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Preface

Many Asian countries are rapidly growing these days and the importance of communicating and
exchanging the information with these countries has intensified. To satisfy the demand for
communication among these countries, machine translation technology is essential.

Machine translation technology has rapidly evolved recently and it is seeing practical use especially
between European languages. However, the translation quality of Asian languages is not that high
compared to that of European languages, and machine translation technology for these languages has not
reached a stage of proliferation yet. This is not only due to the lack of the language resources for Asian
languages but also due to the lack of techniques to correctly transfer the meaning of sentences from/to
Asian languages. Consequently, a place for gathering and sharing the resources and knowledge about
Asian language translation is necessary to enhance machine translation research for Asian languages.

The Conference on Machine Translation (WMT), the world’s largest machine translation workshop,
mainly targets on European language. The International Workshop on Spoken Language Translation
(IWSLT) has spoken language translation tasks for some Asian languages using TED talk data, but
there is no task for written language. The Workshop on Asian Translation (WAT) is an open machine
translation evaluation campaign focusing on Asian languages. WAT gathers and shares the resources
and knowledge of Asian language translation to understand the problems to be solved for the practical
use of machine translation technologies among all Asian countries. WAT is unique in that it is an "open
innovation platform": the test data is fixed and open, so participants can repeat evaluations on the same
data and confirm changes in translation accuracy over time. WAT has no deadline for the automatic
translation quality evaluation (continuous evaluation), so participants can submit translation results at
any time.

Following the success of the previous WAT workshops (WAT2014 – WAT2020), WAT2021 will bring
together machine translation researchers and users to try, evaluate, share and discuss brand-new ideas
about machine translation. For the 8th WAT, we included several new translation tasks including
Malayalam Visual Genome Task, MultiIndicMT, Restricted Translation Task and Ambiguous MSCOCO
Task. We had 28 teams participated in the shared tasks and 24 teams submitted their translation results
for the human evaluation. About 2,100 translation results were submitted to the automatic evaluation
server, and selected submissions were manually evaluated. In addition to the shared tasks, WAT2021
also features research papers on topics related to machine translation, especially for Asian languages.
The program committee accepted 5 research papers.

We are grateful to "SunFlare Co., Ltd.", "Kawamura International" and "Asia-Pacific Association for
Machine Translation (AAMT)" for partially sponsoring the workshop. We would like to thank all the
authors who submitted papers. We express our deepest gratitude to the committee members for their
timely reviews. We also thank the ACL-IJCNLP 2021 organizers for their help with administrative
matters.

WAT 2021 Organizers
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Abstract

This paper presents the results of the shared
tasks from the 8th workshop on Asian transla-
tion (WAT2021). For the WAT2021, 28 teams
participated in the shared tasks and 24 teams
submitted their translation results for the hu-
man evaluation. We also accepted 5 research
papers. About 2,100 translation results were
submitted to the automatic evaluation server,
and selected submissions were manually evalu-
ated.

1 Introduction
The Workshop on Asian Translation (WAT) is an
open evaluation campaign focusing on Asian lan-
guages. Following the success of the previous
workshops WAT2014-WAT2020 (Nakazawa et al.,
2020), WAT2021 brings together machine transla-
tion researchers and users to try, evaluate, share
and discuss brand-new ideas for machine transla-
tion. We have been working toward practical use
of machine translation among all Asian countries.

For the 8th WAT, we included the following new
tasks:

• Malayalam Visual Genome Task: English →
Malayalam multi-modal translation

• MultiIndicMT: Bengali / Gujarati / Hindi /
Kannada / Malayalam / Marathi / Odia / Pun-
jabi / Tamil / Telugu ↔ English translation

• Restricted Translation Task: Japanese ↔ En-
glish translation

• Ambiguous MSCOCO Task: Japanese ↔ En-
glish multi-modal translation

All the tasks are explained in Section 2.
WAT is a unique workshop on Asian language

translation with the following characteristics:

• Open innovation platform
Due to the fixed and open test data, we can re-
peatedly evaluate translation systems on the
same dataset over years. WAT receives sub-
missions at any time; i.e., there is no submis-
sion deadline of translation results w.r.t auto-
matic evaluation of translation quality.

• Domain and language pairs
WAT is the world’s first workshop that
targets scientific paper domain, and
Chinese↔Japanese and Korean↔Japanese
language pairs.

1



• Evaluation method
Evaluation is done both automatically and
manually. Firstly, all submitted translation re-
sults are automatically evaluated using three
metrics: BLEU, RIBES and AMFM. Among
them, selected translation results are assessed
by two kinds of human evaluation: pairwise
evaluation and JPO adequacy evaluation.

2 Tasks
2.1 ASPEC+ParaNatCom Task
Traditional ASPEC translation tasks are sentence-
level and the translation quality of them seem to
be saturated. We think it’s high time to move on to
document-level evaluation. For the first year, we
use ParaNatCom1 (Parallel English-Japanese ab-
stract corpus made from Nature Communications
articles) for the development and test sets of the
Document-level Scientific Paper Translation sub-
task. We cannot provide document-level training
corpus, but you can use ASPEC and any other ex-
tra resources.

2.2 Document-level Business Scene Dialogue
Translation

There are a lot of ready-to-use parallel corpora
for training machine translation systems, however,
most of them are in written languages such as web
crawl, news-commentary, patents, scientific papers
and so on. Even though some of the parallel cor-
pora are in spoken language, they are mostly spo-
ken by only one person (TED talks) or contain a lot
of noise (OpenSubtitle). Most of other MT evalua-
tion campaigns adopt the written language, mono-
logue or noisy dialogue parallel corpora for their
translation tasks. Traditional ASPEC translation
tasks are sentence-level and the translation quality
of them seem to be saturated. To move to a highly
topical setting of translation of dialogues evaluated
at the level of documents, WAT uses BSD Cor-
pus2 (The Business Scene Dialogue corpus) for the
dataset including training, development and test
data for the first time this year. Participants of this
task must get a copy of BSD corpus by themselves.

2.3 JPC Task
JPO Patent Corpus (JPC) for the patent tasks was
constructed by the Japan Patent Office (JPO) in

1http://www2.nict.go.jp/astrec-att/member/
mutiyama/paranatcom/

2https://github.com/tsuruoka-lab/BSD

Lang Train Dev DevTest Test-N
zh-ja 1,000,000 2,000 2,000 5,204
ko-ja 1,000,000 2,000 2,000 5,230
en-ja 1,000,000 2,000 2,000 5,668

Lang Test-N1 Test-N2 Test-N3 Test-EP
zh-ja 2,000 3,000 204 1,151
ko-ja 2,000 3,000 230 –
en-ja 2,000 3,000 668 –

Table 1: Statistics for JPC

collaboration with NICT. The corpus consists of
Chinese-Japanese, Korean-Japanese and English-
Japanese patent descriptions whose International
Patent Classification (IPC) sections are chemistry,
electricity, mechanical engineering, and physics.

At WAT2021, the patent task has two subtasks:
normal subtask and expression pattern subtask.
Both subtasks use common training, development
and development-test data for each language pair.
The normal subtask for three language pairs uses
four test datasets with different characteristics:

• test-N: union of the following three sets;

• test-N1: patent documents from patent fami-
lies published between 2011 and 2013;

• test-N2: patent documents from patent fami-
lies published between 2016 and 2017; and

• test-N3: patent documents published between
2016 and 2017 where target sentences are
manually created by translating source sen-
tences.

The expression pattern subtask for zh→ja pair uses
test-EP data. The test-EP data consists of sentences
annotated with expression pattern categories: title
of invention (TIT), abstract (ABS), scope of claim
(CLM) or description (DES). The corpus statistics
are shown in Table 1. Note that training, devel-
opment, development-test and test-N1 data are the
same as those used in WAT2017.

2.4 Newswire (JIJI) Task
The Japanese ↔ English newswire task uses JIJI
Corpus which was constructed by Jiji Press Ltd.
in collaboration with NICT and NHK. The corpus
consists of news text that comes from Jiji Press
news of various categories including politics, econ-
omy, nation, business, markets, sports and so on.
The corpus is partitioned into training, develop-
ment, development-test and test data, which con-
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Training 0.2 M sentence pairs

Test set I
Test 2,000 sentence pairs
DevTest 2,000 sentence pairs
Dev 2,000 sentence pairs

Test set II
Test-2 1,912 sentence pairs
Dev-2 497 sentence pairs
Context for Test-2 567 article pairs
Context for Dev-2 135 article pairs

Table 2: Statistics for JIJI Corpus

sists of Japanese-English sentence pairs. In addi-
tion to the test set (test set I) that has been pro-
vided from WAT 2017, a test set (test set II) with
document-level context has also been provided
from WAT 2020. These test sets are as follows.

Test set I : A pair of test and reference sentences.
The references were automatically extracted
from English newswire sentences and not
manually checked. There are no context data.

Test set II : A pair of test and reference sentences
and context data that are articles including test
sentences. The references were automatically
extracted from English newswire sentences
and manually selected. Therefore, the qual-
ity of the references of test set II is better than
that of test set I.

The statistics of JIJI Corpus are shown in Ta-
ble 2.

The definition of data use is shown in Table 3.
Participants submit the translation results of one

or more of the test data.
The sentence pairs in each data are identified

in the same manner as that for ASPEC using the
method from (Utiyama and Isahara, 2007).

2.5 ALT and UCSY Corpus
The parallel data for Myanmar-English translation
tasks at WAT2021 consists of two corpora, the ALT
corpus and UCSY corpus.

• The ALT corpus is one part from the Asian
Language Treebank (ALT) project (Riza
et al., 2016), consisting of twenty thousand
Myanmar-English parallel sentences from
news articles.

• The UCSY corpus (Yi Mon Shwe Sin and
Khin Mar Soe, 2018) is constructed by the
NLP Lab, University of Computer Studies,

Yangon (UCSY), Myanmar. The corpus con-
sists of 200 thousand Myanmar-English par-
allel sentences collected from different do-
mains, including news articles and textbooks.

The ALT corpus has been manually segmented
into words (Ding et al., 2018, 2019), and the UCSY
corpus is unsegmented. A script to tokenize the
Myanmar data into writing units is released with
the data. The automatic evaluation of Myanmar
translation results is based on the tokenized writ-
ing units, regardless to the segmented words in the
ALT data. However, participants can make a use of
the segmentation in ALT data in their own manner.

The detailed composition of training, develop-
ment, and test data of the Myanmar-English trans-
lation tasks are listed in Table 4. Notice that both
of the corpora have been modified from the data
used in WAT2018.

2.6 NICT-SAP Task
In WAT2021, we decided to continue the
WAT2020 task for joint multi-domain multi-
lingual neural machine translation involving 4
low-resource Asian languages: Thai (Th), Hindi
(Hi), Malay (Ms), Indonesian (Id). English (En) is
the source or the target language for the translation
directions being evaluated. The purpose of this
task was to test the feasibility of multi-domain
multilingual solutions for extremely low-resource
language pairs and domains. Naturally the
solutions could be one-to-many, many-to-one
or many-to-many NMT models. The domains
in question are Wikinews and IT (specifically,
Software Documentation). The total number of
evaluation directions are 16 (8 for each domain).
There is very little clean and publicly available
data for these domains and language pairs and thus
we encouraged participants to not only utilize the
small Asian Language Treebank (ALT) parallel
corpora (Thu et al., 2016) but also the parallel
corpora from OPUS3, other WAT tasks (past and
present) and WMT4. The ALT dataset contains
18,088, 1,000 and 1,018 training, development
and testing sentences. As for corpora for the IT
domain we only provided evaluation (dev and
test sets) corpora5 (Buschbeck and Exel, 2020)
and encouraged participants to consider GNOME,
UBUNTU and KDE corpora from OPUS. We

3http://opus.nlpl.eu/
4http://www.statmt.org/wmt20/
5Software Domain Evaluation Splits
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Task Use Content

Japanese to English

Training Training, DevTest, Dev, Dev-2, context for Dev2
Test set I To be translated Test in Japanese

Reference Test in English

Test set II
Test-2 Test-2 in Japanese
Context Context in Japanese for Test-2
Reference Test-2 in English

English to Japanese

Training Training, DevTest, Dev, Dev-2, context for Dev2
Test set I To be translated Test in English

Reference Test in Japanese

Test set II
To be translated Test-2 in English
Context in English for Test-2 Context in English for Test-2
Reference Test-2 in Japanese

Table 3: Definition of data use in the Japanese ↔ English newswire task

Corpus Train Dev Test
ALT 18,088 1,000 1,018
UCSY 204,539 – –
All 222,627 1,000 1,018

Table 4: Statistics for the data used in Myanmar-English
translation tasks

Language Pair
Split Domain Hi Id Ms Th
Train ALT 18,088

IT 254,242 158,472 506,739 74,497
Dev ALT 1,000

IT 2,016 2,023 2,050 2,049
Test ALT 1,018

IT 2,073 2,037 2,050 2,050

Table 5: The NICT-SAP task corpora splits. The cor-
pora belong to two domains: wikinews (ALT) and soft-
ware documentation (IT). The Wikinews corpora are N-
way parallel.

also encouraged the use of monolingual corpora
expecting that it would be for pre-trained NMT
models such as BART/MBART (Lewis et al.,
2020; Liu et al., 2020). In Table 5 we give
statistics of the aforementioned corpora which we
used for the organizer’s baselines. Note that the
evaluation corpora for both domains are created
from documents and thus contain document level
meta-data. Participants were encouraged to use
document level approaches. Note that we do not
exhaustively list6 all available corpora here and
participants were not restricted from using any
corpora as long as they are freely available.

2.7 News Commentary Task
For the Russian↔Japanese task we asked partic-
ipants to use the JaRuNC corpus7 (Imankulova

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
NICT-SAP-Task

7https://github.com/aizhanti/JaRuNC

Lang.pair Partition #sent. #tokens #types

Ja↔Ru
train 12,356 341k / 229k 22k / 42k

development 486 16k / 11k 2.9k / 4.3k
test 600 22k / 15k 3.5k / 5.6k

Ja↔En
train 47,082 1.27M / 1.01M 48k / 55k

development 589 21k / 16k 3.5k / 3.8k
test 600 22k / 17k 3.5k / 3.8k

Ru↔En
train 82,072 1.61M / 1.83M 144k / 74k

development 313 7.8k / 8.4k 3.2k / 2.3k
test 600 15k / 17k 5.6k / 3.8k

Table 6: In-Domain data for the Russian–Japanese task.

et al., 2019) which belongs to the news commen-
tary domain. This dataset was manually aligned
and cleaned and is trilingual. It can be used to
evaluate Russian↔English translation quality as
well but this is beyond the scope of this years
sub-task. Refer to Table 6 for the statistics of
the in-domain parallel corpora. In addition, we
encouraged the participants to use out-of-domain
parallel corpora from various sources such as
KFTT,8 JESC,9 TED,10 ASPEC,11 UN,12 Yan-
dex13 and Russian↔English news-commentary
corpus.14 This year we also encouraged partici-
pants to use any corpora from WMT 202015 and
WMT 202116 involving Japanese, Russian, and En-
glish as long as it did not belong to the news com-
mentary domain to prevent any test set sentences
from being unintentionally seen during training.

8http://www.phontron.com/kftt/
9https://datarepository.wolframcloud.com/

resources/Japanese-English-Subtitle-Corpus
10https://wit3.fbk.eu/
11http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
12https://cms.unov.org/UNCorpus/
13https://translate.yandex.ru/corpus?lang=en
14http://lotus.kuee.kyoto-u.ac.jp/WAT/

News-Commentary/news-commentary-v14.en-ru.
filtered.tar.gz

15http://www.statmt.org/wmt20/
translation-task.html

16http://www.statmt.org/wmt21/
translation-task.html
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source bn gu hi kn ml mr or pa ta te Grand Total
alt 20,106 20,106 40,212

bibleuedin 15,609 62,073 61,707 61,300 60,876 62,191 323,756
cvit-pib 91,985 58,264 266,545 43,087 114,220 94,494 101,092 115,968 44,720 930,375

iitb 1,603,080 1,603,080
jw 278,307 310,094 509,594 303,991 362,816 270,346 388,364 673,232 192,904 3,289,648

mtenglish2odia 34,846 34,846
nlpc 31,373 31,373

odiencorp 90,854 90,854
opensubtitles 411,097 92,319 383,313 32,140 27,063 945,932

pmi 23,306 41,578 50,349 28,901 26,916 28,974 31,966 28,294 32,638 33,380 326,302
tanzil 187,052 187,080 187,081 93,540 654,753

ted2020 10,318 15,691 46,759 2,253 5,990 22,608 749 11,105 5,236 120,709
ufal 166,866 166,866
urst 65,000 65,000

wikimatrix 280,566 231,459 71,508 124,304 95,159 91,908 894,904
wikititles 11,665 102,131 113,796

Grand Total 1,302,737 517,901 3,069,364 396,852 1,142,011 621,328 252,160 518,499 1,354,152 457,402 9,632,406

Table 7: Statistics of the filtered parallel corpora provided by the organizers. The target language is English.

,

Language #Lines
as 1.39M
bn 39.9M
en 54.3M
gu 41.1M
hi 63.1M
kn 53.3M
ml 50.2M
mr 34.0M
or 6.94M
pa 29.2M
ta 31.5M
te 47.9M

Table 8: Monolingual corpora statistics.

2.8 Indic Multilingual Task
Owing to the increasing interest in Indian language
translation and the success of the multilingual In-
dian languages tasks in 2018 (Nakazawa et al.,
2018) and 2020 (Nakazawa et al., 2020), we de-
cided to enlarge the scope of the 2020 task by
adding new languages, scouring new data and cre-
ating an N-way parallel evaluation set. In 2020, the
evaluation data came from the CVIT-PIB dataset17

but it did not contain sufficient N-way parallel sen-
tences to evaluate on additional languages. To this
end, we decided to obtain evaluation corpora from
the PMI dataset18 which contains sufficient N-way
parallel corpora spanning 10 Indian languages and
English and is similar (domain wise) to the CVIT-
PIB dataset.

The evaluation data consists of various articles
17http://preon.iiit.ac.in/~jerin/resources/

datasets/pib_v1.3.tar
18http://data.statmt.org/pmindia

composed by the Prime Minister of India. The lan-
guages involved are Hindi (Hi), Marathi (Mr), Kan-
nada (Kn), Tamil (Ta), Telugu (Te), Gujarati (Gu),
Malayalam (Ml), Bengali (Bn), Oriya (Or), Pun-
jabi (Pa) and English (En). Compared to 2020, we
have 3 additional languages leading to a total of 10
Indian languages, 4 of which are Dravidian and the
rest are Indo-Aryan. English is either the source or
the target language during evaluation leading to a
total of 20 translation directions. Due to the N-way
nature of the evaluation corpus we can also evalu-
ate 90 Indian language to Indian language transla-
tion pairs but this may be the focus in future work-
shops.

The objective of this task, like the Indic lan-
guages tasks in 2018 and 2020, was to evaluate the
performance of multilingual NMT models. The
desired solution could be one-to-many, many-to-
one or many-to-many NMT models. We provided
a filtered parallel corpus collection spanning all
languages19 which was split into training, devel-
opment and test sets. This dataset was created by
first creating an evaluation set of 3,390 11-way
sentences (1,000 for development and 2,390 for
testing) and then filtering them out from all parallel
corpora we could obtain at the time. Furthermore,
we made sure to filter out sentences from the 2020
evaluation set. This way the provided parallel
corpus can be safely used for benchmarking the
2020 evaluation set as well. The filtered training
parallel corpora came from a variety of sources
such as: CVIT-PIB, PMIndia, IITB 3.0,20 JW,21

19http://lotus.kuee.kyoto-u.ac.jp/WAT/
indic-multilingual/indic_wat_2021.tar.gz

20http://www.cfilt.iitb.ac.in/iitb_parallel/
21http://opus.nlpl.eu/JW300.php
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NLPC,22UFAL EnTam,23Uka Tarsadia,24Wiki
Titles (ta,25gu,26)ALT,27OpenSubtitles,28 Bible-
uedin,29 MTEnglish2Odia,30OdiEnCorp 2.0,31

TED,32 and WikiMatrix33. Additionally we listed
the CCAligned corpus34 to be used despite its
poor quality which applies to WikiMatrix as well.
We also provided filtered monolingual corpora35

sourced from PMI and we also encouraged the use
of monolingual corpora from the IndicCorp.36The
statistics of this corpus are given in table 8. We
expected that this year, the novel way of using the
monolingual corpora would be to pre-train NMT
models such as BART/MBART (Lewis et al.,
2020; Liu et al., 2020). In general we encouraged
participants to focus on multilingual NMT (Dabre
et al., 2020) solutions.

Detailed statistics for the aforementioned cor-
pora can be found in Table 7. We also listed ad-
ditional sources of corpora for participants to use.
Our organizer’s baselines used the PMI corpora for
training as it is the in-domain corpus.

2.9 English→Hindi Multi-Modal Task

This task is running successfully in WAT since
2019 and attracted many teams working on mul-
timodal machine translation and image captioning
in Indian languages (Nakazawa et al., 2019, 2020).

For English→Hindi multi-modal translation
task, we asked the participants to use Hindi Vi-
sual Genome 1.1 corpus (HVG, Parida et al.,

22https://github.com/nlpc-uom/
English-Tamil-Parallel-Corpus

23http://ufal.mff.cuni.cz/~ramasamy/parallel/
html/

24https://github.com/shahparth123/eng_guj_
parallel_corpus

25http://data.statmt.org/wikititles/v2/
wikititles-v2.ta-en.tsv.gz

26http://data.statmt.org/wikititles/v1/
wikititles-v1.gu-en.tsv.gz

27http://www2.nict.go.jp/astrec-att/member/
mutiyama/ALT

28http://opus.nlpl.eu/OpenSubtitles-v2018.
php

29http://opus.nlpl.eu/bible-uedin.php
30https://github.com/soumendrak/

MTEnglish2Odia
31https://ufal.mff.cuni.cz/odiencorp
32http://lotus.kuee.kyoto-u.ac.jp/WAT/

indic-multilingual/
33https://github.com/facebookresearch/LASER/

tree/master/tasks/WikiMatrix
34http://www.statmt.org/cc-aligned/
35http://lotus.kuee.kyoto-u.ac.jp/WAT/

indic-multilingual/filteredmono.tar.gz
36https://indicnlp.ai4bharat.org/corpora

Tokens
Dataset Items English Hindi
Training Set 28,930 143,164 145,448
D-Test 998 4,922 4,978
E-Test (EV) 1,595 7,853 7,852
C-Test (CH) 1,400 8,186 8,639

Table 9: Statistics of Hindi Visual Genome 1.1 used for
the English→Hindi Multi-Modal translation task. One
item consists of a source English sentence, target Hindi
sentence, and a rectangular region within an image. The
total number of English and Hindi tokens in the dataset
also listed. The abbreviations EV and CH are used in
the official task names in WAT scoring tables.

2019a,b).37

The statistics of HVG 1.1 are given in Table 9.
One “item” in HVG consists of an image with a
rectangular region highlighting a part of the im-
age, the original English caption of this region and
the Hindi reference translation. Depending on the
track (see 2.9.1 below), some of these item compo-
nents are available as the source and some serve as
the reference or play the role of a competing candi-
date solution.

2.9.1 English→Hindi Multi-Modal Task
Tracks

1. Text-Only Translation (labeled “TEXT” in
WAT official tables): The participants are
asked to translate short English captions (text)
into Hindi. No visual information can be used.
On the other hand, additional text resources
are permitted (but they need to be specified in
the corresponding system description paper).

2. Hindi Captioning (labeled “HI”): The partici-
pants are asked to generate captions in Hindi
for the given rectangular region in an input im-
age.

3. Multi-Modal Translation (labeled “MM”):
Given an image, a rectangular region in it and
an English caption for the rectangular region,
the participants are asked to translate the En-
glish text into Hindi. Both textual and visual
information can be used.

The English→Hindi multi-modal task includes
three tracks as illustrated in Figure 1.

37https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-3267
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Text-Only MT Hindi Captioning Multi-Modal MT

Image –
Source Text The woman is waiting to cross

the street
– A blue wall beside tennis court

System Output मिहला सड़क पार करने का इंतजार कर
रही है

सड़क पर कार टेिनस कोटर् के बगल में एक नीली दीवार
Gloss Woman waiting to cross the

street
Car on the road a blue wall next to the tennis

court

Reference Solution एक मिहला सड़क पार करने के िलए इं-
तजार कर रही है

सड़क के िकनारे खड़ी कारें टेिनस कोटर् के बगल में एक नीली दीवार
Gloss the woman is waiting to cross

the street
Cars parked along the side of the
road

A blue wall beside the tennis
court

Figure 1: An illustration of the three tracks of WAT 2021 English→Hindi Multi-Modal Task.

English Text: Two elephants standing in the water.

Malayalam Text: െവള്ളത്തിൽ നിൽŉന്ന രȒ് ആനകൾ

Figure 2: Sample item from Malayalam Visual Genome
(MVG), Image with specific region and its description.

2.10 English→Malayalam Multi-Modal Task

This task is introduced this year using the first mul-
timodal machine translation dataset in Malayalam
language. For English→Malayalam multi-modal
translation task we asked the participants to use the
Malayalam Visual Genome corpus (MVG for short
Parida and Bojar, 2021)38.

The statistics of MVG are given in Table 10.
One “item” in MVG consists of an image with a
rectangular region highlighting a part of the image,
the original English caption of this region and the
Malayalam reference translation as shown in Fig-
ure 2. Depending on the track (see 2.10.1 below),
some of these item components are available as the
source and some serve as the reference or play the
role of a competing candidate solution.

38https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-3533

2.10.1 English→Malayalam Multi-Modal
Task Tracks

1. Text-Only Translation (labeled “TEXT” in
WAT official tables): The participants are
asked to translate short English captions (text)
into Malayalam. No visual information can
be used. On the other hand, additional text
resources are permitted (but they need to be
specified in the corresponding system descrip-
tion paper).

2. Malayalam Captioning (labeled “ML”): The
participants are asked to generate captions in
Malayalam for the given rectangular region in
an input image.

3. Multi-Modal Translation (labeled “MM”):
Given an image, a rectangular region in it and
an English caption for the rectangular region,
the participants are asked to translate the En-
glish text into Malayalam. Both textual and
visual information can be used.

2.11 Flickr30kEnt-JP Japanese↔English
Multi-Modal Tasks

The goal of Flickr30kEnt-JP Japanese↔English
multi-modal task39 is to improve translation per-
formance with the help of another modality (im-
ages) associated with input sentences. For both
English→Japanese and Japanese→English tasks,
we use the Flickr30k Entities Japanese (F30kEnt-
Jp) dataset (Nakayama et al., 2020). This is an

39https://nlab-mpg.github.io/wat2021-mmt-jp/
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Tokens
Dataset Items English Malayalam
Training Set 28,930 143,112 107,126
D-Test 998 4,922 3,619
E-Test (EV) 1,595 7,853 6,689
C-Test (CH) 1,400 8,186 6,044

Table 10: Statistics of Malayalam Visual Genome used
for the English→Malayalam Multi-Modal translation
task. One item consists of a source English sentence,
target Hindi sentence, and a rectangular region within
an image. The total number of English and Malayalam
tokens in the dataset also listed. The abbreviations EV
and CH are used in the official task names in WAT scor-
ing tables.

Sentences/Tokens
Data Images English Japanese
Train 29,783 148,915/1.99M 148,910∗/2.50M
Dev 1,000 5,000/67,288 5,000/84,017
Test 1,000 1,000/10,876 1,000/16,113

Table 11: Statistics of the dataset used for
Japanese↔English multi-modal tasks. Here we
use the MeCab tokenizer to count Japanese tokens.
∗Some of the original English sentences are actually
broken so we did not provide their translations.

extended dataset of the Flickr30k40 and Flickr30k
Entities41 datasets where manual Japanese transla-
tions are added. Notably, it has the annotations of
many-to-many phrase-to-region correspondences
in both English and Japanese captions, which are
expected to strongly supervise multimodal ground-
ing and provide new research directions.

This year, from the same shared tasks in WAT
2020, we increased the number of parallel sen-
tences for training and validation. We summarize
the statistics of the dataset for this year in Table
11. We use the same splits of training, valida-
tion and test data specified in Flickr30k Entities.
For the training and the validation data, we use
the F30kEnt-Jp version 2.0 which is publicly avail-
able.42 The original Flickr30k has five English sen-
tences for each image. While the Japanese set for
WAT 2020 had the translations of only the first two
sentences, this year we have all five translations for
each image. Therefore, we can use five parallel sen-
tences for each image to train and validate the sys-
tems. The test data remain exactly the same as in
WAT 2020, where phrase-to-region annotation is
not included.

There are two settings of submission: with and
40http://shannon.cs.illinois.edu/DenotationGraph/
41http://bryanplummer.com/Flickr30kEntities/
42https://github.com/nlab-mpg/Flickr30kEnt-JP

without resource constraints. In the constrained
setting, external resources such as additional data
and pre-trained models (with external data) are not
allowed, except for pre-trained convolutional neu-
ral networks (for visual analysis) and basic linguis-
tic tools such as taggers, parsers, and morphologi-
cal analyzers.

2.12 Ambiguous MS COCO
Japanese↔English Multimodal Task

This is another Japanese–English multimodal ma-
chine translation task. We provide the Japanese–
English Ambiguous MS COCO dataset (Merritt
et al., 2020) for validation and testing, which
contains ambiguous verbs that may require vi-
sual information in images for disambiguation.
The validation and testing sets contain 230 and
231 Japanese–English sentence pairs, respectively.
The Japanese sentences are translated from the
English sentences in the original Ambiguous MS
COCO dataset.43

Participants can use the constrained and uncon-
strained training data to train their multimodal ma-
chine translation system. In the constrained setting,
only the Flickr30kEntities Japanese (F30kEnt-Jp)
dataset44 can be used as training data. In the un-
constrained setting, the MS COCO English data45

and STAIR Japanese image captions46 can be used
as additional training data.

We prepare a baseline using the double atten-
tion on image region method following (Zhao
et al., 2020) for both Japanese→English and
English→Japanese directions.

2.13 Restricted Translation Task
Despite recent success of NMT, the MT systems

still struggle to generate translation with a consis-
tent terminology. Consistency is the key to clear
and accurate translation, especially when translat-
ing documents in a specific field, for instance, sci-
ence or business and marketing contexts, requiring
technical terms and proper nouns to get translated
into the corresponding unique expressions contin-
uously in the entire documents. To tackle this in-
consistent translation issue, we have designed Re-
stricted Translation task at WAT 2021.

In the restricted translation task, participants are
required to submit a system that translates source

43http://www.statmt.org/wmt17/multimodal-task.html
44https://github.com/nlab-mpg/Flickr30kEnt-JP
45https://cocodataset.org/#captions-2015
46https://stair-lab-cit.github.io/STAIR-captions-web/
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En-Ja Ja-En
(# phrase, # char) (# phrase, # word)

Dev. (2.8, 164) (2.8, 6.6)
Devtest (3.2, 18.2) (3.2, 7.3)
Test (3.3, 18.1) (3.2, 7.4)

Table 12: Statistics of the restricted vocabulary in the
evaluation data. We report average number of phrases
and characters/words per source sentence.

texts under target vocabulary constraints. At in-
ference time, such a restricted vocabulary is pro-
vided as a list of target words, consisting of scien-
tific technical terms in the target language, and the
system outputs must contain all these target words.
For the English↔Japanese translation tasks, we
employ the ASPEC corpus and allow to use other
external data source. We built the restricted vocab-
ulary lists by asking 10 bilingual speakers to man-
ually extract the scientific technical terms from the
evaluation data sets (“dev/devtest/test”). Table 12
reports the data statistics of the restricted vocabu-
lary in the evaluation data.

We evaluate systems with two distinct met-
rics: 1) BLEU score as a conventional transla-
tion accuracy and 2) a consistency score: the ra-
tio of the number of sentences satisfying exact
match of given constraints over the whole test cor-
pus. For the “exact match” evaluation, we con-
duct the following process. In English, we sim-
ply lowercase hypotheses and constraints, then
judge character-level sequence matching (includ-
ing whitespaces) for each constraint. In Japanese,
we judge character-level sequence matching (in-
cluding whitespaces) for each constraint without
preprocessing. For the final ranking, we also calcu-
late the combined score of both: calculating BLEU
with only the exact match sentences. We note that,
in this scenario, the brevity score in BLEU does
not carry its usual meaning, but the n-gram scores
maintain their consistency.

3 Participants

Table 13 shows the participants in WAT2021. The
table lists 24 organizations from various countries,
including Japan, India, USA, Singapore, Myanmar,
Thailand, Korea, Poland, Denmark and Switzer-
land.

2,100 translation results by 28 teams were sub-
mitted for automatic evaluation and about 360
translation results by 24 teams were submitted for
the human evaluation. Table 14 summarizes the

participation of teams across WAT2021 tasks and
indicates which tasks included manual evaluation.
The human evaluation was conducted only for the
tasks with the check marks in “human eval” line.

There were no participants in the Newswire
(JIJI) task, BSD task and JaRuNC task.

4 Baseline Systems

Human evaluations of most of WAT tasks were
conducted as pairwise comparisons between the
translation results for a specific baseline system
and translation results for each participant’s sys-
tem. That is, the specific baseline system served
as the standard for human evaluation. At WAT
2021, we adopted some of neural machine trans-
lation (NMT) as baseline systems. The details of
the NMT baseline systems are described in this sec-
tion.

The NMT baseline systems consisted of publicly
available software, and the procedures for build-
ing the systems and for translating using the sys-
tems were published on the WAT web page.47 We
also have SMT baseline systems for the tasks that
started at WAT 2017 or before 2017. The baseline
systems are shown in Tables 15, 16, and 17. SMT
baseline systems are described in the WAT 2017
overview paper (Nakazawa et al., 2017). The com-
mercial RBMT systems and the online translation
systems were operated by the organizers. We note
that these RBMT companies and online translation
companies did not submit their systems. Because
our objective is not to compare commercial RBMT
systems or online translation systems from compa-
nies that did not themselves participate, the system
IDs of these systems are anonymous in this paper.

4.1 Tokenization
We used the following tools for tokenization.

4.1.1 For ASPEC, JPC, JIJI, and
ALT+UCSY

• Juman version 7.048 for Japanese segmenta-
tion.

• Stanford Word Segmenter version 2014-01-
0449 (Chinese Penn Treebank (CTB) model)
for Chinese segmentation.

47http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/baseline/baselineSystems.html

48http://nlp.ist.i.kyoto-u.ac.jp/EN/index.
php?JUMAN

49http://nlp.stanford.edu/software/segmenter.
shtml
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Team ID Organization Country
TMU Tokyo Metropolitan University Japan
NTT NTT Corporation Japan
NICT-2 NICT Japan
NICT-5 NICT Japan
NLPHut Idiap Research Institute Switzerland, IIT BHU, BITS Pilani India, KIIT Univer-

sity India, Silicon Techlab pvt. Ltd India, University of Chicago
Switzerland, In-
dia, USA

TMEKU Tokyo Metropolitan University, Ehime University, Kyoto University Japan
*goodjob Dalian University of Technology China
YCC-MT1 University of Technology (Yatanarpon Cyber City) Myanmar
YCC-MT2 University of Technology (Yatanarpon Cyber City) Myanmar
NECTEC National Electronics and Computer Technology Center (NECTEC) Thailand
mcairt CAIR India
nictrb NICT Japan
sakura Rakuten Institute of Technology Singapore, Rakuten Asia. Singapore
IIT-H International Institue of Information Technology India
*gauvar Amazon Singapore
*JBJBJB Indivisual participant Korea
SRPOL Samsung R&D Poland Poland
NHK NHK Japan
CFILT Computing for Indian Language Technology India
iitp IIT Patna India
Volta International Institute of Information Technology Hyderabad India
coastal University of Copenhagen Denmark
CFILT-IITB Indian Institute of Technology Bombay India
CNLP-NITS-PP NIT Silchar India
Bering Lab Bering Lab South Korea
tpt_wat Transperfect Translations USA

Table 13: List of participants who submitted translations for the human evaluation in WAT2021 (Note: teams
with ‘*’ marks did not submit their system description papers, therefore the evaluation results are UNOFFICIAL
according to our policy)
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ASPEC + ASPEC ALT + NICT-SAP
ParaNatCom Restricted UCSY En-Hi/Id/Ms/Th Hi/Id/Ms/Th-En

Team ID EJ EJ JE En-My My-En IT Wikinews IT Wikinews
TMU ✓
NTT ✓ ✓
NICT-2 ✓ ✓ ✓ ✓
goodjob ✓
YCC-MT1 ✓
YCC-MT2 ✓
NECTEC ✓
nictrb ✓ ✓
sakura ✓ ✓ ✓ ✓ ✓ ✓
NHK ✓ ✓
human eval ✓ ✓ ✓ ✓ ✓

Multimodal
JPC En-Hi En-Ml Flickr MS COCO

Team ID EJ JE CJ JC KJ JK TX HI MM TX HI EJ JE EJ
TMU ✓ ✓ ✓ ✓
NLPHut ✓ ✓ ✓ ✓
TMEKU ✓ ✓
sakura ✓ ✓
iitp ✓
Volta ✓ ✓
CNLP-NITS-PP ✓ ✓
Bering Lab ✓ ✓ ✓ ✓ ✓ ✓
tpt_wat ✓ ✓ ✓ ✓ ✓ ✓
human eval ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Indic21
En-X X-En

Team ID Bn Kn Ml Mr Or Hi Gu Pa Ta Te Bn Kn Ml Mr Or Hi Gu Pa Ta Te
NICT-5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NLPHut ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
mcairt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
sakura ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IIT-H ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
gauvar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
JBJBJB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SRPOL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CFILT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
coastal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CFILT-IITB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
human eval ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 14: Submissions for each task by each team. E and J denote English and Japanese respectively. The human
evaluation was conducted only for the tasks with the check marks in ”human eval” line.
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Table 15: Baseline Systems I
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• The Moses toolkit for English and Indonesian
tokenization.

• Mecab-ko50 for Korean segmentation.
• Indic NLP Library51 (Kunchukuttan, 2020)

for Indic language segmentation.
• The tools included in the ALT corpus for

Myanmar and Khmer segmentation.
• subword-nmt52 for all languages.

When we built BPE-codes, we merged source and
target sentences and we used 100,000 for -s op-
tion. We used 10 for vocabulary-threshold when
subword-nmt applied BPE.

4.1.2 For News Commentary
• The Moses toolkit for English and Russian

only for the News Commentary data.

• Mecab53 for Japanese segmentation.

• Corpora are further processed by ten-
sor2tensor’s internal pre/post-processing
which includes sub-word segmentation.

4.1.3 For Indic and NICT-SAP Tasks
• For the Indic task we did not perform any ex-

plicit tokenization of the raw data.

• For the NICT-SAP task we only character seg-
mented the Thai corpora as it was the only lan-
guage for which character level BLEU was to
be computed. Other languages corpora were
not preprocessed in any way.

• Any subword segmentation or tokenization
was handled by the internal mechanisms of
tensor2tensor.

4.1.4 For English→Hindi Multi-Modal and
English→Malayalam Tasks

• Hindi Visual Genome 1.1 and Malayalam Vi-
sual Genome comes untokenized and we did
not use or recommend any specific external
tokenizer.

• The standard OpenNMT-py sub-word seg-
mentation was used for pre/post-processing
for the baseline system and each participant
used what they wanted.

50https://bitbucket.org/eunjeon/mecab-ko/
51https://github.com/anoopkunchukuttan/indic_

nlp_library
52https://github.com/rsennrich/subword-nmt
53https://taku910.github.io/mecab/

4.1.5 For English↔Japanese Multi-Modal
Tasks

• For English sentences, we applied lowercase,
punctuation normalization, and the Moses to-
kenizer.

• For Japanese sentences, we used KyTea for
word segmentation.

4.2 Baseline NMT Methods
We used the NMT models for all tasks. Un-
less mentioned otherwise we use the Transformer
model (Vaswani et al., 2017). We used Open-
NMT (Klein et al., 2017) (RNN-model) for AS-
PEC, JPC, JIJI, and ALT tasks, tensor2tensor54 for
the News Commentary (JaRuNC), NICT-SAP and
MultiIndicMT tasks and OpenNMT-py55 for other
tasks.

4.2.1 NMT with Attention (OpenNMT)
For ASPEC, JPC, JIJI, and ALT tasks, we used
OpenNMT (Klein et al., 2017) as the implemen-
tation of the baseline NMT systems of NMT with
attention (System ID: NMT). We used the follow-
ing OpenNMT configuration.

• encoder_type = brnn
• brnn_merge = concat
• src_seq_length = 150
• tgt_seq_length = 150
• src_vocab_size = 100000
• tgt_vocab_size = 100000
• src_words_min_frequency = 1
• tgt_words_min_frequency = 1

The default values were used for the other system
parameters.

We used the following data for training the NMT
baseline systems of NMT with attention.

• All of the training data mentioned in Sec-
tion 2 were used for training except for the AS-
PEC Japanese–English task. For the ASPEC
Japanese–English task, we only used train-
1.txt, which consists of one million parallel
sentence pairs with high similarity scores.

• All of the development data for each task was
used for validation.

54https://github.com/tensorflow/
tensor2tensor

55https://github.com/OpenNMT/OpenNMT-py
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4.2.2 Transformer (Tensor2Tensor)
For the News Commentary task, we used ten-
sor2tensor’s56 implementation of the Transformer
(Vaswani et al., 2017) and used default hyperpa-
rameter settings corresponding to the “base” model
for all baseline models. The baseline for the News
Commentary task is a multilingual model as de-
scribed in Imankulova et al. (2019) which is trained
using only the in-domain parallel corpora. We use
the token trick proposed by Johnson et al. (2017)
to train the multilingual model.

For the NICT-SAP task, we used tensor2tensor
to train many-to-one and one-to-many models
where the latter were trained with the aforemen-
tioned token trick. We used default hyperparam-
eter settings corresponding to the “big” model.
Since the NICT-SAP task involves two domains for
evaluation (Wikinews and IT) we used a modifica-
tion of the token trick technique for domain adapta-
tion to distinguish between corpora for different do-
mains. In our case we used tokens such as 2alt and
2it to indicate whether the sentences belonged to
the Wikinews or IT domain, respectively. For both
tasks we used 32,000 separate sub-word vocabu-
laries. We trained our models on 1 GPU till con-
vergence on the development set BLEU scores, av-
eraged the last 10 checkpoints (separated by 1000
batches) and performed decoding with a beam of
size 4 and a length penalty of 0.6.

For the MultiIndicMT task we trained unidirec-
tional models using only the PMI corpus instead
of the entire training data. We intentionally used
the PMI corpus because its domain is the same
as that of the evaluation set. Due to lack of time
and resources we did not train multilingual mod-
els nor did we use additional data. We trained
“transformer_base” models with shared vocabular-
ies of 8,000 subwords. We trained our models on
1 GPU till convergence on the development set
BLEU scores, chose the model with the best devel-
opment set BLEU and performed decoding with a
beam of size 4 and a length penalty of 0.6.

4.2.3 Transformer (OpenNMT-py)
For the English→Hindi Multimodal and
English→Malayalam Multimodal tasks, we
used the Transformer model (Vaswani et al., 2018)
as implemented in OpenNMT-py (Klein et al.,
2017) and used the “base” model with default

56https://github.com/tensorflow/
tensor2tensor

parameters for the multi-modal task baseline. We
have generated the vocabulary of 32k sub-word
types jointly for both the source and target lan-
guages. The vocabulary is shared between the
encoder and decoder.

5 Automatic Evaluation
5.1 Procedure for Calculating Automatic

Evaluation Score
We evaluated translation results by three met-
rics: BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) and AMFM (Banchs et al.,
2015a). BLEU scores were calculated using
multi-bleu.perl in the Moses toolkit (Koehn
et al., 2007). RIBES scores were calculated using
RIBES.py version 1.02.4.57 AMFM scores were
calculated using scripts created by the technical
collaborators listed in the WAT2021 web page.58

All scores for each task were calculated using the
corresponding reference translations.

