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Abstract

Certain types of classification problems may
be performed at multiple levels of granular-
ity; for example, we might want to know the
sentiment polarity of a document or a sen-
tence, or a phrase. Often, the prediction at a
greater-context (e.g., sentences or paragraphs)
may be informative for a more localized pre-
diction at a smaller semantic unit (e.g., words
or phrases). However, directly inferring the
most salient local features from the global pre-
diction may overlook the semantics of this re-
lationship. This work argues that inference
along the contraposition relationship of the lo-
cal prediction and the corresponding global
prediction makes an inference framework that
is more accurate and robust to noise. We show
how this contraposition framework can be im-
plemented as a transfer function that rewrites a
greater-context from one class to another and
demonstrate how an appropriate transfer func-
tion can be trained from a noisy user-generated
corpus. The experimental results validate our
insight that the proposed contrapositive frame-
work outperforms the alternative approaches
on resource-constrained problem domains.1

1 Introduction

Many NLP applications analyze a piece of text
at multiple levels. For example, a product re-
view might be analyzed for whether it is informa-
tive overall; its paragraphs might be analyzed for
whether they are relevant to certain aspect of the
product; or its words might be analyzed for whether
they express intense emotions. These classification
tasks of varying scopes of context are often re-
lated. For instance, one might posit that a review
containing many words carrying extreme emotions
might not be very informative. In some cases, the
same class prediction task (e.g., sentiment polarity)
might be asked at both the global and local levels.

1The code is available at: https://github.com/
omidkashefi/contrapositive-inference

Classification at the more global scope depends
on clues gleaned at the local level; however, clas-
sification at the local scope is often more difficult
because the roles of the words and phrases vary
depending on the broader context in which they
are used. Therefore, a straightforward approach,
such as lexicon lookup, which require domain-
specific dictionaries, may not correctly identify the
intended usage. While direct supervision may bet-
ter take the context into account, it relies on the
availability of the training corpus containing class
labels for each local scope. This poses a significant
bottleneck for new applications for which these
resources are not widely available.

To address this problem, we exploit the relation-
ship between the global and local classification
problems and propose a training framework to in-
fer local predictions from the corresponding global
label, which may be easier to obtain. For example,
suppose someone reported a social media comment
as inappropriate (global classification), if we find
out which word(s) in the comment are contributed
the most to the user’s decision to report the com-
ment, we already found the inappropriate words
(local classification) and confirms whether the sen-
tence is correctly reported or not.

In prior work, researchers observed that local
predictions might serve as rationales (Zaidan et al.,
2007; Lei et al., 2016; Bao et al., 2018) for the
global problem. For example, if a review is classi-
fied as positive, there must be some words within
that review that are also positive such that they
serve as the rationale for the overall prediction.
Thus, if rationales can be identified for the global
classification task, their local labels would be in-
ferred to be the same as the global label. We refer
to this mode of local prediction as direct infer-
ence. However, prior work also suggested that
even modern global classifiers are still sensitive to
noise, so such direct inference may fail to identify
the most semantically relevant rationales. For ex-

https://github.com/omidkashefi/contrapositive-inference
https://github.com/omidkashefi/contrapositive-inference
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ample, irrelevant words or punctuation marks are
more influential to the decision of neural text classi-
fiers than verbs or other semantically related textual
units (Mudrakarta et al., 2018); or the presence of
snow in an image is the main feature to distinguish
huskies from wolves rather than the features related
to the animal themselves (Ribeiro et al., 2016).

In this work, we argue that this semantic rela-
tionship can be made more robust by enforcing the
contrapositive constraint between the local predic-
tion and its corresponding global prediction. That
is, suppose we know that an instance is globally pre-
dicted to belong to some Class A and that some lo-
cal portion l contributed the most to that prediction
(the rationale); if l is replaced so as to negate its
semantic contribution, then the global label should
also change (e.g. now belongs to some Class B).
We propose that, if, and only if, the contrapositive
constraint is satisfied should the local prediction be
inferred from the global problem.

