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Abstract

Keywords or keyphrases are often used to high-
light a document’s domains or main topics. Un-
supervised keyphrase extraction (UKE) has al-
ways been highly anticipated because no la-
beled data is needed to train a model. This
paper proposes an augmented graph-based un-
supervised model to identify keyphrases from a
document by integrating graph and deep learn-
ing methods. The proposed model utilizes mu-
tual attention extracted from the pre-trained
BERT model to build the candidate graph and
augments the graph with global and local con-
text nodes to improve the performance. The
proposed model is evaluated on four publicly
available datasets against thirteen UKE base-
lines. The results show that the proposed model
is an effective and robust UKE model for long
and short documents. Our source code is avail-
able on GitHub1.

1 Introduction

The mainstream unsupervised keyphrase extraction
(UKE) approaches fall into one of three types: sta-
tistical, graph-based, and deep learning approaches.
The statistical methods include the TF-IDF-based
approach and other recent works (Campos et al.,
2020; Beliga et al., 2016), which utilize term fre-
quency, document frequency, word offsets and the
number of n-grams to calculate the importance of
the candidates. The graph-based methods treat the
candidates as the nodes in a graph (Gollapalli and
Caragea, 2014; Wan and Xiao, 2008). The edges
are calculated based on candidates’ co-occurrences,
semantic similarity, or other relations. Graph-based
algorithms then determine the importance of can-
didates. Several recent studies have shown that
embedding-based methods can achieve excellent
performance on unsupervised keyphrase extraction,
such as JointModeling (Liang et al., 2021), Atten-
tionRank (Ding and Luo, 2021), SIFRank (Sun

1https://github.com/hd10-iupui/AGRank

et al., 2020), KeyGames (Saxena et al., 2020) and
EmbedRank (Bennani-Smires et al., 2018). These
approaches base candidates’ importance on the dis-
tance or similarity of candidate embeddings, and
some consider the global or local context.

We propose an augmented graph-based unsu-
pervised model to identify keyphrases from doc-
uments. The model extracts attention from the
pre-trained BERT model to generate a candidate
keyphrase graph, then augments the attention graph
with nodes that present the global and local context.
Similar to the baseline approaches, noun phrases
are extracted as candidates representing the nodes
on the graph. The co-occurrence of candidates de-
termines graph edges within the sentential context.
Edge weights between the candidates are calcu-
lated based on the mutual attention extracted from
the pre-trained BERT model and the indexes of the
sentences where the candidates are located. The
candidate graph adds the global and local contexts
as document and sentence nodes. The edge weights
between the document node and candidates and the
edge weights between sentence nodes and candi-
dates are calculated based on the cosine similarity
between their embeddings. The graph is then ad-
justed by removing nodes and edges based on the
document frequency and edge weights. Finally, the
ranking of each candidate is calculated using the
weighted PageRank algorithm.

We summarize our contributions as follows:

• A novel augmented graph-based unsupervised
keyphrase extraction (UKE) model consider-
ing global and local context is proposed and
evaluated using four benchmark datasets.

• The mutual attention extracted from the pre-
trained language model is utilized to build a
weighted graph.

• The proposed model works better than or
is competitive with the state-of-the-art UKE
baselines.
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2 Methodology

Our model has three main parts: (1) Candidate
Graph Generation, in which we convert each doc-
ument into a weighted graph with candidates as
nodes and attention between candidates in a senten-
tial context as weighted edges; (2) Graph Augment-
ing, in which we add a document node and sentence
nodes to emphasize the global and local context
and their relations to the candidates; (3) PageRank
Scoring, in which we apply the weighted PageR-
ank algorithm on the graph to rank candidates to
identify keyphrases.

2.1 Candidate Graph Generation

To build the candidate graph, we first extract candi-
dates from a document, then add weighted edges
between each pair based on the sentence level
self-attention mechanism. Furthermore, the edge
weights also are influenced by the importance of
the sentences containing the candidates’ pairs.