Before the calculation of the automatic evalua-
tion scores, the translation results were tokenized
or segmented with tokenization/segmentation
tools for each language. For Japanese segmenta-
tion, we used three different tools: Juman version
7.0 (Kurohashi et al., 1994), KyTea 0.4.6 (Neubig
et al., 2011) with full SVM model59 and MeCab
0.996 (Kudo, 2005) with IPA dictionary 2.7.0.60

For Chinese segmentation, we used two different
tools: KyTea 0.4.6 with full SVM Model in MSR
model and Stanford Word Segmenter (Tseng,
2005) version 2014-06-16 with Chinese Penn
Treebank (CTB) and Peking University (PKU)
model.61 For Korean segmentation, we used
mecab-ko.62 For Myanmar and Khmer segmen-
tations, we used myseg.py63 and kmseg.py64.
For English and Russian tokenizations, we used
tokenizer.perl65 in the Moses toolkit. For

57http://www.kecl.ntt.co.jp/icl/lirg/ribes/
index.html

58lotus.kuee.kyoto-u.ac.jp/WAT/WAT2021/
59http://www.phontron.com/kytea/model.html
60http://code.google.com/p/mecab/downloads/

detail?name=mecab-ipadic-2.7.0-20070801.tar.gz
61http://nlp.stanford.edu/software/segmenter.

shtml
62https://bitbucket.org/eunjeon/mecab-ko/
63http://lotus.kuee.kyoto-u.ac.jp/WAT/

my-en-data/wat2020.my-en.zip
64http://lotus.kuee.kyoto-u.ac.jp/WAT/

km-en-data/km-en.zip
65https://github.com/moses-smt/mosesdecoder/

tree/RELEASE-2.1.1/scripts/tokenizer/
tokenizer.perl
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Figure 3: The interface for translation results submission

Indonesian and Malay tokenizations, we used
tokenizer.perl actually sticking to the English
tokenization settings. For Thai tokenization, we
segmented the text at each individual character.
For Bengali, Gujarati, Hindi, Kannada, Malay-
alam, Marathi, Odia, Punjabi, Tamil, and Telugu
tokenizations, we used Indic NLP Library66

66https://github.com/anoopkunchukuttan/indic_
nlp_library

(Kunchukuttan, 2020). The detailed procedures
for the automatic evaluation are shown on the
WAT evaluation web page.67

5.2 Automatic Evaluation System
The automatic evaluation system receives transla-
tion results by participants and automatically gives

67http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html
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evaluation scores to the uploaded results. As
shown in Figure 3, the system requires participants
to provide the following information for each sub-
mission:

• Human Evaluation: whether or not they sub-
mit the results for human evaluation;

• Publish the results of the evaluation: whether
or not they permit to publish automatic evalu-
ation scores on the WAT2021 web page;

• Task: the task you submit the results for;

• Used Other Resources: whether or not they
used additional resources; and

• Method: the type of the method includ-
ing SMT, RBMT, SMT and RBMT, EBMT,
NMT and Other.

Evaluation scores of translation results that partic-
ipants permit to be published are disclosed via the
WAT2021 evaluation web page. Participants can
also submit the results for human evaluation using
the same web interface.

This automatic evaluation system will remain
available even after WAT2021. Anybody can reg-
ister an account for the system by the procedures
described in the application site.68

5.3 A Note on AMFM Scores
Up until WAT 2020, we used an older genera-
tion AMFM evaluation approach which did not use
deep neural networks. Given the advances in mul-
tilingual pre-trained models, this year, our collabo-
rators provided us with deep AMFM models. With
the exception of ASPEC and restricted translation
tasks we used the provided deep AMFM models
to compute AMFM scores. Given that these deep
models need GPUs to run quickly, we have not
yet integrated it into our evaluation server as it is
not equipped with GPUs. Instead, we compute the
AMFM scores offline and add them to the evalua-
tion scoreboard. For readers interested in AMFM
and recent advances we refer readers to the follow-
ing literature: Zhang et al. (2021b,a); D’Haro et al.
(2019); Banchs et al. (2015b).

6 Human Evaluation
In WAT2021, we conducted JPO adequacy eval-
uation (other than En-Hi and En-Ml multi-modal
task, Section 6.1).

68http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/application/index.html

5 All important information is transmitted correctly.
(100%)

4 Almost all important information is transmitted cor-
rectly. (80%–)

3 More than half of important information is transmit-
ted correctly. (50%–)

2 Some of important information is transmitted cor-
rectly. (20%–)

1 Almost all important information is NOT transmit-
ted correctly. (–20%)

Table 18: The JPO adequacy criterion

6.1 JPO Adequacy Evaluation
We conducted JPO adequacy evaluation for the top
two or three participants’ systems of pairwise eval-
uation for each subtask.69 The evaluation was car-
ried out by translation experts based on the JPO
adequacy evaluation criterion, which is originally
defined by JPO to assess the quality of translated
patent documents.

6.1.1 Sentence Selection and Evaluation
For the JPO adequacy evaluation, the 200 test sen-
tences were randomly selected from the test sen-
tences.

For each test sentence, input source sentence,
translation by participants’ system, and reference
translation were shown to the annotators. To guar-
antee the quality of the evaluation, each sentence
was evaluated by two annotators. Note that the
selected sentences are basically the same as those
used in the previous workshop.

6.1.2 Evaluation Criterion
Table 18 shows the JPO adequacy criterion from
5 to 1. The evaluation is performed subjectively.
“Important information” represents the technical
factors and their relationships. The degree of im-
portance of each element is also considered to eval-
uate. The percentages in each grade are rough in-
dications for the transmission degree of the source
sentence meanings. The detailed criterion is de-
scribed in the JPO document (in Japanese).70

7 Evaluation Results
In this section, the evaluation results for WAT2021
are reported from several perspectives. Some of
the results for both automatic and human evalu-
ations are also accessible at the WAT2021 web-

69The number of systems varies depending on the subtasks.
70http://www.jpo.go.jp/shiryou/toushin/

chousa/tokkyohonyaku_hyouka.htm
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site.71

7.1 Official Evaluation Results
Figures 4 and 5 show those of JPC subtasks, Fig-
ures 6 and 7 show those of MMT subtasks, Figures
8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 show those
of Indic Multilingual subtasks and Figures 18 and
19 show those of . Each figure contains the JPO ad-
equacy evaluation result and evaluation summary
of top systems.

The detailed automatic evaluation results are
shown in Appendix A. The detailed JPO adequacy
evaluation results for the selected submissions are
shown in Table 19. The weights for the weighted
κ (Cohen, 1968) is defined as |Evaluation1 −
Evaluation2|/4.

8 Findings
8.1 JPC Task
Three teams participated in JPC task. Bering
Lab and tpt_wat submitted results for all language
pairs and TMU submitted results for J↔K and
J↔E pairs. Similarly to WAT 2020, participants’
systems were transformer-based or BART-based.
Bering Lab trained Transformer models with ad-
ditional corpora, which were crawled patent docu-
ment pairs aligned by a sentence encoding method
and contained more than 13M sentences for each
language pair. Their system achieved the best
BLEU, RIBES, and AMFM scores for J→C/K/E
and the best BLEU and RIBES scores for K→J
among the past and this year’s systems. tpt_wat
used Transformer and back-translation with a sin-
gle setting for six language pairs. TMU used fine-
tuned Japanese BART models and achieved the
best AMFM score for K→J. As for human ade-
quacy evaluation, the evaluated system TMU did
not show superior performance to past years’ sys-
tems for J↔E, while the results cannot be directly
compared.

Among the top-performing systems, Bering
Lab’s systems obtained large BLEU improvements
around two points over the past years’ systems
for J↔K. The improvements were probably due
to their additional corpora, because their model
without the additional corpus ranked second for
J→K. Another finding by TMU was that pretrained
Japanese BART brought gains for all J↔K/E direc-
tions.

71http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/

8.2 NICT-SAP Task

In contrast to 2020 where we had only 1 submis-
sion, this year we received submissions from 5
teams, 4 of which submitted system description
papers. The submitted models were trained us-
ing a variety of techniques such as domain adapta-
tion, corpora selection and weighing, MBART pre-
training and multilingual NMT training. All sub-
missions significantly outperformed the organizers
baselines as well as the best submission in 2020.
The gains showed by this year’s submissions range
from approximately 14 to 30 BLEU (depending on
the task) compared to the baselines. The main rea-
son was that this year’s submission rely on high
quality data selection as well as on massively multi-
lingual pre-trained models. Out of the 4 teams that
submitted system description papers, only one re-
lied on data selection and surprisingly obtained the
best results for some language pairs. For other lan-
guage pairs, this team obtained cometitive results.
Regardless, is is clear that models like MBART
are extremely useful in extremely low-resource do-
mains such as Wikinews and software documenta-
tion.

Regarding, human evaluation we did JPO ade-
quacy evaluation for English to Indonesian and En-
glish to Malay for the Software Documentation do-
main. Kindly refer to Figure 18 and 19 for the re-
sults of human evaluation. For both translation di-
rections, team “sakura” had the highest JPO as well
as BLEU scores but the scores for team “NICT-2”
were not that far behind. They were certainly sig-
nificantly better than the organizer scores who only
developed models using parallel corpora without
any pre-training. We can certainly say that at high
enough BLEU score levels (higher than 40), the
large differences in BLEU do not necessarily cor-
relate with large differences in human evaluation
scores. To be specific, the gap between “sakura”
and “NICT-2” in terms of BLEU for English to In-
donesian is 2.14 and for English to Malay is 1.5
BLEU. However, the corresponding gaps in human
evaluation are 0.08 and 0.15 which is not signifi-
cant. Human evaluation on a larger scale might be
needed but we were unable to do so due to bud-
getary limitations.

8.2.1 News Commentary (JaRuNC) task

Unfortunately we did not receive any submissions
this year.
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Figure 4: Official evaluation results of jpcn-ja-en.

Figure 5: Official evaluation results of jpcn-en-ja.
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Figure 6: Official evaluation results of mmt-en-ja.

Figure 7: Official evaluation results of mmt-ja-en.
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Figure 8: Official evaluation results of indic21-en-bn.

Figure 9: Official evaluation results of indic21-bn-en.

Figure 10: Official evaluation results of indic21-en-kn.

21



Figure 11: Official evaluation results of indic21-kn-en.

Figure 12: Official evaluation results of indic21-en-ml.

Figure 13: Official evaluation results of indic21-ml-en.
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Figure 14: Official evaluation results of indic21-en-mr.

Figure 15: Official evaluation results of indic21-mr-en.

Figure 16: Official evaluation results of indic21-en-or.
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Figure 17: Official evaluation results of indic21-or-en.

Figure 18: Official evaluation results of software-en-id.

Figure 19: Official evaluation results of software-en-ms.
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SYSTEM DATA Annotator A Annotator B all weighted
Subtask ID ID average varianceaverage varianceaverage κ κ

jpcn-ja-en TMU 5187 4.34 0.52 4.74 0.30 4.54 0.09 0.20
jpcn-en-ja TMU 5347 4.21 1.34 4.34 1.14 4.27 0.33 0.53

indic21-en-bn
SRPOL 6232 4.57 0.71 4.74 0.36 4.65 0.30 0.36
sakura 6150 4.32 1.25 4.46 0.60 4.38 0.20 0.34
IIIT-H 6005 3.89 2.01 4.00 1.55 3.94 0.27 0.52

indic21-bn-en
SRPOL 6242 4.79 0.31 4.80 0.18 4.80 0.14 0.18
IIIT-H 6015 3.67 2.38 3.96 1.49 3.81 0.31 0.54
mcairt 6332 3.33 1.82 3.85 1.26 3.59 0.19 0.34

indic21-en-kn
SRPOL 6235 4.70 0.28 4.74 0.41 4.71 0.23 0.29
sakura 6153 4.73 0.20 4.41 0.64 4.57 0.15 0.22
IIIT-H 6008 4.11 0.63 3.90 1.35 4.00 0.33 0.48

indic21-kn-en
SRPOL 6245 4.63 0.29 4.81 0.25 4.72 0.25 0.30
sakura 5873 4.62 0.38 4.36 1.23 4.49 0.21 0.32
IIIT-H 6018 4.17 0.77 3.70 2.23 3.94 0.21 0.40

indic21-en-ml
SRPOL 6236 4.26 1.09 4.56 0.37 4.41 0.20 0.30
CFILT 6046 3.46 1.30 3.60 1.26 3.54 0.16 0.30
IIIT-H 6009 2.24 1.99 3.19 0.58 2.71 0.04 0.11

indic21-ml-en
SRPOL 6246 3.27 0.90 4.78 0.43 4.03 0.05 0.05
sakura 5874 3.57 0.86 4.42 1.33 3.99 0.03 0.10

IITP-MT 6289 3.31 1.23 4.12 1.41 3.71 0.11 0.21

indic21-en-mr
SRPOL 6237 4.26 0.34 4.42 0.44 4.34 0.05 0.04
CFILT 6047 4.08 0.44 4.20 0.65 4.14 0.01 0.01
IIIT-H 6010 3.63 0.71 4.05 0.93 3.84 0.09 0.18

indic21-mr-en
SRPOL 6247 4.34 0.55 4.79 0.31 4.57 0.07 0.11
sakura 5875 4.14 0.70 4.56 0.53 4.35 0.12 0.18
IIIT-H 6021 3.86 1.26 4.15 0.99 4.00 0.05 0.15

indic21-en-or
SRPOL 6238 4.12 0.65 4.38 0.69 4.25 0.31 0.49
IIIT-H 6011 3.80 0.77 3.83 1.08 3.82 0.63 0.75
CFILT 6048 3.75 0.90 3.77 0.97 3.76 0.77 0.85

indic21-or-en
SRPOL 6248 4.36 0.85 4.38 0.56 4.37 0.14 0.35
sakura 5876 4.24 1.06 4.26 0.75 4.25 0.26 0.49
IIIT-H 6022 3.34 2.08 3.50 1.32 3.42 0.32 0.63

software-en-id
sakura 5799 4.86 0.20 3.62 1.37 4.24 0.02 0.07
NICT-2 5902 4.74 0.45 3.58 1.56 4.16 0.07 0.15

organizer 3609 4.17 1.66 2.73 2.04 3.45 0.13 0.25

software-en-ms
sakura 5818 3.44 0.76 4.66 0.38 4.05 0.01 0.08
NICT-2 5904 3.25 0.93 4.54 0.61 3.90 -0.03 0.09

organizer 3610 2.88 1.18 4.05 1.34 3.46 0.06 0.27

Table 19: JPO adequacy evaluation results in detail.

8.3 Indic Multilingual Task

In WAT 2021, we received an overwhelming par-
ticipation from 11 teams, 10 of which submitted
system description papers. In contrast, in WAT
2020 there were only 4 system description papers.
All participants trained multilingual NMT mod-
els. Some teams focused on leveraging monolin-
gual corpora for pre-training MBART models or
for backtranslation whereas other teams focused
on script mapping to increase the similarity be-
tween the Indian languages and other teams fo-
cused on language family specific (Indo-Aryan vs
Dravidian) models. Compared to the previous
years, it is clear that backtranslation needs to be
supplemented with pre-training as well as data se-
lection for the best translation quality. The best
performing team, “SRPOL”, used back-translation,
pre-training, data selection and domain adapta-

tion. Following “SRPOL” teams such as “sakura”,
“CFILT”, “IIIT-H”, “IITP-MT” and “mcairt” per-
formed the best with ranks varying depending on
the translation direction. One important observa-
tion we made was that “SRPOL” results for In-
dian to English translation were far higher than
those of the other teams. In general their submis-
sion were 2 to 5 BLEU higher than the second
best team. We suppose that this is due to their
detailed experimentation with data selection and
back-translation. On the other hand, for English
to Indian language translation, although “SRPOL”
had the highest BLEU for most directions, the gap
between “SRPOL” and other participants was not
that high. In a number of cases the differences were
less than 0.5 BLEU which is not significant.

In general, we observed that translation into
English had substantially high BLEU scores with
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most participants obtaining higher than 25 BLEU
for most directions. This makes sense because In-
dian languages are similar to each other and when
the target language is the same, the increase in
the target language data and transfer learning on
the source side will lead to a large improvement
in translation quality. In most cases, the scores
for Indo-Aryan (Hindi, Marathi, Oriya, Punjabi,
Gujarati and Bengali) to English translation were
much higher than the scores for Dravidian (Tamil
Telugu, Kannada and Malayalam) to English trans-
lation.

On the other hand, for translation into Indian lan-
guages, BLEU scores were relatively lower. This
is due to the morphological richness of Indian lan-
guages as well as the fact that multilingual En-
glish to Indian language translation does not ben-
efit from the abundance of target language cor-
pus like multilingual Indian language to English
translation does. The BLEU scores for translation
into Indo-Aryan languages such as Hindi and Pun-
jabi showed the best translation quality exceeding
30 BLEU. This makes sense because Hindi and
Punjabi are very similar and Hindi is the most re-
source rich among all Indian languages. It is cer-
tain that Punjabi benefits from the Hindi parallel
data via transfer learning despite not sharing the
same script. Script sharing, a technique used by
some participants, could help enhance the amount
of transfer learning taking place even further. For
other Indo-Aryan languages the translation quality
was a bit lower where English to Bengali exhibited
the least translation quality compared to the other
Indo-Aryan languages. This shows that linguistic
similarity is not enough to lead to a high amount of
transfer. In the case of translation into Dravidian
languages we observed the lowest BLEU scores,
usually around 15 BLEU or lower, with the excep-
tion of English to Kannada. Despite having larger
corpora than some Indo-Aryan languages, transla-
tion into Dravidian languages is very hard as they
are significantly morphologically richer than Indo-
Aryan languages. Simply leveraging large mono-
lingual corpora may not be enough and methods
that take Dravidian linguistics into account may be
necessary.

With regards to human evaluation, we observed
that differences in BLEU scores do not always cor-
respond to differences in human evaluation scores.
For example, take the case of English to Malay-
alam translation where the gap between “SRPOL”

and “CFILT” in terms of BLEU is 2.7 and in terms
of JPO scores is 0.87. For the same teams in case
of English to Marathi, the gap in BLEU and JPO
scores are 1.95 and 0.2 respectively. The differ-
ence between a gap of 2.7 and 1.95 is not very large
as it is on a scale of 10072 but the difference be-
tween 0.87 and 0.2 on a scale of 573 is quite large.
In previous editions of this workshop we have al-
ways insisted that BLEU scores should not always
be trusted in order to decide if translations truly are
the best and this year’s human evaluation results
show that this is still the case. Multi-metric eval-
uation helps us better understand different aspects
of translation and we recommend readers to adopt
the same even if automatic metrics are used. Al-
though we are limited by budgetary constraints we
hope to conduct larger scale human evaluation in
the future.

8.4 English→Hindi Multi-Modal Task

This year four teams participated in the dif-
ferent sub-tasks (TEXT, MM, and HI) of the
English→Hindi Multi-Modal task. The WAT2021
automatic evaluation scores for the participating
teams are shown in Tables 63, 60, 62, 58, 55, 57.
The team “Volta” obtained the highest BLEU score
for the text-only translation (TEXT) for both the
evaluation (E-Test) and challenge (C-Test) test set.
The best performance is obtained by fine-tuned
mBART using IITB Corpus as an additional re-
source. For the captioning sub-task (HI) one team
“NLPHut” participated and able to obtained bet-
ter results compared to previous years’ best results
based on region-specific image caption generation.
For the multimodal sub-task (MM), we received
three submissions from the teams “Volta”, “iitp”
and “CNLP-NITS-PP”, respectively. The team
“Volta” obtained the highest BLEU score for the
multimodal translation (MM) for both the evalua-
tion (E-Test) and challenge (C-Test) test set. They
extracted object tags from images using visual in-
formation to enhance the textual input and achieve
the BLEU score of 51.60 on the challenge test set,
also the translation output able to resolve ambigu-
ity as compared with text-only translation.

Due to constraints, no human evaluation was
made this year for the English→Hindi Multi-
Modal Task.

72BLEU scores go from 0 to 100.
73Human evaluation scores go from 1 to 5.
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8.5 English→Malayalam Multi-Modal Task

This year one team “NLPHut” participated in the
different sub-tasks text-only translation (TEXT)
and Malayalam captioning (ML) sub-tasks of the
English→ Multi-Modal task. The WAT2021 auto-
matic evaluation scores are shown in the Table 64,
61, 59, 56.

For English to Malayalam text-only translation
the team “NLPHut” using the Transformer model
obtained a BLEU score of 34.83 as compared to
baseline of 30.49 on the evaluation test set and for
the challenge test set obtained 12.15 compared to
the baseline 12.98. For Malayalam image caption-
ing, the team “NLPHut” used the region-specific
approach by extracting image features for the given
specific region (bounding box) along with the
whole image features and concatenating both to
pass into an LSTM decoder to obtained the cap-
tions.

Due to constraints, no human evaluation was
made this year for the English→Malayalam Multi-
Modal Task.

8.6 Flickr30kEnt-JP Japanese↔English
Multi-Modal Tasks

This year, two teams participated in the
English→Japanese task, and one team partic-
ipated in the Japanese→English task, respectively.
It is notable that all submissions outperformed the
best scores in WAT 2020, probably because of the
increased size of the training dataset as well as the
novel techniques introduced by the participants.

Overall, we observe the similar trend as in the
last year. In the English→Japanese task, MMT
systems constantly outperformed text-only NMT
models including unconstrained ones, while in
the Japanese→English task, unconstrained NMT
model achieved the best performance. This is per-
haps because the Flickr30kEnt-JP dataset itself is
indeed constructed by English to Japanese human
translation where images were actually referred to
resolve ambiguity. One team developed an elegant
method for soft alignment of word–region to re-
alize better grounding of multimodal information,
which is shown to achieve a favorable performance
gain. This result again indicates the importance of
text–image grounding in MMT, and we believe that
we still have much room for improvements.

8.7 Ambiguous MS COCO
Japanese↔English Multimodal Task

This year only one team participated in the
English→Japanese task. Their system was based
on a word-region alignment method to enhance the
interaction between source tokens and image re-
gions and then integrating aligned information to
the visual features during decoding (Zhao et al.,
2021). We observe that their system outperformed
the organizer’s system, which is based on double
attention to both source tokens and image regions.
It verified that it is important to integrate visual in-
formation in a proper way for this task and multi-
modal MT in general that text is a strong clue for
translation, but visual information can further im-
prove translation if it is used properly.

Unfortunately, there is no team participating the
Japanese→English task. We hope that we can have
more participates next year for the tasks in both di-
rections.

8.8 Restricted Translation Task
We received 3 systems for the English→ Japanese
translation task and 4 systems for the Japanese→
English.74 On the whole, all the submitted systems
are basically lexical-constraint-aware NMT mod-
els with lexically constrained decoding method,
where the restricted target vocabulary is concate-
nated into source sentences and, during the beam
search at inference time, the models generate trans-
lation outputs containing the target vocabulary.
We observed that these techniques boost the final
translation performance of the NMT models in the
restricted translation task.

For human evaluation, we conducted the source-
based direct assessment (Cettolo et al., 2017; Fe-
dermann, 2018) and source-based contrastive as-
sessment (Sakaguchi and Van Durme, 2018; Fed-
ermann, 2018), to have the top-ranked systems of
each team appraised by bilingual human annota-
tors. In the human evaluation campaign, we also
include the human reference data. Table 20 reports
the final automatic evaluation score and the human
evaluation results. In both tasks, the systems from
the team “NTT” are the most highly evaluated in
all the submitted systems in the final score and the
human evaluation, consistently. We also note that
our designed automation metric is well correlated

74We discuss 3 submitted systems from the teams “NTT”,
“NHK”, and “NICTRB” teams, as we do not have a system
description paper from the team “TMU”.
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En-Ja Human Eval.
Team final src-based DA src-based CA
NTT 57.2 77.5 79.7
NHK 33.9 74.1 77.2
NICTRB 28.8 73.6 77.1
(human ref.) — 73.4 76.4
Ja-En Human Eval.
Team final src-based DA src-based CA
NTT 44.1 75.6 74.4
NHK 37.5 73.9 73.5
NICTRB 31.8 72.1 71.8
TMU 22.6 50.2 48.3
(human ref.) — 74.1 72.9

Table 20: Human evaluation results of source-based di-
rect assessment (src-based DA) and source-based con-
trastive assessment (src-based CA), ranging 0 to 100.
TThe column of “final” reports the final score of the au-
tomatic evaluation metric described in Section 2.13

.

with the human evaluation results. Besides that, we
found that the ASPEC human reference data might
have a quality issue, consisting of low-quality ex-
amples that are annotated with a score of [0, 50],
with the ratio of (En-Ja, Ja-En)=(13.30%, 12.43%).
This is why a few systems are shown to surpass the
original human reference data in the human evalu-
ation.

9 Conclusion and Future Perspective

This paper summarizes the shared tasks of
WAT2021. We had 24 participants worldwide who
submitted their translation results for the human
evaluation, and collected a large number of use-
ful submissions for improving the current machine
translation systems by analyzing the submissions
and identifying the issues.

For the next WAT workshop, we will try to add
more Indic languages to our MultiIndicMT task
along with newer evaluation sets. Also, we will
add a new English→Bengali Multi-Modal task into
the Multimodal translation tasks.
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Appendix A Submissions
Tables 21 to 76 summarize translation results sub-
mitted to WAT2021. Type and RSRC columns in-
dicate type of method and use of other resources.
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System ID Type RSRC BLEU RIBES AMFM
NICT-2 5916 NMT YES 34.970000 0.822350 0.839182
sakura 5791 NMT NO 34.250000 0.820590 0.849202

Table 21: ALT20 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5918 NMT YES 41.15 0.901974 0.867678
sakura 5798 NMT NO 41.57 0.901977 0.868025

Table 22: ALT20 en-id submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5920 NMT YES 45.17 0.912195 0.873476
sakura 5816 NMT NO 44.01 0.908439 0.871875

Table 23: ALT20 en-ms submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5922 NMT YES 55.690000 0.815863 0.832513
sakura 5843 NMT NO 55.980000 0.818307 0.837062

Table 24: ALT20 en-th submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5917 NMT YES 35.21 0.834649 0.814594
sakura 5793 NMT NO 36.17 0.835220 0.832895

Table 25: ALT20 hi-en submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5919 NMT YES 43.90 0.898700 0.844199
sakura 5800 NMT NO 44.72 0.897314 0.850998

Table 26: ALT20 id-en submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5921 NMT YES 44.53 0.904478 0.841632
sakura 5821 NMT NO 45.70 0.901696 0.851471

Table 27: ALT20 ms-en submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5923 NMT YES 28.96 0.829525 0.817972
sakura 5845 NMT NO 30.10 0.832399 0.822585

Table 28: ALT20 th-en submissions

System ID Type RSRC BLEU RIBES AMFM
YCC-MT1 6195 SMT NO 20.880000 0.553319 0.655310
YCC-MT1 6201 SMT NO 20.130000 0.545962 0.654820
YCC-MT2 6175 NMT NO 14.820000 0.659582 0.663840
YCC-MT2 6178 NMT NO 14.020000 0.639593 0.645470
sakura 6031 NMT NO 29.620000 0.739320 0.752340

Table 29: ALT2 en-my submissions
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System ID Type RSRC BLEU RIBES AMFM
NECTEC 6188 NMT NO 6.24 0.620840 0.424640
NECTEC 6192 NMT NO 4.62 0.587155 0.391710
sakura 5230 NMT NO 19.75 0.742698 0.562680
sakura 5990 NMT NO 18.70 0.736523 0.550430

Table 30: ALT2 my-en submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4789 NMT NO 11.27 0.638781 0.613093
NICT-5 5274 NMT NO 21.37 0.747435 0.744400
NICT-5 5349 NMT NO 23.89 0.754772 0.758921
NLPHut 4583 NMT NO 13.88 0.669588 0.657119
mcairt 6026 NMT NO 25.22 0.773387 0.778620
mcairt 6332 NMT NO 29.96 0.798326 0.786717
sakura 5870 NMT NO 26.69 0.776808 0.772365
IIIT-H 6015 NMT NO 28.28 0.773574 0.773292
gaurvar 5556 NMT NO 11.33 0.634088 0.673457
gaurvar 5565 NMT NO 11.83 0.629932 0.674034
IITP-MT 6280 NMT NO 25.77 0.774004 0.777377
SRPOL 6242 NMT NO 31.87 0.800501 0.789735
SRPOL 6268 NMT NO 31.82 0.800145 0.792364
CFILT 6052 NMT NO 25.98 0.760268 0.766461
coastal 6162 NMT NO 24.39 0.772190 0.778356
CFILT-IITB 6112 NMT NO 18.48 0.721176 0.730379
CFILT-IITB 6124 NMT NO 20.18 0.732342 0.734491

Table 33: HINDEN21 bn-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4788 NMT NO 5.580000 0.573377 0.701527
NICT-5 5273 NMT NO 10.590000 0.677858 0.755363
NICT-5 5348 NMT NO 12.840000 0.704620 0.767497
NLPHut 4582 NMT NO 8.130000 0.645895 0.735005
mcairt 6000 NMT NO 13.020000 0.715490 0.779592
sakura 6150 NMT NO 13.830000 0.716347 0.764714
IIIT-H 6005 NMT NO 14.730000 0.724245 0.759513
gaurvar 5588 NMT NO 3.230000 0.452631 0.628707
gaurvar 5938 NMT NO 2.950000 0.465755 0.641712
IITP-MT 6278 NMT NO 11.040000 0.703372 0.731181
SRPOL 6232 NMT NO 15.970000 0.733646 0.771033
SRPOL 6258 NMT NO 15.580000 0.732792 0.772309
CFILT 6041 NMT NO 13.240000 0.710664 0.777074
coastal 6074 NMT NO 11.090000 0.694142 0.763665

Table 34: HINDEN21 en-bn submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4790 NMT NO 16.380000 0.748273 0.757069
NICT-5 5275 NMT NO 23.040000 0.797371 0.801466
NICT-5 5350 NMT NO 24.260000 0.806181 0.811717
NLPHut 4585 NMT NO 17.760000 0.763222 0.768177
mcairt 6003 NMT NO 23.210000 0.809389 0.816739
sakura 6151 NMT NO 25.270000 0.814798 0.813350
IIIT-H 6006 NMT NO 26.970000 0.820249 0.820127
gaurvar 5580 NMT NO 6.810000 0.586360 0.628529
gaurvar 5927 NMT NO 6.920000 0.599337 0.645669
IITP-MT 6281 NMT NO 20.460000 0.750935 0.808824
SRPOL 6233 NMT NO 27.800000 0.824866 0.821221
SRPOL 6259 NMT NO 27.310000 0.822329 0.819923
CFILT 6042 NMT NO 24.560000 0.806649 0.817681
coastal 6078 NMT NO 20.420000 0.795314 0.809795

Table 35: HINDEN21 en-gu submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4792 NMT NO 23.310000 0.778841 0.759679
NICT-5 5277 NMT NO 29.590000 0.817892 0.800234
NICT-5 5352 NMT NO 30.180000 0.820984 0.801680
NLPHut 5987 NMT NO 25.370000 0.788001 0.747598
mcairt 6004 NMT NO 35.850000 0.846656 0.822626
sakura 6152 NMT NO 36.920000 0.848042 0.816999
IIIT-H 6007 NMT NO 38.250000 0.854192 0.822836
gaurvar 5578 NMT NO 17.020000 0.681760 0.676601
gaurvar 5928 NMT NO 15.860000 0.647511 0.681511
IITP-MT 6283 NMT NO 34.480000 0.844721 0.820543
SRPOL 6254 NMT NO 38.650000 0.855879 0.824649
SRPOL 6260 NMT NO 38.040000 0.852496 0.822371
CFILT 6043 NMT NO 35.390000 0.843969 0.821713
coastal 6079 NMT NO 31.750000 0.829731 0.801179

Table 36: HINDEN21 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4794 NMT NO 10.110000 0.651048 0.741873
NICT-5 5279 NMT NO 16.130000 0.732794 0.798654
NICT-5 5354 NMT NO 18.220000 0.746230 0.813658
NLPHut 4591 NMT NO 11.840000 0.689612 0.762931
mcairt 5998 NMT NO 14.580000 0.726259 0.805963
sakura 6153 NMT NO 18.830000 0.760100 0.817831
IIIT-H 6008 NMT NO 19.570000 0.756613 0.812490
gaurvar 5581 NMT NO 4.350000 0.477922 0.658271
gaurvar 5929 NMT NO 3.900000 0.469815 0.657091
IITP-MT 6285 NMT NO 13.220000 0.635288 0.791821
SRPOL 6235 NMT NO 21.300000 0.770110 0.821941
SRPOL 6261 NMT NO 20.910000 0.771246 0.821329
CFILT 6044 NMT NO 17.980000 0.747233 0.816981
coastal 6113 NMT NO 16.110000 0.736528 0.809687

Table 37: HINDEN21 en-kn submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4796 NMT NO 3.340000 0.475441 0.706782
NICT-5 5281 NMT NO 5.980000 0.605053 0.764924
NICT-5 5356 NMT NO 6.510000 0.623301 0.789337
NLPHut 4590 NMT NO 4.570000 0.554478 0.740136
mcairt 6002 NMT NO 6.170000 0.622598 0.793308
sakura 5886 NMT NO 10.940000 0.686534 0.794481
IIIT-H 6009 NMT NO 12.760000 0.672331 0.745043
gaurvar 5582 NMT NO 1.790000 0.338533 0.666547
gaurvar 5930 NMT NO 1.480000 0.306966 0.656847
IITP-MT 6287 NMT NO 3.790000 0.437679 0.758960
SRPOL 6236 NMT NO 15.490000 0.736915 0.807998
SRPOL 6262 NMT NO 15.430000 0.734111 0.808089
CFILT 6046 NMT NO 12.790000 0.707437 0.805291
coastal 6081 NMT NO 6.270000 0.619774 0.784292

Table 38: HINDEN21 en-ml submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4798 NMT NO 8.820000 0.652134 0.730656
NICT-5 5283 NMT NO 14.690000 0.720677 0.785952
NICT-5 5358 NMT NO 16.380000 0.739171 0.800357
NLPHut 4594 NMT NO 10.410000 0.684554 0.745915
mcairt 5999 NMT NO 14.900000 0.740079 0.791850
sakura 6156 NMT NO 17.870000 0.752439 0.803566
IIIT-H 6010 NMT NO 19.480000 0.760009 0.807758
gaurvar 5583 NMT NO 5.100000 0.482727 0.654698
gaurvar 5931 NMT NO 4.490000 0.467281 0.658104
IITP-MT 6291 NMT NO 13.950000 0.665934 0.798673
SRPOL 6237 NMT NO 20.420000 0.771845 0.809721
SRPOL 6263 NMT NO 19.930000 0.766897 0.810757
CFILT 6047 NMT NO 18.470000 0.759182 0.811499
coastal 6082 NMT NO 14.480000 0.727647 0.799538

Table 39: HINDEN21 en-mr submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4800 NMT NO 9.080000 0.638520 0.714530
NICT-5 5285 NMT NO 15.010000 0.716665 0.748319
NICT-5 5360 NMT NO 16.690000 0.734028 0.757804
NLPHut 4596 NMT NO 12.810000 0.693696 0.736638
mcairt 5996 NMT NO 17.710000 0.743984 0.763064
sakura 6157 NMT NO 17.880000 0.740263 0.769884
IIIT-H 6011 NMT NO 20.150000 0.750260 0.735718
gaurvar 5584 NMT NO 2.200000 0.380253 0.591864
gaurvar 5932 NMT NO 2.600000 0.431373 0.611704
IITP-MT 6293 NMT NO 12.570000 0.714731 0.737576
SRPOL 6238 NMT NO 19.940000 0.751086 0.771831
SRPOL 6264 NMT NO 19.150000 0.749740 0.771493
CFILT 6048 NMT NO 18.220000 0.738397 0.768399
coastal 6084 NMT NO 15.660000 0.727477 0.758199

Table 40: HINDEN21 en-or submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4802 NMT NO 21.770000 0.765216 0.762364
NICT-5 5287 NMT NO 26.940000 0.808173 0.794023
NICT-5 5362 NMT NO 29.150000 0.820085 0.803326
NLPHut 4598 NMT NO 22.600000 0.785047 0.778215
mcairt 6001 NMT NO 30.560000 0.830405 0.810106
sakura 6158 NMT NO 30.930000 0.829019 0.802223
IIIT-H 6012 NMT NO 33.350000 0.837603 0.810972
gaurvar 5585 NMT NO 9.350000 0.633937 0.620318
gaurvar 5933 NMT NO 10.020000 0.632319 0.643473
IITP-MT 6298 NMT NO 16.810000 0.785680 0.663206
SRPOL 6239 NMT NO 33.430000 0.837542 0.814115
SRPOL 6265 NMT NO 32.880000 0.835465 0.813158
CFILT 6049 NMT NO 31.160000 0.826367 0.813658
coastal 6085 NMT NO 27.250000 0.816792 0.803382

Table 41: HINDEN21 en-pa submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4804 NMT NO 6.380000 0.588286 0.723160
NICT-5 5289 NMT NO 10.330000 0.675039 0.776138
NICT-5 5364 NMT NO 11.420000 0.701210 0.792622
NLPHut 4616 NMT NO 7.680000 0.630830 0.739011
mcairt 5995 NMT NO 11.980000 0.707054 0.801632
sakura 6159 NMT NO 13.250000 0.721520 0.795712
IIIT-H 6013 NMT NO 14.430000 0.711995 0.778991
gaurvar 5586 NMT NO 4.090000 0.452271 0.694376
gaurvar 5934 NMT NO 3.600000 0.431281 0.684232
IITP-MT 6303 NMT NO 8.510000 0.578195 0.756693
SRPOL 6240 NMT NO 14.150000 0.730705 0.798837
SRPOL 6266 NMT NO 13.890000 0.728770 0.799382
CFILT 6050 NMT NO 12.990000 0.715699 0.802920
coastal 6086 NMT NO 9.990000 0.682220 0.788022

Table 42: HINDEN21 en-ta submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4806 NMT NO 2.800000 0.479896 0.708086
NICT-5 5291 NMT NO 4.590000 0.569735 0.754015
NICT-5 5366 NMT NO 4.200000 0.576863 0.752068
NLPHut 5986 NMT NO 4.880000 0.570112 0.713960
mcairt 5997 NMT NO 11.170000 0.702337 0.783647
sakura 6160 NMT NO 15.480000 0.725543 0.785055
IIIT-H 6014 NMT NO 15.610000 0.728432 0.780218
gaurvar 5587 NMT NO 2.310000 0.414016 0.634376
gaurvar 5935 NMT NO 2.310000 0.389727 0.642502
IITP-MT 6305 NMT NO 6.250000 0.530898 0.764977
SRPOL 6241 NMT NO 16.850000 0.739835 0.791085
SRPOL 6267 NMT NO 16.820000 0.734483 0.792970
CFILT 6051 NMT NO 15.520000 0.725496 0.789820
coastal 6088 NMT NO 12.860000 0.707817 0.778251

Table 43: HINDEN21 en-te submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4791 NMT NO 26.21 0.764569 0.726576
NICT-5 5276 NMT NO 33.65 0.810918 0.793874
NICT-5 5351 NMT NO 33.53 0.811609 0.796604
NLPHut 4633 NMT NO 23.10 0.755101 0.713984
mcairt 6334 NMT NO 36.77 0.829389 0.819546
sakura 5871 NMT NO 38.73 0.834934 0.820654
IIIT-H 6016 NMT NO 39.39 0.830158 0.806061
gaurvar 5557 NMT NO 16.79 0.715044 0.696879
gaurvar 5566 NMT NO 17.50 0.712002 0.698257
IITP-MT 6282 NMT NO 36.49 0.827301 0.814556
SRPOL 6243 NMT NO 43.98 0.853263 0.835789
SRPOL 6269 NMT NO 42.87 0.849734 0.833146
CFILT 6053 NMT NO 35.31 0.807849 0.797069
coastal 6163 NMT NO 34.60 0.824060 0.814168
CFILT-IITB 6114 NMT NO 28.79 0.786408 0.765441
CFILT-IITB 6125 NMT NO 31.02 0.795199 0.776935

Table 44: HINDEN21 gu-en submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4793 NMT NO 28.21 0.782146 0.736131
NICT-5 5278 NMT NO 35.80 0.828390 0.808180
NICT-5 5353 NMT NO 36.20 0.832916 0.805716
NLPHut 5985 NMT NO 24.55 0.785027 0.721805
mcairt 6333 NMT NO 40.05 0.850322 0.832119
sakura 5872 NMT NO 41.58 0.856469 0.834172
IIIT-H 6017 NMT NO 43.23 0.853267 0.823007
gaurvar 5532 NMT NO 20.90 0.729188 0.714649
gaurvar 5567 NMT NO 21.33 0.759034 0.722822
IITP-MT 6284 NMT NO 40.08 0.851601 0.831265
SRPOL 6244 NMT NO 46.93 0.872874 0.847064
SRPOL 6270 NMT NO 45.61 0.867712 0.843456
CFILT 6054 NMT NO 39.71 0.837668 0.822034
coastal 6164 NMT NO 36.47 0.840014 0.824040
CFILT-IITB 6115 NMT NO 30.90 0.807304 0.775032
CFILT-IITB 6126 NMT NO 33.70 0.820716 0.791408

Table 45: HINDEN21 hi-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4795 NMT NO 20.33 0.717654 0.692019
NICT-5 5280 NMT NO 29.29 0.793521 0.782087
NICT-5 5355 NMT NO 30.87 0.796119 0.792622
NLPHut 4593 NMT NO 17.72 0.710551 0.679617
mcairt 6374 NMT NO 31.16 0.803525 0.799216
sakura 5873 NMT NO 34.11 0.815837 0.805112
IIIT-H 6018 NMT NO 34.69 0.804694 0.790977
gaurvar 5558 NMT NO 13.45 0.683906 0.687726
gaurvar 5568 NMT NO 13.86 0.674282 0.687810
IITP-MT 6286 NMT NO 31.24 0.806170 0.798540
SRPOL 6245 NMT NO 40.34 0.840458 0.823730
SRPOL 6271 NMT NO 39.01 0.837287 0.820355
CFILT 6055 NMT NO 30.23 0.772913 0.778602
coastal 6165 NMT NO 31.04 0.811950 0.806951
CFILT-IITB 6121 NMT NO 24.01 0.758489 0.751223
CFILT-IITB 6131 NMT NO 24.18 0.759045 0.744802

Table 46: HINDEN21 kn-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4797 NMT NO 13.64 0.673109 0.646559
NICT-5 5282 NMT NO 26.55 0.780019 0.772691
NICT-5 5357 NMT NO 28.23 0.786269 0.786909
NLPHut 4634 NMT NO 15.47 0.700957 0.668778
mcairt 6344 NMT NO 28.07 0.792884 0.794932
sakura 5874 NMT NO 32.23 0.810429 0.805450
IIIT-H 6020 NMT NO 29.19 0.780463 0.748518
gaurvar 5559 NMT NO 12.99 0.678961 0.684370
gaurvar 5569 NMT NO 13.64 0.657440 0.684483
IITP-MT 6289 NMT NO 29.37 0.802153 0.798550
SRPOL 6246 NMT NO 38.38 0.835444 0.823006
SRPOL 6272 NMT NO 37.04 0.830449 0.820716
CFILT 6056 NMT NO 29.28 0.784424 0.789095
coastal 6166 NMT NO 28.55 0.803090 0.805091
CFILT-IITB 6117 NMT NO 22.10 0.751437 0.744459
CFILT-IITB 6130 NMT NO 22.84 0.763162 0.745908

Table 47: HINDEN21 ml-en submissions
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System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4799 NMT NO 15.10 0.676716 0.658130
NICT-5 5284 NMT NO 25.45 0.771352 0.764852
NICT-5 5359 NMT NO 27.88 0.783012 0.779746
NLPHut 5983 NMT NO 17.07 0.706399 0.696839
mcairt 6335 NMT NO 27.29 0.785579 0.780231
sakura 5875 NMT NO 31.76 0.804834 0.795844
IIIT-H 6021 NMT NO 34.02 0.803479 0.792878
gaurvar 5560 NMT NO 13.38 0.679550 0.692897
gaurvar 5570 NMT NO 13.96 0.669879 0.693109
IITP-MT 6292 NMT NO 29.96 0.799383 0.797333
SRPOL 6247 NMT NO 36.64 0.824831 0.812258
SRPOL 6273 NMT NO 35.68 0.821164 0.810290
CFILT 6057 NMT NO 29.71 0.786570 0.789075
coastal 6167 NMT NO 27.71 0.795729 0.791157
CFILT-IITB 6118 NMT NO 23.57 0.752476 0.751917
CFILT-IITB 6127 NMT NO 25.40 0.765200 0.767347

Table 48: HINDEN21 mr-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4801 NMT NO 16.35 0.679781 0.730819
NICT-5 5286 NMT NO 25.81 0.762604 0.780431
NICT-5 5361 NMT NO 27.93 0.769634 0.782917
NLPHut 4597 NMT NO 18.92 0.720916 0.740606
mcairt 6338 NMT NO 29.96 0.798326 0.795586
sakura 5876 NMT NO 32.67 0.801734 0.808239
IIIT-H 6022 NMT NO 34.11 0.795132 0.804930
gaurvar 5550 NMT NO 13.71 0.634313 0.725121
gaurvar 5571 NMT NO 13.69 0.662493 0.721531
IITP-MT 6294 NMT NO 31.19 0.794791 0.803226
SRPOL 6248 NMT NO 37.06 0.816956 0.817318
SRPOL 6274 NMT NO 36.04 0.812816 0.814871
CFILT 6058 NMT NO 30.46 0.772850 0.793769
coastal 6107 NMT NO 19.61 0.737380 0.727657
CFILT-IITB 6119 NMT NO 25.05 0.754313 0.770941
CFILT-IITB 6128 NMT NO 26.34 0.761082 0.780009