Modeled after style transfer and controlled text
generation methods, we propose to implement the
contrapositive inference scheme as a transfer func-
tion for global class transference. We first cast the
problem as a rewriting exercise: rewrite the original
global instance, which belong to some Class A, so
that it becomes more likely to belong to Class B;
then, those local textual parts that were changed in
the rewriting are likely to be the heavy contributor
to Class A so we may infer the same class pre-
diction for them. To train an appropriate transfer
function, however, we need a corpus of training
examples for the global prediction. For some prob-
lem domains, these resources are already available.
For low-resource problem domains, where such
annotated corpora are not available, we show how
domain-inspired textual data augmentation can fa-
cilitate the training of the transfer function.

The proposed prediction framework is evaluated
on several problem domains: sentiment analysis
(as a resource-rich problem domain), and semantic
pleonasm detection and specificity detection (as
two resource-constrained domains). Results vali-
date our insights about inferring local class labels
from their corresponding global prediction labels
and our proposed approach significantly outper-
form the alternative methods. We also demonstrate
the robustness of the contrapositive local prediction
to the noisy data and show that an appropriate trans-
fer functions can be trained from corpora generated
from heuristic-driven data augmentation schemes.

2 Inference by Contraposition

For many local prediction tasks, there is a cor-
responding, often easier to learn, global predic-
tion task. Global prediction is relatively easier, in
part, because it is attempting to classify a greater-
context, which is semantically more distinctive
than a localized smaller-context. Moreover, when
a classification task could be performed at multi-
ple levels of granularity (e.g., paragraphs and sen-
tences), there is a much higher chance of having
training corpora with label annotation at a larger
text span than a smaller text span, which makes the
more global version of the task more feasible.

The semantic purport of a greater-context is de-
riving from the co-occurrence of smaller semantic
units. This implies that there is a semantic relation
between the local and global predictions that could
be used to infer the harder-to-learn local prediction
from the corresponding easier-to-learn global pre-
diction. It must be noted that prediction inference
from the global prediction is only feasible for sig-
nificantly contributing local features. We define
the direct inference of local prediction from the
global prediction as follows:

Global → Local: if the global pre-
diction for a greater-context be some
Class A, there exists a smaller local
portion that significantly influenced the
global prediction in the first place so
the local prediction for it could infer the
same class label as the global prediction.

However, it is reported that the classifiers might
sometimes fail to learn the most semantically re-
lated features and make predictions based on just
salient ones (Ribeiro et al., 2016; Mudrakarta
et al., 2018; Jain and Wallace, 2019). We be-
lieve adding an extra constraint to the inference,
while keeping the relationship between the local
and corresponding global prediction intact, can
improve the identification of the semantically re-
lated local features, therefore, we introduce the
contrapositive inference of local prediction from
the global prediction as follows:

¬Local → ¬Global: the prediction for
local portion of a context could infer the
same class label as the global prediction,
if, and only if, negating the semantic con-
tribution of that smaller portion, negates
the global prediction.
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In the next section, we describe how this infer-
ence scheme could be applied to the discrete pre-
dictions in NLP problems.

2.1 Adaptation to NLP
The local segments of a text could serve as the fea-
tures in the training process of the global prediction
task, as given in Equation 1, where F is the global
prediction function, yi is the corresponding class la-
bel of the greater-context Ci in the training corpus,
lij is the local features within the greater-context
Ci, lijv is some vector representation of it and wij
is its weight, L is some loss function, and b is the
bias value.

