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Abstract

Automatic post-editing (APE) models are used
to correct machine translation (MT) system
outputs by learning from human post-editing
patterns. We present the system used in our
submission to the WMT’21 Automatic Post-
Editing (APE) English-German (En-De) shared
task. We leverage the state-of-the-art MT sys-
tem (Ng et al., 2019) for this task. For further
improvements, we adapt the MT model to the
task domain by using WikiMatrix (Schwenk
et al., 2021) followed by fine-tuning with ad-
ditional APE samples from previous editions
of the shared task (WMT-16,17,18) and ensem-
bling the models. Our systems beat the baseline
on TER scores on the WMT’21 test set.

1 Introduction

Automatic Post-Editing (APE) is the task of au-
tomatically correcting machine translation (MT)
outputs. Along with fixing systematic errors in
MT outputs, APE models can adapt general pur-
pose MT systems to new domains and provide bet-
ter translations to reduce the human post-editing
effort (Chatterjee et al., 2015). APE has seen
significant progress with Transformer based mod-
els (Yang et al., 2020; Lopes et al., 2019; Chatter-
jee et al., 2019, 2020) dominating the landscape as
opposed to the earlier Statistical Machine Trans-
lation (SMT) based models (Simard et al., 2007;
Béchara et al., 2012) and RNN based sequence-to-
sequence models (Junczys-Dowmunt and Grund-
kiewicz, 2017). To track this progress, WMT has
been conducting APE shared tasks since 2015 on
different data domains and language pairs (Bojar
et al., 2015, 2016, 2017; Chatterjee et al., 2018,
2019, 2020).

WMT 2021’s shared task focused on English-
German and English-Chinese language pairs. We
participated in the English-German sub-task and
describe our submission in this paper. Participants
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were provided a training set with 7000 instances
and a development set with 1000 instances. Each
dataset consisted of source, machine-translation,
post-edit triplets. The source sentences came from
the English Wikipedia, the MT outputs were gener-
ated with a black-box state-of-the-art MT system
and the post-edits were created by professional
translators correcting MT outputs. The test set con-
sisted of 1000 pairs of source and MT outputs for
which the participants had to submit the post-edits
generated by their systems. The task organisers pro-
vided two additional synthetic post-editing datasets
– ‘artificial training data’ (Junczys-Dowmunt and
Grundkiewicz, 2016) and ‘eSCAPE corpus’ (Negri
et al., 2018) and permitted using additional data to
train the model. TER scores (Snover et al., 2006)
and BLEU (Papineni et al., 2002) scores were used
as primary and secondary evaluation metrics re-
spectively.

Last year’s entries primarily focused on transfer
learning (Yang et al., 2020; Lee, 2020; Wang et al.,
2020) and novel data augmentation techniques (Lee
et al., 2020b,a; Wang et al., 2020). The winning
submission (Yang et al., 2020) was based on fine-
tuning a pre-trained machine translation model for
the APE task.

We take a similar line of approach by leverag-
ing an existing state-of-the-art machine translation
model. We first fine-tune an MT model on WikiMa-
trix (Schwenk et al., 2021) — a mined bitext from
Wikipedia — to bridge the domain gap, followed
by further tuning to the APE task with post-editing
samples. To deal with the limited training data,
we exploit APE data from the previous editions of
the WMT shared tasks. We describe the details of
our experiments in Section 3 with gains and ob-
servations from individual tuning steps mentioned
above.
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2 Related Work

The last year’s WMT’20 APE shared task saw
methods using transfer learning with data aug-
mentation techniques perform well. Yang et al.
(2020) fine-tune state-of-the-art transformer-based
MT system on APE data using bottleneck adapter
layers (Houlsby et al., 2019) to avoid overfitting.
They additionally use outputs from an external MT
system as input to the model and converged to
ensembling to achieve 66.89 BLEU score on the
WMT’20 development set to make it to the top of
the final leaderboard.

Data augmentation techniques where post-edits
are synthesized to augment human-edited data was
shown to be effective in the last year’s submis-
sions for addressing the training data limitation.
However, data augmentation must be done care-
fully to prevent a mismatch between the error dis-
tributions in gold and synthetic data (Yang et al.,
2020). Wang et al. (2020) use data augmen-
tation along with dual conditional cross-entropy
model (Junczys-Dowmunt, 2018) based filtering
to ensure data quality, model adaptation to target
domain, and ensembling to achieve 56.06 BLEU
on the development set and the second rank on
the leaderboard. Similarly, Lee et al. (2020b) per-
formed data augmentation by creating a novel nois-
ing scheme to synthesize four kinds of errors for
APE training, namely, insertion, deletion, substi-
tution and shifting/reordering noise to attain 53.77
BLEU score.

The other submissions to the WMT’20 task used
variations of the language models to generate edits.
Lee et al. (2020a) trained a model by jointly opti-
mizing losses for masked language and translation
language models while Lee (2020) tailored a lan-
guage model to make corrections by replacing poor
quality words to improve the overall sentence-level
quality. These two submissions were able to get
55.67 and 53.82 BLEU scores respectively on the
WMT’20 development set.

In comparison, our model is a pre-trained MT
model adapted to the target domain and further
fine-tuned on the APE data. These improvements
give us about five absolute points gain over the
no post-editing baseline (that returns MT output
without changes) on the BLEU score to arrive at
55.85 which is competitive with all but one of last
year’s submissions on the WMT’20 development
set.