Table 49: HINDEN21 or-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4803 NMT NO 23.66 0.749459 0.701483
NICT-5 5288 NMT NO 34.34 0.816975 0.792541
NICT-5 5363 NMT NO 35.81 0.827528 0.800753
NLPHut 4615 NMT NO 24.35 0.766047 0.717322
mcairt 6342 NMT NO 38.42 0.840360 0.818332
sakura 5877 NMT NO 40.38 0.844351 0.823464
IIIT-H 6023 NMT NO 41.24 0.837608 0.811169
gaurvar 5551 NMT NO 18.61 0.703876 0.693631
gaurvar 5572 NMT NO 18.59 0.730487 0.694658
IITP-MT 6301 NMT NO 38.41 0.839598 0.815989
SRPOL 6249 NMT NO 46.39 0.865765 0.841641
SRPOL 6275 NMT NO 44.87 0.861389 0.836440
CFILT 6059 NMT NO 38.01 0.818396 0.804561
coastal 6168 NMT NO 35.90 0.835327 0.814440
CFILT-IITB 6123 NMT NO 29.87 0.795413 0.772655
CFILT-IITB 6129 NMT NO 32.34 0.805722 0.782112

Table 50: HINDEN21 pa-en submissions

39



System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4805 NMT NO 16.07 0.690144 0.675969
NICT-5 5290 NMT NO 24.72 0.766631 0.758282
NICT-5 5365 NMT NO 26.90 0.780120 0.772249
NLPHut 5984 NMT NO 15.40 0.702428 0.669984
mcairt 6346 NMT NO 28.04 0.793839 0.790184
sakura 5878 NMT NO 31.09 0.806993 0.796074
IIIT-H 6024 NMT NO 29.61 0.785332 0.750297
gaurvar 5563 NMT NO 13.36 0.677433 0.687892
gaurvar 5573 NMT NO 13.77 0.660037 0.688325
IITP-MT 6304 NMT NO 27.76 0.788181 0.786587
SRPOL 6250 NMT NO 36.13 0.822312 0.806540
SRPOL 6276 NMT NO 35.06 0.815951 0.803595
CFILT 6060 NMT NO 29.34 0.784291 0.785098
coastal 6169 NMT NO 26.69 0.794380 0.786098
CFILT-IITB 6122 NMT NO 21.37 0.747748 0.742311
CFILT-IITB 6132 NMT NO 22.75 0.756364 0.745090

Table 51: HINDEN21 ta-en submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 4807 NMT NO 14.70 0.665774 0.636031
NICT-5 5292 NMT NO 27.76 0.777383 0.771109
NICT-5 5367 NMT NO 28.77 0.782427 0.779053
NLPHut 4619 NMT NO 16.48 0.695348 0.674821
mcairt 6348 NMT NO 29.26 0.790319 0.786396
sakura 5879 NMT NO 33.87 0.810630 0.802030
IIIT-H 6025 NMT NO 30.44 0.783709 0.754690
gaurvar 5564 NMT NO 12.14 0.652408 0.668328
gaurvar 5574 NMT NO 12.44 0.629617 0.666143
IITP-MT 6306 NMT NO 28.13 0.784897 0.776964
SRPOL 6251 NMT NO 39.80 0.836433 0.820889
SRPOL 6277 NMT NO 38.57 0.831502 0.820360
CFILT 6061 NMT NO 30.10 0.778981 0.783349
coastal 6170 NMT NO 30.50 0.806646 0.799696
CFILT-IITB 6120 NMT NO 22.37 0.746368 0.743435
CFILT-IITB 6133 NMT NO 24.02 0.757702 0.745885

Table 52: HINDEN21 te-en submissions
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System ID Type RSRC BLEU RIBES AMFM
NLPHut 5231 NMT NO 1.690000 0.095373 0.385495

Table 55: MMCHHI21 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
NLPHut 5439 OTHER NO 0.990000 0.024940 0.383880

Table 56: MMCHHI21 en-ml submissions

System ID Type RSRC BLEU RIBES AMFM
Volta 6430 NMT YES 51.600000 0.859645 0.877000
CNLP-NITS-PP 5730 NMT YES 39.280000 0.792097 0.817356
iitp 5942 NMT NO 37.500000 0.790809 0.823429

Table 57: MMCHMM21 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
Volta 6429 NMT YES 51.660000 0.855410 0.876300
NLPHut 4623 NMT YES 43.290000 0.824521 0.841544
CNLP-NITS-PP 5732 NMT YES 37.160000 0.770621 0.797409

Table 58: MMCHTEXT21 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6146 NMT NO 12.980000 0.378045 0.603143
NLPHut 4621 NMT NO 12.150000 0.373986 0.649550

Table 59: MMCHTEXT21 en-ml submissions

System ID Type RSRC BLEU RIBES AMFM
NLPHut 5400 OTHER NO 1.300000 0.093243 0.333490

Table 60: MMEVHI21 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
NLPHut 5438 OTHER NO 0.970000 0.047566 0.405275

Table 61: MMEVHI21 en-ml submissions

System ID Type RSRC BLEU RIBES AMFM
Volta 6428 NMT YES 44.640000 0.823319 0.839100
iitp 5941 NMT NO 42.470000 0.807123 0.629444
CNLP-NITS-PP 5731 NMT YES 39.460000 0.802055 0.641430

Table 62: MMEVMM21 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
Volta 6427 NMT YES 44.120000 0.821469 0.838180
NLPHut 4622 NMT YES 42.110000 0.813837 0.634481
CNLP-NITS-PP 5733 NMT YES 37.010000 0.795302 0.642785

Table 63: MMEVTEXT21 en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
ORGANIZER 6145 NMT NO 30.490000 0.580807 0.726976
NLPHut 4620 NMT NO 34.830000 0.636404 0.798859

Table 64: MMEVTEXT21 en-ml submissions
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System ID Type RSRC BLEU RIBES AMFM
NICT-2 5900 NMT YES 29.050000 0.651775 0.821077
sakura 5792 NMT NO 28.500000 0.663932 0.826771

Table 69: SOFTWARE en-hi submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5902 NMT YES 43.25 0.767124 0.863589
sakura 5799 NMT NO 45.39 0.759304 0.863010

Table 70: SOFTWARE en-id submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5904 NMT YES 40.76 0.823552 0.866766
sakura 5818 NMT NO 42.26 0.838933 0.873296

Table 71: SOFTWARE en-ms submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5906 NMT YES 50.910000 0.770522 0.809907
sakura 5844 NMT NO 55.640000 0.813347 0.829860

Table 72: SOFTWARE en-th submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5901 NMT YES 35.32 0.712675 0.843388
sakura 5795 NMT NO 40.17 0.726708 0.861348

Table 73: SOFTWARE hi-en submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5903 NMT YES 40.69 0.745225 0.852173
sakura 5810 NMT NO 44.70 0.759751 0.862999

Table 74: SOFTWARE id-en submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5905 NMT YES 38.42 0.818175 0.843418
sakura 5823 NMT NO 40.97 0.819980 0.849354

Table 75: SOFTWARE ms-en submissions

System ID Type RSRC BLEU RIBES AMFM
NICT-2 5907 NMT YES 21.89 0.673464 0.787909
sakura 5846 NMT NO 26.30 0.694253 0.809105

Table 76: SOFTWARE th-en submissions
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Abstract

This paper describes the system of our team
(NHK) for the WAT 2021 Japanese↔English
restricted machine translation task. In this
task, the aim is to improve quality while main-
taining consistent terminology for scientific
paper translation. This task has a unique fea-
ture, where some words in a target sentence
are given in addition to a source sentence. In
this paper, we use a lexically-constrained neu-
ral machine translation (NMT), which con-
catenates the source sentence and constrained
words with a special token to input them
into the encoder of NMT. The key to the
successful lexically-constrained NMT is the
way to extract constraints from a target sen-
tence of training data. We propose two ex-
traction methods: proper-noun constraint and
mistranslated-word constraint. These two
methods consider the importance of words and
fallibility of NMT, respectively. The evalu-
ation results demonstrate the effectiveness of
our lexical-constraint method.

1 Introduction

Our team (NHK) participated in the restricted ma-
chine translation task1 using the Japanese-English
dataset of the Asian scientific paper excerpt cor-
pus (ASPEC-JE) (Nakazawa et al., 2016) at WAT
2021 (Nakazawa et al., 2021). In this task, the
aim is to improve translation quality while pre-
serving consistent terminology for translating sci-
entific papers that include technical terms and
proper nouns. In this task, a list of target words
is given for each source sentence to appear in a
target sentence. Figure 1 shows the overview of
this task. There are two evaluation criteria: the

1https://sites.google.com/view/restricted-translation-task/

Source sentence: この回路は，⼊⼒信号位相の変化により
共振周波数がシフトする帰還回路であり，２基のコイル
の中央にある物体の磁気特性の変化を，⾼い感度と分解
能で検出することができる。
Target-vocabulary list: {magnetic features, resonance 
frequency, feedback circuit, resolution}

Output sentence is required to contain all the target words in 
each target-vocabulary list.

This is a feedback circuit shifting resonance frequency by 
change of input signal phase, which can detect change of 
magnetic features of an object present at a center of two coils 
on high sensitivity and resolution.

Input

Requirement for output

Reference

Figure 1: Overview of the restricted translation task
(Japanese→English).

translation accuracy via bilingual evaluation un-
derstudy (Papineni et al., 2002) (BLEU score) and
the consistency score of the ratio of sentences sat-
isfying an exact match of given constraints (con-
sistency score). The final ranking is determined
by the combined score of both: calculating BLEU
with only the exact match sentences2.

In related work (Chen et al., 2020a; Song et al.,
2019; Wang et al., 2019; Post and Vilar, 2018;
Hokamp and Liu, 2017), since it does not re-
quire higher computational complexity than the
other methods using the grid beam search
(GBS) decoding algorithm (Hokamp and Liu,
2017; Post and Vilar, 2018), we use the lexical-
constraint method of Chen et al. (2020a). This
method concatenates a source sentence and con-
strained words with a special token to input them
into an encoder of the neural machine translation

2If the translation does not satisfy the constraint, replace
the translation with an empty string.
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(NMT). In addition to the merit of reducing the
computational cost compared with GBS decoding,
this method has two other merits: no need to mod-
ify the architecture of the NMT system or pre-
pare any word alignment data. In this method for
this task, one of the main problems is how to ex-
tract constraints from training data since only con-
strained word lists for dev, devtest, and test sets
are provided to participants.

In this paper, we propose extracting constraints
from target sentences on the basis of proper-
noun and mistranslated-word constraints consid-
ering the importance of words and fallibility of
NMT. The former constraint is a list of proper
nouns extracted with named-entity recognition.
The latter constraint is a list of words mistrans-
lated or under-translated with vanilla NMT com-
pared with a target sentence. We conducted exper-
iments to evaluate the NMT using the proposed
method and found that the proposed method out-
performed a baseline lexical-constraint method.

2 Restricted Translation Task
Description

2.1 Official Dataset

The main dataset of the restricted translation
task is the Japanese-English paper abstract corpus
(ASPEC-JE) and the target vocabulary list as con-
straints. In addition to the main dataset, partici-
pants can use any other resources by mentioning
their details. The ASPEC-JE dataset consists of
training, dev, devtest, and test data. The training
data contains 3.0 million bilingual pairs provided
with similarity scores automatically calculated by
DP matching (Utiyama and Isahara, 2007). The
target vocabulary list for restricted translation is
attached to the dev, devtest, and test data dedicated
for this task. Participants are not told the detailed
way to select constraints. Table 1 shows statistics
of each data.

2.2 Official Evaluation

In this task, four distinct metrics are cal-
culated: BLEU, RIBES (Isozaki et al., 2010),
AMFM (Banchs et al., 2015), and consistency
scores. The BLEU, RIBES, and AMFM scores
are calculated in accordance with the WAT con-
vention. The consistency score is the ratio of the
number of sentences satisfying the exact match of
given constrained words over the whole test cor-
pus. The final score is calculated using both BLEU

Language Number of sentences

pair Train Dev Devtest Test

JA-EN 3.0M 1,790 1,784 1,812

(2.8/2.9) (3.2/3.2) (3.2/3.3)

Table 1: Statistics of official data including ASPEC-
JE and target vocabulary lists. Average numbers
of constrained words per sentence (Left:Japanese /
Right:English) are shown for the dev, devtest, and test
data. There are no vocabulary lists for the training data.

and consistency scores by WAT 2021 organizers as
below:

1. Check whether the translation satisfies the
given constraints or not.

2. If the translation does not satisfy the con-
straint, replace the translation with an empty
string.

3. Calculate BLEU with modified translations.

Furthermore, bilingual human annotators eval-
uate the top-ranked submitted systems based
on source-based direct assessment (Federmann,
2018; Cettolo et al., 2017) and source-based
contrastive assessment (Federmann, 2018;
Sakaguchi and Van Durme, 2018).

3 NMT with Lexical Constraint

Borrowing Chen et al. (2020a)’s idea, we imple-
mented a lexically-constrained NMT with encoder
and decoder modules. We concatenated a source
sentence and constrained words with a special to-
ken to input into the encoder, as illustrated in
Figure 2. The key to the successful lexically-
constrained NMT is the way to extract constraints
from a target sentence. Though the constraints are
given for the dev, devtest, and test data, they are
not given for the training data. In this paper, we fo-
cus on the way to extract a constraint from the tar-
get sentence in training data for the training phase.

The simplest method of extracting a lexical con-
straint is randomly sampling words from the target
sentence, as Chen et al. (2020a) did. Beyond the
random sampling method, we propose two other
directions with a focus on proper nouns and mis-
translated words to extract the constrained words
automatically from the target sentence.

• Proper-Noun Constraint. Though partici-
pants were not told the detailed way to se-
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Training phase: Extracted constraints from training data by the proposed methods.
Translation phase: Given constraints by organizers.

Figure 2: Overview of NMT using lexical-constraint method. x = (x1, x2, ..., xK), c = (c1, c2, ..., cN ), and
t = (y1, y2, ..., yJ) show source-, constraint-, and predicted-sequences, respectively. K and J are the lengths of
source and target sentences. N is a number of constrained words. “|” is a special token for delimiter. During the
training phase, constraints are extracted from training data by the proposed methods. During the translation phase,
constraints are given by WAT 2021 organizers.

lect constraints, we found that the vocabu-
lary list in dev data includes many techni-
cal terms and proper nouns. Supposing that
the important words such as technical terms
and proper nouns tend to be selected as con-
straints, we extract proper nouns on the basis
of the named-entity recognition.

• Mistranslated-Word Constraint. The
proper-noun constraint is not enough to be
sufficient to cover all constraints in this
task. Given constrained words including the
proper-noun constraints accounted for 21%
of the Japanese dev data. To increase the
number of appropriate constrained words, we
extract mistranslated or dropped words by
NMT as constraints. First, we trained an
NMT model on parallel training data, and
translated the source sentences in training
data with this model. We then picked out
the words that do not appear in the trans-
lated sentence but appear in the target sen-
tence. Both proper-noun and mistranslated-
word constraints could cover 38% of con-
straints for the dev data. The remaining 62%
constrained words could be translated cor-
rectly without adding them as constraints.

• Both the Proper-Noun and Mistranslated-
Word Constraints. Both constraints are
made by concatenating the proper-noun and
mistranslated-word constraints and removing
duplicates.

4 Experiments

4.1 Data
In this paper, we used only the first 2.0 mil-
lion bilingual pairs3 in the official dataset, i.e.,

3The remaining 1.0 million bilingual pairs were often
noisy as described in Neubig (2014). We found the perfor-

ASPEC-JE, with high similarity scores for training
the models. We did not use any other resources.

4.2 System Setup

We used the KyTea (Neubig et al., 2011) to tok-
enize Japanese sentences and the Moses toolkit4

to clean and tokenize English sentences. We then
used a vocabulary of 48K tokens on the basis
of joint byte-pair encoding (BPE) (Sennrich et al.,
2016) for the source and target. We used
the encoder and decoder of the transformer
model (Vaswani et al., 2017), which is a state-
of-the-art NMT model. The encoder converts a
source sentence into a sequence of continuous rep-
resentations, and the decoder generates a target
sentence. We implemented this system with the
Sockeye 2 toolkit (Hieber et al., 2020). All mod-
els were trained within at most three days on four
Nvidia V100 Tesla GPUs with 16-GB memory in
parallel. In training the model, we applied stochas-
tic gradient descent with Adam (Kingma and Ba,
2015) as the optimizer, using a learning rate of
0.0002, multiplied by 0.7 after every 8 check-
points. We set the batch size to 5000 tokens and
the maximum sentence length to 150 BPE tokens.
We applied early stopping with a patience of 32.
Dropout was set to 0.1 for encoder, decoder, at-
tention layer, and feed-forward layer after testing
with 0.1, 0.3, and 0.5 using development data. For
the other hyperparameters of the models, we used
the default Sockeye 2 parameters5.

Translation was carried out through a beam
search with a beam size of 30, and we used an en-
semble of 5 models with different seeds.

We used three types of constraints for the pro-

mance degraded when using all data in this work.
4https://github.com/moses-smt/mosesdecoder
5 Sockeye 2 uses a transformer model with 6 encoder and

decoder layers, 8 parallel attention heads, model dimension-
ality of 512, and a feed-forward layer size of 2048 as default.
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Average of Consistency
Task Method constrained words rate (word) BLEU
Japanese→English Baseline N/A 52.3 29.3

Random-word 4.99 78.6 29.5
Proper-noun 1.25 78.8 36.3
Mistranslated-word 4.68 86.1 39.2
Prop. & Mistrans. 5.63 96.0 43.9

English→Japanese Baseline N/A 61.7 45.9
Random-word 4.89 77.8 37.4
Proper-noun 1.91 96.2 48.2
Mistranslated-word 2.74 85.7 48.3
Prop. & Mistrans. 4.48 97.4 53.2

Table 2: Experimental results for each task. Baseline is trained without any constraint, Random-word is trained
with the randomly extracted constraint, Proper-noun is trained with the proper-noun constraint, Mistranslated-word
is trained with the mistranslated-word constraint, and Prop. & Mistrans. is trained with both the proper-noun and
mistranslated-word constraints. “Average of constrained word” shows the average number of constrained words
per sentence.

posed method: the proper-noun constraint, the
mistranslated-word constraint, and both, called
“Proper-noun,” “Mistranslated-word,” and “Prop.
& Mistrans.,” respectively. For extracting the
proper nouns from the target sentence, we used
GiNZA 4.06 for Japanese and en core web sm
model of spaCy 2.37 for English. We used at
most five words from candidates sorted on the ba-
sis of term-frequency inverse document frequency
(TF-IDF) scores (Chen et al., 2020b) in each con-
straint.

To evaluate translation quality separately from
the official evaluation, we calculated case-
insensitive BLEU (Papineni et al., 2002) scores
by using multi-bleu.perl8 and a consistency rate
of words, which is the ratio of the number of
words appearing in the output of given constrained
words.

4.3 Baselines

We trained two types of baselines using the trans-
former model.

1. Baseline: The model trained on the parallel
data (2.0 million bilingual pairs) without any
constraint.

2. Random-word: The model trained on the
parallel data with constraints of five words

6https://megagonlabs.github.io/ginza/
7https://spacy.io/usage/v2-3
8https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/generic/multi-bleu-detok.perl

randomly extracted from the target sentence.
We extracted different constraints randomly
for each epoch.

4.4 Experimental Results
Table 2 shows the experimental results for
Japanese↔English tasks. Compared with the
Baseline method, our proposed methods improved
both consistency rates of words and BLEU scores
for Japanese↔English tasks.

Though models using the Random-word
method improved the consistency rate compared
with Baseline, there is no or little improvement
in BLEU scores. For the Japanese→English task,
though the consistency rates of the Random-word
and Proper-noun methods are almost same, the
BLEU scores of the Proper-noun performed bet-
ter than the Random-word method. The average
number of constrained words of the Random-word
method is higher than the Proper-noun method.
This result indicates that translation quality highly
depends on the way to extract constraints rather
than the number of constraints.

From comparing among the versions of our pro-
posed method using three types of constraints, the
model using the Prop. & Mistrans. method per-
formed the best for both the Japanese↔English
tasks.

From comparing the use of the proper-
noun and mistranslated-word constraints,
the “Mistranslated-word” method performed
better for Japanese→English, whereas the
“Proper-noun” method performed better for
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HUMAN Final
Task Method BLEU RIBES AMFM DA CA score
Japanese→English Baseline 29.25 0.77 0.62 N/A N/A N/A

Random-word 29.49 0.68 0.52 N/A N/A N/A
Prop. & Mistrans. + rule 42.94 0.80 0.66 74.1 77.2 33.9

English→Japanese Baseline 45.93 0.85 0.76 N/A N/A N/A
Random-word 37.43 0.80 0.70 N/A N/A N/A
Prop. & Mistrans. + rule 52.69 0.82 0.80 73.9 73.5 37.5

Table 3: Official results (Japanese tokenizer:KyTea and English tokenizer:moses). HUMAN DA and CA is
source-based direct assessment and source-based contrastive assessment. See 2.2 for the details of each evaluation
criterion.

English→Japanese. In addition, there is no
significant difference in the consistency rate
of the mistranslated-word constraint between
English→Japanese and Japanese→English. The
proper-noun constraint for English→Japanese
appears likely to be more similar to constraints of
the test data than that for Japanese→English.

For the average number of constrained words,
though the Random-word method has the most
constrained words, it did not perform the best for
either the consistency rate or BLEU score. The re-
sults indicate that the quality of the model using
constraints relies on whether constraints are suit-
able for the task or not.

As a whole, we found that the using both the
proper-noun and mistranslated-word constraints
is effective for the restricted machine translation
task.

4.5 Official Results
Table 3 lists the official results. For “Prop. & Mis-
trans. + rule” method, we input the unsatisfied
constrained word, which does not appear in the
output with the following procedure:

1. extracts unsatisfied words, which do not ap-
pear in the output, from the constrained
words.

2. calculates Levenshtein distance between each
unsatisfied word and each word in the output.

3. swaps the word of the output with the closest
distance for the unsatisfied word.

The outputs of the “Prop. & Mistrans. + rule”
method satisfy all given constraints. The official
results indicate the effectiveness of using the pro-
posed constraints in terms of the human evaluation
since the rankings of “BLEU,” “HUMAN DA,”

“HUMAN CA,” and “Final score” are the same as
among participants of this task at WAT 2021.

5 Conclusion

We described our proposed method using lexi-
cal constraints for a Japanese↔English restricted
machine translation task with the Asian scientific
paper excerpt corpus (ASPEC). We proposed a
method to extract appropriate constraints of the
lexically-constrained neural machine translation
(NMT) for this task. Our proposed method us-
ing the proper-noun and mistranslated-word con-
straints improved translation performance com-
pared with random-word constraint.

For future work, we plan to apply the pro-
posed constraints into NMT with a grid beam
search decoding algorithm (Hokamp and Liu,
2017; Post and Vilar, 2018) to compare the perfor-
mance.
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Abstract

This paper describes our systems that were
submitted to the restricted translation task at
WAT 2021. In this task, the systems are re-
quired to output translated sentences that con-
tain all given word constraints. Our system
combined input augmentation and constrained
beam search algorithms. Through experi-
ments, we found that this combination signifi-
cantly improves translation accuracy and can
save inference time while containing all the
constraints in the output. For both En→Ja and
Ja→En, our systems obtained the best transla-
tion performances in both automatic and hu-
man evaluations.

1 Introduction

This year, we participated in the restricted transla-
tion task at WAT 2021 (Nakazawa et al., 2021),
in which we were asked to control a model so
that the translation output would contain specified
terms. Although the recent neural machine transla-
tion (NMT) model achieves excellent performance,
controlling its output is still a challenging task. Fig-
ure 1 shows an overview of the task. Each sentence
includes the target words (constraints) that must
be contained in the output. We believe this task
reflects a critical function, especially in practical
applications. For example, users may want to con-
trol the translation of technical terms or proper
nouns.

Several works have tried to control the NMT
outputs, and these works can be divided into two
categories: hard and soft methods. The hard lexi-
cally constrained method guarantees that all the
target words are in the output. Current works
achieve this by modifying the beam search algo-
rithm to find the hypothesis that contains all of
the target words (Hokamp and Liu, 2017; Post and

∗Equal contribution.

光線一致に基づく定常波の幾何光学的理論を展開した。

geometric-optical theory, standing wave, ray coincidence
Constraints:

A geometrical optics theory of stationary waves based on
ray matching is developed.

MT Output:

A geometric-optical theory of standing wave based on
ray coincidence is developed.

Constrained MT Output:

Figure 1: Overview of the restricted translation task

Vilar, 2018). The hard method guarantees all con-
straints are satisfied, but its translation performance
is sometimes lower than the conventional NMT.
This is because it requires all given target words
to be contained in the decoding step, which may
disrupt the model inference.

The soft lexically constrained method, on the
other hand, does not guarantee that all target words
are contained in the output. These methods usually
modify or augment the input of the NMT model and
try to output the given target words without chang-
ing the decoding algorithm (Song et al., 2019; Chen
et al., 2020). Its decoding speed is usually faster
than the hard method, but some of the constraints
may not be satisfied.

Our submission aims to contain all of the spec-
ified target words with high translation accuracy.
To achieve this goal, we applied both input aug-
mentation and constrained beam search algorithms.
To the best of our knowledge, this is the first work
that combines these two methods. Through exper-
iments, we found that this combination achieves
quite high translation performance while contain-
ing all target words in the output and saving
inference time. We submitted the systems to
the English-to-Japanese (En→Ja) and Japanese-to-
English (Ja→En) tasks, and we were ranked first in
both language pairs in terms of BLEU scores and
human evaluations.
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2 Task Definition

Suppose we have a source sentence X =
(x1, x2, . . . , xS) with S tokens and a target sen-
tence Y = (y1, y2, . . . , yT ) with T tokens. In
a conventional machine translation approach, the
problem of translation from X to Y can be solved
by finding the best target sentence that maximizes
the conditional probability

p(Y | X) =
T∏

t=1

p(yt | y<t, X). (1)

In the restricted translation task, lists of target
words are provided to represent word restrictions,
and systems are required to output translations that
contain all of the target words in each list. Here,
the problem of translation with word constraints
can be defined as

p(Y | X,C) =

T∏

t=1

p(yt | y<t, X,C), (2)

where C = (C1, C2, . . . , CN ) is the provided word
constraints with N phrases, and the constraints are
given in random order.

The performance of systems in this task is evalu-
ated through two metrics:

• Translation accuracy: BLEU (Papineni et al.,
2002) is used for evaluation in this task.

• Consistency score: The percentage of sen-
tences that correctly contain the given con-
straints over the entire test set.

For the final ranking, the combined score of the
above metrics is calculated as follows:

1. If the translation does not contain all of the
constraints based on exact matching, replace
the translation with an empty string.

2. Calculate BLEU scores with modified transla-
tions.

3 Data

3.1 Provided Data

In this task, we were asked to translate an
English/Japanese scientific paper. As the in-
domain training data, organizers provided AS-
PEC (Nakazawa et al., 2016), which contains three
million parallel sentences. Since this corpus is

Architecture Transformer (big)
Tied-embeddings Tied the encoder/decoder embed-

dings and the decoder output layer
Optimizer Adam (β1 = 0.9, β2 = 0.98, ε =

1× 10−8) (Kingma and Ba, 2015)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clipping 1.0
Label Smoothing εls = 0.1 (Szegedy et al., 2016)
Mini-batch Size 512,000 tokens (Ott et al., 2018)
Number of Updates 8,000 steps
Averaging Save checkpoint for every 100

steps and take an average of last
8 checkpoints

Table 1: List of hyperparameters

ordered by the sentence-alignment quality, the sen-
tences at the end might be noisy. Following a pre-
vious work (Morishita et al., 2017), we used only
the first two million sentences as parallel sentences.
We treated the final one million sentences as mono-
lingual data and created a synthetic corpus (Sen-
nrich et al., 2016). Based on a previous analy-
sis (Morishita et al., 2019), we forward-translated
it for the Japanese-English task and back-translated
it for the English-Japanese task.

3.2 Other Resources

We also trained the model with additional re-
sources. As an additional parallel corpus, we used
JParaCrawl (Morishita et al., 2020), which contains
10 million sentence pairs.

We also used CommonCrawl provided by the
WMT 2020 news shared task (Barrault et al., 2020)
as additional monolingual data. For Common-
Crawl data, we chose the ten million English and
Japanese sentences that are similar to the scientific
domain based on the language model trained with
ASPEC (Moore and Lewis, 2010). Then we further
filtered out the following noisy sentences: (1) non-
English/Japanese sentences with CLD2 1, (2) ex-
cessively long sentences (more than 250 subwords),
(3) sentences that contain out-of-vocabulary char-
acters. After cleaning, we kept 7.9 million English
and 9.2 million Japanese sentences. We then back-
translated these sentences with the NMT model
trained with ASPEC to make a synthetic corpus.
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Setting BLEU Term% Sent%

BASE 29.4 50.80 23.3
+ LCD (beam=60) 24.0 94.40 85.3

LeCA 42.2 87.64 72.02
+ LCD (beam=30) 43.9 94.34 85.21

Table 2: Comparison of translation accuracy and con-
sistency score for each setting on Ja→En.

4 System Details

4.1 Base Model and Hyperparameters
As a baseline system, we employed the Trans-
former model with the big setting (Vaswani et al.,
2017). Table 1 shows the detailed settings and hy-
perparameters. As an NMT implementation, we
used fairseq (Ott et al., 2019), and modified it
in the following experiments.

4.2 Lexically Constrained Decoding
We used the lexically constrained decoding (LCD)
technique (Hokamp and Liu, 2017; Post and Vilar,
2018) to incorporate constraints at decoding time.
In this task, the translations that do not satisfy the
constraints lead to a substantial decrease in the final
score. This technique is a hard lexically constrained
method that uses grid beam search algorithm, and
it guarantees that all word constraints appear in the
target sentence.

To evaluate the effectiveness of this technique,
we compared the baseline model (BASE) and the
baseline with LCD (BASE+LCD). Here, we used
two metrics for the consistency score: term% is the
percentage of constraints that are correctly gener-
ated in the translations, and sent% is the percentage
of sentences that contain all given constraints. Ta-
ble 2 shows that the BASE+LCD significantly im-
proves both term% and sent% on Ja→En. The rea-
son why the two consistency scores of BASE+LCD
are not 100% is due to the normalization on the
tokenization, and this can be addressed by post-
processing (§4.7).

However, BASE+LCD decreased the translation
accuracy of the model. In preliminary experiments
with the baseline models, we also found that the
beam size needs to be larger than 60 to successfully
generate all the constraints in this task. This is be-
cause the translations contain much repetition and
the model never finishes generation before reaching
the maximum output length.

1https://github.com/CLD2Owners/cld2

4.3 LExical-Constraint-Aware NMT
To ease the problem in LCD, we used the Lexical-
Constraint-Aware NMT (LeCA) model (Chen et al.,
2020), whose input is augmented by concatenating
constraints and the source sentence together. This
method can inform the model of what constraints
are given before decoding time, and thus the model
can properly decide where to output a constraint.
LeCA is a one of the soft lexically constrained
methods, which do not guarantee all constraints
are in the output. However, in combination with
LCD, we can guarantee the model always satis-
fies the constraints while keeping or improving the
translation performance.

The input is constructed by concatenating the
source sentence X and each phrase Ci in the con-
straints C with a separator symbol 〈sep〉, as fol-
lows:

[X, 〈sep〉, C1, 〈sep〉, C2, . . . , CN , 〈eos〉], (3)

where 〈eos〉 is the symbol indicating the end of
the sentence.

To construct the input at training time, Chen et al.
(2020) proposed a method that dynamically sam-
ples constraints from a reference sentence. They
first sampled the number of constrained words k,
and then they randomly sampled k target words
(not subwords) as constraints from the reference.
Here, we sampled the number of constrained words
k from 0 to 14 following the distribution that is
p = 0.4 for 0 and p = 0.6/14(= 0.04) for the
other ones. The high probability for no constraint
is to maintain the translation performance for un-
constrained settings.

To handle such a source sequence, this method
modifies the input representation of the encoder to
distinguish the source sentence and each constraint.
This representation is composed of three types of
learned embeddings: token embeddings, positional
embeddings, and segment embeddings, as shown in
Fig. 2. The position of each constraint starts from
the maximum length of the source sentences to
avoid overlapping with the sentence. We assigned
different values for the source sentence and each
constraint and fed it to the model with the segment
embeddings. This method also introduces a pointer
network architecture(Vinyals et al., 2015; See et al.,
2017) that helps to generate constraints by copying
from the source sequence. Finally, we updated the
models with 10,000 steps for Ja→En and 12,000
steps for En→Ja and set the beam size to 30 for
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Token embeddings
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Positional embeddings

0 0 0 0 0 0 0 0 0 0 1 1 2 2 2

Segment embeddings

Transformer Encoder

Figure 2: Input representation of the LeCA model.

Tokenizer BLEU Term% Sent%

MeCab + ipadic 44.8 68.67 43.87
MeCab + NEologd 46.5 72.35 49.39

Table 3: Comparison of translation performance when
changing the dictionary of tokenizer on En→Ja. The
model setting is LeCA with a few updates.

LCD.
We evaluated the effectiveness of LeCA and

LeCA with LCD (LeCA+LCD). Table 2 shows
that LeCA achieved high translation accuracy and
consistency scores. The input of both LeCA and
BASE+LCD are the same, but the translation ac-
curacy of LeCA is significantly better than that of
BASE+LCD. Moreover, LeCA+LCD with a small
beam size improves the translation accuracy and
satisfies all of the constraints. This implies that
inputting both a source sentence and constraints as
source sequence is very effective for improving the
performance in this task.

4.4 Pre-process

Since constraints that are sampled from the ref-
erence are given as not a subword but a word,
we need to separate the sentence into words.
To do this, we first tokenized both the input
and output sentences. For English, we sim-
ply applied the tokenizer scripts available in
the Moses toolkit (Koehn et al., 2007). We
used the Moses truecaser when the target
language is English. For Japanese, we use
the MeCab tokenizer (Kudo, 2006) with the
mecab-ipadic-NEologd (Sato, 2015) dictio-
nary. This dictionary contains many neologisms
and thus it helps in handling named entities or tech-
nical terms, which are included in ASPEC but
cannot be tokenized correctly using the default
system dictionary. We compared the LeCA per-

formance of mecab-ipadic-NEologd with
the default system dictionary on an En→Ja task.
Table 3 shows that mecab-ipadic-NEologd
significantly improved translation accuracy and
consistency scores. We confirmed that using
mecab-ipadic-NEologd is the best option
for LeCA on this task.

Then, we trained subword encoding models us-
ing the sentencepiece implementation (Kudo
and Richardson, 2018). According to an earlier
work (Morishita et al., 2019), a smaller vocabulary
size (e.g., 4,000) is empirically superior to the com-
monly used ones (e.g., 32,000). On the other hand,
larger vocabulary size is preferred for an LCD to
keep the number of constraint tokens small. This is
because a large number of tokens requires a large
beam size of the LCD and increases the inference
time. Finally, we found in a preliminary exper-
iment that a vocabulary size of 32,000 achieved
the best results, so we used a joint subword vocab-
ulary with 32,000 tokens. For training data, we
applied the Moses clean-corpus-n scripts to
remove sentence pairs that are either too long or
too different int their lengths2.

4.5 Fine-Tuning and Data Selection

The synthetic corpora (e.g., ASPEC last 1M and
CommonCrawl) contain noisy sentence pairs, and
the domain of JParaCrawl is different from that
of ASPEC, a scientific paper domain. We used
these corpora to make the translations more fluent.
The model was initially pre-trained with these cor-
pora and the first 2M sentence pairs of ASPEC for
12,000 updates. We then fine-tuned the pre-trained
model using only the first 2M sentence pairs of
ASPEC for 2,000 steps. For the pre-training, we
oversampled ASPEC three-times to keep roughly
the same number of sentences as the synthetic cor-

2We set the minimum length to 1, the maximum length to
250, and the maximum ratio of lengths to 9.
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BLEU
Setting Ja→En En→Ja

ASPEC 2M 44.34 —3

+ synth 1M 44.26 56.57
after pre-training 44.28 56.47

Table 4: Effectiveness of fine-tuning. The model set-
tings are LeCA+LCD.

BLEU
Model type En→Ja Ja→En

Single model 55.49 43.44
8 Ensemble 56.57 44.34

Table 5: Effectiveness of ensembling models. The
model settings are LeCA+LCD.

pora.
We searched for an effective setting to use the

training data. Table 4 shows the results. The model
using only ASPEC 2M for En→Ja and the model
using ASPEC 2M and forward-translated ASPEC
last 1M for Ja→En achieved the highest transla-
tion accuracies. For both En→Ja and Ja→En, the
models trained on ASPEC 2M after pre-training
achieved comparable results to the best ones. Since
these models are trained on large amounts of par-
allel sentence pairs, they might be expected to pro-
duce more natural output than the best ones and
thus be preferred by humans. Therefore, we de-
cided to submit these four models for human evalu-
ation.

4.6 Ensemble

We applied a model ensemble technique to improve
the translation accuracy. First, eight models were
trained with different random seeds. We then com-
puted the average scores of these models and gener-
ated hypotheses based on these scores using beam
search decoding.

Table 5 shows the effectiveness of ensembling
models. Ensembling the eight models shows a
significant improvement over the single model.

4.7 Post-processing

For the submission, we need to match the tok-
enization to the reference constraints. To achieve

3In a preliminary experiment on En→Ja, we found that
a model using synthetic data was superior to that using only
ASPEC 2M. However, we did not compare the three settings
under the same conditions.

this, we fixed the terms that are not matched to
the constraints due to tokenization issues. Specifi-
cally, for each unmatched constraint, we removed
spaces in both the output and the constraint, and
then replaced the constraint in the output with
the reference-spaced constraint. In some cases,
we found that constraints may contain out-of-
vocabulary (OOV) characters, resulting in trans-
lation failure4. The model outputs the special OOV
tokens for these sentence, and thus we replaced
them with correct characters in the reference con-
straint.

5 Official Results

Table 6 shows the automatic evaluated performance
of our systems on the test set. These scores were
measured in the evaluation server5. The best sys-
tems improved the BLEU score by +11.93 pts
for En→Ja and +15.04 pts for Ja→En against the
BASE. Our systems achieved the best BLEU score
for both En→Ja and Ja→En subtasks.

Table 7 shows the official results of our systems6.
For both En→Ja and Ja→En, our systems achieved
the best scores in the final ranking. Our submis-
sions did not drop the scores from the BLEU, while
the other participants dropped it. This means that
our team only succeeded in implementing systems
whose translation output could contain all the spec-
ified terms. Our systems also achieved the best per-
formance in terms of human evaluations for both
En→Ja and Ja→En. Notably, our scores are better
than the reference ones even for Ja→En. This im-
plies that constrained translation can yield human-
parity performance when the system can receive
appropriate terms in the target language.

6 Analysis

Figure 3 shows the example translation of the base-
line and LeCA with lexically constrained decoding.
Underlines in Figure 3 show the terms that match
the constraints. Obviously, the baseline model gen-
erated the same term repeatedly and failed to trans-
late while all of the constraints were satisfied. The
baseline model appears to struggle with generating

4We found that two percent of the lines in the test set
include OOV characters.

5http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

6The results of all participants are re-
ported in https://sites.google.com/
view/restricted-translation-task/#h.
g3vfoh2oljpq

57



BLEU
ID Setting En→Ja Ja→En

(a) BASE (§4.1) 44.64 29.30
(b) BASE + LCD (§4.2) 45.38 23.22
(c) LeCA (§4.3) 53.79 41.88
(d) LeCA + LCD 55.49 43.33
(e) (d) × 8 ensemble (§4.6) 56.57 44.34
(f) [(d) + fine-tuning (§4.5)] × 8 56.47 44.28

Table 6: The performance of the submitted systems. According to §4.5, we used only ASPEC 2M for En→Ja
and ASPEC 2M + synth 2M for Ja→En. For En→Ja, we show BLEU scores with MeCab tokenizer. Bold values
indicate the highest score in each column.

Automatic Eval. Human Eval.

Language pair Final score (Rank) DA (Rank) CA (Rank)

En→Ja 57.2 (1) 77.5 (1) 79.7 (1)
Ja→En 44.1 (1) 75.6 (1) 74.4 (1)

Table 7: Official results of our team. The definition of the final score is described in §2. Human evaluations
are based on source-based direct assessment (DA) (Cettolo et al., 2017; Federmann, 2018) and source-based con-
trastive assessment (CA) (Sakaguchi and Van Durme, 2018; Federmann, 2018).

the constraint “superconductivity single phase auto-
transformer.” One likely reason for this is that the
baseline model generated a phrase that was quite
similar to the constraint in the early phase (marked
with a wavy line in Figure 3), and thus the model
considered the constraint as translated.

In contrast, LeCA+LCD successfully translated
the sentence with the constraints. We believe this
is because the LeCA model correctly gives higher
scores to the constraint phrases compared to the
baselines, helping to generate a sentence with con-
straints.

Figure 4 shows the BLEU scores of En→Ja trans-
lation decoding with various beam sizes. As men-
tioned in §4.2, the beam size of BASE+LCD needs
to be larger than 60 to successfully generate all of
the constraints. In contrast, LeCA+LCD can gener-
ate all of the constraints and improve the translation
accuracy even when their beam size is quite small.
This result indicates that the output of LeCA is
helpful for LCD to score the candidates and that
LeCA can save inference time.

7 Related Work

Hokamp and Liu (2017) proposed Grid Beam
Search (GBS), an extended beam search algorithm
that forces the NMT model to output pre-specified
lexical constraints of words or phrases. At each

decoding step, a beam is allocated to each number
of constraints, and the top-k candidates that contain
n constraints are selected for the nth beam. Transla-
tions that satisfy the constraints appear in the beam
corresponding to the number of constraints. The
beam size changes depending on the number of
constraints for each sentence, which makes batch
decoding difficult. Post and Vilar (2018) proposed
Dynamic Beam Allocation (DBA), which dynami-
cally allocates the beam with a fixed size and im-
proves decoding more efficiently. However, the
distribution of the number of constraint tokens in
the experiments of these papers was much smaller
than that of this task, and we found these methods
did not perform well on this task.

Song et al. (2020) and Chen et al. (2021) pro-
posed lexically constrained decoding given explicit
alignment guidance between the constraints and
the source text. Alignments were induced from
an additional alignment head or attention weights
(Garg et al., 2019), but these methods assumed that
gold alignments are given as constraints. To apply
these methods to this task, we would have to use an
automatic alignment method (e.g., GIZA++, Fast-
Align) to obtain the alignments, and the translation
accuracy might suffer due to alignment error.

Susanto et al. (2020) proposed non-
autoregressive NMT for lexically constrained
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Source 分路巻線のみに補助巻線を持つ超電導単相単巻変圧器を試作した。

Reference Superconductivity single phase auto-transformer with auxiliary winding only at the shunt winding was
produced experimentally.

Constraints shunt winding, auxiliary winding, superconductivity single phase auto-transformer

Base+LCD

We have developed a
::::::::::::
superconducting

::::
single

::
-
::::
phase

:::::::::
transformer with auxiliary windings only in the shunt

windings, in which the auxiliary windings are connected to the shunt windings of
::
the

:::::
single

:
-
:::::
phase

:::::::::
transformer, and the auxiliary windings are connected to the shunt windings of the

::::
single

:
-
:::::
phase

:::::::::
transformer

with auxiliary windings of the auxiliary windings of the auxiliary windings of the auxiliary windings of the
auxiliary windings of the auxiliary windings of the auxiliary windings of the auxiliary windings of the
auxiliary windings of the auxiliary windings. Superconductivity single phase auto - transformer is assisted
by the auxiliary windings of the auxiliary windings.

LeCA+LCD A superconductivity single phase auto-transformer with auxiliary winding only in the shunt winding was
produced experimentally.

Figure 3: Example translation: Underlines show the matched constraints, and wavy lines show the phrases that the
models fail to match.
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Figure 4: BLEU scores of En→Ja translation decoding
with various beam sizes. The BLEU scores are calcu-
lated with sacreblue (Post, 2018)

translation. They used the Levenshtein Trans-
former (Gu et al., 2019), which inserts and deletes
tokens at each time step, starting from the given
constraints as the initial state. They assumed that
the order of the given constraints is the same as
the order in the reference, but the given constraints
in this task appear in random order. Furthermore,
they have not achieved comparable translation
accuracy to the auto-regressive approaches.

Some works augment the input sequence with
constraints. Song et al. (2019) augmented the
source sentence by replacing or appending con-
straints with its corresponding source phrase
through leveraging an SMT phrase table. Chen
et al. (2020) proposed a simple yet effective aug-
mentation method that appends constraints after
the source sentence. Although the decoding speed
is fast, Song et al. (2019) relied on the quality of
the SMT phrase table. Furthermore, neither of the
works could guarantee that the translation would

contains all constraints.

8 Conclusion

This paper described the systems that were sub-
mitted to the WAT 2021 restricted translation task.
We submitted systems for both En→Ja and Ja→En,
and both of our systems won the best translation ac-
curacy as assessed by BLEU, the consistency score,
and human evaluations. We also confirmed that
the data augmentation method makes lexically con-
strained decoding more effective and, furthermore,
that combining data augmentation and constrained
decoding significantly improves translation accu-
racy.
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Chu, Akiko Eriguchi, Kaori Abe, and Sadao Oda,
Yusuke Kurohashi. 2021. Overview of the 8th work-
shop on Asian translation. In Proceedings of the 8th
Workshop on Asian Translation, Bangkok, Thailand.
Association for Computational Linguistics.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. ASPEC: Asian
scientific paper excerpt corpus. In Proceedings of
the 10th International Conference on Language Re-
sources and Evaluation (LREC).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL HLT), pages
48–53.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the 3rd Conference on Ma-
chine Translation (WMT), pages 1–9.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the 3rd Conference on Ma-
chine Translation (WMT), pages 186–191.