LC = min
F

1

N

∑
i

L(yi,F(Ci))

= min
F

1

N

∑
i

L(yi,
1

|Ci|
∑
j

wijlij
v + b)

(1)

Now, if we can find the local feature lij that is
mainly responsible for making the greater-context
Ci belong to the class yi, we may infer the same
class label for that local feature as well. The direct
inference involves finding the most contributing
local features directly from the global prediction
function. A straightforward way to implement this
scheme is to take the local feature with the highest
weight as the most contributing one as follows:

Direct Inference: Examine Weights

∃ lij | wij =argmax
j

−→wi (2)

Another popular approach to implement direct
inference is to consider the contributing local fea-
tures as the rationales for the global prediction. Ra-
tionales are defined as the reason behind the label
annotation for the global prediction (Zaidan et al.,
2007) and mostly used to improve the classification
of the greater-context (Marshall et al., 2016; Zhang
et al., 2016; Strout et al., 2019; Du et al., 2019).
However, some studies have tried to develop sys-
tems for automatic extraction of the rationales (Lei
et al., 2016; Ehsan et al., 2018) as the smaller text
span that could replace the whole greater-context,
while keeping the global-prediction intact:

Direct Inference: Rationale

∃ lij | F(lij) ≈ F(Ci)
(3)

Alternatively, the contrapositive inference in-
volves finding an adversarial alternative with a
negated semantic contribution for local features
and reevaluating the global prediction for the re-
sulting greater-context as in Equation 4, where lij∗

is the adversarial alternative of the lij , C
j∗
i is the

corresponding greater-context when lij is replaced
with lij∗. The negated global prediction, could be
approximated as ¬yi ≈ 1 − yi for binary classifi-
cation problems.

Contrapositive Inference

∃ lij , ∃lij∗ | F(Cij∗) = ¬yi
(4)

Implementing contrapositive inference, however,
is not as straightforward as direct inference. A
bottom-up approach requires calculating an adver-
sarial semantic alternative for each local feature
to assess their contribution, which might be very
complicated and resource-intensive. Instead of that,
we adapt a simpler top-down approach that can be
seen as a generalization of machine translation, or
as a form of style transfer (Bowman et al., 2016;
Shen et al., 2017; Yang et al., 2018; Prabhumoye
et al., 2018; Zhang et al., 2019).

We aim to develop a transfer function (see Sec-
tion 3) that rewrites an arbitrary greater-context
(e.g., a sentence) known to be in one class (e.g.,
Class A) into a corresponding text in another class
(e.g., Class B); the smaller local parts (e.g., words
or phrases) that changed during this global rewrit-
ing and class transference process are deemed to
be the ones that contribute the most to the greater-
context’s class label, so may infer the same class
label as well.

As an illustrative example, consider the senti-
ment classification problem. The transfer func-
tion might rewrite a positive sentence: “the food
was great” into a negative sentence “The food was
awful.” While the overall sentence length is the
same, the learned transfer function chose to replace
“great” with “awful,” therefore “great” is likely to
be a sentiment expressing word. By casting the
problem as a style transfer task, we avoid the thorny
tasks of quantifying fluency and meaning retention
and even if the transfer function does not provide
a correct semantic negation, for example, rewrites
the “great” as “cold” instead of “awful”, we are not
concerned with whether “The food was cold” is a
meaningful or even fluent sentence; we only care
that this new sentence is now classified as negative,
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so it reveals something about the word “great” in
the old sentence. This property may also improve
the robustness of our approach to some level of
noise in the data.

Our proposed contrapositive inference approach
is still a complicated method. By relaxing the
global prediction negation requirement of the con-
traceptive inference into maximum prediction devi-
ation, a lighter and easier-to-implement version of
it could be seen as a leave one out (LOO) baseline.
That is, if a local feature be a significant contribu-
tor to the global prediction, then removing it from
the greater-context should cause a larger prediction
deviation from the original prediction as follows,
where C−ji is the corresponding greater-context
when lij is removed:

Semi-Contrapositive Inference: LOO

∃ lij | max
j
||F(Ci)−F(C−ji )||2 (5)

Both direct and contrapositive inference schemes
are relaxing the local prediction requirement of hav-
ing a large training corpus with local annotation
into having training corpus with global annotation,
which is easier to obtain, thus, they could be benefi-
cial for new or narrowly focused NLP applications
for which localized training data is not widely avail-
able. However, it must be noted that the localized
prediction inference is only applicable to certain
classification problems, where the prediction task
can be performed in multiple levels of granularity
and the local prediction has a corresponding global
prediction task at a greater-context.

