orig+PInKS

δ-NLI 83.4 60.3 84.1
PaCo 77.1 69.5 79.4
ANION 81.1 52.9 81.2
ATOMIC 43.2 48.0 88.6
Winoventi 51.1 52.4 51.3

Table 2: Macro-F1 (%) results of PInKS on the target
datasets: no PInKS (Orig.), with PInKS in zero-shot
transfer learning setup (PInKS) and PInKS in addition
to original task’s data (Orig.+PInKS). Bold values are
cases where PInKS is improving supervised results.

Discussion Table 2 presents the evaluation
results of this section. As illustrated, on
ATOMIC (Hwang et al., 2020) and Winoventi (Do
and Pavlick, 2021), PInKS exceeds the supervised
results even without seeing any examples from the
target data (zero-shot transfer learning setup). On
δ-NLI (Rudinger et al., 2020), ANION (Jiang et al.,
2021) and ATOMIC (Hwang et al., 2020), com-
bination of PInKS and train subset of target task
(PInKS in low-resource setup) outperforms the tar-
get task results. This shows PInKS can also utilize
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additional data from target task to achieve better
performance consistently across different aspects
of preconditioned inference.

4.2 Informativeness Evaluation
He et al. (2021) proposed a unified PAC-Bayesian
motivated informativeness measure, namely PABI,
that correlates with the improvement provided by
the incidental signals to indicate their effectiveness
on a target task. The incidental signal can include
an inductive signal, e.g. partial/noisy labeled data,
or a transductive signal, e.g. cross-domain signal
in transfer learning.

In this experiment, we go beyond the empirical
results and use the PABI measure to explain how
improvements from PInKS are theoretically justi-
fied. Here, we use the PABI score for cross-domain
signal assuming the weak supervised data portion
of PInKS (§3.1 and §3.2) as a indirect signal for a
given target task. We use PABI measurements from
two perspective. First, we examine how useful is
the weak supervised data portion of PInKS for tar-
get tasks in comparison with fully-supervised data.
And second, we examine how the precision of the
linguistic patterns (discussed in §3.1) affects this
usefulness.

Setup We carry over the setup on models and
tasks from §4.1. For details on the PABI itself and
the measurement details associated with it, please
see Appx. §E. For the aforementioned first perspec-
tive, we only consider PaCo and δ-NLI as target
tasks, as they are the two main learning resources
specifically focused on preconditioned inference
(as defined in Section 2), which is not the case
for others. We measure the PABI of the weak su-
pervised data portion of PInKS on the two target
tasks, and compare it with the PABI of the fully-
supervised data from §4.1. For the second perspec-
tive, we only focus on PInKS and consider PaCo
as target task. We create different versions of the
weak supervised data portion of PInKS with differ-
ent levels of precision threshold (e.g. 0.0, 0.5) and
compare their informativeness on PaCo. To limit
the computation time, we only use 100K samples
from the weak supervised data portion of PInKS in
each threshold value, which is especially important
in lower thresholds due to huge size of extracted
patterns with low precision threshold.

Informativeness in Comparison with Direct Su-
pervision: Tab. 3 summarizes the PABI informa-
tiveness measure in comparison with other datasets

PABI on
Indir. Task PaCo δ-NLI Explanation

PInKS 52.2 66.7 - Best on δ-NLI
δ-NLI 52.3 85.5 - Max achievable on δ-NLI

- Best on PaCo
PaCo 52.3 31.3 - Max achievable on

PaCo
ANION 34.1 13.9
ATOMIC 20.9 17.4
Winoventi 36.4 53.4
Zero Rate 26.2 0.0 - Baseline

Table 3: PABI informativeness measures (x100) of
PInKS and other target tasks w.r.t PaCo and δ-NLI.
Bold values represent the maximum achievable PABI
Score by considering train subset as an indirect signal
for test subset of respective data. The highest PABI
score, excluding the max achievable, is indicated in
italic .

with respect to PaCo (Qasemi et al., 2022) and
δ-NLI (Rudinger et al., 2020). To facilitate the
comparison of PABI scores in Tab. 3, we have also
reported the minimum achievable (“zero rate” clas-
sifier) and maximum achievable PABI scores. To
clarify, to compute the maximum achievable PABI
score, we consider the training subset of the target
task as an indirect signal for the test subset. Here,
we assume that the training subset is in practice the
most informative indirect signal available for the
test subset of any task. For the minimum achiev-
able PABI score, we considered the error rate of
the “zero rate” classifier (always classifies to the
largest class) for computations of PABI.