60



Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Keisuke Sakaguchi and Benjamin Van Durme. 2018.
Efficient online scalar annotation with bounded sup-
port. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 208–218, Melbourne,
Australia. Association for Computational Linguis-
tics.

Toshinori Sato. 2015. Neologism dictionary based on
the language resources on the web for mecab.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 86–96.

Kai Song, Kun Wang, Heng Yu, Yue Zhang,
Zhongqiang Huang, Weihua Luo, Xiangyu Duan,
and Min Zhang. 2020. Alignment-enhanced trans-
former for constraining nmt with pre-specified trans-
lations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8886–8893.

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019. Code-switching for
enhancing NMT with pre-specified translation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 449–459,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Raymond Hendy Susanto, Shamil Chollampatt, and
Liling Tan. 2020. Lexically constrained neural ma-
chine translation with Levenshtein transformer. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3536–
3543, Online. Association for Computational Lin-
guistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the Inception Architecture for Computer Vision. In
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR 2016), pages 2818–2826.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st Annual Con-
ference on Neural Information Processing Systems
(NeurIPS), pages 6000–6010.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28. Curran
Associates, Inc.

61



Proceedings of the 8th Workshop on Asian Translation, pages 62–67
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics

NICT’s Neural Machine Translation Systems for the WAT21 Restricted
Translation Task

Zuchao Li1,2,3, Masao Utiyama4,∗, Eiichiro Sumita4, and Hai Zhao1,2,3∗
1Department of Computer Science and Engineering, Shanghai Jiao Tong University

2Key Laboratory of Shanghai Education Commission for Intelligent Interaction
and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China

3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
4National Institute of Information and Communications Technology (NICT), Kyoto, Japan

charlee@sjtu.edu.cn, {mutiyama, eiichiro.sumita}, zhaohai@cs.sjtu.edu.cn

Abstract

This paper describes our system (Team ID: nic-
trb) for participating in the WAT’21 restricted
machine translation task. In our submitted sys-
tem, we designed a new training approach for
restricted machine translation. By sampling
from the translation target, we can solve the
problem that ordinary training data does not
have a restricted vocabulary. With the further
help of constrained decoding in the inference
phase, we achieved better results than the base-
line, confirming the effectiveness of our so-
lution. In addition, we also tried the vanilla
and sparse Transformer as the backbone net-
work of the model, as well as model ensem-
bling, which further improved the final transla-
tion performance.

1 Introduction

The performance of machine translation has been
greatly improved since it entered the era of Neu-
ral Machine Translation (NMT) (Bahdanau et al.,
2015; Sutskever et al., 2014; Wu et al., 2016). Dif-
ferent from traditional statistical machine transla-
tion (SMT) (Koehn et al., 2003), NMT models
are trained end-to-end with contextualized repre-
sentations to alleviate the locality problem and
dense representations to mitigate the sparsity is-
sue. The incorporation of novel structures such
as CNN (Gehring et al., 2017) and Transformer
(Vaswani et al., 2017) into NMT has brought the
performance one step closer to practical translation.

Though NMT can more effectively exploit large
parallel corpora, the performance is still insufficient
to meet the requirements in some special translation
scenarios. The end-to-end NMT models remove
many approaches in the SMT paradigm for manu-
ally guiding the translation process. One attractive-
ness of the SMT method is that it provides explicit

∗Corresponding author. This work was completed when
Zuchao Li was a fixed-term technical researcher at NICT.

control over translation output, which is effective
in a variety of translation settings, including inter-
active machine translation (Peris et al., 2017) and
domain adaptation (Chu and Wang, 2018), which
is also crucial for the practical application of NMT.

Since there is still a need for manual interven-
tions for the new NMT paradigm, much effort
is spent in studying how to incorporate this ex-
plicit control into the end-to-end neural translation
(Arthur et al., 2016). Among these efforts, Con-
strained Decoding (CD) has gained a lot of atten-
tion in this research field, which is a modification to
commonly adopted beam search in ordinary NMT
models. Hokamp and Liu (2017) proposed grid
beam search, which expands beam search to in-
clude pre-specified lexical constraints. Anderson
et al. (2017) used constrained beam search to force
the inclusion of restricted words in the output, and
employed fixed pre-trained word embeddings to
facilitate vocabulary expansion to unseen words in
training.

While these works accomplish the goal of ex-
plicit translation control, the time complexity of
their decoding algorithm and resultant decoding
speed falls short of the expectations. The com-
plexity of grid beam search and constrained beam
search is linear and exponential to the number of
constraints, respectively. These algorithms are thus
too inefficient to be practical for large-scale use. To
alleviate the shortcomings in constrained decoding,
Post and Vilar (2018) proposed a new constrained
decoding algorithm with a claimed complexity of
O(1) in the number of constraints - dynamic beam
allocation which allocates the slots in a fixed-size
beam. However, their approach still processes sen-
tence constraints sequentially rather than batch pro-
cessing, limiting the GPU’s parallel processing
capabilities. Based on Post and Vilar (2018), a
vectorized dynamic beam allocation approach was
proposed in Hu et al. (2019), which which vector-
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izes the dynamic beam allocation for batching and
thus leading to improvement in throughput with
parallelization. Based on Post and Vilar (2018), Hu
et al. (2019) proposed a vectorized dynamic beam
allocation approach, which vectorizes the dynamic
beam allocation for batching, resulting in increased
throughput with parallelization.

Constrained decoding is a very general method
for incorporating additional translation knowledge
into the output without modifying the model param-
eters or training data. However, the model’s predic-
tion distribution can be skewed during the decod-
ing process with hard constraints, resulting in poor
translation results. When the model is exposed to
the restricted translation paradigm during training,
the gap between training and inference can be re-
duced, potentially improving performance. There-
fore, in this paper, we propose a training method
of Sampled Constraints as Concentration (SCC).
In this method, training data is the same as the
ordinary NMT; only minor modifications on the
loss calculation are required to adapt the model to
restricted translation.

In our submission to WAT’21 (Nakazawa et al.,
2021) restricted translation task, we chose Trans-
former (Vaswani et al., 2017) as our baseline be-
cause of its high performance and scalability. Al-
though there are some variants, our previous ex-
periments have shown there are not too many ap-
proaches that can be both concise and effective. At
the same time, though multi-head self-attention in
Transformer can model extremely long dependen-
cies, deep layer attention tends to overconcentrate
on a single token, resulting in inadequate use of
local information and difficulty representing long
sequences. To address this disadvantage, we em-
ploy the PRIME Transformer (Zhao et al., 2019)
with a multi-scale sparse attention mechanism as
a second baseline. The models in the two architec-
tures are ensembled to improve the overall results.
Our final system uses a combination of the SCC
training method and the constrained decoding of
Hu et al. (2019), which makes our system lever-
ages soft constrained (inside the model) and benefit
from hard restrictions (external decoding).

2 Our System

In this section, we describe the methods used in
our system in detail. Our system is made up
of four components: the Transformer model, the
Sparse Transformer model, the SCC training ap-

proach, and the constrained decoding algorithm.
In translation, given the source input sequence
X = {w1, w2, ..., wm}, its target translation is
Y = {y1, y2, ..., yn}, the parameter of the NMT
model is θ, then the probability form of the transla-
tion process can be written as:

P (Y |X, θ) =
n∏

i=1

P (yi|y<i, X, θ),

where y<i denotes the tokens generated before time
step i.

2.1 Transformer Model
Transformer model (Li et al., 2021) is a encoder-
decoder architecture entirely built on multi-head
self-attention which is responsible for learning rep-
resentations of global context. With an input rep-
resentation H , a multi-head self-attention (MHA)
layer first projects H into three representations,
key K, query Q, and value V . Then, it uses a
self-attention mechanism to get the output repre-
sentation:

headk = Attn(H) = σ(QWQ,KWK , V WV )WO

MHA(H) = Concat(head1, · · · , headK)WO,

where Q = LinearQ(H), K = LinearK(H),
V = LinearV (H), WO, WQ, WK , and W V are
projection parameters. The self-attention operation
σ is the dot-production between key, query, and
value pairs:

σ(Q1,K1, V1) = Softmax(
Q1K

T
1√

dk
)V1,

where dk = dmodel/K is the dimension of each
head. The encoder of the Transformer model con-
sists of a stack of multiple layers with MHA struc-
ture (Self-MHAenc) where the residual mechanism
and layer normalization are used to connect two ad-
jacent layers. Similar to the encoder, each decoder
layer decoder is composed of two MHA structures:
Self-MHAdec and Cross-MHA, since it not only
encodes the input sequence but also incorporates
the source representation. Then the processing flow
of the model can be written as:

Henc = Self-MHAenc(X),

Hdec = Self-MHAdec(IncMask([BOS, y1, · · · , yn−1])),

P (Y |X) = Softmax(Linear(Cross-MHA(Hdec, Henc)))),

where IncMask(·) represents the incremental mask-
ing strategy.
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2.2 Sparse Transformer Model
According to the evaluation in recent re-
search (Tang et al., 2018), it has shown that the
vanilla Transformer has surprising shortcomings in
long sequence encoding even the Transformer is
designed to modeling long dependencies. Vanilla
Transformer works well for short sequence trans-
lation, but performance drops as the source sen-
tence length increases because only a small num-
ber of tokens are represented by self-attention, re-
sulting in difficulty for translation. Replacing the
dense self-attention mechanism with a sparse at-
tention mechanism will alleviate the difficulties in
long sentence translation; we chose the PRIME
Transformer (Zhao et al., 2019) as our another base
model. Compared to vanilla Transformer, PRIME
Transformer generates the output representation of
layer i in a fusion way:

Hi = Hi−1 + MHA(Hi−1)

+ Conv(Hi−1) + Pointwise(Hi−1),

where H i−1 is the output of layer i − 1. Conv(·)
refers to dynamic convolution with multiple kernel
sizes, which is employed to capture local context:

Convk(H) = DepthConvk(HW
V )W out

DepthConvk(H) =

k∑

j=1

(
Softmax(

d∑

c=1

WQ
j,cHi,c)

·H
i+j−d k+1

2
e,c
)
,

Conv(H) =

K∑

i=1

exp (αi)
n∑

j=1

exp (αj)
Convki(X)

in which DepthConv(·) is the depth convolution
structure proposed in Wu et al. (2019). And
Pointwise(·) refers to a position-wise feed-forward
network:

Pointwise(H) = max(0, HW1 + b1)W2 + b2.

where W1, b1, W2, and b2 are learnable parameters.

2.3 Sampled Constraints as Concentration
Training

The predicted probability in ordinary NMT is
yi ∼ P (yi|X, θ). Because of the inclusion of
the constrained word sequence C in restricted
translation, the probability distribution becomes
yi ∼ P (yi|X,C, θ). To adapt the restricted transla-
tion for the NMT model rather than just influencing
the search process, we expose the constrained word
sequence C as additional context like source input.

Since the parallel training data only contains the
source and target language sequences, we obtain
the constrained word sequence for training via ran-
dom dynamic sampling from the reference target
translation. This not only alleviates the burden of
constrained word annotation but also has the poten-
tial to minimize overfitting.

Specifically, in the model, we use the
Self-MHAdec to encode the input constrained se-
quence to obtain its representation:

Hcst = Self-MHAdec(C).

It is worth noting that we remove the positional
encoding of constrained sequence since the order
of restricted word sequence is usually inconsistent
with the target translation; additionally, we also
remove the incremental mask because the whole
sequence is exposed to the decoder as an additional
context at the same time. The probabilistic form of
restricted translation accordingly changes to:

P (Y |X) = Softmax(Linear(Cross-MHA(Hdec, Henc)+

Cross-MHA(Hdec, Hcst)))).

Because sampled constrained words are exposed to
the decoder, to enforce the inclusion of these words
in the translation, we place additional penalties on
the loss of these sampled positions to achieve the
goal of restrict translation with soft constraints on
the model:

LSCC = −
m∑

i=1

(
(1 + γ1(yi ∈ C))

logP (yi|X;C; y<i; θ)
)
,

where 1(·) is the indicator function and γ is the
penalty factor.

2.4 Lexically Constrained Decoding
Beam search (Koehn, 2010) is a common approx-
imate search algorithm for sequence generation
task. Lexically constrained decoding is a modi-
fication to the beam search algorithm, which is
proposed to enforce hard constraints that force a
given constrained sequence to appear in the gener-
ated sequence. Specifically, beam search maintains
a beam Bt on time step t, which contains only the
b most likely partial sequences, where b is known
as the beam size. The beam Bt is updated by re-
taining the b most likely sequences in the candidate
set Et generated by considering all possible next
word predictions:

Et =
{
(Ŷt−1, w) | Ŷt−1 ∈ Bt−1, w ∈ V

}
,
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Model BLEU RIBES AMFM
jum kyt mec jum kyt mec −

Transformer-big 41.67 41.82 41.84 81.05 81.32 81.50 74.95
Transformer-big + SCC + CD∗ 48.92 49.24 49.25 82.79 83.15 83.57 79.15
Sparse Transformer-big + SCC + CD∗ 50.93 51.18 51.21 83.27 83.52 84.00 79.91
Ensemble∗ 51.07 51.32 51.36 83.68 83.99 84.41 79.99

Table 1: Results on ASPECT En→Ja test sets. ∗ indicates that the official evaluation results are reported.

Dataset Sentences

ParaCrawl-v5.1 10.12M
Wiki Titles v2 3.64M

ASPEC 3.01M

Table 2: Training data statistics.

where Ŷt−1 is the generated sequence in time step
t− 1 and V is the target vocabulary.

In lexically constrained decoding, a finite-state
machine (FSM) is used to impose the constraints.
For each state s ∈ S in the FSM, a corresponding
search beam Bs is maintained similar to the beam
search:

Es
t =

⋃

s′∈S

{
(Ŷt−1, w) | Ŷt−1 ∈ Bs′

t−1, w ∈ V,

δ(s′, w) = s
}
,

where δ : S × V 7→ S is the FSM state-transition
function that maps states and predicted words to
states.

2.5 System Details
Our implementation of the Transformer models
and lexically constrained decoding algorithm are
based on the Fairseq toolkit1. We follow the set-
tings and pre-processing methods in our previous
models and systems (He et al., 2018; Li et al., 2018;
He et al., 2019; Li et al., 2019; Zhou et al., 2020;
Li et al., 2020b,d,c; Zhang et al., 2020). We use
Transformer-big as our basic model, which has 6
layers in both the encoder and decoder, respectively.
For each layer, it consists of a multi-head attention
sublayer with 16 heads and a feed-forward sublayer
with an inner dimension 4096. The word embed-
ding dimensions and the hidden state dimensions
are set to 1024 for both the encoder and decoder.
In the training phase, the dropout rate is set to 0.1.

Our model training consists of two phases. In
the first NMT pre-training phase, the ParaCrawl-
v5.1 (Esplà et al., 2019) and Wiki Titles v2 datasets
are used. Then we finetune the model using the

1https://github.com/pytorch/fairseq

Model BLEU RIBES AMFM

Transformer-big 28.18 67.79 58.69
Transformer-big + SCC
+ CD∗

35.26 74.44 64.16

Sparse Transformer-big
+ SCC + CD∗

36.83 75.84 65.29

Ensemble∗ 37.01 75.38 65.15

Table 3: Results on ASPECT Ja→En test sets. ∗ indi-
cates that the official evaluation results are reported.

ASPEC training data in the second domain finetune
phase. Table 2 shows the data statistics for each
dataset. In both phases, cross-entropy with label
smoothing of 0.1 and D2GPo (Li et al., 2020a) are
employed as the training loss criterions. We use
Adam (Kingma and Ba, 2015) as our optimizer,
with parameters settings β1 = 0.9, β2 = 0.98 and
ε = 10−8. The initial learning rate is set to 10−4

for NMT pre-training and 10−5 for domain fine-
tuning. The models are trained on 8 GPUs for about
500,000 steps. In our systems, we follow standard
practice and learn a subword (Sennrich et al., 2016)
encoding with 40K joint merge operations.

3 Results

Table 1 shows the official results evaluated on
ASPEC En→Ja test set. Comparing the re-
sults of the vanilla Transformer-big model and
Transformer-big+SCC+CD, restricted translation
under +SCC+CD has brought a very large perfor-
mance improvement, which illustrates the perfor-
mance advantage of restricted translation. Similar
to ordinary NMT, sparse Transformer achieves bet-
ter results than Transformer-big in restricted trans-
lation, which demonstrates that Sparse Transformer
is a general model structure. A further increase in
performance is achieved after ensembling on these
two models. This benefits from the models of the
distinct architectures of the two models. In gen-
eral, the improvement brought about by the same
architecture is less. We show the results of ASPEC
En→Ja test set in Table 3. By comparison, the
conclusion is essentially consistent with Table 2.
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4 Conclusion

In this paper, we present our NMT systems for
WAT21 restricted translation shared tasks in En-
glish↔ English. By integrating the following tech-
niques: Sparse Transformer, Sampled Constraints
as Concentration, and Lexically Constrained De-
coding, our final system achieves substantial im-
provement over baseline systems which show the
effectiveness of our approaches.
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Abstract

We introduce our TMU Japanese-to-English
system, which employs a semi-autoregressive
model, to tackle the WAT 2021 (Nakazawa
et al., 2021) restricted translation task. In this
task, we translate an input sentence with the
constraint that some words, called restricted
target vocabularies (RTVs), must be contained
in the output sentence. To satisfy this con-
straint, we use a semi-autoregressive model,
namely, RecoverSAT (Ran et al., 2020), due
to its ability (known as “forced translation”) to
insert specified words into the output sentence.
When using “forced translation,” the order of
inserting RTVs is a critical problem. In our
system, we obtain word alignment between a
source sentence and the corresponding RTVs
and then sort the RTVs in the order of their
corresponding words or phrases in the source
sentence. Using the model with sorted order
RTVs, we succeeded in inserting all the RTVs
into output sentences in more than 96% of the
test sentences. Moreover, we confirmed that
sorting RTVs improved the BLEU score com-
pared with random order RTVs.

1 Introduction

In this study, we tackle a machine translation task
called “restricted translation.” This task requires
the output sentence to contain all the pre-specified
restricted target vocabularies (RTVs)1. In other
words, we are given a source sentence and a set of
RTVs, and we are supposed to generate an output
sentence that contains all the RTVs in the set2.

Since the emergence of neural machine transla-
tion (NMT) models (Sutskever et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017), several

1Each RTV is either a word or a phrase.
2For details of the task description, see

https://sites.google.com/view/
restricted-translation-task/.

studies have been conducted to explore NMT sys-
tems capable of decoding translations under ter-
minological constraints (Hasler et al., 2018; Dinu
et al., 2019; Chen et al., 2020; Song et al., 2020).
However, these previous studies were conducted
under the condition that a bilingual dictionary is
given. Moreover, these challenges are limited to
autoregressive NMT systems, and scant research
has been conducted on non-autoregressive or semi-
autoregressive NMT systems, which have received
more attention recently.

To accomplish restricted translation, where only
target terminologies are given, we used a semi-
autoregressive model called RecoverSAT (Ran
et al., 2020), which generates a sentence as a se-
quence of segments. In this model, the segments
are generated simultaneously, and each segment is
predicted token-by-token. Ran et al. (2020) also
attempted to force the model to generate a certain
token at the beginning of a segment and showed
that the model could generate valid sentences un-
der the constraint. Then, we considered whether
this model could be applied to generate sentences
containing RTVs.

When tackling this task using this model, the in-
sertion order of RTVs is a critical issue. To address
this issue, we used GIZA++ (Och and Ney, 2003)
to obtain word alignments and then identify the
source position corresponding to the RTVs. Sub-
sequently, we inserted them in the order in which
their corresponding source tokens appear. We con-
firmed that sorting RTVs with GIZA++ improved
the BLEU (Papineni et al., 2002) score. Finally, by
using this model, we achieved all the RTVs outputs
in more than 96% of the test sentences.

2 System Overview

2.1 Corpus Refinement

Morishita et al. (2019) reported that the synthetic

68



data generated by back-translation (Sennrich et al.,
2016) degraded the performance in the Japanese-
to-English translation setting. The reason for this
phenomenon was that the ASPEC (Nakazawa et al.,
2016) training sentences are ordered by sentence
alignment scores, and so the sentences with lower
scores are considered relatively noisy data. There-
fore, Morishita et al. (2019) attempted to gener-
ate synthetic data using forward-translation instead
of standard back-translation and confirmed that
forward-translation improved the performance of
the Japanese-to-English translation setting.

Following Morishita et al. (2019), we used
forward-translation to refine the latter half of the
ASPEC training data. In the same manner as
their method, we first trained a Japanese-to-English
translation model on the first 1.5M sentences of the
ASPEC training data. Subsequently, we used the
trained model to translate the latter 1.5M Japanese
sentences of the ASPEC training data and obtained
refined English sentences. Finally, we combined
the first 1.5M training data and the refined 1.5M
training data and trained a Japanese-to-English
translation model.

2.2 RecoverSAT

RecoverSAT (Ran et al., 2020) is a semi-
autoregressive model that performs generation au-
toregressively in local and non-autoregressively in
global. At each decoding step, the model generates
a token in each segment, with paying attention to
not only all the previous tokens in the segment but
also those in all the other segments. The model
continues decoding in each segment until either
a special token, EOS or DEL, is generated, or the
length of the generated token reaches the maximum
token number. The final translation is a concatena-
tion of all the segments except those that end with
DEL.

RecoverSAT is also known for its capability to
generate a translation under a word constraint (Ran
et al., 2020), which is called the “forced translation”
approach. In this approach, the model generates
the constraint word (or phrases) at the beginning of
an arbitrary segment. Once the constraint word (or
phrase) has been generated, the model predicts the
remainder of the segment in a semi-autoregressive
manner.

In contrast to the original “forced translation,”
which only takes one constrained word (or phrase),
we are required to place multiple RTVs in a transla-

tion. To compensate for this gap, we place the i-th
RTV at the Pi-th segment as follows3:

Pi = bNS

NV
c · i (1)

where NS is the number of segments and NV is
the number of RTVs. When the RTVs have more
phrases than segments during inference, we cut
off phrases in the RTVs from the tail to fit the
placeholder.

2.3 Sorting RTVs Using Source Alignment

RecoverSAT outputs RTVs in the order where they
are inserted, so the order of inserting RTVs is im-
portant for accurate translation. We determined
the order of the RTVs under the assumption that it
correlated with the order of the aligned words in
the input sentence.

We used GIZA++ to align each RTV with a word
in the input sentence and sorted the RTVs in the
order of their corresponding input words. When the
RTV was a phrase, we first obtained a source word
that was most aligned with each word in the RTV
and then selected the source word with the highest
alignment score as the aligned word for the entire
RTV. If there was a tie, the first aligned word in the
input sentence was selected as the corresponding
word.

3 Experimental Setup

3.1 Dataset

We used the ASPEC (Nakazawa et al., 2016)
dataset for Japanese-to-English translation. This
dataset contains 3M sentences as training data,
1,790 sentences as validation data, and 1,812 sen-
tences as test data. As explained in Section 2.1,
we refined the latter half of the training data using
forward-translation.

We used SentencePiece (Kudo and Richardson,
2018) to tokenize the training data for both the
source and target sentences, where the vocabulary
size was set to 4K. Note that we used Sentence-
Piece models obtained from the first 1.5M training
data through all the experiments. When determin-
ing the insertion order of RTVs using GIZA++, we
used MeCab4 with IPADIC to tokenize Japanese
sentences before computing the alignment.

3Note that both Pi and i start from 0.
4https://taku910.github.io/mecab/
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3.2 Evaluation
We evaluated system outputs using the following
two distinct metrics.

BLEU score. The BLEU score is a metric evalu-
ated by the n-gram matching rate with the reference.
We calculated it using multi-bleu.perl in the
Moses toolkit (Koehn et al., 2007).

Consistency score. The consistency score is the
ratio of translations that satisfy the exact match
of all the given constraints over the entire test cor-
pus. The exact match is determined as follows.
We simply lowercased hypotheses and constraints
and then judged character-level sequence matching
(including whitespaces) for each constraint.

For the final score, we calculated the BLEU
score using only the translations that exactly
matched their RTVs. In other words, first, we cal-
culated the exact match, and then, we replaced the
translations that did not satisfy the constraint with
an empty string. Subsequently, we calculated the
BLEU score with the modified translations.

3.3 Model
Transformer. We used “Transformer (base)”
(Vaswani et al., 2017) for forward-translation and a
baseline model. The hyperparameter settings were
the same as described in Vaswani et al. (2017).

In the baseline model, we inserted the RTVs at
the tail of the output sentence without sorting.

RecoverSAT. We use the encoder of the Trans-
former to initialize the encoder of RecoverSAT, and
share the parameters of the embedding layers and
the pre-softmax linear layer in the same way as
Ran et al. (2020). We adopted the same model
and hyperparameters that were used in the previ-
ous study (Ran et al., 2020)5, where dmodel = 512,
dhidden = 512, nlayer = 6, and nhead = 8. How-
ever, we did not share the source and target vocab-
ularies.

Moreover, we changed the number of segments
from the original paper (i.e., 10) because some
examples had more than 10 (up to 14) RTVs in the
test data. We also expanded the length of a segment
to be able to insert all the tokens of the RTV if the
RTV has more tokens than allowed by default. We
examined four RecoverSAT models with different
numbers of segments: 10 is the default value in

5We used the implementation at https://github.
com/ranqiu92/RecoverSAT and minimally modified it
for inserting RTVs.

BLEU RIBES AMFM

RecoverSAT 25.29 0.653597 0.612290

Table 1: Results of the official score using RecoverSAT
with 14 segments and forced translation with sorted or-
der.

Figure 1: Results of our experiments using Recover-
SAT. The solid line represents the BLEU score, and the
dotted line represents the consistency score. The dot
marker represents RecoverSAT without RTVs. The tri-
angle marker represents forced translation without sort-
ing RTVs. The square marker represents forced trans-
lation with sorted order. The cross marker represents
forced translation with oracle order.

Ran et al. (2020) and 14 is the maximum number
of RTVs among the development data. The models
with 21 and 29 segments have more free segments
than the previous models, which are supposed to be
lubricating segments to improve the overall output.

4 Results

4.1 Official Evaluation
Table 1 presents the official BLEU, RIBES (Isozaki
et al., 2010), and AMFM (Banchs et al., 2015)
scores, calculated in the evaluation server, for the
model in which the number of segments is 14. As
shown in Table 1, the BLEU, RIBES, and AMFM
scores were 25.29, 0.653597, and 0.612290 points,
respectively.

4.2 Our Evaluation
Table 2 presents the scores obtained in our evalu-
ation. Moreover, Figure 1 shows the BLEU score
and consistency scores for different numbers of
segments {10, 14, 21, 29}.
BLEU score. Figure 1 shows that the translation
accuracy decreases as the number of segments in-
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Model BLEU score Consistency score Final score

Transformer 27.78 0.220 0.27
+ Append RTVs 25.57 1.000 26.75

RecoverSAT 25.76 0.197 0.16
+ Forced translation with random order 26.93 0.962 26.98
+ Forced translation with sorted order 27.16 0.961 27.10
+ Forced translation with oracle order 31.14 0.966 31.02

Table 2: Results of the experiments in our evaluation. The number of segments of RecoverSAT is 10. The
consistency score is the ratio of sentences satisfying the exact match of the given constraints. The final score is the
constraint-aware BLEU score. “random order”: we insert RTVs without sorting. “sorted order”: we insert RTVs
in the order of the corresponding source words. “oracle order”: we insert RTVs in the same order as that in the
reference.

creases, similar to the previous study (Ran et al.,
2020). This may be because the model predicts
the target tokens more independently as the num-
ber of segments increases. As the number of seg-
ments increases, the length of each segment be-
comes shorter, and the model becomes closer to the
non-autoregressive model.

Table 2 shows that sorting the RTVs using
GIZA++ improves the BLEU score. However,
there is still a significant gap in the scores com-
pared with those obtained using the oracle order.
This is because the word order between Japanese
and English is different.

Consistency score. Figure 1 shows that Recover-
SAT with forced translation reliably outputs RTVs
in almost all the cases. When the number of seg-
ments was 10, we could not insert all the RTVs
in some test sentences with more than 10 RTVs6.
On the other hand, when the number of segments
was 14 or more, it was expected that all the RTVs
could be inserted into all the test sentences. How-
ever, some output sentences did not contain all the
RTVs, even if the number of segments was 14 or
more. This result indicates that the model generates
a special token, DEL, to delete segments beginning
with the RTVs.

The final BLEU score of the model with 10 seg-
ments, which gives up to generate some RTVs on
occasion, was the highest. This is because it is rare
to have more than 10 RTVs for a single sentence7.
Additionally, we confirmed that the insertion of
RTVs was effective in improving not only the con-

6As mentioned in Section 3.3, the maximum number of
RTVs in the test set was 14.

7Only 14 out of 1,812 (0.8%) sentences were given more
than 10 RTVs in the test data.

sistency score but also the BLEU score.

5 Related Work

Previously, some NMT with terminology con-
straints have been studied (Hasler et al., 2018;
Alkhouli et al., 2018; Dinu et al., 2019; Chen et al.,
2020; Song et al., 2020). For example, Song et al.
(2020) proposed a dedicated head in a multi-head
Transformer architecture to learn explicit word
alignment and use it to guide the constrained de-
coding process. When the source-aligned word
matches a dictionary, the model outputs the corre-
sponding target word. However, these models are
not available for the “restricted translation” task
because we can only access the target-side vocabu-
laries.

In this study, we used the semi-autoregressive
model RecoverSAT (Ran et al., 2020). Originally,
this model was not intended to output forcibly more
than one constrained word. A non-autoregressive
model can decode target tokens simultaneously, re-
sulting in faster decoding. However, its output sen-
tence suffers from the multi-modality problem caus-
ing token repetitions or missing by not using the
dependency between the output words (Gu et al.,
2018; Ran et al., 2020). Thus, Ran et al. (2020) pro-
posed RecoverSAT to alleviate this problem. Their
model could maintain the accuracy of the autore-
gressive model while achieving a faster processing
speed. They also mentioned that, as the number of
segments increases, the closer the model becomes
to a non-autoregressive model. In other words,
when the number of segments increases, the de-
coding process is faster, but the accuracy is lower.
Moreover, they attempted to force the model to
generate a pre-specified token at the beginning of
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a segment and showed that the model could avoid
repetitive output and translate properly.

6 Conclusions

We introduced a semi-autoregressive approach to
tackle the restricted translation task. In our experi-
ments, we showed that RecoverSAT could output
almost all the RTVs. Additionally, we used source
sentence alignment to determine the insertion posi-
tion and observed that it improved the BLEU score.
Moreover, the importance of the order of the RTVs
was confirmed by the fact that the score was con-
siderably improved by inserting RTVs in the order
in which they appear in the reference translations.
However, there is still room for improvement in
determining the insertion order. In future work,
investigating how to determine the best order to
insert RTVs will be necessary.
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Abstract
In this paper, we report the experimen-
tal results of Machine Translation models
conducted by a NECTEC team (Team-ID:
NECTEC) for the WAT-2021 Myanmar-
English translation task (Nakazawa et al.,
2021). Basically, our models are based
on neural methods for both directions of
English-Myanmar and Myanmar-English
language pairs. Most of the existing Neu-
ral Machine Translation (NMT) models
mainly focus on the conversion of sequen-
tial data and do not directly use syntactic
information. However, we conduct multi-
source neural machine translation (NMT)
models using the multilingual corpora such
as string data corpus, tree data corpus,
or POS-tagged data corpus. The multi-
source translation is an approach to ex-
ploit multiple inputs (e.g. in two different
formats) to increase translation accuracy.
The RNN-based encoder-decoder model
with attention mechanism and transformer
architectures have been carried out for
our experiment. The experimental results
showed that the proposed models of RNN-
based architecture outperform the baseline
model for the English-to-Myanmar transla-
tion task, and the multi-source and shared-
multi-source transformer models yield bet-
ter translation results than the baseline.

1 Introduction
Machine translation (MT) is a quick and very
effective way to communicate one language to
another. MT consists of the automatic trans-
lation of human languages by using comput-
ers. The first machine translation systems
were rule-based built only using linguistic in-
formation. The translation rules were manu-
ally created by experts. Although the rules
are well defined, this process is very expen-
sive and cannot translate well for all domains
and languages. Currently, many researchers
had successfully built the most popular ma-
chine translations such as SMT (Statistical

Machine Translation) and NMT (Neural Ma-
chine Translation) for various languages in-
stead of rule-based translation.

NMT has become the state-of-the-art ap-
proach compared to the previously dominant
phrase-based statistical machine translation
(SMT) approaches. However, the existing
NMT models do not directly use syntactic
information. Therefore, we propose tree-to-
string and pos-to-string NMT systems by the
multi-source translation models. We con-
ducted these multi-source translation models
with Myanmar-English and English-Myanmar
in both directions. The multi-source transla-
tion models conducted in our experiments are
based on the multi-source and shared-multi-
source approaches of the previous research
work (Junczys-Dowmunt and Grundkiewicz,
2017). Figure 1 and Figure 2 show the architec-
ture of multi-source translation models. For
doing the training processes of proposed mod-
els by the transformer and s2s architectures,
word-level segmentation and tree-format on
the English corpus side and syllable-level seg-
mentation on the Myanmar corpus side are ap-
plied in English-to-Myanmar translation. In
addition, we used the syllable-level segmenta-
tion and POS-tagged word on the Myanmar
corpus side, and word-level segmentation on
the English side for conducting the Myanmar-
to-English translation.

In this paper, section 2 will describe our MT
systems. The experimental setup will be pro-
posed in section 3. In section 4, the results of
our experiments will be reported, and section
5 will present the error analysis on translated
outputs. Finally, section 6 will conclude the
report.
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Figure 1: The basic idea of multi-source translation model for English-to-Myanmar translation

Figure 2: The basic idea of multi-source translation model for Myanmar-to-English translation

2 System Description
In this section, we describe the methodol-
ogy used in our experiments for this pa-
per. To build NMT systems, we chose the
Marian framework1(Junczys-Dowmunt et al.,
2018) with the architectures of Transformer
and RNN based encoder-decoder model with
attention mechanism (s2s). Marian is a self-
contained neural machine translation toolkit
focus on efficiency and research. This frame-
work, the reimplementation of Nematus (Sen-
nrich et al., 2017), is an efficient Neural Ma-
chine Translation framework written in pure
C++ with minimal dependencies.

The main features of Marian are pure C++
implementation, one engine for GPU/CPU
training and decoding, fast multi-GPU train-
ing and batched translation on GPU/CPU,
minimal dependencies on external software
(CUDA or MKL, and Boost), the static com-
pilation (i.e., compile once, copy the binary
and use anywhere), and permissive open-
source MIT license. There are several model
types supported by the Marian framework.
Among them, we used transformer, multi-
transformer, shared-multi-transformer,
s2s (RNN-based encoder-decoder model
with attention mechanism), multi-s2s, and
shared-multi-s2s models for our experiment.

transformer: a model originally proposed
by Google (Vaswani et al., 2017) based on at-
tention mechanisms. multi-transformer: a
transformer model but uses multiple encoders.
shared-multi-transformer: is the same as
multi-transformer but the difference is that
the two encoders in shared-multi-transformer
share parameters during training. s2s: an
RNN-based encoder-decoder model with atten-

1https://github.com/marian-nmt/marian

tion mechanism. The architecture is equiva-
lent to the Nematus models (Sennrich et al.,
2017). multi-s2s: s2s model but uses two
or more encoders allowing multi-source neural
machine translation. shared-multi-s2s: is
the same as multi-s2s but the difference is that
the two encoders in shared-multi-s2s share pa-
rameters during training.

In our experiments, two baseline models
(transformer and RNN based attention: s2s)
are used for the translation tasks of English-
to-Myanmar and Myanmar-to-English. For
the first translation task, the baseline models
take single input of English tree data {tree-en}
and produce the output of Myanmar string
{my}. The multi-transformer, shared-multi-
transformer, multi-s2s, and shared-multi-s2s
models use two inputs of English string data
and tree data {en, tree-en} and produce the
output of Myanmar string {my}. For the
second translation task, the input of Myan-
mar POS data {pos-my} is taken by the base-
line models and produces the output of En-
glish string {en}. The multi-source and shared
multi-source models take two inputs of Myan-
mar sting data and Myanmar POS data {my,
pos-my} and yield the output of English string
{en}. The baseline models, the multi-source
and shared-multi-source models do the same
action as the first translation task with differ-
ent inputs and outputs.

3 Experimental Setup
3.1 Parallel Data
The parallel data for Myanmar-English and
English-Myanmar translation tasks was pro-
vided by the organizers of the competition
and consists of two corpora: the ALT cor-
pus and the UCSY corpus. The ALT cor-
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pus is one part of the Asian Language Tree-
bank (ALT) Project (Riza et al., 2016) which
consists of twenty thousand Myanmar-English
parallel sentences from the Wikinews. The
UCSY corpus (Yi Mon ShweSin et al., 2018)
contains 238,014 sentences from various do-
mains, including news articles and textbooks.
The UCSY corpus for WAT-2021 is not iden-
tical to those used in WAT 2020 due to the
extension of corpus size. Unlike the ALT cor-
pus, Myanmar text in the UCSY corpus is
not segmented. ALT corpus size is extremely
small. And thus, the development data and
test data were chosen from the ALT corpus.
Moreover, we planned to do the experimen-
tal settings in training data with and without
ALT training data because the test data are re-
trieved only from the ALT corpus. Due to the
very limited hardware (only 2 GPUs and 8 GB
memory workstation), the training time took
very long and also crush several times, and we
couldn’t manage to finish both of the exper-
iments. Therefore, in this paper, we present
the experimental results with the training data
only using the UCSY corpus that contained
around 238,000 lines. Table 1 shows data
statistics used for the experiments.

3.2 Data Preprocessing
In this section, we describe the preprocess-
ing steps before doing the training processes.
Proper syllable segmentation or word segmen-
tation is essential for the quality improvement
of machine translation in the Myanmar lan-
guage because this language has no clear def-
inition of word boundaries. Although Myan-
mar text data in the ALT corpus are manual
word segmentation data, those in the UCSY
corpus are not segmented. Thus, we need to
segment these data. We prepared both sylla-
ble and word segmentation for Myanmar lan-
guage data. We used in-house myWord2 seg-
menter for Myanmar word segmentation and
Myanmar sylbreak3 segmenter for syllable
segmentation. The myWord segmenter is a
useful tool that can make the syllable segmen-
tation, word segmentation, and phrase seg-
mentation for the Myanmar language. In this
paper, we used this tool only for word segmen-
tation. The myWord segmenter tool will be
released soon.

After doing the word segmentation process,
we need to apply POS tagging to the seg-
mented Myanmar data. In addition, for the

2https://github.com/ye-kyaw-thu/myWord
3https://github.com/ye-kyaw-thu/sylbreak

English tree data, we also need to parse the
English data. There are some reasons that
we had implemented a multi-source NMT sys-
tem for this paper. To the best of our knowl-
edge, no experiments have been conducted for
the multi-source NMT system using POS data
and syntactic tree information. In particular,
this multi-source NMT system has not been
developed in the Myanmar language. There is
only one Factored SMT paper (Ye Kyaw Thu
et al., 2014) using Myanmar POS data. Thus,
we had implemented a multi-source NMT sys-
tem for Myanmar-to-English and English-to-
Myanmar translations in this paper. To im-
plement this system, we need to apply the
POS tagging on the Myanmar data side and
the tree data format on the English side. Al-
though we desired to use the tree format on
the Myanmar side, Myanmar data cannot be
currently built like the English syntactic tree
data format. And thus, we can only use Myan-
mar POS(Part-of-speech) data and English
tree data format for implementing the multi-
source translation models. Part-of-speech tag-
ging and the parser that we used in our exper-
iment will be described in the following sec-
tions.

3.2.1 Part-of-speech Tagging
For the part-of-speech (POS) Myanmar data,
the segmented data obtained by the myWord
segmenter was tagged by using the RDR model
built-in myPOS version 2.04 (Zar Zar Hlaing
et al., 2020). 16 POS Tag-sets (Khin War
War Htike et al., 2017) were used in my-
POS version 2.0. These POS tag-sets are
abb (Abbreviation), adj (Adjective), adv (Ad-
verb), conj (Conjunction), fw (Foreign word),
int (Interjection), n (Noun), num (Number),
part (Particle), part_neg (Negative particle),
ppm (Post-positional Marker), pron (Pro-
noun), punc (Punctuation), sb (Symbol), tn
(Text Number) and v (Verb). Supervised tag-
ging algorithms, namely, Conditional Random
Fields (CRFs), Hidden Markov Model (HMM),
Ripple Down Rules-based (RDR), and neu-
ral sequence labeling approach of Conditional
Random Fields (NCRF++) were used to com-
pare the tagging accuracies of the original my-
POS version 1.0 (Khin War War Htike et al.,
2017) and myPOS version 2.0. Among these
four tagging methods, the RDR model gave
the best tagging accuracy. Thus, we chose the
RDR model for tagging the Myanmar data for
our experiment. The example of POS-tagged

4https://github.com/ye-kyaw-thu/myPOS
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Table 1: English-Myanmar Parallel Dataset

Data Type File Name Number of Sentence

TRAIN train.ucsy.[my | en] 238,014

DEV dev.alt.[my | en] 1,000

TEST test.alt.[my | en] 1,018

data for the sentence “ကõနéäတßé က သâäတသá တစé
äယßကé ပÞ ။” (I am a researcher.) is described
in the following:

ကõနéäတßé/pron က/ppm သâäတသá/n တစé/tn
äယßကé/part ပÞ/part ။/punc

We also evaluated the accuracy of the RDR
model. To evaluate this model, 1,300 Myan-
mar sentences were retrieved from the UCSY
corpus, and these sentences were tagged by
the selected RDR model. On the other hand,
we manually tagged these Myanmar sentences.
Finally, we evaluated the accuracy of the RDR
model by comparing these two tagged data.
We found that the RDR model provides the
tagging accuracy of 77% Precision, 81% Re-
call, and 79% F-Measure.

3.2.2 RegexpParser
Word-level segmentation and tree data format
were used on the English side for the exper-
iment. English data given by the WAT-2021
are already segmented. Thus, no segmentation
process is needed to do for the English side.
For parsing the English data, some parsers
such as English PCFG (Probabilistic Context-
Free Grammar) parser from Stanford Parser5,
BLLIP Parser6, Berkeley Neural Parser7, and
RegexpParser8 were tested with our experi-
ment data of English side. PCFG Parser
is used to parse the English sentence into
tree data format. This parser cannot parse
long sentences of more than 70 words. The
longest sentence in our experiment data con-
tains approximately 1,000 words. And thus,
this PCFG parser cannot be used for parsing
our experiment data. BLLIP Parser is a sta-
tistical natural language parser that includes
a generative constituent parser and discrimi-
native maximum entropy re-ranker. It can be

5https://nlp.stanford.edu/software/
lex-parser.shtml

6https://github.com/BLLIP/bllip-parser
7https://github.com/nikitakit/

self-attentive-parser
8https://www.programcreek.com/python/

example/91255/nltk.RegexpParser

used as Python version or Java version. This
parser cannot parse the long sentences in our
experiment data although it can accept more
sentence length 853 than the PCFG parser.

Berkeley Neural Parser is a high-
accuracy parser with models for 11 languages
which is implemented by Python. It is based
on constituency parsing with a self-attentive
encoder, with additional changes in multilin-
gual constituency parsing with self-attention
and pre-training. Although this parser can
parse the long sentences in our experiment
data, training time takes a lot more than the
RegexpParser9 (grammar-based chunk
parser) from nltk package. By comparing
the aforementioned parsers, RegexpParser can
parse the longest sentences and all the exper-
iment data within a few minutes. Moreover,
this RegexpParser is the simplest parser for
generating the parse tree data. Thus, we chose
the RegexpParser for the tree data format of
the English side of our experiment data.

 A grammar-based chunk parser Regexp-
Parser uses a set of regular expression pat-
terns to specify the behavior of the parser.
The chunking of the text is encoded by using a
ChunkString, and each rule performs by mod-
ifying the chunking in the ChunkString. The
rules are implemented by using regular expres-
sion matching and substitution. A grammar
contains one or more clauses in the following
form:
{< DT | JJ >} #chunk determiners and adjectives
} < [\ · V I] · ∗ > +{ #strip any tag beginning with
V, I, or .
< ·∗ >}{< DT > #split a chunk at a determiner
< DT | JJ > {} < NN · ∗ > #merge chunk ending
with det /adj with one starting with a noun
The clauses of a grammar are also executed in
order. A cascaded chunk parser is one having
more than one clause. The maximum depth
of a parse tree generated by RegexpParser is
the same as the number of clauses in the gram-

9https://www.programcreek.com/python/
example/91255/nltk.RegexpParser
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mar. To parse a sentence, firstly, we need to
create the chunker by using the RegexpParser
function with the built grammar. Secondly,
an input sentence is needed to tokenize and
the tokenized sentence will need to be tagged
by using the functions from nltk package. Af-
ter tagging the tokenized sentence, the chun-
ker calls the parse function with the tagged
string parameter. Later, we will get the parse
tree format output and need to convert this
tree format to the tree format string. These
procedures were used for parsing the English
side of our experiment data. The example of
English parse tree produced by this Regexp-
Parser is shown as follow:

(S I/PRP (VP (V love/VBP)) (VP (V pro-
gramming/VBG)) ./.)