3 Transfer Function Model

Since our approach is based on the difference be-
tween original and generated greater-contexts, ex-
tensive or random modification of the original text
might result in meaningless differences, so the key
requirements of an ideal transfer function for our
approach are:

• Req. 1: preserve most of the original content
and only make minimal changes.

• Req. 2: these minimal changes negate the
prediction for the resulting greater-context
(makes it belong to the other class).

Any reasonable transfer function that satisfies
these requirements may make a suitable model to

serve as the core of our proposed approach. As
an implementational choice, we adapt the model
proposed by Hu et al. (2017) and augmented it with
an extra regularization (i.e., conciseness loss, given
in Equation 8) to explicitly control for Req. 1.

Our transfer function model incorporates an au-
toencoder and a discriminator for the global predic-
tion. The autoencoder is initially trained to learn
a latent space (z) from the input greater-context
instances (c) by minimizing the reconstruction loss,
given in Equation (6), where θE and θG are the
encoder and decoder parameters, respectively.

Lrec(θE , θG) =EqE(z|c)[log p(c|z, y)] (6)

Since the latent space z is learning independent
of the class labels (qE(z|c)), it could be used to
generate instances of both classes. Therefore, the
decoder is trained to learn to generate a greater-
context ĉ, given a desired class label (p(ĉ|z, y)).
Now, if we ask the encoder to generate a rewrit-
ing alternative for an input greater-context with a
flipped class label (¬y = 1−y), then the generated
output would likely be a modified version of the
input with some small changes that make it belong
to the opposite class (Req. 2).

However, in order to learn class transference, the
decoder also requires a signal to determine how
likely the generated output belongs to the desired
class. To provide that signal, we incorporate a class
discriminator in our transfer function model, which
is optimized as given in Equation 7, where θD is
the discriminator parameter. For simplicity, we
only train the discriminator on the input examples
(c) and use that to predict the label for generated
examples (ĉ).

Ldisc(θD) = EC [log qD(y|c)] (7)

By optimizing for the reconstruction loss, the
autoencoder will learn to generate an output sim-
ilar to the input, which, in part, may satisfy Req.
1. We still want to directly enforce the class trans-
ference using minimal changes, which intuitively
means the generated transferred version of the in-
put greater-context that belongs to some Class B
should be as similar as possible to the input greater-
context that originally belongs to some Class A.

Therefore, we also optimize for a conciseness
loss (Lcon) as given in Equation 8, where c is the
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original input greater-context and ĉ is the trans-
ferred version of it to the other class. It must be
noted that, sometimes, the original input and the
transferred output might not have the same dimen-
sion. For these cases, we slice the bigger vector as
the dimension of the smaller vector.

Lcon(θE , θG) =EqE(z|c)[log p(ĉ|z,¬y)] (8)

Equation (9) shows the transfer function’s final
objective function, where λD and λC are the bal-
ancing parameter.

min
θG
Lgen = Lrec + λDLdisc + λCLcon (9)

For some initial training runs, we train the dis-
criminator and autoencoder independently (λD =
0); the discriminator will learn to distinguish be-
tween classes, and the autoencoder will learn a la-
tent space that could be used to regenerate instances
of both classes. At this step, we do not enforce the
minimal changes as well (λC = 0). After that, for
a few more epochs, we jointly train the autoen-
coder and discriminator (λD 6= 0) to learn the class
transference (replace y with ¬y = 1 − y) while
enforcing the minimal required changes (λC 6= 0).
For more details about the hyperparameters and the
training process please see Appendix A.