Candidates Generation. The candidates are
extracted using the module implemented in the pre-
vious approach (Bennani-Smires et al., 2018). The
module first uses part of speech (PoS) to tag the
nouns, verbs, pronouns, and adjectives. Then, the
noun phrases are extracted using the NLTK2 pack-
age as candidates. In our research, the punctuation
are removed from the candidates, except ‘-’. The
stemming is applied to candidates and ground truth
keyphrases for model building and performance
evaluation. The effectiveness of stemming is inves-
tigated in the ablation study section.

Edge Weight Generation. The generation of
edge weight is based on the mutual attention be-
tween candidates extracted from the pre-trained
BERT model (Devlin et al., 2018). Clark et al.
(2019) have shown that important syntactic and se-
mantic information is captured in attention maps
of the pre-trained BERT model. To compute the
mutual attention between candidates, we utilize
the methods introduced by Ding and Luo (2021)
and Clark et al. (2019) to extract attention between
words. The attention between words is then aggre-
gated to attention between phrases.

For a sentence with n words, the mutual atten-
tion mapping between words can be presented as a
matrix (A).

2https://github.com/nltk

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann


aij is the attention value that word wi projects to

word wj within the same sentence s. If a candidate
is a phrase with multiple words, we sum the word
attention into phrase attention. Given candidate
c1 = {w : wi ∈ c1} with n words and candidate
c2 = {w : wj ∈ c2} with m words, the attention
between c1 and c2 is the sum of the attention that
the words in c1 project to the words in c2, shown
as Equation 1.

a(c1, c2) =
n∑
i

m∑
j

aij (1)

Fig. 1 shows a visual example of the mutual
attention values between phrases. Given a docu-
ment’s title – “Standards for service discovery and
delivery”, the colored rows in the heatmap repre-
sent the attention project from words/phrases la-
beled on the y-axis to the words/phrases labeled on
the x-axis.

Figure 1: Attention aggregation from words to phrases
(The attention values between identical words or phrases
are set to zeros.)

a(c1, c2) indeed represents the weight of the di-
rected edge from c1 to c2 within sentence s, shown
in Equation 2.

vs < c1, c2 >= a(c1, c2) (2)
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To generate undirected weighted edges, we sum
edge weights from c1 to c2 and from c2 to c1 in all
sentences containing c1 and c2, shown as Eq. 3.

v(c1, c2) =
∑
s∈doc

(vs < c1, c2 > +vs < c2, c1 >)

(3)
Edge Weight Adjustment. Campos et al. (2020)

has shown that the first few sentences of an article
often summarize the main topic and emphasize
the domain of the work. Therefore, we adjust the
edge weights (v) according to the positions of the
sentences (is) containing the edges (Eq. 4).

v(c1, c2) = v(c1, c2)×[1+(k−is)/10]
2, if is < k

(4)
The weight of edge (c1, c2) increases proportion-
ally according to the index (is) of the first sentence
containing candidates c1 and c2. k is the threshold
for sentence position. When the sentence index ex-
ceeds k, the edges contained in the sentence have
no weight adjustment. k can be fine-tuned in terms
of the number of sentences based on the length of
the document. For a long article, the threshold k
can be set to the number of sentences in the abstract
or introduction. Articles in different fields will have
different k. In the following ablation study, we ex-
plored the effect of different k. k is designed to be
a multiple of 10. For short documents containing
less than ten sentences, k is set to 10.

2.2 Graph Augmenting

The candidate graph does not consider the relations
between each candidate and the document’s global
context and the relations between the candidates
and each sentence’s local context. Hence, we add
document and sentence nodes to augment the can-
didate graph with the global and local context.

Document Node. The candidates ({c1, ..., cr})
extracted from the document are concatenated
as the document node representation. The edge
weight between the document node d and a candi-
date node c is their embeddings’ cosine similarity,
shown in Equation 5.

The document node embedding (ed) and the can-
didate node embedding (ec) are generated by feed-
ing the text representations of the document or can-
didate into a pre-trained BERT model. The self-
attention mechanism of BERT generates a context-
based embedding for each member word of a text.