3.3 Training
All our NMT systems were trained on 2
GPUs with the following parameters for
Marian framework. Two architectures such
as transformer and s2s (RNN-based
encoder-decoder model with attention mech-
anism) are applied in our experiment. For
the first architecture, we used the different
model types (--type transformer for Trans-
former Model, --type multi-transformer
for Multi-Transformer Model, and --type
shared-multi-transformer for Shared-
Multi-Transformer Model) with the following
parameters:

--max-length 500 --maxi-batch
100 --valid-freq 5000
--valid-metrics cross-entropy
perplexity bleu --save-freq
5000 --disp-freq 500
--valid-mini-batch 64
--beam-size
6 --normalize 0.6 --enc-depth 2
--mini-batch-fit -w 1000
--dec-depth 2 --transformer-heads
8 --transformer-dropout 0.3
--label-smoothing 0.1
--early-stopping 10
--tied-embeddings
--exponential-smoothing
--learn-rate 0.0003 --lr-warmup 0
--lr-decay-inv-sqrt 16000
--clip-norm 5 --devices 0 1
--sync-sgd --seed 1111

For the second architecture, we also used
the different model types (--type s2s
for RNN with attention Model, --type

multi-s2s for Multi-s2s Model, and --type
shared-multi-s2s for Shared-Multi-s2s
Model) with the following parameters:

--max-length 500 --workspace
500 --enc-depth 2 --enc-type
alternating --enc-cell
lstm --enc-cell-depth 2
--dec-depth 2 --dec-cell
lstm --dec-cell-base-depth
2 --dec-cell-high-depth
2 --mini-batch-fit
--valid-mini-batch 16
--valid-metrics cross-entropy
perplexity translation
bleu --valid-freq 5000
--save-freq 5000 --disp-freq
500 --dropout-rnn
0.3 --early-stopping
10 --tied-embeddings
--mini-batch-fit --dropout-src
0.3 --devices 0 1 --sync-sgd
--seed 1111

4 Evaluation Results
Our systems are evaluated on the ALT test
set and the evaluation results are shown in
Table 2. For the evaluation of Myanmar-to-
English and English-to-Myanmar translation
pairs, we used the different evaluation met-
rics such as Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2002), Rank-based
Intuitive Bilingual Evaluation Score (RIBES)
(Isozaki et al., 2010), and Adequacy-Fluency
Metrics (AMFM) (Banchs et al., 2015).

The BLEU score measures the precision of n-
gram (overall n ≤ 4 in our case) with respect to
a reference translation with a penalty for short
translations. Intuitively, the BLEU score mea-
sures the adequacy of the translation and a
larger BLEU score indicates a better transla-
tion quality. RIBES is an automatic evalua-
tion metric based on rank correlation coeffi-
cients modified with precision and special care
is paid to the word order of the translation re-
sults. The RIBES score is suitable for distance
language pairs such as Myanmar and English.
Larger RIBES scores indicate better transla-
tion quality. AM-FM is a two-dimensional au-
tomatic evaluation metric for machine trans-
lation, which is used to evaluate the machine
translation systems. The evaluation metric de-
signed to address independently the semantic
and syntactic aspects of the translation. The
larger the AMFM scores, the better the trans-
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Table 2: BLEU, RIBES and AMFM scores for English-to-Myanmar and Myanmar-to-English translations

English-to-Myanmar Myanmar-to-English
Models BLEU RIBES AMFM BLEU RIBES AMFM

transformer 12.72 0.610951 0.645760 6.24 0.620840 0.424640
multi-transformer 12.94 0.598012 0.654780 4.44 0.577247 0.393760

shared-multi-transformer 13.90 0.608810 0.645260 4.62 0.587155 0.391710

s2s 12.35 0.620377 0.618420 6.72 0.616469 0.395310
multi-s2s 12.82 0.625476 0.638870 4.73 0.578146 0.357150

shared-multi-s2s 12.11 0.626460 0.631630 6.13 0.609560 0.376140

lation quality. Experiments are conducted by
tuning different parameter settings for the pro-
posed models. The best scores among those
of the experimental results are submitted in
this description. The highest scores of the pro-
posed models are indicated as bold numbers.
Since the UCSY corpus is updated annually,
we cannot directly compare the official base-
line results of WAT-2020 and our experimental
results of WAT-2021. Thus, the experimental
results are compared only with our baseline
model results.

Table 2 shows the experimental results
of the first and second architectures. The
first part of the table consists of English-
to-Myanmar translation scores and the sec-
ond part consists of Myanmar-to-English
translation scores. For the first architec-
ture (i.e., transformer) in the first part
of the table, the shared-multi-transformer
model achieves higher BLEU scores (+1.18)
than the baseline transformer model. Fur-
thermore, the multi-transformer model per-
forms better than the baseline transformer in
terms of AMFM scores. However, RIBES
scores of multi-transformer and shared-multi-
transformer models are lower than the base-
line transformer model. For the second ar-
chitecture (i.e., s2s or RNN-based Attention),
the multi-s2s model outperforms the base-
line s2s model and shared-multi-s2s in terms
of BLEU and AMFM scores. The shared-
multi-s2s model provides better RIBES scores
(0.626460). The highest BLEU scores (13.90)
of the shared-multi-transformer model and the
highest AMFM scores (0.654780) of the multi-
transformer model are produced by the first
architecture while the highest RIBES scores
(0.625476) are achieved by the multi-s2s model
of the second architecture.

Myanmar-to-English translation results are

shown in the second part of the Table 2. For
Myanmar to English translation, the two base-
line models (i.e., transformer and s2s) out-
perform the other models in terms of BLEU,
RIBES, and AMFM scores. No improvements
occur in this translation task. On the other
hand, from English to Myanmar translation,
the multi-transformer model is better than the
baseline transformer model in terms of AMFM
score, and the shared-multi-transformer model
performs better than the baseline in terms of
BLEU score. Moreover, the multi-s2s and
shared-multi-s2s models also provide better
translation results compared with the baseline
model.

5 Error Analysis
For both English-to-Myanmar and Myanmar-
to-English translation models, we analyzed
the translated outputs by using Word Error
Rate10. For doing the error analysis, we used
SCLITE (score speech recognition system out-
put) program from the NIST scoring toolkit
SCTK11 version 2.4.10 for making dynamic
programming based alignments between refer-
ence (ref) and hypothesis (hyp) and calcula-
tion of WER. The WER formula can be de-
scribed as the following equation:

WER =
(I +D + S)100

N
(1)

where S is the number of substitutions, D
is the number of deletions, I is the number of
insertions, C is the number of correct words
and N is the number of words in the reference
(N = S + D + C). The percentage of WER
can be greater than 100% when the number of
insertions is very high.

10https://en.wikipedia.org/wiki/Word_error_
rate

11https://github.com/usnistgov/SCTK
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Table 3: WER scores for English-to-Myanmar and Myanmar-to-English translation models (Generally,
lower WER indicates better translation performance)

English-to-Myanmar Myanmar-to-English
Models WER(%) WER(%)

transformer 81.3% 82.6%
multi-transformer 83.9% 90.0%

shared-multi-transformer 83.5% 88.2%

s2s 84.2% 85.1%
multi-s2s 82.7% 91.8%

shared-multi-s2s 82.5% 86.0%

Table 3 shows the WER scores of English-
to-Myanmar and Myanmar-to-English trans-
lation models. In this table, lower WER
scores are highlighted as bold numbers. The
lower the WER scores, the better the trans-
lation models. For the first architecture
of English-to-Myanmar translation, the base-
line transformer model gives lower WER
scores (81.3%) than the multi-transformer
and shared-multi-transformer models. How-
ever, in the second architecture, the shared-
multi-s2s model provides lower WER scores
(82.5%) compared with the baseline (s2s) and
multi-s2s models. In Myanmar-to-English
translation, the multi-transformer and shared-
multi-transformer models yield greater WER
scores (90.0% and 88.2%) than the base-
line transformer model of the first archi-
tecture. In addition, the multi-s2s and
shared-multi-s2s model also give higher WER
scores (91.8% and 86.0%) than the baseline
s2s models (85.1%). Due to the higher
WER scores in Myanmar-to-English transla-
tion models, the multi-transformer and shared-
multi-transformer models couldn’t provide
better translation results than the baseline
transformer model, and the multi-s2s and
shared-multi-s2s models couldn’t also yield the
improvements than the baseline s2s model.

After we analyzed the confusion pairs
of English-to-Myanmar and Myanmar-to-
English translation models in detail, we found
that most of the confusion pairs in the trans-
lations are caused by (1) the nature of the
Myanmar language (written or speaking form),
(2) the incorrect word segmentation or data
cleaning errors of English language, (3) the
Myanmar language with no articles (i.e., a,

an, and the), and (4) the different nature and
language gaps of Myanmar and English lan-
guages. The top 10 confusion pairs of English-
to-Myanmar and Myanmar-to-English transla-
tions of the model transformer are shown in
Table 4. In this table, the first column is
the reference and hypothesis pair (i.e., out-
put of the translation model) for English-to-
Myanmar translation. The third one is for
that of Myanmar-to-English translation.

All of the confusion pairs in the first col-
umn are caused by the nature of the Myanmar
language. For example, in Myanmar written
or speaking form, the word “သညé (“is” in En-
glish)” are the same as the word “တယé (“is” in
English)”. Moreover, the words “၏ (“of or 's”
in English)” and “ရå ç (“of or 's” in English)” in
the possessive place and the words “မêßè (“plu-
ral form” in English)” and “äတë (“plural form”
in English)” are the same meanings. In other
words, these hypotheses are synonyms of the
reference words. In the third column of the Ta-
ble 4, for the Myanmar-to-English translation,
the confusion pairs of “apos → quot”, “quot
→ apos”, “the → &amp”, “, → the” and “the
→ s” are caused by the incorrect word seg-
mentation or data cleaning errors of English
language. Furthermore, we found that the con-
fusion pairs of “the → a” and “a → the” are
caused by the Myanmar language with no ar-
ticles (i.e., a, an, and the). The confusion
pairs of “in → of”, “to → of” and “with →
and” are caused due to the different nature
and language gaps of Myanmar and English
languages. Occasionally, most of the Myan-
mar people misused the usage of the words “in,
of, and with” in English writing.

For instance, for the Myanmar sentence “သã
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Table 4: An example of confusion pairs of the model Transformer

EN-MY
Ref→Hyp Freq MY-EN

Ref→Hyp Freq

သညé → တယé 371 apos→ quot 30

မêßè → äတë 63 the → a 29

၏ → ရå ç 33 quot → apos 24

တယé → သညé 36 , → the 23

äသß → တåç 17 the → &amp 23

ရနé → ဖàâ ç 9 in → of 18

äယßကé → ဦè 9 a → the 17

မညé → မယé 8 the → s 14

တàâ ç→ မêßè 7 to → of 10

၎ငéè → ဒÞ 3 with → and 6

က အတနéè ထå မìß အäတßéဆâæè äကêßငéèသßè îဖစéတယé။”,
they translate this sentence to the English sen-
tence “He is the most clever student of the
class.”. In this case, they misused the word “of”
instead of the word “in”. The correct English
sentence is “He is the most clever student in
the class.” For another example of Myanmar
sentence “စßèပëå ကàâ သစéသßè îဖငçé îပăလâပé ထßèတယé။”,
they translate to English sentence “The table
is made with wooden.” with the misused of
the word “with” instead of “of”. The correct
sentence for this example is “The table is made
of wooden.” When the prepositions “in, of,
and with” are combined with the main verbs,
the prepositions “in and of” and “with and
of” have generally same meanings in Myanmar
language. These may cause the Myanmar-to-
English translation models hard to learn well
during the training processes compared with
the English-to-Myanmar translation models.

6 Conclusion
In this system description for WAT-2021, we
submitted our NMT systems with two archi-
tectures such as transformer and RNN with
attention. We evaluated our proposed mod-
els in both directions of Myanmar-English and
English-Myanmar translations at WAT-2021.
In this paper, for English to Myanmar trans-
lation, multi-source and shared-multi-source
models outperform the baseline models in
terms of BLEU, RIBES, and AMFM scores.

In the Myanmar-to-English translation task,
the proposed models could not provide better
translation quality than the baselines. The top
10 frequent errors in the model’s hypothesis
could be clearly found from our error analysis.
For examples, the confusion pairs of “သညé →
တယé 371”, “မêßè → äတë 63”, “၏ → ရå ç33”, and
so on. Moreover, our study also made a con-
tribution to the fact that if these errors can be
cleaned up, the translation performance of the
shared task will improve. In the future, we in-
tend to apply post-editing techniques in Myan-
mar to English translation to improve the
translation quality. Furthermore, we intend to
extend string-to-tree and string-to-pos transla-
tion approaches for under-resourced languages
such as Myanmar and Thai.
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Abstract
In this paper we describe our submissions
to WAT-2021 (Nakazawa et al., 2021) for
English-to-Myanmar language (Burmese)
task. Our team, ID: “YCC-MT1”, fo-
cused on bringing transliteration knowl-
edge to the decoder without changing the
model. We manually extracted the translit-
eration word/phrase pairs from the ALT
corpus and applying XML markup fea-
ture of Moses decoder (i.e. -xml-input
exclusive, -xml-input inclusive). We
demonstrate that hybrid translation tech-
nique can significantly improve (around
6 BLEU scores) the baseline of three
well-known “Phrase-based SMT”, “Oper-
ation Sequence Model” and “Hierarchi-
cal Phrase-based SMT”. Moreover, this
simple hybrid method achieved the sec-
ond highest results among the submit-
ted MT systems for English-to-Myanmar
WAT2021 translation share task accord-
ing to BLEU (Papineni et al., 2002) and
AMFM scores (Banchs et al., 2015).

1 Introduction
While both statistical machine translation
(SMT) and neural machine translation (NMT)
have proven successful for high resource lan-
guage, it is still an open research question how
to make it work well especially for the low re-
source and long distance reordering language
pairs such as English and Burmese (Duh et al.,
2020), (Kolachina et al., 2012), (Trieu et al.,
2019), (Win Pa Pa et al., 2016). To the best
of our knowledge there are only two publicly
available English-Myanmar parallel corpora;
ALT Corpus (Ding et al., 2020) and UCSY
Corpus (Yi Mon Shwe Sin and Khin Mar Soe,
2019) for research purpose, and the size of
the corpora are around 20K and 200K respec-
tively. The parallel data for Myanmar-English
machine translation share task at Workshop
on Asian Translation (WAT) using combina-
tion of that two corpora and thus it is a
good chance for the NLP researchers who
are working on low resource machine transla-
tion. Motivated by this challenge, we repre-
sented the University of Technology, Yatanar-
pon Cyber City (UTYCC) and participated
in the English-Myanmar (en-my) share task of
WAT2021 (Nakazawa et al., 2021).

In this paper, we propose one hybrid system
based on plugging XML markup translation
knowledge to the SMT decoder. The trans-
lation rules for transliteration and borrowed
words, and direct usage of English words in
the target language are constructed by us-
ing a parallel word dictionary. The English-
Myanmar transliteration dictionary was built
by manual extracting parallel words/phrases
from the whole ALT corpus. This simple
hybrid method outperformed the three base-
lines and achieved the second highest results
among the submitted MT systems for English-
to-Myanmar WAT2021 translation share task
according to BLEU (Papineni et al., 2002) and
AMFM scores (Banchs et al., 2015).

The remainder of this paper is organized
as follows. In Section 2, we introduce the
data preprocessing, including word segmenta-
tion and cleaning steps. In Section 3, we de-
scribe the details of our three SMT systems.
The machine translation evaluation metrics
are presented in Section 4. The manual ex-
traction process of transliteration word/phrase
pairs from the ALT English-Myanmar parallel
data is described in Section 5. Then, the SMT
decoding with XML markup technique is de-
scribed in Section 6. In Section 7, we present
hybrid translation results achieved by all our
systems. Section 8 concludes this paper.

2 Data preprocessing
2.1 Preprocessing for English and

Myanmar
We tokenized and escaping English data re-
spectively with the tokenizer and escaping
perl script (escape-special-chars.perl) of
Moses (Koehn et al., 2007). For Myanmar,
although provided training data of ALT was
already segmented, word segmentation was
not provided for the UCSY corpus. And
thus, we did syllable segmentation by using
sylbreak.pl (Ye Kyaw Thu, 2017).

2.2 Parallel Data Statistic
The corpus for the English-Myanmar share
task contained two separate corpora and they
are UCSY corpus and ALT corpus. The do-
main of the UCSY corpus is general and the
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Table 1: Statistics of our preprocessed parallel data

Data Type # of Sentences # of Myanmar Syllables # of English Words

TRAIN (UCSY) 238,014 6,285,996 3,357,260

TRAIN (ALT) 18,088 1,038,640 413,000

DEV 1,000 57,709 27,318

TEST 1,018 58,895 27,929

original English sentences of the ALT corpus
was extracted from the Wikinews (Ye Kyaw
Thu et al., 2016). The size of the UCSY par-
allel corpus is about 238K sentence pairs and
it is also a part of the training data of the
WAT2021 share task. The size of the English-
Myanmar ALT parallel corpus is about 20K
sentence pairs and splitted into 18,088 sen-
tences for training, 1,000 sentences for devel-
opment and 1,018 sentences for test data re-
spectively (see Table 1). While the number
of development and test set sentences are the
same, we implemented phrase-based, operat-
ing sequence model and hiero systems with the
UCSY training corpus only and the combina-
tion of the UCSY and the ALT training sets.
The statistics of our preprocessed parallel data
are shown in Table1.

3 SMT Systems
In this section, we describe the methodology
used in the machine translation experiments
for this share task.

3.1 Phrase-based Statistical Machine
Translation

A PBSMT translation model is based on
phrasal units (Koehn et al., 2003). Here,
a phrase is simply a contiguous sequence
of words and generally, not a linguistically
motivated phrase. A phrase-based transla-
tion model typically gives better translation
performance than word-based models. We
can describe a simple phrase-based transla-
tion model consisting of phrase-pair probabil-
ities extracted from corpus and a basic re-
ordering model, and an algorithm to extract
the phrases to build a phrase-table (Specia,
2011). The phrase translation model is based
on noisy channel model. To find best transla-
tion ê that maximizes the translation proba-
bility P(f) given the source sentences; mathe-
matically. Here, the source language is French
and the target language is an English. The
translation of a French sentence into an En-
glish sentence is modeled as equation 1.

ê = argmaxeP(e|f) (1)

Applying the Bayes’ rule, we can factorized
into three parts.

P (e|f) = P(e)
P(f)P(f |e) (2)

The final mathematical formulation of phrase-
based model is as follows:

argmaxeP(e|f) = argmaxeP(f |e)P(e) (3)

3.2 Operation Sequence Model
The operation sequence model which combines
the benefits of two state-of-the-art SMT frame-
works named n-gram-based SMT and phrase-
based SMT. This model simultaneously gener-
ate source and target units and does not have
spurious ambiguity that is based on minimal
translation units (Durrani et al., 2011) (Dur-
rani et al., 2015). It is a bilingual language
model that also integrates reordering informa-
tion. OSM motivates better reordering mech-
anism that uniformly handles local and non-
local reordering and strong coupling of lexical
generation and reordering. It means that OSM
can handle both short and long distance re-
ordering. The operation types are such as gen-
erate, insert gap, jump back and jump forward
which perform the actual reordering.

3.3 Hierarchical Phrase-based
Statistical Machine Translation

The hierarchical phrase-based SMT approach
is a model based on synchronous context-free
grammar (Specia, 2011). The model is able
to be learned from a corpus of unannotated
parallel text. The advantage this technique
offers over the phrase-based approach is that
the hierarchical structure is able to repre-
sent the word re-ordering process. The re-
ordering is represented explicitly rather than
encoded into a lexicalized re-ordering model
(commonly used in purely phrase-based ap-
proaches). This makes the approach particu-
larly applicable to language pairs that require
long-distance re-ordering during the transla-
tion process (Braune et al., 2012).
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3.4 Moses SMT System
We used the PBSMT, HPBSMT and OSM
system provided by the Moses toolkit (Koehn
et al., 2007) for training the PBSMT, HPB-
SMT and OSM statistical machine transla-
tion systems. The word segmented source lan-
guage was aligned with the word segmented
target language using GIZA++ (Och and Ney,
2000). The alignment was symmetrized by
grow-diag-final and heuristic (Koehn et al.,
2003). The lexicalized reordering model was
trained with the msd-bidirectional-fe option
(Tillmann, 2004). We use KenLM (Heafield,
2011) for training the 5-gram language model
with modified Kneser-Ney discounting (Chen
and Goodman, 1996). Minimum error rate
training (MERT) (Och, 2003) was used to tune
the decoder parameters and the decoding was
done using the Moses decoder (version 2.1.1).
We used default settings of Moses for all ex-
periments.

4 Evaluation
Our systems are evaluated on the ALT test
set and we used the different evaluation
metrics such as Bilingual Evaluation Under-
study (BLEU) (Papineni et al., 2002), Rank-
based Intuitive Bilingual Evaluation Score
(RIBES) (Isozaki et al., 2010), and Adequacy-
Fluency Metrics (AMFM) (Banchs et al.,

2015). For the official evaluation of English-to-
Myanmar share task, we uploaded our hypoth-
esis files to the WAT2021 evaluation server
and sub-syllable (almost same with sylbreak
toolkit’s syllable units) segmentation was used
for Myanmar language. We submitted “hybrid
PBSMT with XML markup (inclusive)” and
“hybrid OSM with XML markup (inclusive)”
systems training only with UCSY corpus for
human evaluation.

5 Manual Extraction of Parallel
Transliteration Words

When we studied on the Myanmar language
corpus provided by the WAT2021, we found
that many sentences are very long, containing
spelling errors, unnaturalness of translation
(i.e. translation from English to Myanmar)
and many transliteration words (i.e. word-
by-word, phrase-by-phrase, compound word
transliteration). Moreover, the ALT corpus
was extracted from the English Wikinews (Ye
Kyaw Thu et al., 2016) and it contains many
named entity words such as person names,
organizations, locations. See three example
English-Myanmar parallel sentences of the
ALT test data that contained several translit-
eration words. This paper tackling the prob-
lem of machine translation on transliteration
word/phrase pairs by hybrid translation ap-
proach.

[ဆစé ဒ နá]1 က [ရ န çé ဝစéခé]2 îမငéè ðပàăငé ကëငéè မì မêàăè သ န çé ðပàăငé îမငéè ရìစé äကßငé ဟß îမငéè တâတé äကëè äရß ဂÞ ကãè စကé ခæ ခåç ရ တယé ဆàâ
တß အ တညé îပă ခåç ပÞ တယé ။ (It has been confirmed that eight thoroughbred race horses at [Randwick]2
Racecourse in [Sydney]1 have been infected with equine influenza .)

ဒá စ äန တ နဂü äĈë မìß [အနé အကéစé ဒ ဗ လêĄ]1 Ĉì ငçé [ကëငéèစé လနéèဒé]2 မì လëå ၍ [ïသ စ äïတè လê]3 တàâကé îပညé နယé မêßè အßè လâæè
တëငé îမငéè ပëå îပနé စ ဖàâ ç äမøßé လ ငçé ပÞ တယé ။ (Racing is expected to resume in all [Australian]3 states except
[NSW]1 and [Queensland]2 on the weekend .)

[ဘ ရစé တ နá စ ပáè ယßè]1 သã မ ၏ äန အàမé သàâ çအ îပနé ကàâ äနßကé äယßငé ခæ လàâကé ðပáè äနßကé [ကယé လá ဖàâè နáè ယßè]2 îပညé နယé [မစé
ရìငéè]3 äတßငé ကâနéè မêßè အ တëငéè ၊ အ တßè အ ဆáè မåç စëß äမßငéè Ĉìငé îခငéè အ တëကé ဗâဒÑ ဟãè äန çတëငé သ တငéè äထßကé အ ဖëå ç ဝငé အ မêàăè
သßè äလè äယßကé အ ဖမéè ခæ ခåç ရ ðပáè ဒဏé äငë äပè äဆßငé ခåç ရ သညé ။ (Four male members of the paparazzi were
arrested and charged on Wednesday with reckless driving in [Mission]31 Hills , [California]2
after following [Britney Spears]1 back to her mansion .)

We manually extracted English-Myanmar
transliteration word and phrase pairs from
the whole ALT corpus and prepared 14,225
unique word dictionary1. The main
categories are Country/City Names, De-
monyms, Personal Names, Month Names,
General Nouns, Organization Names, Abbre-
viations, Units and English-to-English Trans-

1https://github.com/ye-kyaw-thu/MTRSS/tree/
master/WAT2021/en-my_transliteration-dict

lation Words (see Table 2).

6 Hybrid Translation
Generally, hybrid translation integrates the
strengths of rationalism method and empiri-
cist method. (Hunsicker et al., 2012) described
how machine learning approaches can be used
to improve the phrase substitution component
of a hybrid machine translation system. Es-
sential of hybrid translation is to integrate the
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Table 2: Some example of manually extracted transliteration word/phrase pairs.

Country/City Names and Demonyms
Italy အáတလá
Portugal äပíတãဂá
Paris îပငéသစé
Shanghai ရìနéဟàâငéè
Australian ïသစäïတèလê လãမêàăè
Personal Names
David Bortolussi äဒèဗစé äဘßéတàâလပéစá
coach William McKenny äကßçခêé ဝáလáယမé အမéစáကနéနá
Dr. Michel Pellerin äဒÞကéတß မáရìåလé ပåလßရá
Liu Jianchao လêĄ ကêနéèäခêßငé
manager Phil Garner မနéäနဂêß ဖáè ဂÞနß
Month Names
January ဇနéနဝÞရá လ
March မတé လ
May äမ လ
September စကéတငéဘß
October äအßကéတàâဘß
General Nouns
penalties ပယéနယéလéတá
theory သáအàâရá
bowling ဘàâèလငéè
the Yankees ရနéကáè
baseball äဘçစéäဘß
Organization Names
Liberal Democrats လစéဘရယé ဒáမàâကရကé
Scottish Premier League (SPL) စäကßçတလနé ပရáမáယß လàဂé ( အကéစéပáအယéလé )
Walt Disney World’s Wide World of Sports äဝÞç ဒစÃäနè äဝÞလé ၏ ဝàâကé ဝÞ စ äပÞç
Somali Defence Ministry ဆàâမßလá ကßကëယéäရè ဝနéñကáè ဌßန
Iranian press-agency IRNA အáရနé စßနယéဇငéè-äအဂêငéစá အßနß
Abbreviations and Units
Intel x86 အငéတåလé အàတéစé၈၆
NFL အနéအကéဖéအယé
A.Q.U.S.A äအ.ကêĄ.ယã.အကé.äအ
AC-130 äအစá-၁၃၀
km ကáလàâမáတß
English-to-English Words
Big C Big C
iTV iTV
F-16 F - 16
Khlong Toei Khlong Toei
Na Ranong Na Ranong
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core of MT engines. Multiple- engine HMT in-
tegrates all available MT methods, applying
to their benefits, in order to improve quali-
ties of output (Xuan et al., 2012). The pop-
ular combinations comprise ”rule-based ma-
chine translation vs the SMT” and multiple
combinations of machine translation engines,
for example ”SMT vs neural machine transla-
tion”. Our work in this paper focuses on hybrid
machine translation of SMT engine and XML
tags inserting (i.e. applying rules) into translit-
eration words of each source sentence. We
used the Moses SMT toolkit and it also sup-
ports -xml-input flag to activate XML tags
inserting feature with one of the five options;
exclusive, inclusive, constraint, ignore
and pass-through. Refer manual page of the
Moses toolkit 2 for detail explanation. Al-
though we studied all options, we will present

the two options that work well for English-
Myanmar hybrid translation.

The Moses decoder has an XML markup
scheme that allows the specification of trans-
lations for parts of the sentence. In its sim-
plest form, we can guide the decoder what to
use to translate certain transliteration words
or phrases in the source sentence. We wrote a
perl script for XML Markup inserting into the
source English sentences based on the manu-
ally extracted transliteration dictionary. As
shown in follows, the XML Markup scheme
for HPBSMT is different with PBSMT and
OSM. This is because the syntactic annota-
tion of the HPBSMT system also used XML
Markup. And thus, we used --xml-brackets
"{{ }}" option when decoding hybrid HPB-
SMT system.

XML Markup Scheme for PBSMT and OSM:
Tanks of <np translation=”äအßကé စá ဂêငé” prob=”0.8”>oxygen</np> , <np translation=”ဟá လá ရမé”
prob=”0.8”>helium</np> and <np translation=”အကé ဆá တ လငéè” prob=”0.8”>acetylene</np>
began to explode after a connector used to join <np translation=”အကé ဆá တ လငéè”
prob=”0.8”>acetylene</np> tanks during the filling process malfunctioned .

Decoding with XML Markup Scheme for PBSMT and OSM:
$moses -xml-input exclusive -i ./test.xml.en -f ../evaluation/test.filtered.ini.1
> en-my.xml.hyp1

XML Markup Scheme for HPBSMT:
Tanks of {{np translation=”äအßကé စá ဂêငé” prob=”0.8”}}oxygen{{/np}} , {{np trans-
lation=”ဟá လá ရမé” prob=”0.8”}}helium{{/np}} and {{np translation=”အကé ဆá တ လငéè”
prob=”0.8”}}acetylene{{/np}} began to explode after a connector used to join {{np
translation=”အကé ဆá တ လငéè” prob=”0.8”}}acetylene{{/np}} tanks during the filling process
malfunctioned .

Decoding with XML Markup Scheme for HPBSMT:
$moses_chart -xml-input exclusive --xml-brackets "{{ }}" -i ./test.xml.en -f
../evaluation/test.filtered.ini.1 > en-my.xml.hyp1

7 Results
Our systems are evaluated on the ALT test
set and the results are shown in Table 3. Our
observations from the results are as follows:

1. Hybrid translation of SMT with XML
Markup scheme showed significant im-
provement for all three SMT approaches;
PBSMT, OSM and HPBSMT.

2. Generally, -xml-input exclusive op-
tion gives a slightly higher scores than
-xml-input inclusive.

3. HPBSMT achieved the highest scores es-
pecially for training without ALT corpus

2http://www.statmt.org/moses/?n=Advanced.
Hybrid

(i.e. we can assume working well for Out-
of-Vocabulary case).

4. The baseline translation performance
score difference between training with or
without ALT corpus is about 5.0 BLEU
score.

8 Conclusion
We presented in this paper the UTYCC’s par-
ticipation in the WAT-2021 shared translation
task. Our hybrid SMT submission to the task
performed the second in English-to-Myanmar
translation direction according to several eval-
uation scores including the de facto BLEU.
Our results also confirmed the XML markup
technique for transliteration words dramati-
cally increase the translation performance up
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Table 3: BLEU, RIBES and AMFM scores for English-to-Myanmar translation (Bold number indicate
the highest score for each scoring method)

Only UCSY Training Data UCSY+ALT Training Data
Experiments BLEU RIBES AMFM BLEU RIBES AMFM

Baseline: PBSMT 15.01 0.519451 0.550400 20.80 0.542406 0.617900
Hybrid: xml-exclusive 20.80 0.551514 0.653850 24.54 0.563854 0.690020
Hybrid: xml-inclusive 20.88 0.553319 0.655310 25.11 0.567187 0.689400

Baseline: OSM 15.05 0.528968 0.557240 20.33 0.550329 0.622350
Hybrid: xml-exclusive 19.94 0.540820 0.651070 23.82 0.554226 0.691450
Hybrid: xml-inclusive 20.13 0.545962 0.654820 23.73 0.556381 0.691910

Baseline: Hiero 14.83 0.555290 0.545900 20.29 0.587136 0.612400
Hybrid: xml-exclusive 21.02 0.588198 0.653840 25.48 0.60733 0.684110
Hybrid: xml-inclusive 21.02 0.588198 0.653840 25.48 0.607339 0.684110

to 6 BLEU scores. Moreover, our results high-
lighted that hybrid statistical machine transla-
tion is easy to implement and we need to ex-
plore more for low-resource distant language
pairs such as English-Myanmar translation.
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Abstract

In this paper, we present the NICT system
(NICT-2) submitted to the NICT-SAP shared
task at the 8th Workshop on Asian Translation
(WAT-2021). A feature of our system is that
we used a pretrained multilingual BART (Bidi-
rectional and Auto-Regressive Transformer;
mBART) model. Because publicly avail-
able models do not support some languages
in the NICT-SAP task, we added these lan-
guages to the mBART model and then trained
it using monolingual corpora extracted from
Wikipedia. We fine-tuned the expanded
mBART model using the parallel corpora
specified by the NICT-SAP task. The BLEU
scores greatly improved in comparison with
those of systems without the pretrained model,
including the additional languages.

1 Introduction

In this paper, we present the NICT system (NICT-
2) that we submitted to the NICT-SAP shared task
at the 8th Workshop on Asian Translation (WAT-
2021) (Nakazawa et al., 2021). Because the NICT-
SAP task expects to perform translations with lit-
tle parallel data, we developed a system to improve
translation quality by applying the following mod-
els and techniques.

Pretrained model: An encoder-decoder model
pretrained using huge monolingual corpora was
used. We used a multilingual bidirectional
auto-regressive Transformer (mBART) (i.e., mul-
tilingual sequence-to-sequence denoising auto-
encoder (Liu et al., 2020)) model, which supports
25 languages. Because it includes English and
Hindi, but does not include Indonesian, Malay,
and Thai, we expanded it to include the unsup-
ported languages and additionally pretrained it on
these five languages.1

1The mBART-50 model (Tang et al., 2020) supports 50
languages including Indonesian and Thai. However, Malay

Multilingual models: We tested multilingual
models trained using multiple parallel corpora to
increase resources for training.

Domain adaptation: We tested two domain
adaptation techniques. The first technique is train-
ing multi-domain models. Similar to multilin-
gual models, this technique trains a model using
the parallel corpora of multiple domains. The
domains are identified by domain tags in input
sentences. The second technique is adaptation
based on fine-tuning. This method fine-tunes each
domain model (using its domain corpus) from a
model trained by a mixture of multi-domain cor-
pora.

Our experimental results showed that the pre-
trained encoder-decoder model was effective for
translating low-resource language pairs. How-
ever, the effects of multilingual models and do-
main adaptation became low when we applied the
pretrained model.

The following sections are organized as fol-
lows. We first summarize the NICT-SAP shared
task in Section 2, and briefly review the pretrained
mBART model in Section 3. Details of our system
is explained in Section 4. In Section 5, we present
experimental results. Finally, we conclude our pa-
per in Section 6.

2 NICT-SAP Shared Task

The NICT-SAP shared task was to translate text
between English and four languages, that is, Hindi
(Hi), Indonesian (Id), Malay (Ms), and Thai (Th),
for which the amount of data in parallel corpora is
relatively low. The task contained two domains.

The data in the Asian Language Translation
(ALT) domain (Thu et al., 2016) consisted of
translations obtained from WikiNews. The ALT
is not supported by either the mBART model or mBART-50
models. Therefore, we applied additional pretraining to the
mBART model.
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Domain Set En-Hi En-Id En-Ms En-Th
ALT Train 18,088 18,087 18,088 18,088

Dev 1,000
Test 1,018

IT Train 252,715 158,200 504,856 73,829
Dev 2,016 2,023 2,050 2,049
Test 2,073 2,037 2,050 2,050

Table 1: Data sizes for the NICT-SAP task after filter-
ing.

data is a multilingual parallel corpus, that is, it
contains the same sentences in all languages. The
training, development, and test sets were provided
from the WAT organizers.

The data in the IT domain consisted of trans-
lations of software documents. The WAT or-
ganizers provided the development and test sets
(Buschbeck and Exel, 2020). For the training
set, we obtained GNOME, KDE, and Ubuntu
sub-corpora from the OPUS corpus (Tiedemann,
2012). Therefore, the domains for the training and
dev/test sets were not identical.

The data sizes are shown in Table 1. There were
fewer than 20K training sentences in the ALT do-
main. Between 73K and 504K training sentences
were in the IT domain. Note that there were inad-
equate sentences in the training sets. We filtered
out translations that were longer than 512 tokens,
or where source/target sentences were three times
longer than the target/source sentences if they had
over 20 tokens.

3 mBART Model

In this section, we briefly review the pretrained
mBART model (Liu et al., 2020).

The mBART model is a multilingual model
of bidirectional and auto-regressive Transformers
(BART; (Lewis et al., 2020)). The model is based
on the encoder-decoder Transformer (Vaswani
et al., 2017), in which the decoder uses an auto-
regressive method (Figure 1).

Two tasks of BART are trained in the mBART
model. One is the token masking task, which re-
stores masked tokens in input sentences. The other
is the sentence permutation task, which predicts
the original order of permuted sentences. Both
tasks learn using monolingual corpora.

To build multilingual models based on BART,
mBART supplies language tags (as special tokens)
at the tail of the encoder input and head of the de-
coder input. Using these language tags, a mBART

Language #Sentences #Tokens
English (En) 7,000,000 (*1) 174M
Hindi (Hi) 1,968,984 51M
Indonesian (Id) 6,997,907 151M
Malay (Ms) 2,723,230 57M
Thai (Th) 2,233,566 (*2) 60M

Table 2: Statistics of the training data for the pretrained
model. The number of tokens indicates the number of
subwords. (*1) The English data were sampled from
150M sentences to fit the number of sentences into the
maximum number of the other languages. (*2) Sen-
tences in Thai were detected using an in-house sentence
splitter.

model can learn multiple languages.
The published pretrained mBART model2 con-

sists of a 12-layer encoder and decoder with a
model dimension of 1,024 on 16 heads. This
model was trained on 25 languages in the Com-
mon Crawl corpus (Wenzek et al., 2019). Of the
languages for the NICT-SAP task, English and
Hindi are supported by the published mBART
model, but Indonesian, Malay, and Thai are not
supported.

The tokenizer for the mBART model uses byte-
pair encoding (Sennrich et al., 2016) of the Sen-
tencePiece model (Kudo and Richardson, 2018)3.
The vocabulary size is 250K subwords.

4 Our System

4.1 Language Expansion/Additional
Pretraining of mBART

As described above, the published mBART model
does not support Indonesian, Malay, and Thai.
We expanded the mBART model to support these
three languages, and additionally pretrained the
model on the five languages in the NICT-SAP task.

The corpus for additional pretraining was ex-
tracted from Wikipedia dump files as follows.
Unlike the XLM models (Lample and Con-
neau, 2019), which were also pretrained using
Wikipedia corpora, we divided each article into
sentences in our corpus, to train the sentence per-
mutation task. Additionally, we applied sentence
filtering to clean each language.

1. First, Wikipedia articles were extracted from

2https://dl.fbaipublicfiles.com/
fairseq/models/mbart/mbart.cc25.v2.tar.
gz

3https://github.com/google/
sentencepiece
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Where did _ _ from ? </s> Who _ I _ </s> [En]

Transformer Encoder Transformer Decoder

[En] Who am I ? </s> Where did I come from ? </s>

Who am I ? </s> Where did I come from ? </s> [En]

Dari mana _ _ ? </s> Siapa saya _ </s> [Id]

Transformer Encoder Transformer Decoder

[Id] Siapa saya ? </s> Dari mana saya berasal ? </s>

Siapa saya ? </s> Dari mana saya berasal ? </s> [Id]

Multilingual Denoising Pre-Training (mBART)

Dari mana saya berasal ? </s> [Id]

Transformer Encoder Transformer Decoder

[En] Where did I come from ? </s>

Where did I come from ? </s> [En]

Fine-tuning on Machine Translation

Figure 1: Example of mBART pretraining and fine-tuning for the machine translation task from Indonesian to
English (arranged from (Liu et al., 2020)).

the dump files using WikiExtractor4

while applying the NFKC normalization of
Unicode.

2. Sentence splitting was performed based on
sentence end marks, such as periods and
question marks. However, because Thai does
not have explicit sentence end marks, we ap-
plied a neural network-based sentence splitter
(Wang et al., 2019), which was trained using
in-house data.

3. We selected valid sentences, which we re-
garded as sentences that consisted of five to
1,024 letters, where and 80% of the letters
were included in the character set of the tar-
get language. In the case of Hindi, for exam-
ple, we regarded a sentence as valid if 80% of
the letters were in the set of Devanagari code
points, digits, and spaces.

The number of sentences for the mBART ad-
ditional pretraining is shown in Table 2. We
sampled 7M English sentences to balance the

4https://github.com/attardi/
wikiextractor

sizes of the other languages because the number
of English sentences was disproportionately large
(about 150M sentences).

We first expanded the word embeddings of the
published mBART large model using random ini-
tialization and trained it. This is similar to the
training procedure for mBART-50 (Tang et al.,
2020), except for the corpora and hyperparame-
ters. The settings for the additional pretraining are
shown in Table 3.

We conducted the additional pretraining using
the Fairseq translator (Ott et al., 2019)5 on eight
NVIDIA V100 GPUs. It took about 15 days.

For the tokenizer, we used the SentencePiece
model in the published mBART large model. This
model does not support Indonesian, Malay, and
Thai. Indonesian and Malay use Latin characters,
hence we divert the model to tokenize these lan-
guages. Thai uses a special character set. How-
ever, we diverted the SentencePiece model be-
cause almost all characters in the Thai corpus were
included in the vocabulary of the model.

5https://github.com/pytorch/fairseq
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Attribute Value
LR 0.0003
Warm-up Linear warm-up in 10K updates
Decay Linear decay
Tokens per sample 512
Batch size 640K tokens
# updates 500K (around 77 epochs)
Dropout schedule 0.10 until 250K updates, 0.05

until 400K updates, and 0.0 un-
til 500K updates

Loss function Cross entropy
Token masking mask=0.3, mask-random=0.1,

mask-length=span-poisson,
poisson-lambda=3.5, replace-
length=1

Sentence permutation permute-sentence=1.0

Table 3: Hyperparameters for the mBART additional
pretraining

4.2 Other Options

We fine-tuned the pretrained model using the
NICT-SAP parallel corpora shown in Table 1. We
also used Transformer base models (six layers, the
model dimension of 512 on 8 heads) for compari-
son without the pretrained model. In addition to
the effect of the pretrained models, we investi-
gated the effects of multilingual models and do-
main adaptation.

4.2.1 Multilingual Models
Similar to the multilingual training of mBART,
the multilingual model translated all the language
pairs using one model by supplying source and tar-
get language tags to parallel sentences.

By contrast, bilingual models were trained us-
ing the corpora of each language pair. When we
use the mBART model, we supplied source and
target language tags to parallel sentences, even for
the bilingual models.

4.2.2 Domain Adaptation
We tested two domain adaptation methods; multi-
domain models and fine-tuning-based methods.
Both methods utilize parallel data of the other do-
mains.

Similar to the multilingual models, we trained
the multi-domain models by supplying domain
tags (this time, we used <__WN__> for the ALT
domain and <__IT__> for the IT domain) at the
head of sentences in the source language.

The fine-tuning method did not use domain
tags. First, a mixture model was trained using a
mixture of multiple domain data. Next, domain
models were fine-tuned from the mixture model

Phase Attribute: Value
Fine-tuning LR: 0.00008,

Dropout: 0.3,
Batch size: 16K tokens,
Loss function: label smoothed cross en-
tropy,
Warm-up: linear warm-up in five epochs,
Decay: invert square-root,
Stopping criterion: early stopping on the
dev. set.

Translation Beam width: 10,
Length penalty: 1.0.

Table 4: Hyper-parameters for fine-tuning and transla-
tion.

using each set of domain data. Therefore, we cre-
ated as many domain models as the number of do-
mains.

5 Experiments

The models and methods described above were
fine-tuned and tested using the hyperparameters in
Table 4.

Tables 5 and 6 show the official BLEU scores
(Papineni et al., 2002) for the test set in the ALT
and IT domains, respectively. Similar results were
obtained on the development sets, but they were
omitted in this paper. We submitted the results
using the pretrained mBART model, which were
good on the development sets, on average.

The results are summarized as follows;

• For all language pairs in both domains, the
BLEU scores with our extended mBART
model were better than those under the same
conditions without the pretrained models.

When we focus on Indonesian, Malay, and
Thai, which were not supported in the orig-
inal mBART model, the BLEU scores of
the submitted results were increased over 8
points from the baseline results in the ALT
domain. We conclude that language expan-
sion and additional pretraining were effective
for translating new languages.