It must be noted that to avoid the fading gradient
phenomenon when training on discrete space, the
model feeds with Gumbel-Softmax (Jang et al.,
2017) representation over the words to provide a
continuous approximation and a stronger signal for
optimizing the decoder.

4 Experiments

This work argues that inference by contraposition
allows for the identification of semantically rele-
vant local features and thus a more accurate local
prediction inference when compared to methods
based on direct inference. In order to evaluate this
hypothesis, we setup an experiment for local pre-
diction inference at word-level from a large training
corpus of naturally-occurring and manually-labeled
sentences in the sentiment analysis domain (Sec-
tion 4.1).

We also argue that the contrapositive inference
scheme can be more robustly trained on user-
generated and weakly-labeled data compared to
the alternative direct inference methods. In order

to validate this aspect of the contrapositive local
inference, we conducted a few experiments for lo-
cal prediction inference from augmented training
corpora of the global prediction in the sentiment
analysis, pleonasm detection, and specificity detec-
tion problem domains (Section 4.2). In these set
of experiments, we compare two implementation
of each inference schemes (a simpler and a more
complex models), as follows:

Direct:ATN. For the global prediction, we use a
BiLSTM classifier and wrap the weights at each
time-step into an attention weight using a multi-
plicative attention layer (Luong et al., 2015). The
local feature with the highest attention weight
would receive the same class prediction as the
global class label.

Direct:RTNL. We use the model proposed by
Lei et al. (2016) as the state-of-the-art implementa-
tion for the direct inference of the local prediction
as the rationales for the global prediction (Equa-
tion 3), tuned for each experimental settings (see
Appendix A). Their model consist a RCNN gener-
ator and encoder to produce rationales and predic-
tions, and uses REINFORCE for generation learn-
ing (Sutton et al., 2000).

Contrapositive:LOO. This baseline serves as a
light version of the contrapositive inference of
the local prediction through examining the global
prediction for different perturbation of a greater-
context by leaving one of its local features out. The
local feature that causes the highest deviation in
global prediction would infer the original global
class label (Equation 5). Similar to the Direct:ATN
baseline, we use a BiLSTM classifier for the global
prediction task.

Contrapositive:TF. This model serves as an im-
plementation of our proposed contrapositive infer-
ence scheme (Equation 4). We use our transfer
function model (Section 3) for contrapositive local
prediction inference through rewriting and class
transference of the greater-context.

4.1 Local Prediction Inference from
Naturally-Occurring Labeled Data

In this experiment, we aim to evaluate the differ-
ent inference schemes on a inference task from
sentence (as the global scope) into word(s) (as the
smaller local scope), when a large training corpus
of global prediction is available. As a result, we
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opt to run our experiment on sentiment analysis,
as problem domain with readily available large
training corpora of labeled sentences, such as Yelp
Polarity Dataset (YPD) (Zhang et al., 2015). In
this domain, the global sentiment prediction task is
to predict whether a sentence has a “positive” or

“negative” polarity? Thus, we evaluate the different
inference schemes on the local prediction task of
inferring which word(s) of the sentence expresses
a strong sentiment?

To train our transfer function, we use
the 105K naturally-occurring polarity-labeled
sentences (positive and negative) of the YPD that
contain 30 or fewer words (refer to as YPD-Train).
As a benchmark dataset to evaluate the local infer-
ence performance of the models, we manually an-
notated some held-out sentences of YPD with word-
level sentiment labels. We followed the same an-
notation scheme proposed by (Socher et al., 2013)
and created a unigram pool from all the words of
the test set; then randomly picked a word and anno-
tated it as very positive, positive, neutral, negative,
or very negative. Finally, filtering for sentences that
contains a very positive or very negative words, we
collected a set of 860 held-out sentences with word-
level labels as our in-house benchmark dataset (re-
fer to as YPD-Test).