Our results show that although, PInKS is the top
informative incidental signal in δ-NLI target task
and second best in PaCo (less than 0.001 point
of difference with the best signal). This PABI
numbers are even more significant considering that
PInKS is the only weak-supervision data which is
automatically acquired, while others are acquired
through sometimes multiple rounds of human an-
notations and verification.

Effect of Precision on Informativeness: Fig. 3
presents the PABI informativeness estimation on
weak supervision data under different threshold lev-
els of precision values, and compare them with the
“zero rate” classifier (always predicting majority
class). As illustrated, the informativeness show a
significant drop in lower precision showcasing the
importance of using high precision templates in our
weak-supervision task. For higher thresholds (0.95)
the data will mostly consist of allow patterns, the
model drops to near zero rate informativeness base-
line again. This susceptibility on pattern precision
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Figure 3: PABI informativeness measures of PInKS
with different precision thresholds on PaCo.

can be mitigated with having more fine-grained pat-
terns on larger corpora. We leave further analysis
on precision of patterns to future work.

5 Analysis on Weak Supervision

In this section, we shift focus from external evalu-
ation of PInKS on target tasks to analyze distinct
technical component of PInKS. Here, through an
ablation study, we try to answer four main ques-
tions to get more insight on the weak supervision
provided by those components. First (Q1), how
each labeling function (LF; §3.1) is contributing to
the extracted preconditions? Second (Q2), what is
the quality of the weak supervision data obtained
from different ways of data acquisition? Third
(Q3), how does generative data augmentation (§3.2)
contribute to PInKS? And finally (Q4), how much
does the precondition-aware masking (§3.3) affect
the overall performance of PInKS?

(Q1) LF Analysis: To address the first question,
we use statistics of the 6 top performing LFs (see
Appx. §F for detailed results). These 6 top perform-
ing LFs generate more than 80% of data (Coverage)
with the highest one generating 59% of data and
lowest one generating 1%. Our results show that,
in 0.14% of instances we have conflict among com-
peting LFs with different labels and in 0.12% we
have overlap among LFs with similar labels, which
showcases the level of independence each LF has
on individual samples.4

(Q2) Quality Control: To assess the quality of
collected data, we used an expert annotator. The ex-
pert annotator is given a subset of the collected pre-
conditions (preconditions-statement-label triplet)
and asked to assign a binary label based on whether
each the precondition is valid to its statement w.r.t
the associated label. We then report the average
quality score as a proxy for precision of data. We

4Convectional inner-annotator agreement (IAA) methods
hence are not applicable.

sampled 100 preconditions-statement-label triplets
from three checkpoint in the pipeline: 1) extracted
through linguistic patterns discussed in §3.1, 2) out-
come of the generative augmentations discussed in
§3.2, and 3) final data used in §3.3. Table Tab. 4
contains the average precision of the collected data,
that shows the data has acceptable quality with
minor variance in quality for different weak super-
vised steps in PInKS.

Checkpoint Name Precision. %
Linguistic Patterns from §3.1 78
Generative Augmentation from §3.2 76
Final Data used in §3.3 76

Table 4: Precision of the sampled preconditions-
statement-label triplets from three checkpoints in
pipeline.

(Q3) Effectiveness of Generative Augmentation:
The main effect of generative data augmentation
(§3.2) is, among others, to acquire PInKS addi-
tional training samples labeled as prevent from
pretrained LMs. When considering PaCo as tar-
get task, the PInKS that does not use this technique
(no-augment-PInKS) sees a 4.14% absolute drop in
Macro-F1 score. Upon further analysis of the two
configurations, we observed that the no-augment-
PInKS leans more toward the zero rate classifier
(only predicting allow as the majority class) in com-
parison to the PInKS.