For verification, we checked sentences in the
test sets and the corpus for the pretrained
model (c.f., Table 2). There were no iden-
tical sentences in the two corpora in the
ALT domain. (Between 0% and 10% of the
test sentences were included in the IT do-
main.) Therefore, these improvements were
not caused by the memorization of the test
sentences in the pretrained model.
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Setting Translation Direction
PT ML FT/MD En→Hi Hi→En En→Id Id→En En→Ms Ms→En En→Th Th→En Remark

FT 12.26 8.23 24.71 23.65 31.02 27.52 13.73 2.04
MD 9.74 6.97 24.17 21.91 28.62 25.48 10.48 1.45

✓ FT 22.31 14.41 31.77 21.65 36.40 21.61 46.11 14.37 Baseline
✓ MD 15.25 12.18 29.48 22.76 29.76 23.49 43.46 14.65

✓ FT 34.97 35.21 41.15 43.90 45.17 44.53 55.69 28.96 Submitted
✓ MD 33.31 32.71 41.80 42.35 44.09 44.03 54.21 28.92
✓ ✓ FT 33.43 31.37 42.16 40.80 45.06 42.21 55.80 27.74
✓ ✓ MD 28.03 33.14 41.69 43.56 43.28 45.24 55.65 29.77

Table 5: Official BLEU scores in the ALT domain. PT, ML, FT, and MD in the setting columns represent pretrain-
ing, multilingual models, fine-tuning, and multi-domain models, respectively.

Setting Translation Direction
PT ML FT/MD En→Hi Hi→En En→Id Id→En En→Ms Ms→En En→Th Th→En Remark

FT 7.97 4.92 23.33 22.64 29.62 26.53 10.24 0.99
MD 7.01 4.37 23.63 21.40 28.43 25.01 5.60 0.59

✓ FT 19.77 18.09 33.47 26.15 34.75 26.48 45.66 12.73 Baseline
✓ MD 14.60 15.70 30.83 26.28 30.99 26.24 42.25 12.97

✓ FT 29.05 35.32 43.25 40.69 40.76 38.42 50.91 21.89 Submitted
✓ MD 28.24 34.60 43.73 40.36 40.42 39.29 50.26 23.10
✓ ✓ FT 26.54 34.82 44.19 40.45 40.56 37.79 51.34 22.22
✓ ✓ MD 25.96 35.55 44.40 42.44 39.25 39.28 52.00 24.24

Table 6: Official BLEU scores in the IT domain. PT, ML, FT, and MD in the setting columns represent pretraining,
multilingual models, fine-tuning, and multi-domain models, respectively.

• The multilingual models were effective only
without pretrained models. For example, for
English to Hindi translation in the ALT do-
main, the BLEU scores improved from 12.26
to 22.31 when we used multilingual mod-
els without the pretrained model. However,
they degraded from 34.97 to 33.43 when we
used multilingual models with the pretrained
model.

The multilingual models were effective un-
der low-resource conditions because the size
of parallel data increased during training.
However, they were ineffective if the mod-
els had learned sufficiently in advance, like
pretrained models.

• Regarding domain adaptation, the fine-tuning
method was better than the multi-domain
models in many cases without the pretrained
model.

6 Conclusions

In this paper, we presented the NICT-2 system
submitted to the NICT-SAP task at WAT-2021.

A feature of our system is that it uses the
mBART pretrained model. Because the published
pretrained model does not support Indonesian,
Malay, and Thai, we expanded it to support the

above languages using additional training on the
Wikipedia corpus. Consequently, the expanded
mBART model improved the BLEU scores, re-
gardless of whether multilingual models or do-
main adaptation methods were applied.
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Abstract

This paper introduces our neural machine
translation systems’ participation in the WAT
2021 shared translation tasks (team ID:
sakura). We participated in the (i) NICT-SAP,
(ii) Japanese-English multimodal translation,
(iii) Multilingual Indic, and (iv) Myanmar-
English translation tasks. Multilingual ap-
proaches such as mBART (Liu et al., 2020)
are capable of pre-training a complete, mul-
tilingual sequence-to-sequence model through
denoising objectives, making it a great start-
ing point for building multilingual translation
systems. Our main focus in this work is to
investigate the effectiveness of multilingual
finetuning on such a multilingual language
model on various translation tasks, including
low-resource, multimodal, and mixed-domain
translation. We further explore a multimodal
approach based on universal visual representa-
tion (Zhang et al., 2019) and compare its per-
formance against a unimodal approach based
on mBART alone.

1 Introduction

This paper introduces our neural machine transla-
tion (NMT) systems’ participation in the 8th Work-
shop on Asian Translation (WAT-2021) shared
translation tasks (Nakazawa et al., 2021). We par-
ticipated in the (i) NICT-SAP’s IT and Wikinews,
(ii) Japanese-English multimodal translation, (iii)
Multilingual Indic, and (iv) Myanmar-English
translation tasks.

Recent advances in language model pre-training
have been successful in advancing the state-of-the-
art in various natural language processing tasks.
Multilingual approaches such as mBART (Liu et al.,
2020) are capable of pre-training a full sequence-
to-sequence model through multilingual denois-
ing objectives, which leads to significant gains
in downstream tasks, such as machine transla-
tion. Building upon our success with utilizing

mBART25 in the 2020 edition of WAT (Wang and
Htun, 2020), we put more focus on multilingual
and multimodal translation this year. In particu-
lar, instead of performing bilingual finetuning on
mBART for each language pair, we train a single,
multilingual NMT model that is capable of translat-
ing multiple languages at once. As first proposed
by Tang et al. (2020), we apply multilingual finetun-
ing to mBART50 for the NICT-SAP task (involving
4 Asian languages) and Multilingual Indic task (in-
volving 10 Indic languages). Our findings show the
remarkable effectiveness of mBART pre-training
on these tasks. On the Japanese-English multi-
modal translation task, we compare a unimodal
text-based model, which is initialized based on
mBART, with a multimodal approach based on uni-
versal visual representation (UVR) (Zhang et al.,
2019). Last, we continue our work on Myanmar-
English translation by experimenting with more
extensive data augmentation approaches. Our main
findings for each task are summarized in the fol-
lowing:

• NICT-SAP task: We exploited mBART50
to improve low-resource machine translation
on news and IT domains by finetuning them
to create a mixed-domain, multilingual NMT
system.

• Multimodal translation: We investigated
multimodal NMT based on UVR in the con-
strained setting, as well as a unimodal text-
based approach with the pre-trained mBART
model in the unconstrained setting.

• Multilingual Indic task: We used the pre-
trained mBART50 models, extended them for
various Indic languages, and finetuned them
on the entire training corpus followed by fine-
tuning on the PMI dataset.
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Split Domain Language
hi id ms th

Train ALT 18,088
IT 254,242 158,472 506,739 74,497

Dev ALT 1,000
IT 2,016 2,023 2,050 2,049

Test ALT 1,018
IT 2,073 2,037 2,050 2,050

Table 1: Statistics of the NICT-SAP datasets. Each lan-
guage is paired with English.

• Myanmar-English translation: We de-
signed contrastive experiments with differ-
ent data combinations for Myanmar↔English
translation and validated the effectiveness of
data augmentation for low-resource transla-
tion tasks.

2 NICT-SAP Task

2.1 Task Description
This year, we participated in the NICT-SAP transla-
tion task, which involves two different domains: IT
domain (Software Documentation) and Wikinews
domain (ALT). These are considered low-resource
domains for Machine Translation, combined with
the fact that it involves four low-resource Asian
languages: Hindi (hi), Indonesian (id), Malay (ms),
and Thai (th).

For training, we use parallel corpora from the
Asian Language Treebank (ALT) (Thu et al., 2016)
for the Wikinews domain and OPUS1 (GNOME,
KDE4, and Ubuntu) for the IT domain. For de-
velopment and evaluation, we use the datasets pro-
vided by the organizer: SAP software documen-
tation (Buschbeck and Exel, 2020)2 and ALT cor-
pus.3 Table 1 shows the statistics of the datasets.

2.2 Data Processing
We tokenized our data using the 250,000 Senten-
cePiece model (Kudo and Richardson, 2018) from
mBART (Liu et al., 2020), which was a joint vo-
cabulary trained on monolingual data for 100 lan-
guages from XLMR (Conneau et al., 2020). More-
over, we prepended each source sentence with
a domain indicator token to distinguish the ALT
(<2alt>) and IT domain (<2it>).

1https://opus.nlpl.eu/
2https://github.com/SAP/software-docu

mentation-data-set-for-machine-translati
on

3http://lotus.kuee.kyoto-u.ac.jp/WAT/N
ICT-SAP-Task/altsplits-sap-nict.zip

We collect parallel corpora from all the
language pairs involved in this task, namely
{hi,id,ms,th}↔en. Following mBART, we prepend
source and target language tokens to each source
and target sentences, respectively. The size of each
dataset varies across language pairs. For instance,
the size of the Malay training corpus for the IT
domain is roughly 5× larger than that of Thai. To
address this data imbalance, we train our model
with a temperature-based sampling function fol-
lowing Arivazhagan et al. (2019):

pi,j ∝
(
|Bi,j |∑
i,j |Bi,j |

)1/T

where Bi,j corresponds to the parallel corpora for
a language pair (i, j) and T the temperature for
sampling.

2.3 Model

We use the pre-trained mBART50 model (Tang
et al., 2020) as our starting point for finetuning our
translation systems. Unlike the original mBART
work that performed bilingual finetuning (Liu et al.,
2020), Tang et al. (2020) proposed multilingual
finetuning where the mBART model is finetuned
on many directions at the same time, resulting in
a single model capable of translating many lan-
guages to many other languages. In addition to
having more efficient and storage maintenance ben-
efits, such an approach greatly helps low-resource
language pairs where little to no parallel corpora
are available.

While the mBART50 has great coverage of
50 languages, we found that it does not include
all languages involved in this task, particularly
Malay. Following Tang et al. (2020), who ex-
tended mBART25 to create mBART50, we ex-
tended mBART50’s embedding layers with one ad-
ditional randomly initialized vector for the Malay
language token.4 We use the same model architec-
ture as mBART50, which is based on Transformer
(Vaswani et al., 2017). The model was finetuned
for 40,000 steps with Adam (Kingma and Ba, 2015)
using β1 = 0.9, β2 = 0.98, and ε = 1e−6. We
use a maximum batch size of 512 tokens and gra-
dients were accumulated every 4 mini-batches on
each GPU. We ran our experiments on 4 NVIDIA

4Our modifications to the original mBART code are acces-
sible at https://github.com/raymondhs/fairs
eq-extensible-mbart.
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Domain System Translation Direction
en→hi hi→en en→id id→en en→ms ms→en en→th th→en

ALT

Dabre and Chakrabarty (2020) 24.23 12.37 32.88 17.39 36.77 18.03 42.13 10.78
mBART50 - pre-trained 29.79 32.27 39.07 42.62 41.74 43.36 54.15 28.02
mBART50 - ft.nn 34.00 35.75 41.47 44.09 43.92 45.14 55.87 29.70

+ensemble of 3* 34.25 36.17 41.57 44.72 44.01 45.70 55.98 30.10

IT

Dabre and Chakrabarty (2020) 14.03 16.89 32.52 25.95 34.62 26.33 28.24 10.00
mBART50 - pre-trained 26.03 36.38 43.97 43.17 40.15 39.37 52.67 25.06
mBART50 - ft.nn 28.43 40.30 45.01 44.41 41.92 40.92 55.60 26.05

+ensemble of 3* 28.50 40.17 45.39 44.70 42.26 40.97 55.64 26.30

Table 3: BLEU results on the NICT-SAP task. Our final submission is marked by an asterisk.

Domain Translation Direction
en→hi hi→en en→id id→en en→ms ms→en en→th th→en

ALT 84.92 83.29 86.80 85.10 87.19 85.15 83.71 82.26
IT 82.68 86.13 86.30 86.30 87.33 84.94 82.99 80.91

Table 4: AMFM results on the NICT-SAP task

Vocab size 250k
Embed. dim. 1024
Tied embed. Yes
FFN dim. 4096
Attention heads 16
En/Decoder layers 12
Label smoothing 0.2
Dropout 0.3
Attention dropout 0.1
FFN dropout 0.1
Learning rate 3e−5

Table 2: Models settings for both NICT-SAP and Mul-
tilingual Indic tasks

Quadro RTX 6000 GPUs. Table 2 shows the details
of our experimental settings.

2.4 Results

Table 3 and Table 4 show our experimental re-
sults in terms of BLEU (Papineni et al., 2002) and
AMFM (Banchs et al., 2015) scores, respectively.
We first show our multilingual finetuning results on
the released mBART50 model (Tang et al., 2020),5

which was pre-trained as a denoising autoencoder
on the monolingual data from XLMR (Conneau
et al., 2020) (mBART50 - pre-trained). Compared
to one submission from previous year’s WAT from
Dabre and Chakrabarty (2020), which is a multilin-
gual many-to-many model without any pre-training,
we observe a significant improvement from multi-
lingual finetuning across all language pairs for both
domains. For instance, we obtain the largest im-

5https://github.com/pytorch/fairseq/t
ree/master/examples/multilingual

provement of 25.23 BLEU points for id→en on the
ALT domain. These findings clearly show that mul-
tilingual models greatly benefit from pre-training
as compared to being trained from scratch, and
more so for low resource languages.

Second, Tang et al. (2020) released a many-to-
many multilingual translation that was finetuned
from mBART on publicly available parallel data
for 50 languages, including all language pairs in
this task, except Malay. We adapt this model by
performing a further finetuning on the NICT-SAP
dataset (mBART50 - ft.nn). On average, this model
further improves BLEU by 2.37 points on ALT and
1.98 points on IT.

Finally, we trained three independent models
with different random seeds to perform ensem-
ble decoding. This is our final submission, which
achieves the first place in AMFM scores on this
year’s leaderboard for 7 translation directions for
ALT (all except en→ms) and 6 directions for IT
(all except for en→hi and en→id).

For the human evaluation on the IT task, our sys-
tems obtained 4.24 adequacy score for en→id and
4.05 for en→ms, which were the highest among
all participants this year. We refer readers to the
overview paper (Nakazawa et al., 2021) for the
complete evaluation results.

3 Japanese↔English Multimodal Task

3.1 Task Description
Multimodal neural machine translation (MNMT)
has recently received increasing attention in the
NLP research fields with the advent of visually-
grounded parallel corpora. The motivation of
Japanese↔English multimodal task is to improve
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translation performance with the aid of heteroge-
neous information (Nakazawa et al., 2020). In par-
ticular, we performed the experiments based on
the benchmark Flickr30kEnt-JP dataset (Nakayama
et al., 2020), where manual Japanese translations
are newly provided to the Flickr30k Entities im-
age captioning dataset (Plummer et al., 2015) that
consists of 29,783 images for training and 1,000
images for validation, respectively. For each im-
age, the original Flickr30k has five sentences, while
the extended Flickr30kEnt-JP has corresponding
Japanese translation in parallel6.

In terms of input sources, this multimodal task
has been divided into four sub-tasks: constrained
and unconstrained Japanese↔English translation
tasks. In the constrained setting, we investigated
the MNMT models with universal visual represen-
tation (UVR) (Zhang et al., 2019), which is ob-
tained from the pre-trained bottom-up attention
model (Anderson et al., 2018). In contrast, we also
explored the capability of unimodal translation (i.e.,
text modality only) under the unconstrained setting,
where the pre-trained mBART25 model (Liu et al.,
2020) was employed as the external resource.

3.2 Data Processing

Text preparation For the constrained setting,
we firstly exploited Juman analyzer7 for Japanese
and Moses tokenizer for English. Then, we set the
vocabulary size to 40,000 to train the byte-pair en-
coding (BPE)-based subword-nmt8 (Sennrich et al.,
2016) model. Moreover, we merged the source and
target sentences and trained a joint vocabulary for
the NMT systems. Under the unconstrained set-
ting, we used the same 250,000 vocabulary as in
the pre-trained mBART model for the text input
to mBART finetuning, which was automatically
tokenized with a SentencePiece model (Kudo and
Richardson, 2018) based on BPE method.

Universal visual retrieval For the constrained
setting particularly, we propose to extract the pre-
computed global image features from the raw
Flickr30k images using the bottom-up attention
Faster-RCNN object detector that is pre-trained on
the Visual Genome dataset (Krishna et al., 2017).

6During training, we dismissed the 32 out of 29,783 train-
ing images having blank Japanese sentences, which ended up
with 148,756 lines of Japanese↔English bitext.

7http://nlp.ist.i.kyoto-u.ac.jp/EN/ind
ex.php?JUMAN

8https://github.com/rsennrich/subword
-nmt

Models MNMT mBART
Vocabulary size 40k 250k
Embedding dim. 1024 1024
Image dim. 2048 -
Tied embeddings Yes Yes
FFN dim. 4096 4096
Attention heads 16 16
En/Decoder layers 12 12
Label smoothing 0.1 0.2
Dropout 0.3 0.3
Attention dropout 0.1 0.1
FFN dropout 0.1 0.1
Learning rate 5e−4 3e−5

Table 4: Multimodal model parameter settings

Specifically, we adopted the pre-trained model9 to
extract the spatial image features corresponding
to 36 bounding boxes regions per image, which
were then encoded into a global image feature vec-
tor by taking the global average pooling of them.
In practice, we followed (Zhang et al., 2019) and
presented the UVR relying on image-monolingual
annotations (i.e., source sentences). To retrieve the
universal visual information from the source sen-
tences, the sentence-image pairs have been trans-
formed into two topic-image lookup tables from
the Flickr30kEnt-JP dataset for Japanese→English
and English→Japanese tasks, respectively. Note
that no image information has been learned in our
unconstrained models due to the text-only property.

3.3 Model

In this section, we will elaborate on our proposed
model architectures for the constrained and uncon-
strained tasks, respectively.

Multimodal model with UVR Follow-
ing (Zhang et al., 2019), we built the multi-
modal models based on the standard Trans-
former (Vaswani et al., 2017) with an additional
cross-attention layer in the encoder, followed
by a gating mechanism that fused the visual
modality and text modality information. In
particular, visual representation retrieved from
the topic-image lookup table has been encoded
by a self-attention network that is in parallel
with the source sentence encoder. Then, a cross
attention mechanism has been applied to append

9Download from https://storage.googleapis
.com/up-down-attention/resnet101 faster r
cnn final.caffemodel
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the image representation to the text representation.
Using a learnable weighting gate λ ∈ [0, 1), we
obtained the aggregated multimodal representation
corresponding to the significance distribution of
either modality, which would be used as input to
the decoder for predicting target translations. The
hyper-parameter setting is shown in Table 4.

mBART25 finetuning Regardless of the im-
age representation, we also finetuned on the
Flickr30kEnt-JP corpus using the mBART25 pre-
trained model under the unconstrained task setting.
Following (Liu et al., 2020), we used the same
mBART25-large model10 and finetuned for 40,000
steps with early stopping control if the validation
loss has not been improved for 3 iterations. We
used the learning rate schedule of 0.001 and maxi-
mum of 4000 tokens in a batch, where the param-
eters were updated after every 2 epochs. More
details of model hyper-parameters setting can be
found in Table 4.

We trained the MNMT models and finetuned the
mBART25 models using the Fairseq toolkit (Ott
et al., 2019) on 4 V100 GPUs. Finally, the best per-
forming models on the validation sets were selected
and applied for decoding the test sets. Furthermore,
we trained three independent models with different
random seeds to perform ensemble decoding.

3.4 Results

In Table 5, we show the evaluation scores that the
multimodal NMT with universal visual represen-
tation and mBART25 finetuning models achieve.
In the constrained setting (a.k.a, task (a)), we ob-
served that the MNMT single model (MNMTsin.)
decoding results unexceptionally lagged behind
that of the ensemble decoding (MNMTens.) in both
directions. Without any other resources except pre-
trained image features, our best submissions of
NNMT with UVR win the first place in BLEU as
well as human adequacy scores on the WAT leader-
board for the Japanese→English task (a). More-
over, the MNMTens. model can outperform the
mBART25 finetuning model (mBARTsin.) using
external models/embeddings by 0.17 BLEU score
in the English→Japanese task (a), which validates
the effectiveness of exploring visual information
for machine translation.

Under the unconstrained setting, the text-
only mBARTsin. models achieved significant im-

10https://github.com/pytorch/fairseq/b
lob/master/examples/mbart/

Task Model BLEU AMFM Human
en-ja (a) MNMTsin. 42.09 - -
en-ja (a) MNMTens. 43.09 - 4.67

en-ja (b) mBARTsin. 42.92 64.83 -
ja-en (a) MNMTsin. 51.53 - -
ja-en (a) MNMTens. 52.20 - 4.54

ja-en (b) mBARTsin. 55.00 58.00 -

Table 5: Comparisons of MNMT with UVR and
mBART25 finetuning best models results in the
Japanese↔English multimodal task: (a) constrained
setting, (b) unconstrained setting. Note that the human
evaluation scores shown in the table are referred to be
the adequacy scores.

provement over the MNMT (UVR) single mod-
els by 0.83 and 3.47 BLEU scores in the
English→Japanese and Japanese→English tasks,
respectively. Compared with other submissions,
our mBARTsin. model decoding achieve the first
place in both BLEU scores and AMFM scores on
the WAT leaderboard for the Japanese→English
(b). It indicates that the advantages of pre-training
are substantial in the Flickr30kEnt-JP translation
tasks, in spite of the help of another modality (i.e.,
images) associated to the input sentences.

4 Multilingual Indic Task

4.1 Task Description

The Multilingual Indic task covers English (en)
and 10 Indic (in) Languages: Bengali (bn), Gu-
jarati (gu), Hindi (hi), Kannada (kn), Malayalam
(ml), Marathi (mr), Oriya (or), Punjabi (pa), Tamil
(ta) and Telugu (te). Multilingual solutions span-
ning 20 translation directions, en↔in were en-
couraged in form of many2many, one2many and
many2one models. We train one2many for en→in
and many2one for in→en directions.

We use the parallel corpora provided by the or-
ganizer for training, validation, and evaluation. Ta-
ble 6 shows the statistics of the entire training data
and PMI dataset specific statistics (Haddow and
Kirefu, 2020).

4.2 Data Processing

We normalize entire Indic language data using In-
dic NLP Library11 version 0.71. After that, we
use the 250,000-token SentencePiece model from
mBART and prepend source and target tokens to

11https://github.com/anoopkunchukuttan
/indic nlp library
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Language
bn gu hi kn ml mr or pa ta te

Train 1,756,197 518,015 3,534,387 396,865 1,204,503 781,872 252,160 518,508 1,499,441 686,626
- PMI 23,306 41,578 50,349 28,901 26,916 28,974 31,966 28,294 32,638 33,380

Dev 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Test 2,390 2,390 2,390 2,390 2,390 2,390 2,390 2,390 2,390 2,390

Table 6: Statistics of the Multilingual Indic datasets. Each language is paired with English. The PMI dataset is
used for adaptation.

Direction System Indic Language
bn gu hi kn ml mr or pa ta te

en2in
ORGANIZER 5.58 16.38 23.31 10.11 3.34 8.82 9.08 21.77 6.38 2.80
mBART50 - ft.1n 11.09 23.25 35.57 13.57 10.94 15.99 17.81 29.37 12.58 11.86

+adaptation on PMI 13.83 25.27 36.92 18.83 8.13 17.87 17.88 30.93 13.25 15.48

in2en
ORGANIZER 11.27 26.21 28.21 20.33 13.64 15.10 16.35 23.66 16.07 14.70
mBART50 - ft.nn 26.69 38.73 41.58 34.11 32.23 31.76 32.67 40.38 31.09 33.87

+adaptation on PMI 27.92 39.27 42.61 35.46 33.21 32.06 32.82 41.18 31.94 35.44

Table 7: BLEU results on the Multilingual Indic task

each source and target sentence, respectively. We
then binarize the data using Fairseq (Ott et al.,
2019) framework. Following Section 2.2, we also
train with temperature-based sampling to address
dataset imbalance.

4.3 Model
Similar to our use of the pre-trained mBART50
model from Section 2.3, we use multilingual fine-
tuning and model extension for Oriya, Punjabi, and
Kannada using randomly initialized vectors. We
use the same model architecture as mBART50 and
run Adam optimization using β1 = 0.9, β2 =
0.98, and ε = 1e−6. We use a maximum batch
size of 512 tokens and gradients were accumulated
every 4 mini-batches on each GPU. We ran our
experiments on 8 NVIDIA V100 GPUs. Table 2
shows the details of our experimental settings.

We finetune one2many pre-trained mBART50
(mBART50 - ft.1n) for en→in on entire training set
for six epochs. We further adapt this model on PMI
dataset given as part of the training set for nine
epochs. Similarly, we finetune many2many pre-
trained mBART50 (mBART50 - ft.nn) for in→en
on entire training set for six epochs and adaptation
on PMI dataset for one epoch.

4.4 Results
Table 7 shows our experimental results in terms of
BLEU scores. As a baseline, we compare our mod-
els with the organizer’s bilingual base Transformer
model trained on the PMI dataset (ORGANIZER).
We observe an average improvement of 7.4 BLEU
points over this baseline across all en→in pairs
by finetuning the mBART50 - ft.1n model for 6

epochs. Further adaptation on the PMI dataset for
12 epochs results in an average improvement of 1.6
BLEU points. For en→ml, we observe a drop from
10.94 to 8.13 on adaptation. Similarly, we observe
an average improvement of 15.76 BLEU points
over baseline across all in→en pairs by finetuning
the mBART50 - ft.nn model for 4 epochs. Further
adaptation on the PMI dataset for a single epoch
results in an average improvement of 0.88 BLEU
points. Table 8 and 9 show official AMFM and
human evaluation results (top three systems for ten
translation directions) respectively. Our systems
ranked second 6 times out of the 10 directions for
which human evaluation results are available, while
SRPOL has consistently outperformed all systems.
This demonstrates the efficacy of using mBART
models for multilingual models. Complete eval-
uation results are available in the overview paper
(Nakazawa et al., 2021).12

5 Myanmar-English Translation Task

5.1 Task Description
In the ALT+ tasks, we conducted experiments on
the Myanmar-English parallel data which was pro-
vided by the organizers and consist of two corpora,
the ALT corpus (Ding et al., 2019, 2020) and UCSY
corpus (Yi Mon Shwe Sin and Khin Mar Soe, 2018).
The ALT corpus consists of 18,088 training sen-
tences, 1,000 validation sentences, and 1,018 test
sentences. The UCSY dataset contains 204,539
training sentences. The quality of the UCSY cor-
pus used in WAT2021 was improved by correcting

12Our training scripts are available at https://github
.com/sukuya/indic-mnmt-wat2021-sakura.
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Direction System Indic Language
bn gu hi kn ml mr or pa ta te

en2in
ORGANIZER 70.15 75.71 75.97 74.19 70.68 73.07 71.45 76.24 72.32 70.81
mBART50 - ft.1n 73.77 81.02 81.09 80.19 79.45 79.09 76.74 80.14 79.11 77.21

+adaptation on PMI 76.47 81.34 81.70 81.78 80.19 80.36 76.99 80.22 79.57 78.51

in2en
ORGANIZER 61.31 72.66 73.61 69.20 64.66 65.81 73.08 70.15 67.60 63.60
mBART50 - ft.nn 77.24 82.07 83.42 80.51 80.55 79.58 80.82 82.35 79.61 80.20

+adaptation on PMI 77.29 81.86 83.45 80.97 80.68 79.55 80.60 82.34 79.04 80.40

Table 8: AMFM results on the Multilingual Indic task

Direction Rank
I II III

en→bn 4.65 (SRPOL) 4.39 (sakura) 3.94 (IIITH)
bn→en 4.80 (SRPOL) 3.82 (IIITH) 3.59 (mcairt)
en→kn 4.72 (SRPOL) 4.57 (sakura) 4.00 (IIITH)
kn→en 4.72 (SRPOL) 4.49 (sakura) 3.94 (IIITH)
en→ml 4.41 (SRPOL) 3.54 (CFILT) 2.72 (IIITH)
ml→en 4.03 (SRPOL) 3.99 (sakura) 3.71 (IITP-MT)
en→mr 4.34 (SRPOL) 4.14 (CFILT) 3.84 (IIITH)
mr→en 4.57 (SRPOL) 4.35 (sakura) 4.01 (IIITH)
en→or 4.26 (SRPOL) 3.82 (IIITH) 3.76 (CFILT)
or→en 4.37 (SRPOL) 4.25 (sakura) 3.42 (IIITH)

Table 9: Human evaluation results for the top three sys-
tems on the Multilingual Indic task. Bold values repre-
sent our system.

Dataset English Myanmar
P1 original original
P2 clean + tokenize original
P3 clean clean
P4 clean clean + word tokenize
P5 clean clean + syllable tokenize
P6 clean + tokenize clean + word tokenize
P7 clean + tokenize clean + syllable tokenize

Table 10: Preprocessing variations for the Myanmar-
English dataset

translation mistakes, spelling errors, and typograph-
ical errors.13 The model was trained and evalu-
ated by using the dataset provided by the organizer,
mainly for research around simple hyperparameter
tuning of Marian NMT (Junczys-Dowmunt et al.,
2018) without any additional data.

5.2 Data Processing
For the ALT+ tasks, the ALT and UCSY training
datasets were merged first. For cleaning, we re-
moved redundant whitespaces and double quota-
tion marks. We tokenized English sentences using
Moses (Koehn et al., 2007) and Myanmar sentences
using Pyidaungsu Myanmar Tokenizer14 with sylla-
ble and word level segments, which were then fed
into a SentencePiece model to produce subword

13http://lotus.kuee.kyoto-u.ac.jp/WAT/m
y-en-data/

14https://github.com/kaunghtetsan275/p
yidaungsu

units. Slightly different from previous approach
(Wang and Htun, 2020), we generated three En-
glish datasets with different types: (i) original, (ii)
clean, and (iii) clean and tokenized versions. For
Myanmar, we have four types: (i) original, (ii)
clean, (iii) word-level tokenized, and (iv) syllable-
level tokenized. Table 10 describes the resulting
datasets with different preprocessing steps.

5.3 Model
For training, we generated multiple training
datasets by using different combinations of the
datasets in Table 10:

• D1 = {P1}

• D2 = {P1, P2, P6, P7}

• D3 = {P1, P3, P4, P6, P7}

• D4 = {P3, P4, P6, P7}

For both directions on each dataset, we trained in-
dividual Transformer models using the Marian15

toolkit. We created two different parameter con-
figurations as shown in Table 11. We used the
first configuration (Config. 1) on D1 and the sec-
ond configuration (Config. 2) on the rest (D2, D3,
and D4). Note that our second configuration has a
larger vocabulary size and increased regularization
(dropout, label smoothing). All experimental mod-
els in this task were trained on 3 GP104 machines
with 4 GeForce GTX 1080 GPUs in each, and the
experimental results will be shown and analyzed in
the following section.

5.4 Results
Table 12 presents the results of our experiments
on the given ALT test dataset evaluation for two
directions. As our baseline, we trained on the orig-
inal training set (D1) without further preprocess-
ing and using the first model configuration. After
using data augmentation, we observed consistent

15https://marian-nmt.github.io
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Models Config. 1 Config. 2
Vocabulary size 160k 380k
Embedding dim. 1024 1024
Tied embeddings Yes Yes
Transformer FFN dim. 4096 4096
Attention heads 8 8
En/Decoder layers 4 4
Label smoothing 0.1 0.2
Dropout 0.1 0.2
Batch size 12 12
Attention weight dropout 0.1 0.2
Transformer FFN dropout 0.1 0.2
Learning rate 1e−3 1e−4

Learning rate warmup 8000 16000
Trained positional embeddings No Yes

Table 11: Myanmar-English model parameter settings

improvements in BLEU scores in any combination.
This indicates that proper preprocessing steps such
as cleaning and tokenization are crucial for this
task. On en-my, we obtained the highest BLEU of
29.62 when training on D4, which does not include
the original segments P1. On my-en, however, the
highest BLEU is achieved on D2, i.e., 19.75. It
includes the cleaning and tokenization steps, par-
ticularly on the English side. Any forms of tok-
enization, be it word-level or syllable-level, appear
to be helpful for Myanmar. Our best submission
obtained the 6th place on the en-my leaderboard
and the 5th place on my-en.

Task Dataset Config. BLEU
ALT+ en-my D1 1 21.70
ALT+ en-my D2 2 29.25
ALT+ en-my D3 2 29.07
ALT+ en-my D4 2 29.62
ALT+ my-en D1 1 14.80
ALT+ my-en D2 2 19.75
ALT+ my-en D3 2 18.70
ALT+ my-en D4 2 18.50

Table 12: Results on the Myanmar-English translation
task

6 Conclusion

We presented our submissions (team ID: sakura)
to the WAT 2021 shared translation tasks in this
paper. We showed the remarkable effectiveness
of pre-trained models in improving multilingual
and multimodal neural machine translation. On
multilingual translation, models initialized with
mBART50 achieved substantial performance gains
on both NICT-SAP and Multilingual Indic tasks.
On multimodal translation, a text-only model with

mBART25 pre-training improves upon an MNMT
model based on UVR. Finally, we extended our
data augmentation approaches on the Myanmar-
English translation tasks and obtained further im-
provements.
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1578, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

104



Dongzhe Wang and Ohnmar Htun. 2020. Goku’s par-
ticipation in WAT 2020. In Proceedings of the
7th Workshop on Asian Translation, pages 135–141,
Suzhou, China. Association for Computational Lin-
guistics.

Yi Mon Shwe Sin and Khin Mar Soe. 2018. Syllable-
based myanmar-english neural machine translation.
In Proc. of ICCA, pages 228–233.

Zhuosheng Zhang, Kehai Chen, Rui Wang, Masao
Utiyama, Eiichiro Sumita, Zuchao Li, and Hai Zhao.
2019. Neural machine translation with universal vi-
sual representation. In International Conference on
Learning Representations.

105



Proceedings of the 8th Workshop on Asian Translation, pages 106–116
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics

BTS: Back TranScription for Speech-to-Text Post-Processor using
Text-to-Speech-to-Text

Chanjun Park1, Jaehyung Seo1, Seolhwa Lee1, Chanhee Lee1
Hyeonseok Moon1, Sugyeong Eo1, Heuiseok Lim1†

1Korea University, South Korea
{bcj1210,seojae777,whiteldark, chanhee0222}@korea.ac.kr

{glee889, djtnrud, limhseok}@korea.ac.kr

Abstract

With the growing popularity of smart speak-
ers, such as Amazon Alexa, speech is becom-
ing one of the most important modes of human-
computer interaction. Automatic speech recog-
nition (ASR) is arguably the most critical com-
ponent of such systems, as errors in speech
recognition propagate to the downstream com-
ponents and drastically degrade the user ex-
perience. A simple and effective way to im-
prove the speech recognition accuracy is to
apply automatic post-processor to the recogni-
tion result. However, training a post-processor
requires parallel corpora created by human an-
notators, which are expensive and not scal-
able. To alleviate this problem, we propose
Back TranScription (BTS), a denoising-based
method that can create such corpora without
human labor. Using a raw corpus, BTS cor-
rupts the text using Text-to-Speech (TTS) and
Speech-to-Text (STT) systems. Then, a post-
processing model can be trained to reconstruct
the original text given the corrupted input.
Quantitative and qualitative evaluations show
that a post-processor trained using our ap-
proach is highly effective in fixing non-trivial
speech recognition errors such as mishandling
foreign words. We present the generated par-
allel corpus and post-processing platform to
make our results publicly available.

1 Introduction

Automatic speech recognition (ASR) is a tech-
nology that converts human voice into text. With
the emergence of deep learning, the performance
of ASR has been improved considerably. Conse-
quently, many firms are applying ASR to their busi-
ness models (Kaya et al., 2020).

Although several excellent commercial API sys-
tems are available, such as Google Cloud Speech
API (Aleksic et al., 2015) and Naver’s CLOVA

† Corresponding author

Speech (Chung, 2019), most small- and medium-
sized companies are building their own ASR soft-
ware using open-source tools such as Kaldi (Povey
et al., 2011) owing to the need for domain-specific
systems as well as security of in-house industrial
data (Vajpai and Bora, 2016). In addition, many
companies are operating on conventional ASR
architectures, such as Gaussian mixture models
(GMMs) (Stuttle, 2003) and hidden Markov mod-
els (HMMs) (Gales and Young, 2008), which are
based on acoustic and language models.

However, a drawback of the above-mentioned
method is that words that are not in the dictio-
nary are misrecognized as incorrect words owing
to the out-of-vocabulary (OOV) problem. As this
method is a statistics-based method, satisfactory
performance is achieved only when a massive voice
database is available . Probability values for se-
quences of words that are not present in the train-
ing corpus are estimated to be unstable, and it is
difficult to sufficiently reflect the context because
n values are constrained in n-grams. Moreover, the
entry barrier is high because it is difficult for non-
professionals to handle the model.

To alleviate these limitations, ASR studies have
recently been conducted using pretrained model
(PM)-based transfer learning (Baevski et al., 2020;
Hjortnæs et al., 2021; Zhang et al., 2021). This
methodology shows superior performance com-
pared to methods based on the conventional ASR
architecture; however, it has two main limitations
in terms of applying it to real-world services.

First, from the data aspect, this methodology re-
quires a large amount of training data for pretrain-
ing to service the ASR software. As it is strongly
dependent on the data size, it is difficult to apply it
to a low-resource language (LRL), such as Korean.
Furthermore, as the latest studies are based on a
high-resource language (HRL) with sufficient train-
ing data, the same performance cannot be achieved
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if the same model is applied to an LRL without any
special processing.
Second, from the service environment aspect, this
methodology requires service circumstances with
sufficient computing power (e.g., GPU) to process
large-scale data. It is difficult to establish a suffi-
cient hardware environment to provide services, ex-
cept for large companies such as Google and Face-
book. In other words, as training a model involves
many parameters and a large amount of data, com-
panies that do not have sufficient server or GPU
environments will find it difficult to configure the
service environment and improve performance us-
ing the latest model (Park et al., 2020c). Therefore,
it is important to ensure that companies with in-
sufficient environments can provide services while
performing well against LRLs. To this end, instead
of PM-based transfer learning, a new method for
improving ASR performance is required.

To alleviate these limitations, some studies have
attempted to improve the performance of the ASR
model through various pre-processing and post-
processing methods without changing the model
(Jeong et al., 2003; Jung et al., 2004; Voll et al.,
2008; Mani et al., 2020; Liao et al., 2020). This
approach does not require a large amount of data
for pretraining the model and it can be applied
to any model as well as models that can provide
sufficient service with a CPU (Klein et al., 2020),
such as the vanilla Transformer (Vaswani et al.,
2017). In this regard, this method can alleviate the
above-mentioned limitations in terms of the data
and service environment. Hence, this method is
particularly important from the viewpoint of LRLs.

Accordingly, we propose Back TranScription
(BTS), a fully automated data construction method
for a sequence-to-sequence (S2S)-based post-
processor model that does not require human inter-
vention or model modification. The contributions
of this study are as follows.

• We propose BTS, a simple and effective
method for generating ASR post-processor
training corpus without expensive human la-
bor. As this approach does not require human
intervention, it can create a vast amount of
training data from raw text, which drastically
reduces the cost of building such a model.

• We discuss the characteristics and effective-
ness of our approach on the basis of extensive
quantitative and qualitative evaluations.

• We present the generated parallel data and
post-processing platform to make our results
publicly available*.

2 Related Work

ASR post-processing is a research field that aims to
improve performance by correcting the ASR errors
rather than changing the model architecture. The
two main methodologies for ASR post-processing
in the field of speech recognition are the conven-
tional methodology and the sequence-to-sequence
(S2S) methodology.

Conventional Methodology The conventional
methodology is based on rules and statistics. Firms
attempt to improve ASR performance by build-
ing their own rules while providing ASR services.
They apply linguistic rules to improve the quality
of the speech recognition results. The drawback
of this methodology is that it involves high costs
and requires a long time to produce abundant rules.
Moreover, conflicts between rules may occur. Fur-
thermore, each component must be implemented
independently (Paulik et al., 2008; Škodová et al.,
2012). Some post-processing studies have been
conducted using the N-gram language model; how-
ever, the statistics-based method requires a large
amount data and cannot consider the context (Cucu
et al., 2013; Bassil and Semaan, 2012).

Sequence-to-Sequence (S2S) Methodology
The S2S methodology corrects errors in the same
way as the machine translation process (Vaswani
et al., 2017; Baskar et al., 2019; Park et al.,
2020a). Based on the S2S model, the STT result
is vectorized using an encoder and the vector
is then decoded to generate a human-modified
STT sentence. This methodology outperforms the
conventional method based on rules and statistics.
However, the ASR post-processor based on the
S2S methodology has some limitations in terms of
data construction and industrial service.

First, from the data construction aspect, no open
data are available for training, and a parallel corpus
must be manually built for the ASR post-processor.
The training data are of the form (speech recogni-
tion sentence, human post-edit sentence), and con-
structing such data involves human intervention to
transcribe the speech. In other words, considerable
time and effort are required to construct the data. In
addition, quality differences may occur depending

*http://nlplab.iptime.org:32260/
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on the transcriber. Different individuals may tran-
scribe the same sentence differently, resulting in
performance degradation of the model. Hence, we
aim to alleviate the limitations of S2S-based data
construction through BTS using Text-to-Speech-to-
Text (TST). This method can reduce the cost and
time required for data construction and is free of
the quality issues related to human transcription.

Second, from the service aspect, although most
recent NLP studies are based on the pretrain-
finetuning approach (PFA), small- and medium-
sized enterprises lack sufficient hardware; hence,
there are many limitations in terms of using the
technology to service NLP application software ow-
ing to low speed and insufficient memory. Although
methods such as XLM (Lample and Conneau,
2019), MASS (Song et al., 2019), and mBART (Liu
et al., 2020) show the best current performance, the
corresponding models are too large in terms of the
number of parameters and model size. Therefore, it
is still unreasonable to provide practical services in
the industry. Furthermore, as this methodology is
dependent on the data size, it can be easily applied
to an HRL whereas its application to an LRL is
limited.

This study is similar to studies on automatic post-
editing (APE) (Chatterjee et al., 2019) and gram-
mar error correction (GEC) (Bryant et al., 2019).
However, APE performs post-processing on ma-
chine translation results while GEC is designed to
correct grammar, i.e., their post-processing targets
are different. In addition, these methods are mainly
based on an HRL-based pretrained language model
(PLM) such as XLM, MASS, or UniLM (Dong
et al., 2019). Hence, it is difficult to apply them
to services provided by small- and medium-sized
enterprises with insufficient environments.

In this study, we use the vanilla Transformer,
which can be easily applied to the required service.
In contrast to previous studies, we conduct an ex-
periment on the Korean language, which is an LRL,
and we make the model constructed in this study
freely available.

3 Proposed Method

3.1 Background

In this study, we introduce four mainstream at-
tributes reflecting the readability and satisfactori-
ness of ASR service in order to provide high-
quality service to end users of our BTS mecha-
nism, which can be used for training the ASR post-

processor.

Spacing The first limitation is related to segmen-
tation, i.e., the spaces are generally not adequately
separated in the speech recognition result. To solve
this problem, many studies have investigated an
automatic spacing module; however, few studies
have focused on ASR (Lee and Kim, 2013; Choi
et al., 2021). Thus, the satisfactoriness of ASR ser-
vice, which is used by end users, is low, and the
speech recognition results will lack credibility if
this problem is not resolved.

Foreign Word Conversion The second limita-
tion is the foreign word conversion problem. For
example, for the sentence “The Lotte tower
is on the 123rd floor.”, the ASR ser-
vice outputs “The 롯데 타워 is on the
123rd floor.”. In other words, 롯데 타워 is
not converted into Lotte tower. We refer to
this problem as the foreign word conversion prob-
lem. Although it is not a critical problem, solving
it can improve the readability and satisfactoriness
of the ASR system for end users.

Punctuation The third limitation is related to
punctuation (e.g., period, comma, exclamation and
question marks). The correct output of the ASR
system should be “where are you going?”;
however, the general ASR system outputs “where
are you going” without the question mark.
Thus, the lack of punctuation makes it problem-
atic for the end users to understand the purpose of
sentence segmentation. This could lead to complex
issues in the recognition of end users’ utterance
intentions in terms of who wants to use the out-
put. Furthermore, commercial ASR systems typ-
ically do not use punctuation when they provide
services (Ha et al., 2020). Several studies (Yi et al.,
2020; Guan, 2020) have attempted to solve these
punctuation problems independently.

Spelling Errors The fourth limitation is related
to spelling errors, which frequently occur in the
ASR result. Although previous studies (Kiyono
et al., 2019; Choe et al., 2019; Park et al., 2020a)
have investigated spelling correction, few have fo-
cused on ASR.

3.2 Back TranScription (BTS)

BTS is a technique that is integrated with TTS and
STT to yield a parallel corpus. The process of build-
ing a parallel corpus involves the following steps:
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Figure 1: Overall architecture of BTS and ASR post-processor. Note that the red words in the source sentence are
ungrammatical words. The source sentence means “Fine dust occurs many diseases when it comes to our bo” and
the target sentence means “Fine dust occurs many diseases when it comes to our body.”.