Table 1 compares the precision of different in-
ference schemes on predicting the word(s) that ex-
press the same sentiment as the sentence in which it
is used, based on the gold annotation in the bench-
mark dataset (YPD-Test). As shown, the contrapos-
itive inference methods, including LOO, are more
effective at inferring the sentiment class label of
the word(s) than the direct inference alternatives,
and our proposed method (Contrapositive:TF) sub-
stantially outperformed the best direct inference
method (Direct:RTNL) by more than 14%. This
huge performance difference suggests that consider-
ing and controlling the contrapositive contribution
of local features to the corresponding global pre-
diction can improve the identification of the most
semantically contributing local features and thus
infer a more accurate local prediction.

4.2 Local Prediction Inference from
Weakly-Labeled User-Generated Data

The availability of training corpora is always a bot-
tleneck for the training of complex supervised com-
putational models. Our proposed inference scheme
already relaxes the requirement of local prediction

Approach Local Inference Precision

Direct:ATN 58.4%
Direct:RTNL 63.3%
Contrapositive:LOO 66.2%
Contrapositive:TF 77.5%

Table 1: Local sentiment prediction precision of differ-
ent inference schemes, trained on naturally-occurring
labeled examples

task from having labeled examples with annotation
at smaller scope to having training examples with
global annotation, which is usually easier to obtain.
Nevertheless, in many resource-constrained NLP
problem domains, even training corpora for global
prediction are not available. Therefore, in this ex-
periment we investigate whether data augmentation
can reconcile the training requirements of differ-
ent inference schemes by studying two following
resource-constrained problem domains:

Pleonasm Detection. This task at local level
aims to find redundant words that are not contribut-
ing to the overall meaning of a sentence (Quinn,
1993; Lehmann, 2005). For example, the word
“free” may deem semantically redundant at the
presence of the word “gift” in the sentence: “I
received a free gift.” Like sentiment analysis, this
domain has a clear corresponding global classi-
fication task: whether the sentence is “concise”
or “verbose”? However, this domain has a much
more limited set of existing resources: NUCLE
covers grammatical redundancy (Dahlmeier et al.,
2013), and the Semantic Pleonasm Corpus (SPC),
a small corpus with pleonasm annotation at word-
level (Kashefi et al., 2018), which we use as the
benchmark dataset in this experiment.

Specificity Detection. This task at local level
aims to pinpoint the phrases that uniquely relate the
sentence to a particular subject (Li and Nenkova,
2015; Lugini and Litman, 2018). For example,
the phrase “bus accident” in the sentence “10 peo-
ple killed in bus accident in Pakistan”, makes it
more specific than the phrase “road accident” in
the sentence “10 people killed in road accident in
Pakistan.” It also has a corresponding global predic-
tion task: whether the sentence conveying a “spe-
cific” or “general” piece of information? How-
ever, the existing resources are limited to just a
few small corpora (less than 1K sentences) with
sentence-level specificity annotation (Louis and
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Task Source Heuristic Strategy Example
Se

nt
im

en
t

A
na

ly
si

s

Yelp

• Positive Label: four star and above

• Augmented Negative Heuristic: substitute a positive word (look up
in a polarity vocabulary) with an antonym

• Negative Label: two star and below

• Augmented Positive Heuristic: substitute a negative word (look up
in a polarity vocabulary) with an antonym

→ super generous portion

→ super meager portion

→ it was not a good experience

→ it was not a bad experience

Pl
eo

na
sm

D
et

ec
tio

n

Yelp

• Concise Label: Yelp tips (short sentences)

• Augmented Verbose Heuristic: add a synonym next to an adjective

• Augmented Near-Miss Concise Heuristic: insert a non-synonym
word next to an adjective, base on language model prediction