A document or candidate node’s embedding is gen-
erated by summing up the member words’ embed-
dings of the node. We use the bert-embedding3

package to generate word-level embeddings.
The αd is a coefficient value to adjust edge

weights between the document and candidates. It
can be set to the average number of sentences in a
corpus.

v(d, c) =
ec · ed

||ec|| · ||ed||
× αd (5)

Sentence Nodes. A sentence node is represented
using its original sentence content. The sentence
node embedding (es) is generated using the same
way as the document node embedding generation.
The edge weight between candidate c and sentence
s equals the cosine similarity of their embeddings,
shown in Equation 6.

v(s, c) =
ec · es

||ec|| · ||es||
(6)

Figure 2 shows a visualization example of an
augmented graph of a document randomly selected
from the dataset Inspec. The blue-colored nodes
represent the stemmed candidates. The document
node and the sentence nodes are pink-colored and
green-colored, respectively. The edge weights be-
tween pairs of candidates and between candidates
to document or sentence nodes are shown. For
demonstration purposes, the edge weights are mul-
tiplied by ten and rounded. The original document
content is shown in Fig. 3, and the ground truth
keyphrases are highlighted. In this example, ‘Ser-
vice Location Protocol’ is a labeled keyphrase. In
the augmented graph, the edge weight between
nodes ‘servic locat protocol’ and ‘race’ is high
as calculated using BERT mutual attention. ‘Ser-
vice discovery’ is another labeled keyphrase and
occurs in four different sentences. Hence, in our
augmented graph, the node ‘servic discoveri’ has
connections with many candidates. This example
reveals that our augmented graph has the mecha-
nism to emphasize the importance of the edges and
the nodes based on the document content.

Graph Pruning. To reduce the computational
cost and improve the performance, we prune the
graph by removing some nodes based on their NLP
features and some edges based on the edge weights
distribution (Faralli et al., 2018). The following
steps are applied:

3https://pypi.org/project/bert-embedding/
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Figure 2: An example of an augmented graph. (All candidates are stemmed.)

Figure 3: Example document with ground truth
keyphrases highlighted.

(1) Remove the candidate node when its doc-
ument frequency exceeds some threshold. High
document frequency often indicates that the term
is a generic one in a corpus. For each corpus, we
calculate the document frequency of all candidates
and determine the threshold by the Elbow law4.

(2) Remove the edge between a pair of candi-
dates when the edge weight is lower than a thresh-
old, such as the 25th percentile of the candidate-
candidate edge weights distribution.

(3) Remove the edge between a sentence and
a candidate when the edge weight is lower than
a threshold (ps) determined by the sentence-
candidate edge weights distribution.

4https://pypi.org/project/kneed/

2.3 PageRank Scoring

The pruned graph is fed into the weighted PageR-
ank algorithm (Xing and Ghorbani, 2004) to calcu-
late the importance score of each candidate. The
score (PR(c)) of a candidate (c) is calculated as
Equation 7.

PR(c) = (1− δ)+ δ×
∑

cn∈Bc

PR(cn)× v2(c, cn)

(7)
Where δ is the dampening factor, cn is a neigh-

bor node of c, and Bc is the set of all candidate
c neighbors. v(c, cn) is the weight of the edge
(c, cn). The weighted PageRank algorithm consid-
ers in-edge and out-edge weights. Since we have
an undirected graph, in-edge and out-edge weights
are treated the same.

During the final ranking, the document and sen-
tence nodes are excluded, and the candidates with a
high document frequency, e.g., higher than a thresh-
old dfθ, are also excluded.

3 Experiment

3.1 Datasets and Evaluation Metrics

The performance of our model is evaluated
on four benchmark datasets5. Datasets Inspec

5https://github.com/LIAAD/KeywordExtractor-Datasets
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(Hulth, 2003) and SemEval2017 (Augenstein et al.,
2017) contain short documents, and datasets Se-
mEval2010 (Kim et al., 2010) and Nguyen2007
(Nguyen and Kan, 2007) contain long documents.
Table 1 summarizes the basic statistics of the
datasets. The performance of keyphrase extrac-
tion is evaluated using F1 scores at the top 5, 10,
and 15 ranked keyphrases.