No Filter Filter TestTrain Valid Train Valid
src tgt src tgt src tgt src tgt src tgt

# of sents 224,987 224,987 5,000 5,000 214,318 214,318 5,000 5,000 5,000 5,000
# of tokens 7,319,788 7,731,924 160,773 167,888 7,117,361 7,447,350 136,496 143,044 165,781 172,590
# of words 1,950,669 1,900,409 42,968 41,780 1,887,843 1,830,500 36,655 35,961 43,482 41,472

avg of SL4 32.53 34.37 32.15 33.58 33.21 34.75 27.3 28.61 33.16 34.52
avg of WS 8.67 8.45 8.59 8.36 8.81 8.54 7.33 7.19 8.7 8.29
avg of SS 7.67 7.45 7.59 7.36 7.81 7.54 6.33 6.19 7.7 7.29

# of K-toks ∗ 5,503,227 5,599,442 121,131 122,502 5,365,092 5,420,594 103,667 104,961 123,566 124,203
# of E-toks 32,389 61,294 504 829 30,217 57,203 463 724 1,162 2,262
# of S-toks 2,181 338,459 55 6,675 1,769 307,339 21 5,682 74 6,873

Table 1: Statistics of our parallel corpus results on TST with and without a filter. We define the original col-
loquial sentences as the target (tgt) and the generated sentences after TST as the source (src). Moreover, we
attempt to identify the linguistic features of our parallel corpus, including # of sents/tokens/words (number of
sentences/tokens/words);4 avg of SL/WS/SS (average of sentence length/words/spaces per sentence); and ∗ # of
K/E/S-toks (number of Korean/English/special-symbol letter tokens).

1) crawling the pre-built mono corpus in a conve-
nient manner; 2) transformation into speech using
TTS; and 3) outputting the converted result as text
using STT. We aim to apply the BTS mechanism to
the mainstream attributes described in Section 3.1.

In other words, we apply TST to the result of
TTS (i.e., the original mono corpus) and then cre-
ate a pseudo-parallel corpus for the ASR post-
processor. This can be explained in terms of ma-
chine translation as follows: the source sentence is
substituted for the output of TST, and the original
mono corpus is substituted for the target sentence.

TST is the processor for creating ASR errors
from the mono corpus, i.e., the ASR errors can be
generated through TST, which is integrated with
both the TTS module that provides the data for
the STT module and the STT module. The mono
corpus is grounded well in space, can handle for-
eign word conversion and punctuation, and rarely
involves spelling errors. We can develop a high-

quality ASR post-processor based on S2S training
using these processes.

Figure 1 shows the proposed method, including
the BTS architecture and ASR post-processor ar-
chitecture based on S2S training using the pseudo-
parallel corpus, which is derived from BTS. The
module on the left (BTS) shows the target sen-
tence (ground sentence) converted into speech
using the TTS system, which is then converted
into the source sentence (error sentence) through
the STT system. The module on the right (ASR
post-processor) shows the S2S-based ASR post-
processor, which uses the speech of the source sen-
tence as the model input and the target sentence as
the ground truth. In the BTS module, the pseudo-
parallel corpus consists of the target sentence from
the mono corpus and the source sentence converted
from the TTS output (i.e., speech) into the STT
output (i.e., text). The source sentence includes
the above-mentioned errors. Finally, we can train
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the ASR post-processor using the pseudo-parallel
corpus.

3.3 Why BTS?
The advantages of the BTS method in terms of
service can be attributed to five factors.

• First, BTS can build infinite training data
for ASR or other purposes. In general, build-
ing a parallel corpus is expensive and time-
consuming. Moreover, it is difficult to estab-
lish a high-quality parallel corpus. However,
we can easily build an infinite parallel cor-
pus if we exploit the advantages of the mono
corpus through web crawling.

• Second, BTS supports a universal method for
integrating solutions to problems such as spac-
ing, foreign word conversion, punctuation,
and spelling errors using a single model, as the
mono corpus that is used in our method is free
of the above-mentioned problems. Previous
studies have been conducted independently,
whereas our method can resolve these issues
simultaneously.

• Third, commercial ASR systems such as
Google Cloud Speech API can be converted
into domain-specific ASR systems. If a TTS is
produced using only a single corpus of the spe-
cific domain and a post-processor is created
using the constructed parallel corpus, the com-
mercial ASR system can be serviced with a
domain-specific ASR. Companies build their
own ASR system rather than using commer-
cial systems because of the need for a domain-
specific model, which can be built by exploit-
ing the high recognition rate of a commercial-
ized system through BTS. We define these
domain corrections.

• Fourth, our method does not require human
intervention for building a parallel corpus as
it involves automatic generation; therefore, it
achieves significant time and cost savings. In
addition, it is free of the quality issues that
may arise in the case of different human oper-
ators.

• Finally, language extension is simple and
convenient. The commercial system (Aleksic
et al., 2015) provides various TTS and STT
language-specific API services. Therefore, we
can collect a diverse language dataset for BTS.

In summary, BTS is a practical solution that can
enable companies to provide ASR service.

4 Experimental Setup

4.1 Data Collection
Build Mono Corpus The parallel corpus for ex-
perimenting with BTS was set to Korean, which
is an LRL, and we collected it from two differ-
ent sources. First, we extracted 129,987 sentences
from the business and technology TED provided
in a script translated into Korean. Second, we ex-
tracted 105,000 sentences from the Korean-English
translation corpus in AI-HUB (Park and Lim, 2020)

TTS Using the mono corpus, we converted the
text into voice data in the mp3 format using Google
TTS API. Specifically, 129,987 sentences from
TED were divided into 7,969,230 speech tokens
and synthesized with 2,081,115 s of voice data.
Further, 105,000 sentences from AI-HUB were di-
vided into 3,065,086 speech tokens and synthe-
sized with 1,563,990 s of voice data. The voice
data were synthesized using the same WaveNet
model (Oord et al., 2016) as that used for Google
Assistant, Google Search, and Google Translation,
which required less than 36 h and 24 h for the
conversion, respectively. The commercialized API
system was used to lower the entry barrier, thereby
allowing companies that lack a TTS system to use
BTS.

STT The voice data constructed by TTS use
Navers CLOVA Speech Recognition (CSR) API
to proceed with the conversion back to text data.
The speech recognition API uses the same model
as that used for Navers Voice Recognition Notes
and Searches, which requires less than 120 h and
72 h for the conversion, respectively. After this pro-
cess, a parallel corpus of 229,987 sentence pairs,
consisting of the target sentences prior to speech
synthesis and recognition as well as the translated
source sentences, is built for the S2S-based ASR
post-processors.

Parallel Corpus Filtering Parallel corpus filter-
ing (PCF) (Koehn et al., 2020) is the process of
constructing a qualitatively validated parallel cor-
pus. In other words, it is a sub-field of machine
translation in which training data are selected to
ensure high-quality training to improve the perfor-
mance of the model.

In the case of the pseudo-parallel corpus built
through TST, some source sentences are empty or
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Model BLEU GLEU
Base 42.19 N/A
Park et al. (2020a) 50.62 (+8.43) 31.79
No-Filter 55.72 (+13.53) 46.23
Filter 56.56 (+14.37) 46.94

Table 2: Overall BTS performance verification results

too short; they are not recognized owing to uninten-
tional errors in the STT and TTS systems. Thus, we
use the PCF methodology proposed by Park et al.
(2020b) to obtain only high-quality data. A total
of 10,669 sentences are filtered, most of which are
low-quality data obtained because of poor recog-
nition during STT. In addition, we remove pairs
of sentences that are identical or which consist of
special symbol tokens comprising more than 50%
of the total tokens , as these sentences may not be
inconsistent with the learning method.

Final Constructed Pseudo-Parallel Corpus
We compared the performance of the PCF-driven
model with that of the non-progress model to ver-
ify the effectiveness of filtering. For models with-
out filtering (No-Filter), the training data included
224,987 sentences and the verification data in-
cluded 5,000 sentences. For the filtered (Filter)
model, the training data included 214,318 sen-
tences and the verification data included 5,000 sen-
tences. In the case of the test set, 5,000 sentences
of the No-Filter version were constructed to evalu-
ate the performance changes depending on whether
filtering was applied during the training process.

4.2 Model

For the post-processor, we trained the vanilla Trans-
former with the pseudo-parallel corpus, generated
by BTS. The hyper-parameter settings were the
same as those used by Vaswani et al. (2017). Fur-
ther, we used SentencePiece (Kudo and Richardson,
2018) for sub-word tokenization and set the vocab-
ulary size to 32,000. Two GTX 1080ti GPUs were
used in the experiments.

5 Experimental Results

5.1 Data statistics and analysis

Using BTS, we constructed a parallel corpus for
an S2S-based ASR post-processor with 219,318
sentences that are finally processed by PCF.

We conducted a statistical analysis of the con-
structed corpus and a comparative analysis with

and without PCF. The results are summarized in
Table 1.

First, we conducted basic analyses, such as the
number of data, number of tokens, and average
length of sentences. The lengths of the source sen-
tences built using BTS, regardless of whether the
filter was applied, were smaller than those of the
target sentences on average 1.69, 1.37, and 1.36 for
the training, validation, and test datasets, respec-
tively. However, the average numbers of source
sentence words were greater than those of target
sentence words on average 0.245, 0.185, and 0.41
for the training, validation, and test datasets, respec-
tively. Considering the average number of blank
spaces, these results are attributed to the unneces-
sary separation of phrases, even though the source
sentences have a relatively small total number of
tokens.

Second, we analyzed the Korean and English
tokens. In the case of K-tokens, 75,859, 1,333,
and 672 tokens in the training, validation, and test
datasets were lost in the source sentences, respec-
tively. Token loss is the reason for the omission of
sentence endings and suffixes, and it is estimated
that the model reflects the common characteris-
tics of Korean speakers who pronounce the ending
in a slurred manner. In addition, the E-tokens are
transformed into Korean tokens as pronounced and
suitable phonetic values are not obtained. Conse-
quently, 27,946, 293, and 1,100 E-tokens in the
training, validation, and test dataset were lost in the
source sentences, respectively.

Third, the most significant loss was in the case of
S-tokens. The source sentences in the training, val-
idation, and test datasets lost 320,924, 6,141, and
6,799 special symbol tokens, respectively. For ex-
ample, periods, commas, exclamation marks, and
small brackets, which are added to describe the
situation in the transcription of the original data,
tend to be lost in the source sentences. Such special
symbol tokens may sometimes contain actual col-
loquial tones or emotions that are not represented
by the text adequately. Thus, excessive omission of
special symbol tokens is equivalent to the loss of
rich representation information of colloquial forms
that are different from written ones.

In conclusion, we make the model that we have
constructed freely available in order to lower the en-
try barrier for research institutions and mitigate the
cost challenges faced by many small- and medium-
sized enterprises that lack sufficient resources.
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Model Spacing Word Conversion(KO) Word Conversion(EN) Punctuation Overall
Base 89.60 46.87 4.14 0.89 61.84
Filter 91.86 (+2.26) 54.41 (+7.54) 23.41 (+19.27) 61.02 (+60.13) 70.73 (+8.89)

Table 3: BTS performance classified as Automatic Spacing, Word Conversion, Punctuation, and Overall. The F1
scores are reported for each feature. KO: Korean; EN: English.

Input Sentence Output Sentence Type of Error

제가어렸을때우연히티비에서박지성선수가축

구경기를하는모습을보았어요

(When I was young, I watched Park Ji-sung playing
a soccer on티비.)

제가 어렸을 때 우연히 TV에서 박지성 선수가 축
구경기를하는모습을보았어요.
(When I was young, I watched Park Ji-sung playing
a soccer on TV.)

Foreign Word Con-
version

참석자명단을받으려면어느부서에가야하나

(Which department should I go to receive a list of
attendees)

참석자명단을받으려면어느부서에가야하나?
(Which department should I go to receive a list of
attendees?)

Punctuation

너무보고싶은데볼수가없네

(I missyou so much, but I can’t)
너무보고싶은데볼수가없네.
(I miss you so much, but I can’t.)

Spacing

가평은한국의유명한관광지

(Gapyeong a famous tourist spot in Korea)
가평은한국의유명한관광지에요.
(Gapyeong is a famous tourist spot in Korea.)

Spelling errors

감자탕은무료서비스로나온

(Gamjatang is serv for free)
감자탕은무료서비스로나옵니다.
(Gamjatang is served for free.)

Spelling errors

Table 4: Examples of sentences for qualitative analysis

5.2 Quantitative Results
Spelling Correction First, we verified the
spelling correction performance of the BTS-
based ASR post-processor. We employed GLEU
(Napoles et al., 2015) and BLEU (Papineni et al.,
2002) as the performance evaluation metrics.
GLEU is similar to BLEU; the difference is that
GLEU also considers the source information and
is specialized for spelling error correction systems.

Base refers to the BLEU score between the
source and target sentences; we leveraged it as the
baseline for assessing the performance improve-
ment. In addition, we compared the performance
with that of the Korean spelling error correction
model proposed by Park et al. (2020a), who per-
formed ASR post-processing experiments and pub-
lished the model as a demo system†. This study
focused on Korean spelling error correction that is
not specialized in ASR post-processing. However,
as the experiments were performed with respect to
speech recognition error correction, we compared
the performance of this model with that of the pro-
posed model. Through this comparison, we could
assess the spelling correction performance of our
approach. The experimental results are summarized
in Table 2.

Our results show that PCF can improve the cor-
rection performance. The BLUE and GLEU scores
of the No-Filter model were 55.72 and 46.23, re-

†http://nlplab.iptime.org:32288/

spectively. The BLEU score was higher than that
of the base model by 13.53. Further, the BLEU and
GLEU scores of the Filter model were 56.56 and
46.94, respectively. The BLEU score was higher
than that of the base model by 14.37. Thus, PCF
can promote performance improvement.

Furthermore, the BLEU and GLEU scores of
the Filter model were higher than those of the ex-
isting spelling correction model proposed by Park
et al. (2020a) by 5.94 and 15.15, respectively. These
results show that our post-processor can achieve
higher performance in spelling correction.

Automatic Spacing Second, we verified the per-
formance of the BTS-based post-processor in auto-
matic spacing. To measure the multi-class accuracy,
we used the F1-score to correctly locate the spac-
ing in the target sentences. As the Filter model
achieves better performance (see Table 2), further
experiments were based on the Filter model. Our
results can be found in the Spacing part of Table 3.

Using the post-processor, we achieved a scored
that was higher than that of the base model by 2.26.
Thus, BTS can promote correct automatic spacing.

Foreign Word Conversion Third, we demon-
strated the performance of the BTS-based post-
processor in foreign word conversion. For the per-
formance evaluation, we used the F1-score to cor-
rectly locate Korean and English words in the target
sentences. The experimental results are shown in
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the Word Conversion part of Table3.
Compared to the base model, our processor

yielded scores that were higher by 7.54 and 19.27
for Korean and English word conversion, respec-
tively. From these results, we can conclude that
our post-processor facilitates better performance in
word conversion.

Punctuation Attachment Finally, we verified
the performance of the BTS-based post-processor
in punctuation attachment. For the performance
evaluation, we used the F1-score to correctly locate
the punctuation in the target sentences. Our results
are presented in the Punctuation part of Table 3.

The performance score of the BTS-based post-
processor was 60.13 higher than that of the base
model. For the base model, the F1-score of punctu-
ation attachment was 0.89, which indicates that the
base model rarely achieves correct punctuation at-
tachment. This represents the limitation of commer-
cial STT systems. For the test set, the base model
only attached the period (“.”) 32 times, the percent
sign (“%”) 33 times, and the dollar symbol (“$”)
1 time. These limitations can be alleviated by ap-
plying our method. The BTS-based post-processor
facilitates the attachment of the above-mentioned
punctuation marks as well as other fundamental
punctuation marks, such as the question mark(“?”),
exclamation mark(“!”), and comma(“,”), in collo-
quial sentences. Thus, our proposed post-processor
can achieve tremendous improvement in punctua-
tion attachment.

Thus, we have shown the performance improve-
ment for the four above-mentioned criteria. Fur-
thermore, the overall F1-score, calculated by con-
sidering all these criteria in one step, showed an
improvement of 8.89.

5.3 Qualitative Analysis

In addition to the quantitative analysis described
above, we also performed qualitative analysis. Ta-
ble 4 lists some examples of source sentences and
the corrected output of each sentence, generated
by the BTS-based ASR post-processor. As shown
in Table 4, the BTS-based ASR post-processor can
effectively correct errors arising in ASR models.

First, the post-processor can correct foreign
word conversion errors. In Korean sentences, the
foreign word “TV” is generally adopted in its origi-
nal form; however, the ASR system transcribes this
word with its Korean pronunciation, “티비”. Our
results show that the BTS-based post-processor can

effectively correct this error.

Second, it is possible to correct punctuation at-
tachment errors and inappropriate spacing, which
frequently occur in the ASR model. A period (“.”)
or question mark(“?”) can be correctly attached
to each sentence, and spacing errors such as “mis-
syou” can be corrected as ”miss you”. Through this
revision process, we expect that end users can be
provided with clearer sentences.

Third, the BTS-based ASR post-processor can
correct spelling errors or improper sentence end-
ings generated by the speech recognition system.
In particular, for Korean, improper sentence end-
ings often lead to different interpretations of whole
sentences. These issues can be effectively rectified
by our method.

For example, in the case of a missing sentence
ending, the post-processor can restore the sentence
by attaching the omitted part “에요(is)”. In ad-
dition, the word “serv”, which occurs owing to
the recognition error of the sentence ending, can
be corrected with the appropriate word “나옵니다
(served)”.

In summary, by inspecting examples of BTS-
based post-processing, we can conclude that BTS
is an effective approach for dealing with spelling
correction, automatic spacing, foreign word con-
version, and punctuation attachment. This study is
significant in that errors of ASR systems can be cor-
rected without human-labeled data, which require
professional human resources for generation.

6 Conclusion and Future Work

We proposed BTS, which can automatically gen-
erate a parallel corpus from raw corpora to train
ASR post-processors. By combining TTS and STT
systems, ASR noise was injected into the raw text,
and the post-processing model was trained in a de-
noising manner. Quantitative and qualitative eval-
uations showed that our approach can effectively
handle challenging ASR errors, such as foreign
word conversion.

In the future, we plan to investigate different
noising strategies that reflect real-world ASR errors
and make the denoising process more challenging.
Demonstrating the effectiveness of BTS in addi-
tional languages from various language families is
another important direction for future research.
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Abstract

For Japanese-to-English translation, zero pro-
nouns in Japanese pose a challenge, since the
model needs to infer and produce the corre-
sponding pronoun in the target side of the En-
glish sentence. However, although fully re-
solving zero pronouns often needs discourse
context, in some cases, the local context within
a sentence gives clues to the inference of the
zero pronoun. In this study, we propose a data
augmentation method that provides additional
training signals for the translation model to
learn correlations between local context and
zero pronouns. We show that the proposed
method significantly improves the accuracy of
zero pronoun translation with machine transla-
tion experiments in the conversational domain.

1 Introduction

While neural machine translation (NMT) has
demonstrated high performance in single-sentence
translation, it is still challenging to handle linguis-
tic phenomena involving discourse contexts. One
such issue is the translation of zero pronouns (ZP)
in Japanese-to-English translation. In Japanese,
subjects and objects are often omitted when the
listener can infer them from the context. However,
when translating them into English, the omitted
words must be explicitly translated in most cases.
For example, in the following sentence, the subject
omitted in Japanese is the first person, and I has to
be output in English.

うなぎが 食べたいな
unagi-ga tabe-tai-na
eel-OBJ eat-want-PARTICLE
I feel like eating eel.

The prediction of ZPs, essentially, requires un-
derstanding the topic and old information in the dis-
course, or referring to the world knowledge. On the

Figure 1: The proposed method: ZP data augmentation

other hand, linguistic information within the sen-
tence may provide some clues (Kudo et al., 2015).
For example, in the sentence above, the auxiliary
verb たい (want) suggests that the sentence ex-
presses a subjective statement and thus the missing
pronoun is the first person. Here we refer to such
information as local context.

Correlations between local context and ZPs can
be learned by the standard single-sentence neural
machine translation, but it may not be possible
under low-resource conditions. For example, the
translation of conversations, which usually contain
a large number of ZPs, is currently one of the under-
resourced domains.

To address this problem, we propose zero pro-
noun data augmentation to facilitate learning cor-
relations between local context and ZPs (Figure 1).
We augment the training data by deleting personal
pronouns in the source Japanese sentence. This
creates parallel data that include ZPs and provides
additional training signals to learn to predict ZPs.
Our method is simple yet effective: it does not re-
quire any modification to the model architecture
nor additional computation at inference time, but
significantly improves the accuracy of the ZP trans-
lation.
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2 Related Work

2.1 Contextual Neural Machine Translation
As the quality of single-sentence machine transla-
tion has improved dramatically with the advent of
neural machine translation (Sutskever et al., 2014;
Vaswani et al., 2017), translation models that take
wider contexts into account have seen a surge of
interest (Jean et al., 2017; Bawden et al., 2018;
Voita et al., 2019b,a; Ma et al., 2020; Saunders
et al., 2020). In contrast to the studies trying to
incorporate information outside the sentence, in
this work, we propose a method to improve zero-
pronoun translation by only considering the infor-
mation within the sentence, but we also explore the
effect of combining our method with a contextual
machine translation model.

2.2 ZP Resolution in Japanese
In some languages, pronouns are sometimes omit-
ted when they are inferable from the context. Such
languages are called pro-drop languages and the
omitted pronouns are called ZPs.

The translation of ZPs poses a challenge when
the corresponding pronoun is syntactically required
on the target language side: the model has to infer
the omitted pronoun. The task of identifying the
omitted pronouns is called ZP resolution and for
Japanese, this has been a long-standing problem
(Isozaki and Hirao, 2003; Sasano et al., 2008; Ima-
mura et al., 2009; Shibata and Kurohashi, 2018).
Japanese is one of the most difficult languages be-
cause Japanese words usually do not have any in-
flectional forms that depend on the omitted pro-
noun, unlike other pro-drop languages such as Por-
tuguese and Spanish in which ZPs can be inferred
from the grammatical case of other words.

Still, Japanese sentences sometimes contain ex-
pressions indicative of the missing pronoun. For
example, Japanese honorifics naturally indicate the
subject is the second person. In this work, we do
not explicitly solve ZP resolution but let the trans-
lation model learn heuristic relations between ZPs
and local context within the sentence (Hangyo et al.,
2013; Kudo et al., 2015) and produce appropriate
English pronouns.

2.3 ZPs in Translation
In the context of statistical machine translation,
Japanese ZPs are explicitly predicted by consider-
ing verbal semantic attributes (Nakaiwa and Ike-
hara, 1992), local context in the source and target

sentence (Kudo et al., 2015), and incorporated into
the resulting translation.

On the other hand, in neural machine transla-
tion, the missing pronouns can be automatically
inferred by the translation model because of the
nature of end-to-end learning, although the correct-
ness cannot be guaranteed. To improve the quality
of ZP translation, previous studies have explored
a multi-task approach with ZP prediction (Wang
et al., 2016, 2019).

In this study, we propose a ZP data augmentation
method to provide additional training signals useful
to correctly translate ZPs.

3 Is Local Context Useful for Predicting
Zero Pronouns?

Our proposed method is based on the assumption
that local context in Japanese sentences is useful
for predicting ZPs. We begin by analyzing to what
extent ZPs can be inferred from local context, and
what kind of local context is useful.

For the analysis, we use the Business Scene Di-
alogue Corpus (Rikters et al., 2019), which is a
Japanese and English parallel corpus in the conver-
sational domain. Besides the published data, we
also use the in-house version of the corpus, which
amounts to a total of 104,961 sentence pairs.

3.1 Identifying sentence pairs that contain
ZPs.

As the corpus does not contain annotations of ZPs,
we first identify sentence pairs that contain zero
pronouns. We exploit the word alignment infor-
mation from parallel sentences to detect ZPs. The
specific procedure is as follows.

1. We obtain the word alignments of the paral-
lel data with GIZA++1. We use Mecab2 for
Japanese word segmentation, spaCy3 for En-
glish.

2. When a pronoun in an English sentence is
associated with NULL, the pronoun in the En-
glish sentence is considered to correspond to
a ZP in the Japanese sentence.

The resulting number of pronouns is shown in
Figure 2. It can be seen that in the conversational
domain, the first person pronoun I and the second

1https://github.com/moses-smt/giza-pp
2https://taku910.github.io/mecab/
3https://spacy.io/
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I you we they he she us them him her

baseline 35.9 25.4 11.0 3.7 2.2 0.0 2.2 1.9 1.2 0.9
logistic regression 78.2 46.3 17.3 3.8 3.1 0.0 3.6 0.2 0.2 2.9

Table 1: Recall scores of ZP predictions for each pronoun.

Figure 2: The number of English pronouns in the an-
alyzed data. ZP stands for those whose corresponding
pronoun does not appear in the Japanese text.

person pronoun you occur frequently and most of
them (80% ∼) are omitted in Japanese. More in-
frequent pronouns are less likely to be ZPs.

3.2 Extracting local context that co-occurs
with ZPs

To associate the detected ZPs with local context in
Japanese sentences, we extract the words that ap-
pear in their predicates. We did not use a Japanese
syntactic analyzer to detect ZPs but they are as-
sociated with the English pronouns by alignment.
Therefore, we decided to exploit the alignment in-
formation to extract the predicates. We extract the
predicates of the English pronoun and the corre-
sponding words in the Japanese sentence. Specifi-
cally, the following steps were taken.

3. We obtain the dependency tree of the En-
glish sentence with spaCy and extract the
pronoun’s head.

4. The Japanese word aligned to the pronoun’s
head and its subsequent functional words 4 are
extracted as local context.

3.3 Predicting ZPs from Local Context
To investigate the extent to which ZPs can be pre-
dicted from local context, we conducted an anal-

4In this case, the function words are defined as words
with one of the following part of speeches defined in Mecab:
[“particle”, “auxiliary verb”, “symbol”].

ysis by training a logistic regression classifier 5.
The classifier takes the unigrams, bi-grams, and tri-
grams extracted from local context in the Japanese
sentence and predicts the associated pronoun in the
English sentence.

The recall scores of each pronoun obtained with
five-fold cross-validation are shown in Table 1. As
a baseline, we adopt the score of random prediction
according to the training distribution of pronouns.

One can see that the frequent pronouns such as I,
you, we can be predicted with significantly higher
accuracy than the baseline when local context is
used (around 6 to 43 points of improvement). In
contrast, the other infrequent pronouns display sim-
ilar or lower values compared to the baseline. In
summary, we can see that local context is predictive
of the frequent pronouns but not for the infrequent
ones.

To investigate what kind of local context is useful
for prediction, for each output label (i.e., pronoun)
of the logistic regression classifier, we extracted
the input features with higher values in the corre-
sponding weights. As a result, the following words
are interpreted to be relevant.
The first person singular I verbs related to recog-
nition (思う (think),わかる (understand),感じる
(feel)); humble words (申し上げる、存る); and
auxiliary verbs expressing desire (たい).
The second person singular you suffixes express-
ing questions (かな？, ました？); speculations
(でしょ,だろ？), honorifics (仰る,いただける).
The first person plural we obligations (なきゃ,
べき), desire (たい).

For the other pronouns, no local contexts were
found to be interpretable as useful for prediction.

4 ZP Data Augmentation

In the previous section, we confirmed that local
context is useful for predicting ZPs. In this section,
we examine the usefulness of ZP data augmentation
for machine translation.

5We use the implementation of the scikit-learn li-
brary with the default hyperparameters.
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1to1 2to1

baseline 17.07±0.16 / 83.6±1.1 17.07±0.26 / 89.36±0.9
baseline+pro aug 17.07±0.19 / 92.32±1.8 17.11±0.23 / 92.17±1.1

Table 2: Evaluation of the model with ZP data augmentation. The scores on the table are BLEU / ZP evaluation
accuracy. The mean and standard deviation of five runs with different random seeds are reported.

The method artificially creates training data con-
taining ZPs by deleting pronouns in the source
Japanese sentence along with the following parti-
cles. The pronouns to be deleted are detected by
string matching with manually created lists (Ap-
pendix A). The augmented data is supposed to pro-
vide useful training signals for learning correlations
between ZPs and local context.

4.1 Experimental Setups
Corpus We use the Document-aligned Japanese-
English Conversation Parallel Corpus (Rikters
et al., 2020). We also add an in-house conversa-
tional parallel corpus to the training data. The
statistics of the corpus are shown in Table 3.

train train+pro aug dev test

246,541 282,952 2,051 2,020

Table 3: The number of sentences in the corpus.

Model Transformer (Vaswani et al., 2017) was
used as the translation model. We adopt the hy-
perparameters recommended for the corpus of our
size in Araabi and Monz (2020) (Appendix B). In
addition to the single-sentence translation, we also
experimented with the 2to1 setting (Tiedemann and
Scherrer, 2017), in which the previous sentence in
the document is added to the input.
Evaluation We evaluate the overall translation
quality on the test set with BLEU (Papineni et al.,
2002). We also conduct a targeted evaluation with
the ZP evaluation dataset for Japanese-to-English
translation (Shimazu et al., 2020). The ZP evalu-
ation dataset contains 724 triples of a source sen-
tence, a target sentence with a correct pronoun,
and one with an incorrect pronoun. To evaluate a
translation model, we see if the model assigns a
lower perplexity to the correct target sentence, and
calculate the accuracy.

4.2 Results
The results of the experiment are shown in Table
2. We can observe that ZP data augmentation does

not improve the BLEU score, but significantly im-
proves the accuracy of ZP evaluation in both the
1to1 (83.6% to 92.3%) and 2to1 settings (89.3%
to 92.1%). Our method yields a similar degree of
improvement to the 2to1 setting in the ZP evalu-
ation without any computational overhead at the
inference time.

We also confirm that adding the previous con-
text (2to1) does not improve BLEU but pronoun
translation (83.6% to 89.3%), which conforms to
observations in the previous study (Jean et al., 2017;
Shimazu et al., 2020). However, this is not the case
with the ZP data augmentation (92.3% to 92.1%).
We speculate that this is because longer inputs in
the 2to1 setting make it more difficult for the model
to find correlations between ZPs and local context.

5 Conclusion

To address the problem of zero pronoun transla-
tion, we proposed zero pronoun data augmentation.
Through the analysis with the Japanese-English
conversational parallel corpus, we showed that zero
pronouns in Japanese sentences can be predicted to
some extent from local context within the sentence.
In the conversational translation experiment, we
compared a translation model trained on the aug-
mented data with the baseline and demonstrate that
our method significantly improves the accuracy of
zero pronoun translation.

Nevertheless, zero pronoun data augmentation
does not solve the cases where the information nec-
essary for zero pronoun translation exists outside
the sentence. Also, the analysis suggests that local
context is useful for predicting frequent pronouns
such as the first and second-person pronouns, but
not for the third-person pronouns. An interesting
avenue for future work is to explicitly incorporate
discourse-level contextual information such as top-
ics or people involved in the conversation into the
translation models.
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A The pronoun and particle list for pronoun data augmentation

The deletion of pronouns was done by enumerating all combinations from the list of pronouns (Table 4)
and particles (Table 5) and deleting strings that correspond to the pattern from the sentence.

First person singular 私,わたし,僕,ぼく,俺,おれ,わたくし,オレ,ウチ
First person plural 我々,僕ら,われわれ,僕達,僕たち,私達
Second person singular 貴方,貴女,あなた,お前,おまえ,君,あんた
First person plural 君たち,みなさま
Third person singular 彼,彼女,あいつ
Third person plural 彼ら,彼女ら,みんな,皆,皆んな,みなさん,奴ら

Table 4: The list of pronouns for pronoun deletion

Nominative は,が
Accusative を
Dative に
Possessive の
Others も,の方から,のほうから,の方に,のほうに,の方で

のこと,の事,のほうで,から,、

Table 5: The list of particles for pronoun deletion

B Hyperparameters for the Machine Translation Experiment

We choose the hyperparameters of the Transformer model recommended in (Araabi and Monz, 2020).

layers 5
model size 512
feed-forward dimension 2048
number of attention heads 4
encoder/decoder layer dropout 0/0.1
src/tgt word dropout 0.2/0.2
label smoothing 0.3
optimizer Adam with the Noam Learning rate schedule
warmup steps 8000

Table 6: Hyperparameters for the Transformer model.
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Abstract

For updating the translations of Japanese
statutes based on their amendments, we need
to consider the translation “focality;” that is,
we should only modify expressions that are
relevant to the amendment and retain the oth-
ers to avoid misconstruing its contents. In
this paper, we introduce an evaluation met-
ric and a corpus to improve focality evalua-
tions. Our metric is called an Inclusive Score
for DIfferential Translation: (ISDIT). ISDIT
consists of two factors: (1) the n-gram re-
call of expressions unaffected by the amend-
ment and (2) the n-gram precision of the out-
put compared to the reference. This metric
supersedes an existing one for focality by si-
multaneously calculating the translation qual-
ity of the changed expressions in addition to
that of the unchanged expressions. We also
newly compile a corpus for Japanese partially
amendment translation that secures the focal-
ity of the post-amendment translations, while
an existing evaluation corpus does not. With
the metric and the corpus, we examine the per-
formance of existing translation methods for
Japanese partially amendment translations.

1 Introduction

In the world’s globalized society, governments
must quickly announce their statutes worldwide
to facilitate international trade, economic invest-
ments, legislation support, and so on. The
Japanese government addressed this issue in April
2009 by launching the Japanese Law Transla-
tion Database System (JLT) (Toyama et al., 2011)
where it announces the English translations of
Japanese statutes. However, as of January
2020, only 23.4% (163/697) of the translated
statutes in JLT correspond to their latest ver-
sions (Yamakoshi et al., 2020). After amending a
statute, its translation must be promptly updated
to avoid creating confusion among international

readers. Unfortunately, statutory sentences are
much tougher to translate than ordinary sentences
because the former are highly technical, complex,
and long.

Furthermore, when translating statutory sen-
tences that are partially modified by an amend-
ment, we must consider focal translations. That
is, we should only modify expressions that are
changed by the amendment without changing the
others. For example, consider the following sen-
tence: “申立ては、事故の事実を示して、書面
でこれをしなければならない。” (The request
shall be made in a document stating the facts
of the accident.) Its amendment rewrote “事故”
(jiko; accident) to “海難” (kainan; marine acci-
dent). The following revision satisfies the focal-
ity requirement: “The request shall be made in a
document stating the facts of the marine accident”
because it contains minimum modifications. On
the other hand, although “The

:::::::
petition shall be

made in a document
:::::::::
describing the facts of the

marine accident” is fluent and adequate, it is un-
suitable as a revision from the focality perspective
because “申立て” (moshitate; request) and “示し
て” (shimeshite; stating), which are irrelevant to
the amendment, were changed.

Yamakoshi et al. (2020) proposed a machine
translation method for Japanese partially amend-
ment translation that generates translation can-
didates by a Transformer (Vaswani et al., 2017)-
based neural machine translation (NMT) model.
It selects the best one by comparing the candi-
dates with the output of a template-aware sta-
tistical machine translation (SMT) model (e.g.,
(Koehn and Senellart, 2010; Kozakai et al., 2017))
that only changes the affected expressions. They
also proposed an evaluation metric for the focality
of the translations.

However, we argue that two matters from their
study must be improved: the evaluation metric
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第百六十四条①第四項を削り、②第三項後段を削り、③同項第一号中
「の父母」を「（十五歳以上のものに限る。 ）」に改め、④同項
第二号中「前号に掲げる」を「…に対し親権を行う」に改め、
⑤同項第三号を削り、⑥同項を同条第六項とし、⑦同項の次に次の
一項を加える。
７ 特別養子適格の…（省略）

Amendment sentence in an amendment act (Act No. 34 of 2019)

In Article 164, ①delete paragraph 4, ②delete the latter part of 
paragraph 3, ③replace “the parents of” with “(limited to a child of 
15 years of age or older)” in item (i) of the same paragraph, 
④replace “set forth in the preceding item” with “who exercises 
parental authority over …” in item (ii) of the same paragraph, 
⑤delete item (iii) of the same paragraph, ⑥regard the same 
paragraph as paragraph 6 of the same Article, ⑦add the following 
paragraph next to the same paragraph:
7 … of special adoption eligibility … (omitted)

Translation

Figure 1: Amendment sentence

and the dataset. Their metric consists of two fac-
tors: (1) the n-gram recall of expressions unaf-
fected by amendments and (2) a redundant penalty
for lengthy outputs. Although with this metric
we can evaluate how completely the method re-
tained expressions irrelevant to the amendment,
we cannot evaluate how adequately it translated
expressions relevant to the amendment. The sec-
ond is the dataset they used for their experiments.
Their translation examples of partially amended
statutory sentences are from amendment-version-
controlled bilingual statutes in JLT. However,
translations in JLT are not always focal. There-
fore, their reported scores do not seem accurate.

In this paper, we solve these two matters. For
the first, we introduce another metric for focality
called the Inclusive Score for DIfferential Trans-
lation (ISDIT), which incorporates n-gram preci-
sion between the output and the reference instead
of a redundant penalty. With this modification,
the metric simultaneously evaluates the transla-
tion quality of both the changed and unchanged
expressions that indicate the quality of the focal
translation. For the second, we compile a cor-
pus that secures focality between pre- and post-
amendment translations and achieve it by asking
professional human translators to translate focal
post-amendment translations.

This paper makes the following contributions to
amended statutory sentence translation tasks:

• introduces a new metric that more adequately
reflects the focality of translations;

• compiles a translation corpus that ensures the
focality of post-amendment translations;

• examines the translation performance of rele-
vant methods with a metric and a corpus.

This paper is organized as follows. In Section 2,
we clarify the background of our study. In Sec-
tion 3, we explain related work. In Section 4, we
describe our proposal and present our evaluation
experiments and discussions in Section 5. Finally,
we summarize and conclude in Section 6.

2 Background

In this section, we clarify the background of our
study. First, we introduce the partial amendment
process in Japanese legislation from the viewpoint
of document modification and then we identify our
study objective in the process.

2.1 Partial Amendments in Japanese
Legislation

In Japanese legislation, a partial amendment is
created by “patching” modifications to a target
statute. Such modifications are prescribed as
amendment sentences in an amendment statute.
Based on their functions, Ogawa et al. (2008) cat-
egorized such modifications as follows:

1. Modification of part of a sentence: (a) replace-
ment, (b) addition, and (c) deletion.

2. Modification of such structural elements as sec-
tions, articles, items, sentences, etc.: (a) re-
placement, (b) addition, and (c) deletion.

3. Modification of element numbers: (a) renum-
bering, (b) attachment, and (c) shifts.

4. Combined modification of element renumber-
ing and replacement of its title string.

For modifying part of a sentence, Japanese leg-
islation rules (Hoseishitsumu-Kenkyukai, 2018)
mandate that the target expressions must be unique
and form a chunk of meaning.

Figure 1 shows an example of an amendment
sentence prescribed by an amendment act. Any
of the seven modifications in the sentence can be
assigned to one of the categories described above:
Modifications 1⃝, 2⃝, and 5⃝ respectively belong
to category 2. (c) of a paragraph, a sentence, an
item; modifications 3⃝ and 4⃝ belong to category
1. (a); modification 6⃝ belongs to category 3. (c);
modification 7⃝ belongs to category 2. (b).

Most statutes enacted in recent years are amend-
ment statutes. According to Nihon Horei Sakuin
(Index of Japanese Statutes) 1, 78% (73/94) of
acts enacted in 2019 are amendment ones. After

1https://hourei.ndl.go.jp/
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前項の申立ては、海難の事実を示して、
書面でこれをしなければならない。

Pre-amendment original sentence

前項の申立ては、海難の事実及び受審
人に係る職務上の故意又は過失の内容
を示して、書面でこれをしなければな
らない。

Post-amendment original sentence

the request set forth in the preceding 
para-graph shall be made in a 
document stating the facts of the 
marine accident .

Pre-amendment translated sentence

the request set forth in the preceding 
para-graph shall be made in a 
document stating the facts of the 
marine accident and the details of the 
intentional or negligent act committed 
in the course of duties of the 
examinee .

Post-amendment translated sentence
(Our objective)

Amend

Translate

Translate

Update

Figure 2: Differential translations in an amended statu-
tory sentence

amending statutes, we should update their trans-
lations provided in JLT promptly. However, re-
garding the discussion in the introduction, many
statutes available in JLT are out of date, which can
provide wrong legal facts to international readers.

2.2 Objective
To solve the problem discussed in the previous
section, our study focuses on translating partially
amended statutes automatically. More specifi-
cally, it adopts a task declared by Yamakoshi et
al. (2020). Among the categories described in the
previous section, the task focuses on categories
that modify the parts of an existing statutory sen-
tence (i.e., category 1). In Fig. 1, modifications 3⃝
and 4⃝ are the targets. It also targets category 2,
especially modifications that insert an additional
sentence (e.g., a proviso) into an existing element
or delete a sentence since such additions and dele-
tions affect the main sentence. Modification 2⃝ in
Fig. 1, which removes the latter part, is a case.

The task takes a triple of sentences (a pre-
amendment original sentence, a post-amendment
original sentence, and a pre-amendment trans-
lated sentence) as input and generates a translation
for the post-amendment original sentence called
a post-amendment translated sentence. Pre- and
post-amendment original sentences are statutory
sentences in a statute before and after an amend-
ment, respectively. A pre-amendment translated
sentence is a translation of the pre-amendment
original sentence. Figure 2 illustrates this task.

In generating post-amendment translated sen-
tences, Yamakoshi et al. advocated the focality of
translations. This idea argues for only modifying
expressions that are changed by the amendment
without changing the others based on two reasons
from the viewpoint of precise publicization. First,
such sentences clearly represent the amendment
contents, which helps international readers under-

stand them. On the other hand, non-focal trans-
lations contain unnecessary modifications, which
blur the amendment contents. Second, since the
expressions in the pre-amendment translated sen-
tences are assumed to be reliable, reusing them en-
sures translation quality.

For example, assume that an amendment statute
instructs that we should replace “海難の事実”
(kainan no jijitsu; the facts of the marine accident)
with “海難の事実及び…の内容”(kainan no jijitsu
oyobi ... no naiyo; the facts of the marine acci-
dent and the details of ...)” as depicted in Figure 2.
In this case, we should replace “the facts of the
marine accident” in the pre-amendment translated
sentence with “the facts of the marine accident and
the details of ...” and retain the other expressions
to comply with the focality.

We define our task as follows:
Input:

Pre-amendment original sentence WPrO;
Post-amendment original sentence WPoO;
Pre-amendment translated sentence WPrT.

Output: Generated post-amendment translated
sentence ŴPoT.

Requirements:
Focality: ŴPoT should reflect amendment
WPrO to WPoO and preserve the expressions
in WPrT that are irrelevant to the amendment;

Fluency: ŴPoT should have natural phrasing
and syntax;

Adequacy: ŴPoT should have WPoO’s con-
tents without excesses or inadequacies.

3 Related Work

We describe related work in this section. We
overview the suitable machine translation methods
for partially amended sentences in Section 3.1. We
discuss metrics and data in Sections 3.2 and 3.3.

3.1 Method

We consider the focality of translations, which is
uncommon in ordinary machine translation tasks.
To achieve focal translations, the unchanged ex-
pressions must be retained as they appear in the
pre-amendment translation. One solution is us-
ing a template-aware SMT method. Koehn and
Senellart (2010)’s method is a choice, which
can retain the unchanged expressions in the pre-
amendment translations by copying them to the
post-amendment translations.

Kozakai et al. (2017) optimized this method to
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Japanese partially amendment translation by ap-
plying the following two modifications. First, they
used pre-amendment original sentences and their
translations instead of a relevant pair from the
translation memory. Second, to determine objec-
tive expressions, they used the underlined infor-
mation in a comparative table instead of the edit
distance. Such underlined information is more
reasonable as a translation unit than edit distance
since sentence modification is done by a chunk of
meaning in Japanese legislation.

Both methods can meet the focality requirement
by copying the unchanged expressions in the pre-
amendment translated sentences. However, the
translation quality, especially fluency, suffers for
the following three reasons. First, they use SMT
for the translation model, which is typically out-
performed by NMT. Second, their methods com-
pletely lock the unchanged expressions, which
may strongly restrict the translations. Third, they
use word alignment to find English expressions
that correspond to Japanese ones, perhaps weak-
ening their performance due to alignment error.

Yamakoshi et al. (2020)’s method solved these
problems by incorporating NMT with a template-
aware SMT. Their method, which uses an NMT
model and a template-aware SMT model, al-
lows the former to output n-best translations
as candidates by applying Monte Carlo (MC)
dropout (Gal and Ghahramani, 2016) to improve
the output diversity. It then chooses the candidate
that most resembles the interim reference transla-
tion generated from a template-aware SMT model.

3.2 Metrics

Kozakai et al. (2017) used BLEU (Papineni et al.,
2002) and RIBES (Hirao et al., 2014) as automatic
evaluation metrics in their experiment. BLEU’s
calculation is based on n-gram precision between
the system output and references; RIBES’s calcu-
lation is based on word-order correlation. There-
fore, RIBES is more sensitive to drastic structural
modifications. However, both metrics are indiffer-
ent to whether an expression in the system output
is a changed part in the amendment, and thus both
fail to indicate the quality of the focality.