(Q4) Effectiveness of Biased Masking: We fo-
cus on PaCo as the target task and compare the
results of PInKS with an alternative setup with no
biased masking. In the alternative setup, we only
use the weak-supervision data obtained through
PInKS to fine-tune the model and compare the re-
sults. Our results show that the Macro-F1 score for
zero-shot transfer learning setup has a 1.09% ab-
solute drop in Macro-F1 score, without the biased
masking process.

6 Related Work

Reasoning with Preconditions Collecting pre-
conditions of common sense and reasoning with
them has been studied in multiple works. Rudinger
et al. (2020) uses the notion of “defeasible infer-
ence” (Pollock, 1987; Levesque, 1990) in term of
how an update sentence weakens or strengthens
a common sense hypothesis-premise pair. For ex-
ample, given the premise “Two men and a dog
are standing among rolling green hills.”, the up-
date “The men are studying a tour map” weakens
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the hypothesis that “they are farmers”, whereas
“The dog is a sheep dog” strengthens it. Simi-
larly, PaCo (Qasemi et al., 2022) uses the notion of
“causal complex” from Hobbs (2005), and defines
preconditions as eventualities that either allow or
prevent (allow negation (Fikes and Nilsson, 1971)
of) a common sense statement to happen. For ex-
ample, for the knowledge “the glass is shattered”
prevents the statement “A glass is used for drink-
ing water”, whereas "there is gravity" allows it. In
PaCo, based on Shoham (1990) and Hobbs (2005),
authors distinguish between two type of precon-
ditions, causal connections (hard), and material
implication (tends to cause; soft). Our definition
covers these definitions and is consistent with both.

Hwang et al. (2020), Sap et al. (2019), Hein-
dorf et al. (2020), and Speer et al. (2017), pro-
vided representations for preconditions of state-
ments in term of relation types, e.g. xNeed in
ATOMIC2020 (Hwang et al., 2020). However, the
focus in none of these works is on evaluating SOTA
models on such data. The closest study of pre-
conditions to our work are Rudinger et al. (2020),
Qasemi et al. (2022), Do and Pavlick (2021) and
Jiang et al. (2021). In these works, direct human
supervision (crowdsourcing) is used to gather pre-
conditions of commonsense knowledge. They all
show the shortcomings of SOTA models on dealing
with such knowledge. Our work differs as we rely
on combination of distant-supervision and targeted
fine-tuning instead of direct supervision to achieve
on-par performance. Similarly, Mostafazadeh et al.
(2020), and Kwon et al. (2020) also study the prob-
lem of reasoning with preconditions. However they
do not explore preventing preconditions.

Weak Supervision In weak-supervision, the ob-
jective is similar to supervised learning. However
instead of using human/expert resource to directly
annotate unlabeled data, one can use the experts
to design user-defined patterns to infer “noisy” or
“imperfect” labels (Rekatsinas et al., 2017; Zhang
et al., 2017; Dehghani et al., 2017; Singh et al.,
2022), e.g. using heuristic rules. In addition, other
methods such as re-purposing of external knowl-
edge (Alfonseca et al., 2012; Bunescu and Mooney,
2007; Mintz et al., 2009) or other types of domain
knowledge (Stewart and Ermon, 2017) also lie in
the same category. Weak supervision has been
used extensively in NLU. For instance, Zhou et al.
(2020) utilize weak-supervision to extract temporal
commonsense data from raw text, Brahman et al.

(2020) use it to generate reasoning rationale, De-
hghani et al. (2017) use it for improved neural rank-
ing models, and Hedderich et al. (2020) use it to
improve translation in African languages. Simi-
lar to our work, ASER (Zhang et al., 2020) and
ASCENT (Nguyen et al., 2021b) use weak super-
vision to extract relations from unstructured text.
However, do not explore preconditions and cannot
express preventing preconditions. As they do focus
on reasoning evaluation, the extent in which their
contextual edges express allowing preconditions is
unclear.