Dataset Train Dev Test Domain
WMT’16 12000 1000 2000 IT
WMT’17 11000 – 2000 IT
WMT’18 13442 1000 3023 IT
WMT’21 7000 1000 1000 Wikipedia

Table 1: WMT APE shared task data for En-De

3 Method

We describe our baseline model followed by the de-
tails of domain and task adaptation in this section.

3.1 Baseline translation model
Limited by availability of training data, we used
transfer learning approach (as is common in re-
lated tasks with few samples, see Ruder et al.
(2019)) beginning with a pre-trained MT model.
We used the MT models from FAIR’s WMT’19
submission1 (Ng et al., 2019) that is an ensem-
ble trained for the News Translation task using
fairseq (Ott et al., 2019) library. It takes a sin-
gle source sentence as input and returns transla-
tion in the target language. To use this model
for the APE task, we concatenated the source
and the machine-translation with a special to-
ken to make the input. Thus, we fine-tune the
NMT model on the APE dataset with source
<sep> machine-translation as input and
post-edited reference as the output.

3.2 Pre-training on domain-specific data
FAIR’s WMT’19 NMT model was trained on
Newscrawl and Commoncrawl datasets while the
source of this year’s APE data is Wikipedia. To
fix the domain mismatch in NMT model’s training
data and our task, we fine-tune the NMT model
on WikiMatrix (Schwenk et al., 2021) before fine-
tuning the model with APE data. WikiMatrix is
mined from Wikipedia using the multi-lingual sen-
tence embeddings from the LASER toolkit (Artetxe
and Schwenk, 2019). We ensure that the model is
fine-tuned on only high-quality parallel data by us-
ing a higher threshold of 1.1 for extracting parallel
sentences (rather than the default 1.04) to get 64k
parallel sentences.

3.3 Fine-tuning on APE data
To further address the data limitation, we use sam-
ples from earlier editions of the APE shared task;
WMT’16, WMT’17 and WMT’18. Although the

1transformer.wmt19.en-de
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Model BLEU↑ TER↓
Do Nothing 68.79 19.06

MT fine-tuned on WMT’21 68.74 18.45
MT fine-tuned on (WMT’16-18 + WMT’21) (A) 69.34 18.27

MT fine-tuned on WikiMatrix and further on (WMT’16-18 + WMT’21) (B) 69.12 18.34
Ensemble (A + B) 69.38 18.18

Table 2: Results on the WMT 2021 APE development set. Higher BLEU and lower TER is better. The "Ensemble"
model is the ensemble of the two best performing single models (the ones with 69.12 and 69.34 BLEU scores).

Model BLEU↑ TER↓
Do Nothing 71.07 18.05
Model (A) 70.54 17.74

Ensemble (A + B) 70.50 17.85

Table 3: Results on the WMT 2021 APE test set. Higher
BLEU and lower TER is better. The Model (A) is the
one described in the same from Table 2 and the "Ensem-
ble" model is the ensemble of the two best performing
single models.

domain of the data in the previous editions of this
shared task challenge is different from the current
one, we preferred using this data over synthetic
APE data similar to (Yang et al., 2020). We pre-
fer this because unlike in WMT datasets where
the post-edits are human revisions of the MT out-
put, synthetic APE datasets have post-edited sen-
tences independent of the MT output, causing the
error patterns and data distributions to vary signifi-
cantly. Hence, we combine the WMT’16, WMT’17
and WMT’18 datasets to get 45k source, machine-
translation and post-edit triplets. We present the
details of the data in Table 1.

4 Results and conclusion

We report the results of our model on the WMT’21
development and test set. We use BLEU scores (Pa-
pineni et al., 2002) 2 for quality estimates relative
to a human reference and TER scores (Snover et al.,
2006) for quantifying human post-editing effort.

We report improvements over the Do
Nothing baseline. This baseline refers to
the system that returns the base machine transla-
tion output as the post-edit without any changes.
We submitted the best performing single model
and the ensemble model in Table 2 for evaluation.
In Table 3 we present the results reported by the
organizers for baseline, our model fine tuned

2calculated using multi-bleu.perl script from the
Moses toolkit (Koehn et al., 2007)

on WMT’16-18 + WMT’21 (model A) and our
ensemble model (A + B). The Do Nothing baseline
from last year (Chatterjee et al., 2020) was reported
at 50.21 BLEU score and this year it is reported at
71.07 BLEU score. These numbers suggest that
the baseline machine translation engine used in
this year’s task proved to be of very high quality
for the dataset used; leaving very little room for
APE models to improve the translation similar to
the observation made in (Chatterjee et al., 2018).
This is the only logical conclusion we could draw
since the data used last year and this year are the
same with human post-editing re-done. Using
data from previous years’ tasks clearly improves
both BLEU and TER scores on the development
set. While fine-tuning on WikiMatrix data itself
has not led to improvements on the development
set, it helps improve performance when used in
ensemble with the other model. The model A beats
the baseline on TER metric by 0.31 points on the
test set while both our model A and ensemble
system manage to outperform previous year’s best
entry.

Further extending this work, we wish to study
more carefully the impact of adaptation by switch-
ing the order of domain and task adaptation, effect
of noise in training sample by tuning threshold (Wi-
eting and Gimpel, 2018), and evaluate if synthetic
data can be selectively augmented for greater met-
ric gains.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Matt Post,
Raphael Rubino, Carolina Scarton, Lucia Specia,
Marco Turchi, Karin Verspoor, and Marcos Zampieri.
2016. Findings of the 2016 conference on machine
translation. In Proceedings of the First Conference
on Machine Translation: Volume 2, Shared Task Pa-
pers, pages 131–198, Berlin, Germany. Association
for Computational Linguistics.
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