To make an appropriate comparison with the
baselines, we follow the common practice of using
the uncontrolled annotated keyphrases of dataset
Inspec and using the test set of SemEval2010 with
100 documents in our experiment. All extracted
and labeled keyphrases are stemmed for evaluation.

Table 1: A Summary of Datasets

dataset Document Number Average Sentence Number Average Word Number

Inspec 500 6 134
SemEval2017 493 7 168
SemEval2010 100 362 7845
Nguyen2007 209 235 5088

3.2 UKE Baselines

We compared our model against 13 baseline un-
supervised keyphrase extraction models catego-
rized into three categories: (1) Statistical mod-
els6: TF-IDF, YAKE! (Campos et al., 2020);
(2) Graph-based models7: TextRank (Mihalcea
and Tarau, 2004), SingleRank (Wan and Xiao,
2008), TopicRank (Bougouin et al., 2013), Posi-
tionRank (Florescu and Caragea, 2017b), Multi-
partiteRank (Boudin, 2018a); (3) Deep learning-
based or mixed models: EmbedRank8 (Bennani-
Smires et al., 2018), SIFRank9 (Sun et al., 2020),
KeyGames10 (Saxena et al., 2020), JointModel-
ing11 (Liang et al., 2021), AttentionRank12 (Ding
and Luo, 2021), MDERank13 (Zhang et al., 2021).

3.3 Hyperparameter Setting

The BERT-Base is used for attention extraction
(Clark et al., 2019) and node embedding genera-
tion14. The Hyperparameters for each dataset are
fine-tuned and set as follows:

6https://github.com/boudinfl/pke
7https://github.com/boudinfl/pke
8https://github.com/swisscom/ai-research-keyphrase-

extraction
9https://github.com/sunyilgdx/SIFRank

10https://github.com/mangalm96/keygames-pke
11https://github.com/xnliang98/uke_ccrank
12https://github.com/hd10-iupui/AttentionRank
13https://github.com/linhanz/mderank
14https://pypi.org/project/bert-embedding/

For all datasets, δ is set to 0.85, and αd is set
to the average sentence number of the corpus. For
Inspec and SemEval2017, k is set to 10, dfθ is
set to 5, and ps is set to the 60th and the 75th

percentile, respectively. For SemEval2010, k is
set to 20, dfθ is set to 25. For Nguyen2007, k is
set to 90, dfθ is set to 45. Sentence nodes are not
added to the augmented graphs for SemEval2010
and Nguyen2007 due to the computational cost and
the need.

On a computer with an Intel i7 9700k, 48G RAM
and RTX 2060 graphics card, generating an aug-
mented graph costs less than 10 seconds for a short
document and about one minute for a long docu-
ment.

3.4 Results

Table 2 compares AGRank and the baseline UKE
models using F1@5, 10, and 15. The values for
baseline models are those presented in the original
papers or better results published in other papers
recently. Since not all datasets are used in the
original papers, we applied the baselines to the
datasets using the published code. Those produced
results are tagged with *.

In most cases, the deep learning-based or mixed
models outperform the statistical and graph-based
models on short document datasets (Inspec and Se-
mEval2017). AGRank outperforms all UKE base-
lines on Inspec and performs better than most base-
lines except AttentionRank on SemEval2017.

Our proposed model has more apparent advan-
tages on long document datasets. For the dataset
SemEval2010, the F1@5 score is more than 3%
higher than the best UKE baseline, and F1@10 and
@15 are also about 2% higher than the best UKE
baseline.

It is worth noting that the AGRank can often
rank the keyphrases in the top 5. The results
show that the F1@5 values gained by AGRank on
all datasets are 1.5% - 3% higher than the best-
performed UKE baseline model on Inspec, Se-
mEval2010, and Nguyen2007. The F1@5 value
gained by AGRank is also competitive with the
best UKE baseline model - AttentionRank, on the
SemEval2017 dataset.