Generative Data Augmentation Language
models can be viewed as knowledge bases that im-
plicitly store vast knowledge on the world. Hence
querying them as a source of weak-supervision is a
viable approach. Similar to our work, Wang et al.
(2021) use LM-based augmentation for saliency of
data in tables, Meng et al. (2021) use it as a source
of weak-supervision in named entity recognition,
and Dai et al. (2021) use masked LMs for weak
supervision in entity typing.

7 Conclusion

In this work we presented PInKS , as an im-
proved method for preconditioned commonsense
reasoning which involves two techniques of weak
supervision. To maximize the effect of the weak
supervision data, we modified the masked lan-
guage modeling loss function using biased masking
method to put more emphasis on conjunctions as
closest proxy to preconditions. Through empirical
and theoretical analysis of PInKS, we show it signif-
icantly improves the results across the benchmarks
on reasoning with the preconditions of common-
sense knowledge. In addition, we show the results
are robust in different precision values using the
PABI informativeness measure and extensive abla-
tion study.

Future work can consider improving the robust-
ness of preconditioned inference models using
methods such as virtual adversarial training (Miy-
ato et al., 2018; Li and Qiu, 2020). With advent of
visual-language models such as Li et al. (2019), pre-
conditioned inference should also expand beyond
language and include different modalities (such as
image or audio). To integrate in down-steam tasks,
one direction is to include such models in aiding in-
ference in the neuro-symbolic reasoners (Lin et al.,
2019; Verga et al., 2020).
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Ethical Consideration

We started from openly available data that is both
crowdsource-contributed and neutralized, however
they still may reflect human biases. For example
in case of PaCo (Qasemi et al., 2022) they use
ConceptNet as source of commonsense statements
which multiple studies have shown its bias and
ethical issues, e.g. (Mehrabi et al., 2021).

During design of labeling functions we did not
collect any sensitive information and the corpora
we used were both publicly available, however they
may contain various types of bias. The labeling
functions in PInKS are only limited to English lan-
guage patterns, which may inject additional cul-
tural bias to the data. However, our expert annota-
tors did not notice any offensive language in data
or the extracted preconditions. Given the urgency
of addressing climate change we have reported the
detailed model sizes and runtime associated with
all the experiments in Appendix D.

Limitations

The main limitation of this work are related to
the choice of raw text corpora and the model
for main results. From the raw text corpora
perspective, we relied on Open Mind Common
Sense (OMCS) (Singh et al., 2002) and AS-
CENT (Nguyen et al., 2021a) as two rich resource
of commonsense knowledge. Future iterations of
this work should include more fine-grained labeling
functions to be applied to other large scale corpora
that results in more diverse set of extracted precon-
ditions.

The purpose of the experiments in this work is
to show the effectiveness of PInKS in precondi-
tioned inference without introducing any expen-
sive (manually labeled) supervision. We chose
RoBERTa-Large-MNLI (Liu et al., 2019) as a rep-
resentative and strong model that has been widely
applied to NLI tasks, including all those evaluated
in this work. However, there are more models, e.g.
unified-QA-11B for PaCo or DeBERTa for δ-NLI,
that can be considered for each one of the target
tasks. Of course achieving the SOTA with these
much larger models requires a lot of computational
resources, which is beyond the scope and band-
width of this study. But, given more resources we
would easily extend analysis to other models as
well.
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A Details on PInKS Method

In this section, we discuss some of the extra details
related to PInKS and its implementation.

A.1 Linguistic Patterns for PInKS

We use a set of conjunctions to extract sen-
tences that follow the action-precondition sentence
structure. Initially, we started with two simple
conjunctions-if and unless, for extracting asser-
tions containing Allowing and Preventing precondi-
tions, respectively. To further include similar sen-
tences, we expanded our vocabulary by considering
the synonyms of our initial conjunctions. Adding
the synonyms of unless we got the following set
of new conjunctions for Preventing preconditions-
{but, except, except for, if not, lest, unless}, simi-
larly we expanded the conjunctions for Enabling
preconditions using the synonyms of if -{contingent
upon, in case, in the case that, in the event, on con-
dition, on the assumption, supposing}. Moreover,
on manual inspection of the OMCS and ASCENT
datasets, we found the following conjunctions that
follow the Enabling precondition sentence pattern-
{makes possible, statement is true, to understand
event}. Tab. 5, summarizes the final patterns used
in PInKS, coupled with their precision value and
their associated conjunction.