→ delicious bread

→ delicious +tasty bread

→ delicious +redolent bread

Sp
ec

ifi
ci

ty
D

et
ec

tio
n

News
Headline

• Specific Label: contains more than 2 named entities

• Augmented General Heuristic: substitute a noun with an hyponym

• General Label: contains no named entities

• Augmented Specific Heuristic: substitute a noun with an hypernym

→ Rouhani wants nuclear deal

→ President wants nuclear deal

→ 10 killed in camp

→ 10 killed in death camp

Table 2: Augmentation heuristic strategies for different problem domains

Nenkova, 2012; Louis et al., 2013; Tan and Lee,
2014), and the Interpretable Semantic Textual Simi-
larity (iSTS) dataset, which comprises phrase-level
specificity annotation (Agirre et al., 2016), which
we use as the benchmark in our experiment.

In addition, we also make a low-resource case for
the sentiment analysis domain in order to compare
the prediction result of our approach with previous
experiment, where a sizable training corpus was
available for global prediction.

4.2.1 Data Augmentation
In order to augment a sizable dataset to train the in-
ference models, we start by identifying an existing
real-world data source that possesses some charac-
teristics that allow us to (weakly) label some of its
examples with at least one of the desired classes.
For example, the Yelp dataset2 has a data category
called “tips.” Since “tips” are very short sentences,
they are likely to be concise; or Yelp reviews with
4 star and above are likely to carry a positive senti-
ment. Next, we apply some domain-inspired non-
label-preserving augmentation heuristics to the in-
stances of one class (e.g., “positive”) to generate
instances of the opposite class (e.g., “negative”).
The details of the heuristics and data augmentation
for these domains are discussed elsewhere (Kashefi
and Hwa, 2020).

Table 2 summarizes the heuristic strategy we
used to augment a training dataset for each prob-

2www.yelp.com/dataset/challenge

lem domain. When evaluating the models for sen-
timent analysis and pleonasm detection tasks, we
use the YPD-Test and SPC, respectively, which
are both collected from Yelp. For the specificity
detection task, we use the news headline part of
the iSTS as the benchmark to evaluate the model.
Thus, for data augmentation we use “all the news3”
corpus, as a data source in a related domain. The
resulting augmented training corpora for sentiment
analysis, pleonasm detection, and specificity de-
tection tasks are containing 105k (the same size
as YPD-Train in previous experiment), 160K and
110K user-generated examples, respectively.

4.2.2 Results
Table 3 compares the local prediction inference
precision of the different inference schemes across
different problem domains, when trained on noisy
user-generated corpora, based on the gold annota-
tion in the benchmark datasets.

We can observer that the contrapositive local in-
ference schemes, including Contrapositive:LOO,
outperform the direct inference schemes in all prob-
lem domains and the local prediction precision of
our proposed approach (Contrapositive:TF) is sig-
nificantly higher than all other inference alterna-
tives. As expected, the local prediction inference
precision of Contrapositive:TF was slightly lower
than its corresponding performance in the previ-
ous experiment, where models were trained on

3www.kaggle.com/snapcrack/all-the-news

www.yelp.com/dataset/challenge
www.kaggle.com/snapcrack/all-the-news
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Inference Approach Local Inference Precision

Sentiment Analysis Pleonasm Detection Specificity Detection

Direct:ATN 54.3% 24.3% 20.5%
Direct:RTNL 55.6% 30.4% 28.1%
Contrapositive:LOO 59.8% 41.1% 45.5%
Contrapositive:TF 74.2% 70.3% 69.5%

Table 3: Localized prediction precision of the approaches on different problem domains, trained on weakly-labeled
augmented datasets

manually-labeled real examples (74.2% compared
to 77.5%). However, the performance gap between
our proposed model and other models are getting
larger when trained on noisy data (e.g., 14% differ-
ence with Direct:RTNL on real data compared to
19% difference with noisy data).

These results may suggest that the contrapositive
inference is more noise-tolerant than the alternative
methods. In addition, the impact of data augmen-
tation on the performance of our approach is not
significant, so it could be beneficial for providing
training requirements of our approach and making
it applicable to many low-resource NLP problems.