235

Table 2: Model Comparison based on F1@5, @10, @15

Method Inspec SemEval2017 SemEval2010 Nguyen2007
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Statistical Models
TF-IDF 11.28 13.88 13.83 12.70 16.26 16.73 2.81 3.48 3.91 8.66⋆ 11.03⋆ 12.42⋆

YAKE! 18.08 19.62 20.11 11.84 18.14 20.55 11.76 14.40 15.19 15.63⋆ 17.46⋆ 17.63⋆

Graph-based Models
TextRank 27.04 25.08 36.65 16.43 25.83 30.50 3.80 5.38 7.65 1.07⋆ 2.35⋆ 2.95⋆

SingleRank 27.79 34.46 36.05 18.23 27.73 31.73 5.90 9.02 10.58 1.86⋆ 3.55⋆ 4.56⋆

TopicRank 25.38 28.46 29.49 17.10 22.62 24.87 12.12 12.90 13.54 11.23⋆ 13.36⋆ 13.18⋆

PositionRank 28.12 32.87 33.32 18.23 26.30 30.55 9.84 13.34 14.33 6.35⋆ 9.89⋆ 10.25⋆

MultipartiteRank 25.96 29.57 30.85 17.39 23.73 26.87 12.13 13.79 14.92 13.49⋆ 15.63⋆ 16.50⋆

Deep Learning-based or Mixed Models
EmbedRank d2v 31.51 37.94 37.96 20.21 29.59 33.94 3.02 5.08 7.23 4.47⋆ 6.39⋆ 7.18⋆

SIFRank 29.11 38.80 39.59 22.59 32.85 38.10 8.32⋆ 8.69⋆ 8.78⋆ 9.40⋆ 9.55⋆ 8.88⋆

KeyGames 32.12 40.48 40.94 16.04⋆ 24.86⋆ 29.48⋆ 11.93 14.35 14.62 15.02⋆ 15.68⋆ 14.30⋆

JointModeling 32.61 40.17 41.09 19.17⋆ 29.59⋆ 35.68⋆ 13.02 19.35 21.72 11.52⋆ 15.93⋆ 17.71⋆

AttentionRank 31.55 39.16 40.65 24.45 35.24 39.06 12.72 17.21 19.15 17.22⋆ 20.63⋆ 22.01⋆

MDERank(BERT) 26.17 33.81 36.17 22.81 32.51 37.18 12.95 17.07 20.09 14.47⋆ 17.45⋆ 17.44⋆

AGRank 34.59 40.70 41.15 24.13 33.46 37.21 15.37 21.22 23.72 18.76 22.16 21.74

Table 3: Ablation Study

Method Inspec SemEval2017 SemEval2010 Nguyen2007
F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

Stemming Ablation
AGRank 34.59 40.70 41.15 24.13 33.46 37.21 15.37 21.22 23.72 18.76 22.16 21.74

w/o Stemming 35.32 40.98 40.57 22.84 32.59 36.62 14.79 19.95 21.34 13.76 16.65 16.37
Graph Augmenting Ablation

w/o Doc. Node 33.86 40.31 41.08 23.78 33.32 36.85 15.38 22.10 23.38 19.13 22.33 21.66
w/o Sent. Nodes 34.15 40.21 40.78 23.67 33.03 36.83 - - - - - -

Edge Weight Adjustment based on Sentence Position
w/o Sent. Weight Adjust. 34.13 40.56 40.98 23.96 33.10 36.91 13.74 17.22 18.48 18.37 20.14 19.81

4 Ablation Study

4.1 Analysis of Stemming

Candidate stemming causes nodes to merge and
change the graph’s structure. Table 3 compares
the performance of AGRank with and without
stemming. The results show that stemming im-
proves the model performance on SemEval2017,
SemEval2010 and Nguyen2007. However, the im-
provements on the Inspec are not significant.