A.2 Details of Snorkel Setup

Beyond a simple API to handle implementing pat-
terns and applying them to the data, Snorkel’s main
purpose is to model and integrate noisy signals
contributed by the labeling functions modeled as
noisy, independent voters, which commit mistakes
uncorrelated with other LFs.

To improve the predictive performance of the
model, Snorkel additionally models statistical re-
lationships between LFs. For instance, the model
takes into account similar heuristics expressed by
two LFs to avoid "double counting" of voters.
Snorkel, further, models the generative learner as
a factor graph. A labeling matrix Λ is constructed
by applying the LFs to unlabeled data points. Here,
Λi,j indicates the label assigned by the jth LF for
the ith data point. Using this information, the gen-
erative model is fed signals via three factor types,
representing the labeling propensity, accuracy, and
pairwise correlations of LFs.
φLabi,j (Λ) = 1{Λi,j 6= ∅}
φAcc
i,j (Λ) = 1{Λi,j = yi}
φCorr
i,j,k (Λ) = 1{Λi,j = Λi,k}

The above three factors are concatenated along
with the potential correlations existing between
the LFs and are further fed to a generative model
which minimizes the negative log marginal likeli-
hood given the observed label matrix Λ.

A.3 Modified Masked Language Modeling

Tab. 6 summarizes the list of Allowing and Pre-
venting conjunctions which the modified language
modeling loss function is acting upon.

A.4 Interrogative Words

On manual inspection of the dataset, we observed
some sentences that were not relevant to the com-
mon sense reasoning task. Many of such instances
were interrogative statements. We filter out such
cases based on the presence of interrogative words
in the beginning of a sentence. These interrogative
words are listed below.

Interrogative words: ["Who", "What", "When",
"Where", "Why", "How", "Is", "Can", "Does",
"Do"]

B Details on Target Data Experiments

For converting Rudinger et al. (2020), similar to
Qasemi et al. (2022), we concatenate the “Hypoth-
esis” and “Premise” and consider then as NLI’s
hypothesis. We then use the “Update” sentence as
NLI’s premise. The labels are directly translated
based on Update sentences’s label, weakener to
prevent and the strengthener to allow.

To convert the ATOMIC2020 (Hwang et al.,
2020), similar to Qasemi et al. (2022), we focused
on three relations HinderedBy, Causes, and xNeed.
From these relations, edges with HinderedBy are
converted as prevent and the rest are converted as
allow.

Winoventi (Do and Pavlick, 2021), proposes
Winograd-style ENTAILMENT schemas focusing
on negation in common sense. To convert it to NLI
style, we first separate the two sentences in the
masked_prompt of each instance to form hypothe-
sis and premise. We get two versions of premise by
replacing the MASK token in premise with their
target or incorrect tokens. For the labels the ver-
sion with target token is considered as allow and
the version with incorrect token as prevent.

ANION (Jiang et al., 2021), focuses on CON-
TRADICTION in general. We focus on their
commonsense dCONTRADICTION subset as it is
clean of lexical hints. Then we convert their crowd-
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Conjunctions Precision Pattern
but 0.17 {action} but {negative_precondition}
contingent upon 0.6 {action} contingent upon {precondition}
except 0.7 {action} except {precondition}
except for 0.57 {action} except for {precondition}
if 0.52 {action} if {precondition}
if not 0.97 {action} if not {precondition}
in case 0.75 {action} in case {precondition}
in the case that 0.30 {action} in the case that {precondition}
in the event 0.3 {action} in the event {precondition}
lest 0.06 {action} lest {precondition}
makes possible 0.81 {precondition} makes {action} possible.
on condition 0.6 {action} on condition {precondition}
on the assumption 0.44 {action} on the assumption {precondition}
statement is true 1.0 The statement "{event}" is true because {precondition}.
supposing 0.07 {action} supposing {precondition}
to understand event 0.87 To understand the event "{event}", it is important to know that {precondition}.
unless 1.0 {action} unless {precondition}
with the proviso - {action} with the proviso {precondition}
on these terms - {action} on these terms {precondition}
only if - {action} only if {precondition}
make possible - {precondition} makes {action} possible.
without - {action} without {precondition}
excepting that - {action} excepting that {precondition}