5 Discussion

Results from our studies suggest that enforcing the
contraposition constraint between the local predic-
tion and its corresponding global prediction can
reveal their semantic relationship more robustly,
and thus, lead to a a more accurate local class pre-
diction inference, compared to direct inference al-
ternatives.

In the direct inference schemes, there are many
cases that semantically irrelevant words, such as
“punctuation marks”, are the heavy contributors to
the global prediction. These observations and the
performance of the Direct:Atn baseline confirm the
prior work’s suggestions that attention weight may
not correlate with the semantics of the prediction
task. In addition, the Direct:Rationale baseline
operates through finding a smaller local text span
(rationale) that can replace the greater-context in
the global prediction. Intuitively, rationales with
shorter text span (e.g., words or phrases) are likely
to provide a noisy and unstable solution for the
global problem, as we observed in our experiments.

The Contrapositive:LOO baseline adopts a sim-
ple approach to apply a relaxed version of the con-
traposition constraint, by removing the local ra-
tionale from the global problem’s context. As ob-

served, a global context, after removing a small text
span from it, would still be large and semantically
expressive enough for a reliable global prediction.

Since our proposed Contrapositive:TF approach
operates by replacing a local rationale of a global
context with another (adversarial) rationale, the
span size of the greater-context remains relatively
intact, which makes the prediction inference more
robust. The transfer function also operates by dis-
entangling the semantics from the surface represen-
tation and applying local contrapositive semantic
perturbation to the global context, which makes it
more robust to noise and irrelevant local features.
For example, a punctuation mark might influence
a class prediction for a sentence, however, replac-
ing it with another punctuation mark will not make
the sentence belong to another class, so it is not a
semantically contributing word.

Furthermore, evaluation results suggest that the
performance impact of training a transfer function
on weakly-labeled user-generated data is not signif-
icant, so data augmentation may facilitate the train-
ing of the transfer function and make our approach
applicable to a variety of resource-constrained NLP
problem domains. However, in our experiments,
we observed that the quality of augmented exam-
ples is a key-factor for training an appropriate
model. We found that both global and local classifi-
cation performance declined significantly when we
trained models on the corpora that are augmented
with simple heuristics, which generate obvious ex-
amples for different classes.

This should be noted that our proposed contra-
positive approach is only applicable to prediction
tasks that can be performed in multiple levels of
granularity, where the local prediction has a corre-
sponding global prediction task. In addition, apply-
ing it to more general cases, such as “multi-class”
classification, might pose some challenges.
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6 Conclusion

This paper presents a local contrapositive infer-
ence scheme that is only informed by correspond-
ing global class predictions at a greater contexts.
The inference scheme is implemented as a transfer
function that learns to transform a context from
one class to another. Training such a transfer func-
tion, requires a large corpus of labeled sentences,
which may not be available for many low-resource
problem domains. Our work demonstrates the ro-
bustness of the proposed approach when coupled
with appropriate data augmentation methods and its
applicability as a solution to resource-constrained
local prediction tasks.
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A Hyperparameters

Direct:Atn: attention weight over single words.

Contrapositive:LOO: single words as local text
span.

Contrapositive:TF:

• Pre-training

– #epochs = 10
– λD = .0

– λC = .0

• Joint-training

– #epochs = 2
– λD = 1e− 1

– λC = 1e− 2

Direct:Rationale:

• Experiment 1

– Embedding: GloVe + Yelp
– λ1 = 1e− 2

– λ2 = 2λ1

• Experiment 2

– Sentiment Analysis Task

* Embedding: GloVe + Yelp

* λ1 = 3e− 2

* λ2 = 2λ1

– Pleonasm Detection Task

* Embedding: GloVe + Yelp

* λ1 = 5e− 2

* λ2 = 2λ1

– Specificity Detection Task

* Embedding: GloVe + “all the news”

* λ1 = 1e− 2

* λ2 = 2λ1