4.2 Analysis of Graph Augmenting and Edge
Weight Adjustment

The proposed model augments the graph by adding
document and sentence nodes to provide global and
local context. We present the impact of the context
nodes in Table 3. The model takes better advantage
of document node addition on Inspec. In contrast,
the sentence node addition contributes more to the
model performances on SemEval2017.

Interestingly, the model performance on Se-
mEval2010 and Nguyen2007 are marginally better
without document node addition. We think the doc-
ument node generated for a long document cannot
sufficiently capture the overall context by generat-
ing one single embedding.

In our model, the weights of edges between can-
didates are also adjusted according to the sentence

position. From Table 3, the edge weight adjustment
based on sentence position has a higher impact on
SemEval2010 and Nguyen2007. Without using it,
the performance could drop up to 2%.

4.3 Analysis of Hyperparameters

We evaluated the impact of the hyperparameters
of our model. Fig. 4 shows the hyperparameter
tuning of k - the parameter to adjust edge weights
by sentence position, ps - the parameter to remove
the edges between the sentences and candidates
based on weight distribution, and dfθ - the param-
eter to exclude the candidates based on document
frequency. Note that the tuning study of param-
eter k only applies to long documents. For short
documents with less than ten sentences, k is set to
10. The parameter ps is only applicable to short
documents since sentence nodes are not added to
the augmented graphs for long documents due to
the computational cost.

We investigated the impact of threshold k from
10 to 130 with a step size of 10. Fig. 4 shows
that for the long document dataset SemEval2010,
the best F1@15 is gained when the first 20 sen-
tences are considered. Whereas for the long docu-
ment dataset Nguyen2007, the highest F1@15 is
achieved when the first 90 sentences are considered.
These results show that adjusting candidates’ mu-
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Figure 4: Evaluation of the Hyperparameters on Model Performance

tual edge weights by sentence position improves
model performance, although k needs to be tuned
for different datasets.

We showed that adding sentence nodes can
slightly improve the performance on short docu-
ment sets, but the sentence nodes might not have
strong relationships with all the candidates. Tun-
ing the number of edges between sentence nodes
to candidates can reduce the computational cost
and optimize the model performance. We adjusted
the ps from 0 to the 90th percentile based on the
weight distribution. Fig. 4 shows that for datasets
Inspec and SemEval2017, optimal ps are between
the 60th and the 80th percentile.

We also tuned dfθ to see its impact on the per-
formance. Fig. 4 shows that dfθ has less impact on
short document sets – Inspec and SemEval2017.
Performance of F1@15 can improve about 2%
after tuning the dfθ on long document sets – Se-
mEval2010 and Nguyen2007.

4.4 Case Study

AGRank performs closely with the AttentionRank
on short documents. To observe the difference be-
tween AGRank and AttentionRank, we randomly
select a document in SemEval2017. The heatmap
in Fig. 5 presents the importance scores of the can-
didates calculated by the two models. We normal-
ized the original scores to highlight the candidates
with a heatmap. The labeled keyphrases are bold,
italic, and underlined. AGRank scores higher for
keyphrases ‘construct model’ and ‘low emotional
involvement’, whereas the AttentionRank ranks
‘online teaching reformation’ higher. Since Atten-
tionRank uses accumulated self-attention, long can-
didates with multiple words obtain higher scores.

Figure 5: Comparison on Short Document

JointModeling performs well on the long doc-
ument set SemEval2010. Fig. 6 shows the per-
formances of JointModeling and AGRank on a
selected paragraph taken from an article in Se-
mEval2010. The heatmap shows the difference
in the strategies of the two models. AGRank has
fewer candidates than JointModeling, which at-
tribute to our graph pruning step. The candidates
with high document frequency and small neighbor
edge weights are removed. Since the edge weights
of the augmented graph are generated based on the
extracted attention of the pre-trained BERT model,
AGRank assigns high scores to ‘commitment’ and
‘Bayesian games’.