Table 5: Linguistic patterns in PInKS and their recall value. For patterns with not enough match in the corpora
have empty recall values.

Type Conjunctions
Allowing only if, subject to, in case, contingent upon, given, if, in the case that, in case, in the case that, in the event, on

condition, on the assumption, only if, so, hence, consequently, on these terms, subject to, supposing, with the
proviso, so, thus, accordingly, therefore, as a result, because of that, as a consequence, as a result

Preventing but, except, except for, excepting that, if not, lest, saving, without, unless

Table 6: List of conjunctions used in modified masked loss function in section 3.3

Conjunction Pattern
to understand event To understand the event “{event}", it

is important to know that {precondi-
tion}.

in case {action} in case {precondition}
statement is true The statement “{event}" is true be-

cause {precondition}.
except {action} except {precondition}
unless {action} unless {precondition}
if not {action} if not {precondition}

Table 7: Filtered Labeling Functions Patterns and their
associated polarity.

sourced original head or CONTRADICTION head
as hypothesis, and the lexicalized predicate and
tail as the premise (e.g. xIntent to PersonX intends
to). Finally the label depends on head is allow for
original head and prevent for CONTRADICTION
head. We also replace “PersonX” and “PersonY”
with random human names (e.g. “ALice”, “Bob”).

Finally, for the PaCo (Qasemi et al., 2022), we
used their proposed P-NLI task as a NLI-style task
derived from their preconditions dataset. We con-
verted their Disabling and Enabling labels to pre-
vent and allow respectively.

Tab. 8 summarizes the conversion process
through examples from the original data and the
NLI task derived from each.

To run all the experiments, we fine-tune the
models on tuning data for maximum of 5 epochs
with option for early stopping available upon 5
evaluation cycles with less than 1e − 3 change
on validation data. For optimizer, we use
AdamW (Loshchilov and Hutter, 2019) with learn-
ing rate of 3e-6 and default hyperparamter for the
rest.

C Curriculum vs. Multitask Learning

For results of §4.1, we considered the target task
and PInKS as separate datasets, and fine-tuned
model sequentially on them (curriculum learn-
ing;Pentina et al., 2015). We chose curriculum
learning setup due to its simplicity in implemen-
tation, ease of fine-tuning process monitoring and
hyperparameter setup. It would also allow us to
monitor each task separately that increases inter-
pretability of results.

However, in an alternative fine-tuning setup, one
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Name Original Data Derived NLI

Winoventi
(Do and Pavlick, 2021)

masked_prompt:
a

Margaret smelled her bottle of maple syrup
and it was sweet. The syrup is {MASK}.

Hypothesis:
a

Margaret smelled her bottle of maple syrup
and it was sweet.

target: edible Premise: The syrup is edible/malodorous
incorrect: malodorous Label: ENTAILMENT/CONTRADICTION

ANION
(Jiang et al., 2021)

Orig_Head: PersonX expresses PersonX’s delight. Hypothesis: Alice expresses Alice’s delight/anger.
Relation: xEffect Premise: feel happy.
Tail: Alice feel happy Label: ENTAILMENT/CONTRADICTION
Neg_Head: PersonX expresses PersonX’s anger.

ATOMIC2020
(Hwang et al., 2020)

Head: PersonX takes a long walk. Hypothesis: PersonX takes a long walk.
Relation: HinderedBy Premise: It is 10 degrees outside..
Tail: It is 10 degrees outside. Label: CONTRADICTION

δ-NLI
(Rudinger et al., 2020)

Hypothesis: PersonX takes a long walk. Hypothesis: PersonX takes a long walk.
Premise: HinderedBy Premise: It is 10 degrees outside..
Update: It is 10 degrees outside. Label: CONTRADICTION
Label: Weakener

PaCo
(Qasemi et al., 2022)

Statement: A net is used for catching fish. Hypothesis: A net is used for catching fish.
Precondition: You are in a desert. Premise: You are in a desert.
Label: Disabling Label: CONTRADICTION

Table 8: Examples from target tasks in NLI format

can merge the two datasets into one and fine-tune
the model on the aggregate dataset (multi-task
learning;Caruana, 1997). Here, we investigate such
alternative and its effect on the results of §4.1.

Setup We use the same setup as §4.1 for fine-
tuning the model on Orig.+PInKS. Here instead of
first creating PInKS and then fine-tuning it on the
target task, we merge the weak-supervision data of
PInKS with the training subset of the target task
and then do fine-tuning on the aggregate dataset.
To manage length of this section, we only consider
PaCo, δ-NLI and Winoventi as the target dataset.

Target Data Orig+PInKS (Multi-Task) Diff.
δ-NLI 72.1 -11.00
PaCo 77.3 +6.8
Winoventi 51.7 +0.7

Table 9: Macro-F1 (x100) results of PInKS on the tar-
get datasets using multi-task fine-tuning strategy and its
difference with curriculum strategy.

Discussion Tab. 9 summarizes the results for
multi-task learning setup and its difference w.r.t
to the results of the curriculum learning setup in
Tab. 2. Using multi-task learning does not show the
consistent result across tasks. We see significant
performance loss on δ-NLI on one hand and major
performance improvements on PaCo on the other.
The Winoventi, however appears to not change as
much in the new setup. We leave further analysis
of curriculum learning to future work.

D Model Sizes and Run-times

All the experiments are conducted on a commodity
workstation with an Intel Xeon Gold 5217 CPU
and an NVIDIA RTX 8000 GPU. For all the fine-
tuning results in Tab. 2, Tab. 3 we used “RoBERTa-

Large-MNLI” with 356M tuneable parameters. To
fine-tune the model in each experiment, we use
Ray (Liaw et al., 2018) to handle hyperparame-
ter tuning with 20 samples each. The hyperpa-
rameters that are being tuned fall into two main
categories: 1) model hyperparameters such as “se-
quence length”, “batch size”, etc. and 2) data hy-
perparameters such as “precision threshold”, “data
size”, etc.. The mean run-time for each sample on
target datasets is 1hr 55mins. For the augmenta-
tion in PInKS dataset, we used “BERT” language
model with 234M tuneable parameters. The mean
run-time on the weak supervision data is 49hr that
includes all three steps of data preprocessing, lin-
guistic pattern matching, and generative data aug-
mentation.

E Details on PABI Measurement

PABI provides an Informativeness measure that
quantifies the reduction in uncertainty provided
by incidental supervision signals. We use the
PABI measure to study the impact of transduc-
tive cross-domain signals obtained from our weak-
supervision approach.

Following (He et al., 2021), in order to calculate
PABI Ŝ(π0, π̃0), we first find out η, the difference
between a perfect system and a gold system in the
target domain D that uses a label set L for a task,
using Eq.1.

η = Ex∼PD(x)
1(c(x) 6= c̃(x))

=
(|L| − 1)(η1 − η2)

1− |L|(1− η1)
(1)

Here, PD(x) indicates the marginal distribution of
x under D, c(x) refers to gold system on gold sig-
nals, c̃(x) is a perfect system on incidental signals,
η1 refers to the difference between the silver sys-
tem and the perfect system in the source domain,
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Indir. Task |L| η1 ηATMC
2 ηPaCo