5 Related Works

The unsupervised keyphrase extraction approaches
can be categorized into statistical, graph-based, and
deep learning-based or mixed methods. The mod-
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Figure 6: Comparison on Long Document

els based on statistical techniques convert contex-
tual information into statistical features of candi-
dates and then calculate candidate scores for rank-
ing. Rose et al. (2010) utilized the ratio of word fre-
quency and the number of co-occurring neighbors
to evaluate the importance of the candidates. Be-
sides term frequency and neighbor co-occurrence,
Campos et al. (2020) also considered more con-
textual features to identify keyphrases, including
the offsets of the candidates, the sentence posi-
tions of the candidates first shown, etc. Models
based on graph methods treat candidates as nodes
of the graph, convert certain relations between can-
didates into edges of the graph, then use a graph
algorithm to calculate the candidates’ scores (Mi-
halcea and Tarau, 2004). Wan and Xiao (2008)
utilized a clustering method to select k-Nearest-
Neighbor documents to create a graph for a sin-
gle document and used a graph sorting algorithm
to generate keyphrases. Bougouin et al. (2013)
employed a clustering method to generate sev-
eral topics of a document and assign the topics
to candidates, then utilized the TextRank model to
rank topics; the most representative candidates of
the top-ranked topics are extracted as keyphrases.
Wang et al. (2014) utilized the word embedding

and word frequency to generate weighted edges
between words, then used the weighted PageRank
algorithm to compute candidate scores and rank-
ings. Florescu and Caragea (2017a) proposed the
Position-Biased PageRank algorithm, which incor-
porates the candidate positions in the document
into the ranking calculation. Boudin (2018b) pro-
posed the Multipartite graph model, which encodes
the topic information within a multipartite graph to
utilize candidate mutual relations. yeon Sung and
Kim (2020) extracted hierarchical relationships to
determine which edges and phrases should be used
and evaluated the nodes according to their inflow-
ing edges. Bennani-Smires et al. (2018) proposed
the EmbedRank, which uses a pre-trained language
model to generate the document and candidate em-
beddings and calculate the similarity between them
to select more representative keyphrases. Sun et al.
(2020) proposed SIFRank, which invokes both the
similarity between candidate and document embed-
dings and the candidate position and frequency to
calculate the correlation between candidates and
the document. Saxena et al. (2020) investigated
an evolutionary game theory model that uses can-
didate embeddings and statistics to calculate con-
fidence scores to determine whether a candidate
is a keyphrase. Ding and Luo (2021) extracted at-
tention mapping weights and then integrated accu-
mulated attention weights with the cross-attention
similarity to rank the candidates. Liang et al. (2021)
integrated bounded sentences and candidate local
relations based on document-to-candidate global
relations, then used both jointly to determine the
importance of candidates. Zhang et al. (2021) pro-
posed MDERank, which ranked candidates using
the similarity between the BERT embeddings of
the source document and the masked document.

6 Limitations, Conclusions, and Future
Work

Although our augmented graph-based model per-
forms better than the compared baselines, the graph
augmentation process is designed with quite a few
hyperparameters that need to be tuned for datasets
of different domains to obtain optimal performance.
We believe this can be further improved by automat-
ing the hyperparameter tuning process.

Our research investigated the integration of
graph-based and deep learning-based models for
unsupervised keyphrase extraction. The pre-trained
BERT model is utilized to extract candidates’ mu-
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tual attention to build the initial graph. Global
and local context information are added through
graph augmenting. PageRank algorithm is used
to calculate the ranking scores. We compared the
proposed model against 13 baseline unsupervised
keyphrase extraction models on four benchmark
datasets. The ablation study shows that the edge
weight adjustment based on sentence position has
a higher impact on the long document sets. Adding
the document and sentence nodes improves the per-
formance for short document sets.

Future work includes investigating possible so-
lutions to reduce the number of parameters and
improve efficiency. We also plan to compare our
unsupervised model against supervised keyphrase
extraction models to demonstrate the advantages
and performances.
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