2 ηδ−NLI2 ηATMC ηPaCo ηδ−NLI PABIATMC PABIPaCo PABIδ−NLI

PInKS 2 0.04 0.11 0.21 0.16 0.076 0.202 0.129 0.782 0.523 0.667
δ-NLI 2 0.13 0.22 0.28 0.16 0.122 0.203 0.046 0.683 0.522 0.855
PaCo 2 0.03 0.10 0.22 0.33 0.074 0.202 0.318 0.786 0.523 0.313
ATOMIC 2 0.01 0.57 0.62 0.60 0.608 0.622 0.602 0.184 0.209 0.174
ANION 2 0.16 0.57 0.36 0.44 0.571 0.302 0.418 0.122 0.341 0.139
Winoventi 2 0.19 0.10 0.37 0.31 0.139 0.289 0.196 0.647 0.364 0.534

Table 10: Details of PABI metric computations in §4.2 according to Equation (1)

ή1 indicates difference between the silver system
and the perfect system in the target domain, and η2
is the difference between the silver system and the
gold system in the target domain.

Using Eq.1, the informative measure supplied by
the transductive signals Ŝ(π0, π̃0) can be calculated
as follows:√

1− η ln(|L| − 1)− η ln η − (1− η) ln(1− η))

ln|L|

Tab. 10 contains the details associated computa-
tion of PABI score as reported in §4.2.

F Details on LFs in PInKS

Tab. 11 shows Coverage (fraction of instances as-
signed the non-abstain label by the labeling func-
tion), Overlaps (fraction of instances with at least
two non-abstain labels), and Conflicts (fraction of
instances with conflicting and non-abstain labels)
on top performing LFs in PInKS.

LF name Cov. % Over. % Conf. %

to understand 59.03 0.03 0.03
statement is 10.58 0.03 0.03
except 4.84 0.02 0.01
unless 4.79 0.04 0.04
in case 1.46 0.01 0.00
if not 1.00 0.01 0.01
Overall 81.69 0.14 0.12

Table 11: Coverage (fraction of raw corpus instances
assigned the non-abstain label by the labeling function),
Overlaps (fraction of raw corpus instances with at least
two non-abstain labels), and Conflicts (fraction of the
raw corpus instances with conflicting (non-abstain) la-
bels) on top performing LFs. Green and red color re-
spectively represent LFs that assign allow and prevent
labels.

G Details on Preconditioned Inference in
the Literature

As mentioned in §2, existing literature does not
have a consistent (unified) definitions from to as-
pects: 1) the definition of the preconditions, and 2)
the definition of preconditioned inference.

First, existing literature define preconditions of
common sense statements in different degrees of
impact on the statement. For example, Qasemi
et al. (2022) follows the notion of “causal complex”
from Hobbs (2005), where for a common sense
statement s preconditions of the statement Pf (s)
are defined as collection of eventualities (events
or states) that results in s to happen. According
to Qasemi et al. (2022), such eventualities can ei-
ther enable (p+f ∈ Pf ) or disable (p−f ∈ Pf ) the
statement to happen. Also, Qasemi et al. (2022)
uses Fikes and Nilsson (1971) to define disable as
enabling the negation of the statement. On other
hand, Rudinger et al. (2020) defines strengthener as
updates that a human would find them to increase
likelihood of a hypothesis, and the weakener as
the one that humans would find them to decrease
it. Here, the focus on human’s opinion is stemmed
from definition of common sense. In this work,
given the focus on noisy labels derived from weak-
supervision, we adopted the more relaxed definition
from Rudinger et al. (2020) for preconditions of
common sense statements.

Second, there is also inconsistencies in the defi-
nition of reasoning with the preconditions or pre-
conditioned inference. Rudinger et al. (2020) has
a strict structure. It defines the task w.r.t to effect
of precondition on the relation of two sentences:
hypothesis and premise; where a model has to find
the type of the precondition based on whether it
strengthens or weakens the relation between the
two sentences. Differently, Qasemi et al. (2022)
has a relaxed definition in which the model is to
decide if the precondition either enables or disables
the statement. Here the statement can have any for-
mat. Do and Pavlick (2021), Hwang et al. (2020),
and Jiang et al. (2021), on the other hand, define
only a generative task to evaluate the models. In
this work, again we adopted the more relaxed defi-
nition from Qasemi et al. (2022) that imposes less
constraint on weak-supervised data.