Yamakoshi et al. (2020) proposed focality
scores to solve this issue. A focality score quan-
tizes the focality of the system output by calcu-
lating the recall of the n-grams shared by both
the pre- and post-amendment translations. With

pre-amendment translated sentence WPrT and ac-
tual post-amendment translated sentence WPoT

written by humans, we calculate focality score
Foc(ŴPoT;WPrT,WPoT) of generated sentence
ŴPoT as follows:

Foc(ŴPoT;WPrT,WPoT) (1)

= RP(WPoT, ŴPoT) · Rec(ŴPoT;WPrT,WPoT),

RP(WPoT, ŴPoT)

= min(1, exp(1− |ŴPoT|/|WPoT|)), (2)

where RP avoids overestimating the scores of the
redundant sentences. |W | is the word count of W .
Rec is the recall of the n-grams shared by WPrT

and WPoT, calculated as follows:

Rec(ŴPoT;WPrT,WPoT) = (3)∑
s∈CN(W1)

min(c
ŴPoT

(s), cWPrT
(s), cWPoT

(s))
∑

s∈CN(W2)
min(cWPrT

(s), cWPoT
(s))

,

W1 = {ŴPoT,WPrT,WPoT} (4)

W2 = {WPrT,WPoT}, (5)

where cW (s) is the number of occurrences of
the n-gram s in W , and CN(W), where W =
{W1,W2, · · · ,Wm}, returns common n-grams of
W1,W2, · · · ,Wm:

CN(W) =



s

∣∣∣∣ s ∈
⋂

Wi∈W
ngrams(Wi)



 , (6)

where ngrams(W ) returns all n-grams in W for a
given n. We use multiple lengths of n-grams:

ngrams(W ) =

N⋃

i=1

i-gram(W ), (7)

where i-gram(W ) returns the i-grams of W .

3.3 Data
Kozakai et al. (2017) used JLT bilingual resources
to compile corpora for their experiment. For train-
ing data, they gathered 158,928 Japanese-English
sentence pairs from 407 statutes provided in JLT.
For test data, they selected 17 amendments avail-
able in JLT 2 from which they compiled 158 ex-
amples of sentence amendments, each of which
consists of WPrO, WPrT, WPoO, and WPoT. Ya-
makoshi et al. (2020) also used this corpus for their
experiment.

2JLT has a function to browse statutes and the translations
of different amendment versions.
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Sort Content
WPrO 前項の

:::::::
申立ては、海難の事実を

::::::
示して、

::::
書面でこれをしなければならない。

WPrT The
::::::
request set forth in the preceding paragraph shall be made in

:
a
::::::::::
document

::::::
stating

the facts of the marine accident.
WPoO 前項の

:::::::
申立ては、海難の事実及び受審人に係る職務上の故意又は過失の内容を

::::::
示して、

:::::
書面でこれをしなければならない。

WPoT The
:::::::
petition set forth in the preceding paragraph shall be made in

::::::
writing

:::::::::
describing

the facts of the marine accident and the details of the intentional or negligent act
committed in the course of duties of the examinee.

Focal WPoT The
::::::
request set forth in the preceding paragraph shall be made in

:
a
::::::::::
document

::::::
stating

the facts of the marine accident and the details of the intentional or negligent act
committed in the course of duties of the examinee.

Table 1: Non-focal amendment example

However, some of these examples are not focal
because they contain modifications irrelevant the
amendment. Table 1 describes such an example.
The straight lines in its sentences depict modifica-
tions that correspond to the amendment, and the
wavy lines depict modifications irrelevant to the
amendment. “Request,” “a document,” and “stat-
ing” in WPrT are replaced with “petition,” “writ-
ing,” and “describing” in WPoT, respectively, al-
though corresponding Japanese expressions “申立
て” (moshitate), “書面” (shomen), and “示して”
(shimeshite) was retained throughout the amend-
ment. An ideal translation for WPoT is shown in
the table’s last row that retains all the expressions
irrelevant to the amendment.

4 Proposal

In this section, we propose an evaluation scheme
for Japanese partially amendment translations.
Our evaluation scheme includes a new evaluation
metric ISDIT and a differential translation corpus
that secures the focality of its examples.

4.1 ISDIT Scores

The focality score in Section 3.2 assesses only
the retention rate of the unchanged expressions in
WPrT. That is, it is unaware of the adequacy of
expressions that are relevant to the amendment.
Therefore, we update the focality scores so that
they assess both factors. Our metric, Inclusive
Score for DIfferential Translation (ISDIT), is cal-
culated as follows:

ISDIT(ŴPoT;WPrT,WPoT) = (8)

Pre(ŴPoT;WPoT) · Rec(ŴPoT;WPrT,WPoT),

where Rec is the recall defined in Eq. 3. Pre is
the precision of system output ŴPoT compared to
reference WPoT, which is calculated as follows:

Pre(ŴPoT;WPoT) (9)

=

∑
s∈CN(W)min(c

ŴPoT
(s), cWPoT

(s))
∑

s∈CN({ŴPoT}) cŴPoT
(s)

,

W = {ŴPoT,WPoT}. (10)

For example, we consider the example shown in
Table 2. Case 1 contains an unnecessary modifica-
tion, and Case 2 fails to translate “四十万” (yon-
juman; four hundred thousand) that is relevant to
the amendment. The focality score penalizes the
first case, but not the second case. ISDIT penal-
izes both. From the viewpoint of focal translations
that should reflect the amendment contents, penal-
izing both the unnecessary modification errors and
amended phrase translation errors is preferable.

4.2 Focal Differential Translation Corpus
As discussed in Section 3.3, the differential trans-
lation corpus compiled by Kozakai et al. (2017)
includes non-focal examples. To provide a fairer
evaluation, we compiled a new corpus that se-
cures the focality of every translation example. We
applied the following instructions for the corpus
compilation:
1. Compile the versions of statutes provided in

JLT;
2. Compile those provided in e-LAWS3;
3. Compile statutes whose JLT version lags behind

its e-LAWS version;
3https://elaws.e-gov.go.jp/ e-LAWS (e-

Legislative Activity and Work Support System) provides a
governmental open database of national statutes which are
original (i.e., written in Japanese) and most recent.
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Sort Content ISDIT Foc.
WPrO 解職請求は、八十万人を超える者の連署を要する。 — —
WPrT A request for recall requires joint signatures of more than eight hundred

thousand people.
— —

WPoO 解職請求は、四十万人を超える者の連署を要する。 — —
WPoT A request for recall requires joint signatures of more than four hundred

thousand people.
— —

Case 1 A
:::::::
petition for recall requires joint signatures of more than four hundred

thousand people.
0.82 0.70

Case 2 A request for recall requires joint signatures of more than
::::
forty hundred

thousand people.
0.85 1.00

Table 2: Example for ISDIT calculation (“Foc.” stands for focality score)

Statutes in JLT Statutes in e-LAWS

Statute A (old)

Original
…請求は、二百を
超える者の連署
を要する。…

Translation
… Recall requires 
signatures of two 
hundred people.…

Statute A (new)

Original
…請求は、四百を
超える者の連署
を要する。…

Step 1: compile statutes from JLT

Statute A (old vs. new)

Original (old)
…請求は、二百を
超える者の連署
を要する。 …

Translation (old)
… Recall requires 
signatures of two 
hundred people. …

Original (new)
…請求は、四百を
超える者の連署
を要する。 …

Step 3: map old and new statutes

Sentence𝑊𝑃𝑟𝑂

請求は、二百を
超える者の連署
を要する。

Sentence𝑊𝑃𝑟𝑇

Recall requires 
signatures of two 
hundred people. 

Sentence𝑊𝑃𝑜𝑂

請求は、四百を
超える者の連署
を要する。

Step 4: collect
sentence-level amendments

Step2: compile ones from e-LAWS

Step 6:
manually
translate 𝑊𝑃𝑜𝑇

Sentence𝑊𝑃𝑜𝑇

Recall requires 
signatures of four
hundred people.

Step 5: underline differences

Figure 3: Compilation procedure for a focal corpus

4. Collect sentence-level amendments of such
statutes;

5. Underline the modified expressions in WPrO

and WPoO as if they were highlighted in an ac-
tual amendment statute;

6. Manually translate the WPoT of the amend-
ments by the following instructions:

(a) Correct WPrT in advance if it includes inade-
quate expressions;

(b) Use WPrT as a template of WPoT;
(c) Edit only expressions relevant to the under-

lining in WPrO and WPoO.4

4We allow grammatical modifications (e.g., number

Figure 3 depicts this procedure.
As of April 2021, we compiled 1,483 differ-

ential translation examples from 62 amendment
cases. These examples include the following mod-
ification instances:
• Phrase-level modifications: 786 replacements,

201 additions, and 89 deletions;
• Sentence-level modifications: 8 replacements,

11 additions, and 2 deletions.

5 Experiment

We experimentally evaluated the machine transla-
tion methods with our new resources.

5.1 Outline

For training data, we mixed two bilingual-
statutory sentence corpora. One was made by
Kozakai et al. (2017) from JLT. This corpus con-
sists of 158,928 sentence pairs from 407 statutes.
We compiled the other one from statutes in JLT
that we collected in Step 1 in Section 4.2. Our cor-
pus consists of 232,830 sentence pairs from 462
statutes.

We split our differential translation corpus into
development data and test data by the statutes. The
development and test data respectively consisted
of 745 examples from 30 amendments and 738 ex-
amples from 32 amendments.

We used Transformer (Vaswani et al., 2017) for
the NMT model under the following settings:
six encoder/decoder hidden layers, eight self-
attention heads, 512 hidden vectors, a batch size of
eight, and an input sequence length of 256. We im-
plemented the training and prediction codes based

agreement, tense agreement, article selection) in the expres-
sions outside the amendment if they are triggered by it.
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Model BLEU RIBES ISDIT Focality
Naive Moses 47.93 61.75 29.32 51.54
Naive Koehn model 83.00 92.05 77.31 91.20
Naive Kozakai model 82.79 92.04 77.53 90.62
Naive Transformer 80.72 94.16 71.32 83.64
Transformer + Koehn model 82.39 94.70 75.05 86.66
Transformer + Kozakai model 82.46 94.75 74.69 86.42
Transformer + Koehn model + MC dropout 84.43 96.04 79.33 90.36
Transformer + Kozakai model + MC dropout 84.37 95.80 78.31 89.45
Transformer + WPoT + MC dropout 86.62 96.72 81.95 90.92

Table 3: Experimental results

on the TensorFlow official model 5. We used Sen-
tencePiece (Kudo and Richardson, 2018) as a to-
kenizer and set the vocabulary size to 8,192. We
chose a dropout rate of 0.1 for training, which is
the default setting of the official Transformer im-
plementation. In the prediction phase, we exe-
cuted the model with two dropout rates, 0.0 and
0.1, where a 0.0 dropout means that no dropout
was applied. We investigated the optimal number
of iterations from {100k, 200k, · · · , 2,000k} us-
ing the development data.

The following are the settings of these
template-aware SMTs: GIZA++ (Och and Ney,
2005) for the word alignment, SRILM (Stolcke,
2002) for the language model generation, and
Moses (Koehn et al., 2007) for the decoder. We
used MeCab (Kudo et al., 2004) for the Japanese
tokenizer.

We evaluated the fluency and adequacy with
BLEU and RIBES. For the focality evaluation,
we utilized the focality scores (Yamakoshi et al.,
2020) and our ISDIT. We set the maximum n-
gram length N to 4 in calculating the focality
scores, ISDIT, and BLEU. Using the four metrics,
we compared the following translation models:

• Naive Moses (Koehn et al., 2007);
• Naive Koehn model (Koehn and Senellart,

2010);
• Naive Kozakai model (Kozakai et al., 2017);
• Naive Transformer;
• Transformer + Koehn model;
• Transformer + Kozakai model;
• Transformer + Koehn model + MC

dropout (Yamakoshi et al., 2020);
• Transformer + Kozakai model + MC

dropout (Yamakoshi et al., 2020);

5https://github.com/tensorflow/models/
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Figure 4: ISDIT and focality scores of each example

RIBES ISDIT Focality
BLEU 0.724 0.960 0.833
RIBES — 0.693 0.611
ISDIT — — 0.927

Table 4: Correlation coefficients between evaluation
metrics

• Transformer + WPoT + MC dropout.6

“+” expresses a combination of techniques.

5.2 Results
Table 3 shows our experimental results. We
achieved the same findings as those reported
by Yamakoshi et al. (2020). The combination
of Transformer, a template-aware SMT model,
and MC dropout achieved the best performance
in BLEU and RIBES among the comparisons;
the naive template-aware SMT methods achieved
the best performance in the focality scores; the

6We used WPoT as an “oracular” interim reference.
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Sort Output
WPrO （火災共済協同組合の地区）
WPrT ( district of a fire mutual aid cooperative )
WPoO （火災等共済組合等の地区）
WPoT ( district of a fire and fire-related disaster mutual aid association , etc . )
Output ( district of a fire mutual aid cooperative , etc . )

Table 5: Example with distant ISDIT and focality scores

Model Output
(WPrO) 協会及びその子会社から成る集団における業務の適正を確保するための体制
(WPrT) A system to ensure the appropriateness of the operations in the group forming NHK

and its subsidiary company
(WPoO)

:::::::::::::::::::::::
次に掲げる体制その他の協会及びその子会社から成る集団の業務の適正を確保
するための体制

(WPoT)
:::
The

::::::::
systems

:::::
listed

::::::
below

:::
and a system to ensure the appropriateness of the operations

of a group consisting of NHK and its subsidiary companies
Yamakoshi

:::
The

::::::::::
following

:::::::
systems

::::
and

::::
any

::::::
other system to ensure the appropriateness of the

operations of the group comprised of NHK and its subsidiary company:
Kozakai A system to ensure the appropriateness of the operations of the group forming

:::
the

::::::::
following

::::::::
systems

::::
and

:::
any

:::::
other association and its subsidiary company

Table 6: Translation example in our corpus

template-aware SMT and MC dropout were also
both effective. One different finding from their
report is that using the Koehn model generally
worked more effectively than the Kozakai model.
For our ISDIT metric, the combination methods
of Yamakoshi et al. (2020) outperformed the naive
template-aware SMT methods.

5.3 Discussion

First, we identified the characteristics of ISDIT.
The plots in Fig. 4 indicate the focality and IS-
DIT scores of the Transformer + Kozakai model
+ MC dropout method (hereinafter “Yamakoshi
method”) for each translation example. The fo-
cality score of every example is higher than or
equal to its ISDIT score. This result is natural be-
cause both these metrics share n-gram recall cal-
culation, and ISDIT introduces n-gram precision
that is more severe than the redundant penalty in
the focality scores. We can observe many ex-
amples that have high focality scores but low IS-
DIT scores. Table 5 shows such an example. Ya-
makoshi method’s output evaluated 100.0 focality
scores and 39.74 ISDIT scores. In this example,
however, their system failed to translate “等” in “
火災等,” which denotes a “fire-related disaster.”
This mistake greatly changed the system output
from the reference, which suffered a low ISDIT

score. On the other hand, since expressions shared
by WPrT and WPoT were retained in the system
output with no redundant generation, it received
the maximum focality score.

Table 4 shows the correlation coefficients
among the evaluation metrics. ISDIT and the fo-
cality scores have a high correlation coefficient of
0.927. ISDIT has also a strong relationship with
BLEU, which is 0.960. High coefficients among
them seem to come from a shared calculation strat-
egy that utilizes the n-gram match rate.

Next we conducted a short qualitative analy-
sis of our corpus. Table 6 shows a translation
example. In this example, we replace “協会”
(kyokai) with “次に掲げる体制その他の協会”
(tsugi ni kakageru taisei sonotano kyokai). Its
translation is divided into two parts: “the systems
listed below and” (corresponding to “次に掲げる
体制その他の”) and “NHK” (corresponding to “
協会”), which generally happens in Japanese par-
tially amendments. The Kozakai method (also the
Koehn method) cannot cope with this kind of ex-
amples: They put all the translation of the changed
expression in WPoO to the position where such
changed expression appears in WPrT.

Another tricky point in this case is the trans-
lation of “協会,” which generally means “associ-
ation.” However, here it denotes “NHK” (Japan
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Broadcasting Corporation). The Kozakai method
failed to appropriately translate this word, possi-
bly because it did not use the context of the trans-
lation target, “次に掲げる体制その他の協会.” On
the other hand, the Yamakoshi method success-
fully placed the new expression and adequately
translated “協会.” Its success reflects its use of
the whole sentence in the translation.

6 Summary
We proposed a better evaluation scheme for
Japanese partially amendment translations and de-
veloped a new metric called ISDIT that assesses
the translation quality of both changed and un-
changed expressions. We also compiled a corpus
that secures the focality of translation. Using our
corpus, we observed the characteristics of transla-
tion methods and ISDIT.

Our future work will increase the size of our
corpus so that it can be used for neural network
training, considering the publicization of the cor-
pus. We will also identify the best weighting of
the two factors in ISDIT. Third, we will consider
applications of ISDIT to other domains of version-
controlled documents such as contracts, technical
documents, and product manuals.
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Abstract

In this paper, we introduce our TMU Neu-
ral Machine Translation (NMT) system sub-
mitted for the Patent task (Korean�Japanese
and English�Japanese) of 8th Workshop on
Asian Translation (Nakazawa et al., 2021). Re-
cently, several studies proposed pre-trained
encoder-decoder models using monolingual
data. One of the pre-trained models, BART
(Lewis et al., 2020), was shown to improve
translation accuracy via fine-tuning with bilin-
gual data. However, they experimented only
Romanian→English translation using English
BART. In this paper, we examine the effec-
tiveness of Japanese BART using Japan Patent
Office Corpus 2.0. Our experiments indicate
that Japanese BART can also improve transla-
tion accuracy in both Korean�Japanese and
English�Japanese translations.

1 Introduction

Neural Machine Translation (NMT) has achieved
high translation accuracy in large-scale data condi-
tions. However, translation accuracy of NMT drops
in the lack of bilingual data (Koehn and Knowles,
2017). There are several approaches such as back-
translation (Sennrich et al., 2016) and transfer learn-
ing (Zoph et al., 2016) to address this problem. Fur-
thermore, in addition to these methods, there are
some approaches to use pre-trained models using
only monolingual data.

BERT (Devlin et al., 2019), which is the most
typical pre-trained model, can boost the accuracy
of many downstream tasks compared to models
without BERT via fine-tuning with the task-specific
training data. However, applying BERT to NMT
in fine-tuning form like the other tasks requires
two-stage optimization and does not provide sig-
nificant improvement (Imamura and Sumita, 2019).
Recently, several studies proposed pre-trained
encoder-decoder models using a monolingual data.

Lewis et al. (2020) proposed BART, which is one
of the pre-trained encoder-decoder models. They
demonstrated that BART works well for not only
comprehension tasks such as GLEU (Wang et al.,
2018) and SQuAD (Rajpurkar et al., 2016) but also
text generation tasks such as text summarization
and translation. However, they reported only the
effect of English BART, so they did not investigate
BART trained by monolingual data of another lan-
guage. Furthermore, in the translation task, they
experimented with only Romanian→English trans-
lation, which have subword overlap. Therefore, the
effect in translations between language pairs with-
out subword overlapping is not clear. Furthermore,
they did not experiment in translation direction
where the source language matches the language
of the pre-trained model.

Additionally, we consider that fine-tuning pre-
training models such as BART in translation task
is similar to transfer learning (Zoph et al., 2016).
Transfer learning in NMT is a method that trains
the network of the parent language pair (the parent
model) as the initial network and then fine-tunes
it for the child language pair (the child model).
In the terminology of transfer learning, the pre-
trained BART and fine-tuned model are the parent
model and child model, respectively. Previous stud-
ies have shown that transfer learning works most
efficiently when the source languages of the parent
and child models are syntactically similar (Dabre
et al., 2017; Nguyen and Chiang, 2017). Therefore,
we hypothesize that BART is more effective when
the language pair for fine-tuning is syntactically
similar to the pre-training language.

In this study, we examine the effects of Japanese
BART on the translation task. We use Ko-
rean/Japanese and English/Japanese bilingual data
of Japan Patent Office Patent Corpus 2.0 (JPO cor-
pus) for fine-tuning. We also experiment in both
translation directions of Ko�Ja and En�Ja.
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Language pair Partition Sent. Tokens

Korean / Japanese
train 1,000,000 31,569,641 / 37,282,300
dev 2,000 104,493 / 124,871
test 5,230 271,744 / 320,584

English / Japanese
train 1,000,000 21,071,895 / 25,695,404
dev 2,000 524,88 / 64,838
test 5,668 169,023 / 198,039

Table 1: Data statistics.

2 Related Work

There are some approaches pre-trained encoder
models like BERT (Devlin et al., 2019) to the NMT
task. Imamura and Sumita (2019) used BERT as
an encoder and demonstrated the effectiveness of
two-stage optimization, which first trains param-
eters without BERT encoder, and then fine-tunes
all parameters. Zhu et al. (2020) used BERT rep-
resentations as input embedding and showed more
effectiveness than using BERT as the encoder.

Recently, several studies proposed pre-trained
encoder-decoder models such as MASS (Song
et al., 2019) and BART (Lewis et al., 2020), and
these models can improve the translation accu-
racy via fine-tuning with bilingual data. MASS
(Song et al., 2019) uses monolingual data from both
the source and target languages for pre-training
when applying to the NMT. On the contrary, BART
(Lewis et al., 2020) uses only monolingual data of
target language, unlike MASS. Liu et al. (2020)
trained multilingual BART (mBART) using mono-
lingual data of 25 languages. They indicated that
mBART initialization leads significant gains in low
resource settings. However, Wang and Htun (2020)
showed that mBART cannot obtain improvements
in the Patent task.

3 Experimental Settings

3.1 Implementation
In this study, we use Japanese BART1 base v1.1
(JaBART) trained using Japanese Wikipedia sen-
tences (18M sentences). For fine-tuning, we do
not use an additional encoder like in Lewis et al.
(2020)’s method. Instead, we add randomly initial-
ized embeddings for each unknown subword in
JaBART to both encoder and decoder. We share
the embeddings of characters that match across

1https://github.com/utanaka2000/fairseq/blob/
japanese bart pretrained model

Hyperparameter Value

Embedding dimension 768
Attention heads 12
Layers 6
Feed forward dimension 3072
Optimizer Adam
Adam betas 0.9, 0.98
Learning rate 0.0005
Dropout 0.1
Label smoothing 0.1
Max tokens 4,098

Table 2: Hyperparameters.

languages, such as numbers and units. We also
train baseline models consisting of the same ar-
chitecture as that of JaBART. We use the same
hyperparameters indicated in Table 2 for both fine-
tuning JaBART and training the baseline model.
We fine-tune and train the models using the fairseq
implementation2.

3.2 Data

To train and fin-tune the models, we use Ko–Ja and
En–Ja datasets of JPO corpus. Korean and English
have almost no subword overlaps with Japanese,
because these languages use Hangul, Latin alpha-
bets, and Hiragana/Katakana/Kanji characters, re-
spectively. For Japanese pre-processing, we use
JaBART tokenizer. For Korean and English, we
tokenize sentences using MeCab-ko3 and Moses
scripts4, respectively. Then, we apply the Senten-
cePiece (Kudo and Richardson, 2018) with a 32k
vocabulary size. Table 1 presents the training, de-

2https://github.com/utanaka2000/fairseq
3https://bitbucket.org/eunjeon/mecab-ko
4https://github.com/moses-smt/mosesdecodertree/

RELEASE-4.0
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Ko→Ja Ja→Ko
dev test dev test

Single
Baseline 67.400±.080 / - 71.510±.166 / 0.947±.001 67.816±.028 / - 71.103±.144 / 0.942±.001
JaBART 68.750±.104 / - 72.760±.140 / 0.949±.000 68.563±.065 / - 72.116±.060 / 0.946±.001
∆ +1.350 / - +1.250 / +0.002 +0.746 / - +1.013 / +0.003

Ensemble
Baseline 68.770 / - 73.240 / 0.946 68.590 / - 72.070 / 0.942
JaBART 69.570 / - 73.670 / 0.949 69.440 / - 72.700 / 0.946
∆ +0.800 / - +0.430 / +0.001 +0.850 / - +0.630 / +0.002

En→Ja Ja→En
dev test dev test

Single
Baseline 38.706±.083 / - 42.533±.151 / 0.843±.0.02 37.636±.112 / - 40.873±.231 / 0.843±.001
JaBART 39.146±.077 / - 43.720±.053 / 0.849±.001 38.393±.060 / - 41.943±.084 / 0.851±.001
∆ +0.440 / - +1.187 /+0.005 +0.757 / - +1.070 / +0.008

Ensemble
Baseline 40.360 / - 45.000 / 0.853 39.260 / - 43.140 / 0.853
JaBART 40.270 / - 45.240 / 0.855 39.660 / - 43.780 / 0.857
∆ -0.090 / - +0.240 / +0.002 +0.400 / - +0.640 /+0.004

Table 3: BLEU / RIBES scores of each single and ensemble of three models. The scores of single are the average of
the three models. We indicate the best scores in bold. The scores of ∆ indicate the gains of the fine-tuned JaBART’s
BLEU score over the baseline model.

velopment, and test5 data statics.

3.3 Results

Table 3 shows that the BLEU and RIBES scores of
each single and ensemble model.

In the single model, the fine-tuned JaBART
achieves the highest scores for dev and test data in
both language pairs and translation directions of
Ko�Ja and En�Ja. Specifically, the BLEU scores
of the dev and test data reveal improvements of
0.440-1.350 and 1.013-1.250 from the baseline
models, respectively. The RIBES scores also re-
veal improvements of 0.001-0.007, but there is no
significant difference between the fine-tuned BART
and baseline models.

In the ensemble model6, the fine-tuned JaBART
improves the BLEU and RIBES scores approxi-
mately 0.440-0.850 and 0.001-0.008, respectively,
in the dev and test of Ko�Ja and Ja→En transla-
tions. However, in En→Ja translation, the BLEU
score of the fine-tuned JaBART decreases 0.09 in
the dev and improves 0.240 in the test data. Thus,
in the ensemble scenario, the fine-tuned JaBART
model can improve translation accuracy except for
En→Ja translation.

5In this study, we use test-n data, a union of test-n1, test-n2,
and test-n3 data, for evaluation.

6We submitted the En�Ja ensemble models as the target
for human evaluation.

4 Discussions

We hypothesize that JaBART is more effective
when the language pair for fine-tuning is syntac-
tically similar to the pre-training language, as in
transfer learning. In our experimental settings, Ko-
rean and English are syntactically similar and differ-
ent languages with Japanese, respectively 7. There-
fore, we expect that JaBART is more effective in
the Ko�Ja translations than in the En�Ja transla-
tions. However, Table 3 shows no significant differ-
ences in ∆ scores between the Ko�Ja and En�Ja
translations. These results indicate that syntactic
similarity does not affect the enhancement in the
final BLEU scores.

5 Conclusions

In this paper, we described our NMT system sub-
mitted to the Patent task (Ko�Ja and En�Ja) of
the 8th Workshop on Asian Translation. We com-
pared the baseline and fine-tuned JaBART mod-
els, and demonstrated that the fine-tuned JaBART
achieves consistent improvements of BLEU scores
in language pairs with no subword overlapping,
and irrespective of translation directions.

Contrary to our hypothesis, our experiments indi-
cated no significant difference in the translation ac-
curacy depending on the syntactic similarity. How-
ever, we consider that there are some differences in

7Japanese and Korean are SOV and agglutinative lan-
guages, whereas English is SVO and fusional language
(Masayoshi, 1990; Jeong et al., 2007).
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another aspect such as training process per epoch
and network representations. Therefore, we attempt
to analyze BART fine-tuned using language pairs
with varying syntactic proximities in detail in the
future.
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Abstract 

In this paper, we describe our participation 

in the 2021 Workshop on Asian Translation 

(team ID: tpt_wat). We submitted results 

for all six directions of the JPC2 patent 

task. As a first-time participant in the task, 

we attempted to identify a single 

configuration that provided the best overall 

results across all language pairs. All our 

submissions were created using single base 

transformer models, trained on only the 

task-specific data, using a consistent 

configuration of hyperparameters. In 

contrast to the uniformity of our methods, 

our results vary widely across the six 

language pairs. 

1 Introduction 

The field of machine translation has seen rapid 

innovation in the last few years, with new model 

architectures, pre-training regimens, and 

computational algorithms emerging at a dizzying 

pace. However, translation of these techniques into 

industry practice occurs more slowly. Companies 

utilizing these techniques must take into account 

considerations such as deployment costs (model 

speed and size), scalability, explainability, the 

complexity of training regimens (resource 

constraints limiting independent hyperparameter 

optimization for all language pairs), and risk 

management, against which advances yielding 

performance gains must be weighed.  

For our participation in the 2021 

Workshop on Asian Translation shared task on 

patent translation, we have applied a single, 

standardized data preparation and model training 

pipeline as a way of benchmarking the 

performance of this process. We conducted limited 

experiments to test different parameters, before 

 
1  http://lotus.kuee.kyoto-u.ac.jp/WAT/patent/ 

settling on the approach which provided the best 

overall results across all language pairs. Our NMT 

systems are standard base Transformer (Vaswani et 

al., 2017) models, which were trained using only 

the data resources provided by the task organizers. 

These models used shared subword vocabularies 

created with SentencePiece (Kudo and Richardson, 

2018).  

In contrast to the uniformity of our methods, 

our results varied widely across the six language 

pairs. Different scoring metrics prevent the direct 

comparison of scores from different language 

pairs, but relative to the top performing model in 

each language pair, our scores ranged from 98.84% 

of the top score for the English → Japanese 

language pair, to 83.89% of the top score for 

Korean → Japanese. Below, we describe in detail 

our system architecture, hyperparameter 

configuration, hardware resources, and results. 

2 System Overview 

2.1 Task Description 

The JPC2 patent task consisted of translation in the 

patent domain between English and Japanese, 

Korean and Japanese, and Chinese and Japanese. 

The training data consisted of parallel corpora 

provided by the Japan Patent Office (JPO), with 

training sets containing one million sentence pairs 

for each language pair. The data are drawn from 

four domains, chemistry, electricity, mechanical 

engineering, and physics.1  

2.2 Data Processing 

The data were encoded using subword encodings 

learned from the corpora using the unigram model 

trainer provided by SentencePiece (Kudo and 

Richardson, 2018). To avoid the added complexity 

of using different pre-tokenization strategies for 

System Description for Transperfect 
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different languages, we did not pre-tokenize the 

data prior to learning the subword model. We tested 

vocabulary sizes of 8000 and 32000, as well as 

using shared or split vocabularies for the source 

and target languages. Character coverage was set 

to 0.9995, the recommended value for languages 

with extensive character sets such as Chinese and 

Japanese.  

For the English → Japanese, Korean → 

Japanese, and Chinese → Japanese language pairs, 

we supplemented the corpora with back translation 

(from Japanese into each language), which is a 

common data augmentation technique in NMT 

(Sennrich et al., 2016). The back translations were 

produced by the NMT systems trained for the other 

three directions (Japanese → English, Korean, and 

Chinese). 

2.3 Models 

Our NMT systems were standard base Transformer 

models trained using the Marian NMT framework 

(Junczys-Dowmunt et al., 2018). We trained 

separate, unidirectional models for each language 

pair. Hyperparameters such as label smoothing, 

dropout, learning rate, batch size, number of 

encoder/decoder layers, number of attention heads, 

embedding dimensionality, etc., were held fixed 

across all language pairs. The validation frequency 

was every 500 updates, and training was continued 

for 50 epochs or until the primary validation metric 

(ce-mean-words, or mean word cross-entropy 

score) failed to improve for five consecutive 

checkpoints. Our models were trained on AWS P3 

instances using 4 NVIDIA Tesla V100 GPUs. 

3 Results 

Our results show that for most language pairs, a 

shared vocabulary of size 8,000 achieved the best 

performance. For the Korean → Japanese and 

Japanese → Korean language pairs, using a 

vocabulary size of 32,000 produced better results. 

Using a split vocabulary for these language pairs 

also resulted in better performance, whereas a 

shared vocabulary was advantageous for all other 

language pairs. In all cases, the inclusion of back 

translated training data resulted in higher 

validation scores. Table 1 shows our results in 

terms of BLEU scores (Papineni et al., 2002) as 

calculated on our local machines. Due to 

differences in processing, these scores do not 

match the scores reported by the Organizers. 

4 Discussion 

In this shared task, we set out to identify a single 

configuration of hyperparameters that provided the 

best overall performance across all six language 

pairs. While this approach precluded the possibility 

of obtaining optimal performance for all language 

pairs, it afforded the opportunity to investigate 

which hyperparameters have similar effects on 

different language pairs, and which have varied 

effects on different language pairs. As 

different language pairs require different 

hyperparameters, any parameter that can be held 

fixed during the experimentation stage can create 

significant savings for companies training their 

own machine translation models.  

For instance, variation in parameters such 

as learning rate, dropout, embedding dimensions, 

and tying the weights of the source and target 

embedding layers seemed to have similar effects 

on performance across all language pairs that we 

tested. Using back translated data to augment the 

training sets also appeared to be universally 

beneficial. However, the size of the vocabulary 

seemed to have quite different effects in different 

language pairs. We are not aware of any theoretical 

framework for explaining how the various 

Language Pair Split 32K Split 32K + BT Shared 32K Shared 8K  Shared 8K + BT 

EN → JA 23.2 26.6 23.8 23.8 27.1 

JA → EN 38.9 - 39.4 40.2 - 

KO → JA 46.6 46.8 46.7 45.6 45.6 

JA → KO 52.0 - 50.8 - - 

ZH → JA 30.6 31.6 31.8 31.9 32.9 

JA → ZH 46.2 - 37.6 47.5 - 

Table 1:  BLEU scores for different language pairs and different vocabulary configurations 
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hyperparameters interact to produce such different 

results, nor do we know of any way of predicting 

the optimal hyperparameters for a given language 

pair other than iterative experimentation.  

 If additional resources are used, several 

additional steps have also been shown to be 

effective at boosting performance, but were not 

employed in these experiments in order to maintain 

maximum simplicity. These additional steps 

include using an ensemble of models for decoding, 

using larger model sizes, performing word 

segmentation prior to creating the vocabularies, 

ordering the training data using the output of a 

language model (a technique referred to as 

curriculum learning), and employing an additional 

model for right-to-left re-ranking. 

 With minimal manual intervention, our 

models achieved results ranging from fair to 

excellent. The large variance in the relative 

performance of these systems shows that no “one-

size-fits-all” yet exists for the problem of machine 

translation. Despite monumental advances in the 

field over the past several years, achieving optimal 

performance requires careful selection of 

hyperparameters, and different configurations are 

required for different languages.     
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Abstract

This paper presents the Bering Lab’s submis-
sion to the shared tasks of the 8th Workshop
on Asian Translation (WAT 2021) on JPC2
and NICT–SAP. We participated in all tasks
on JPC2 and IT domain tasks on NICT–SAP.
Our approach for all tasks mainly focused
on building NMT systems in domain-specific
corpora. We crawled patent document pairs
for English–Japanese, Chinese–Japanese, and
Korean–Japanese. After cleaning noisy data,
we built parallel corpus by aligning those
sentences with the sentence-level similarity
scores. Also, for SAP test data, we collected
the OPUS dataset including three IT domain
corpora. We then trained transformer on the
collected dataset. Our submission ranked 1st

in eight out of fourteen tasks, achieving up to
an improvement of 2.87 for JPC2 and 8.79 for
NICT–SAP in BLEU score .

1 Introduction

The WAT 2021 Shared Task (Nakazawa et al.,
2021) 1 focuses a comprehensive set of machine
translations on Asian languages. They gather
and share the resources and knowledge about
Asian language translation through a variety of
tasks on the broad topics such as document-
level translation, multi-modal translation, and do-
main adaptation. Among those tasks, we par-
ticipated on two tasks: (1) JPO Patent Cor-
pus (JPC2), a translation task on patent cor-
pus of Japanese↔ English/Korean/Chinese, and
(2) NICT-SAP IT domain, a translation task on
software documentation corpus of English ↔
Hindi/Indonesian/Malaysian/Thai.

According to the Table 1, both two corpora
mostly consist of technical terms. Specifically, jar-
gon such as “acrylic acid” from JPC2 is not com-

1https://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/index.html

JPC2
JP その中でも、アクリル酸を好適に使

用することができる。
EN Among them, an acrylic acid can be prefer-

ably used.
NICT-SAP IT domain

ID Spesifikasi Antarmuka Pemindaian Virus
(NW-VSI)

EN Virus Scan Interface (NW-VSI) Specifica-
tion

Table 1: Sample sentences of JPC2 and NICT-SAP.

monly used in everyday life. Similarly, terminol-
ogy “Virus Scan Interface” from NICT-SAP cannot
be easily found on the general corpus. Therefore,
we focused on domain adaptation for both tasks.

Our approach begins with collecting rich and
clean sentence pairs from web and public dataset.
For JPC2, we crawled the patent documents from
web for each language pairs then built parallel cor-
pus by pairing each sentence with the similarity
scores between source and target sentence repre-
sentation vectors. For NICT-SAP IT domain, we
collected public dataset, OPUS (Tiedemann, 2012),
and weighted the IT corpus among those corpus
while training. In addition to the rich and clean
additional corpus, we chose transformer (Vaswani
et al., 2017), broadly recognized as a strong ma-
chine translation system.

Our method obtained the new state-of-the-art
results on four out of six JPC2 tasks, especially
amounting to 2.87 absolute improvement on BLEU
scores for Japanese to Korean translation. To vali-
date the effect of the additional data, we conducted
the ablation study on Korean→ Japanese data. Fur-
thermore, our models ranked first place on four out
of eight NICT-SAP IT domain tasks, achieving
8.79 improvement for Indonesian to English.

141



Data # Sen Avg. Len
TrainJP−EN 1,000,000 44.85
DevJP−EN 2,000 53.17
TestJP−EN 5,668 58.63
TrainJP−KO 1,000,000 52.27
DevJP−KO 2,000 83.56
TestJP−KO 5,230 82.67
TrainJP−ZH 1,000,000 53.47
DevJP−ZH 2,000 63.14
TestJP−ZH 5,204 62.37

(a) Statistics of JPC2. “Avg. Len” represents the average of
the number of characters per Japanese sentence.

Data # Sen Avg. Len
DevEN−HI 2,016 10.25
TestEN−HI 2,073 8.74
DevEN−ID 2,023 10.46
TestEN−ID 2,037 8.92
DevEN−MS 2,050 13.00
TestEN−MS 2,050 13.05
DevEN−TH 2,049 12.57
TestEN−TH 2,050 12.40

(b) Statistics of NICT-SAP (IT domain). “Avg. Len” repre-
sents the average of the number of words per English sentence.

Table 2: Data statistics.

2 Task Description

We participate JPO Patent Corpus (JPC2) and
SAP’s IT translation tasks.

2.1 Parallel Corpus

JPO Patent Corpus JPC2 consists of Chinese-
Japanese, Korean-Japanese, and English-Japanese
patent description parallel corpus (Nakazawa et al.,
2021). Each corpus consists of 1M parallel sen-
tences with four sections (chemistry, electricity,
mechanical engineering, and physics).

SAP’s IT Corpus SAP software documentation
corpus (Buschbeck and Exel, 2020) is designed to
test the performance of multilingual NMT systems
in extremely low-resource conditions (Nakazawa
et al., 2021). The dataset consists of Hindi(Hi)
/ Thai(Th) / Malay(Ms) / Indonesian(Id) ↔ En-
glish software documentation parallel corpus. The
number of parallel sentences of each corpus is de-
scribed in Table 2.

Language # Sen Avg. Len
JP – EN 21,254,269 215.31
JP – KO 13,916,372 110.29
JP – ZH 13,881,444 144.44

Table 3: Statistics of additional parallel sentences.
“Avg. Len” represents the average of the number of
characters per Japanese sentence.

2.2 Evaluation metric
The official evaluation metrics are BLEU (Papineni
et al., 2002), RIBES (Isozaki et al., 2010), and
AMFM (Banchs et al., 2015).

3 System Overview

In this section we introduce our approach for two
tasks.

3.1 Data crawling and preprocessing
For JPC2 tasks, we trained the models on com-
bination of the given train dataset (Table 2) and
web-crawled dataset (Table 3). For NICT-SAP
tasks, we trained the models on OPUS dataset with
IT domain corpus weighted (Table 4). For both
tasks, the models were evaluated on the given test
dataset (Table 2).

Patent crawling data Additional data for JPC2
was obtained from WIPO 2 through website crawl-
ing. The JPC2 data (including the evaluation data)
consists only of description section in each doc-
ument. Since our approach is to collect the data
which is very close to the task domain, we filtered
out all sections but the description section to avoid
the redundant noise while training the model.

To pair each sentence, we first split the whole de-
scription into sentences and encoded each sentence
to a representation vector. As a sentence encoder,
we used LASER 3 for Ko–Ja and Universal Sen-
tence Encoder 4 (Cer et al., 2018) for the other
pairs. We then measured the cosine similarity be-
tween each sentence pair and filtered out the pairs
whose score was under threshold.

OPUS data (Tiedemann, 2012) Since the NICT-
SAP IT domain translation task does not pro-
vide the train dataset, we collected it from pub-
lic dataset including GNOME, KDE4, Ubuntu,

2https://patentscope.wipo.int/search/
en/search.jsf

3https://github.com/facebookresearch/
LASER

4https://tfhub.dev/google/
universal-sentence-encoder/3
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En–X GNOME KDE4 Ubuntu ELRC TANZIL Opensubtitles tico-19 QED Tatoeba
HI 145,706 97,227 11,309 245 187,080 93,016 3,071 11,314 10,900
ID 47,234 14,782 96,456 2,679 . 9,268,181 3,071 274,581 9,967
MS 299,601 87,122 120,016 1,697 . 1,928,345 3,071 79,697 .
TH 78 70,634 3,785 . . 3,281,533 . 264,677 1,162

Table 4: Statistics of additional parallel sentences.

Tateoba, Tanzil, QED (Abdelali et al., 2014), tico-
19, OpenSubtitles, ELRC. We downloaded all the
dataset from OPUS site. Table 4 shows the statis-
tics of the data obtained from the site.

3.2 Model configuration

For the NMT system, we used OpenNMT-py
(Klein et al., 2017) 5 to train Transformer (Vaswani
et al., 2017) architecture models with several dif-
ferent parameter configurations for each task. Our
models have 6 encoder layers, 6 decoder layers, a
sequence length of 512 for both source and target
side, 8 attention heads with an attention dropout
of 0.1. Each model was trained on Nvidia RTX
3090 Ti (24GB). We used an effective batch size
of 2048 tokens. We chose Adam (Kingma and Ba,
2014) optimizer with a learning rate of 1, warm-up
steps 8000, label smoothing 0.1 and token-level
layer normalization. We set the data type to the
floating point 32 and applied relative positional
encoding (Shaw et al., 2018) to consider the pair-
wise relationships between the input elements. We
changed the hidden layer size from 512 to 2048
and the feed forward networks from 2048 to 4096
for finding the model to perform best. We saved
the checkpoint every 20,000 steps and choose the
model which performed best on the validation set.

We used google sentencepiece library 6 to train
separate SentencePiece models (Kudo and Richard-
son, 2018) on the source and target sides, for
each language. We trained a regularized unigram
model (Kudo, 2018). For JPC2, we set a vocabu-
lary size of 32,000 for Japanese and Chinese and
16,000 for Korean and English. We set a character
coverage to 0.995. For NICT-SAP, we set a vo-
cabulary size of 8,000 for English and Malaysian
and 16,000 for Hindi, Indonesian and Thai. We
set a character coverage to 0.995. While training
sentence piece models, we used only given train
dataset and only IT domain (Ubuntu, GNOME,

5https://github.com/OpenNMT/OpenNMT-py
6https://github.com/google/

sentencepiece

Sub-task Tokenizer BLEU Rank
En→ Ja mecab 47.44 3 of 15
Ja→ En moses 45.13 1 of 10
Ko→ Ja mecab 75.82 1 of 15
Ja→ Ko mecab 76.68 1 of 10
Zh→ Ja mecab 51.28 2 of 11
Ja→ Zh kytea 42.92 1 of 10

Table 5: Official rank and BLEU scores for JPC2 tasks
on Test-n dataset.

Sub-task BLEU AMFM Rank
En→ Hi 37.23 0.81 1 of 9
Hi→ En 34.48 0.80 4 of 9
En→ Id 53.22 0.85 1 of 9
Id→ En 53.49 0.85 1 of 9
En→Ms 45.96 0.86 1 of 9
Ms→ En 38.42 0.81 2 of 9
En→ Th 34.52 0.70 5 of 9
Th→ En 25.07 0.73 2 of 9

Table 6: Rank and BLEU/AMFM scores for NICT-
SAP IT tasks on leader-board. The rank is scored by
BLEU score.

KDE4) for JPC2 and NICT-SAP, respectively.

4 Result

We participated in JPC2 and NICT-SAP (IT
domain) tasks. JPC2 consists of English–
Japanese (En–Ja), Chinese–Japanese (Zh–Ja) and
Korean–Japanese (Ko–Ja). NICT-SAP consists
of English–Hindi (En–Hi), English–Indonesian
(En–Id), English–Malaysian (En–Ms) and English–
Thai (En–Th).

4.1 JPC2 patent translation task

Table 5 shows overall results on JPC2 dataset. Our
models ranked first in all the tasks whose input is
Japanese. Across overall process, we weighted the
given dataset to the crawled dataset by oversam-
pling.
English – Japanese We collected the additional
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Subtask # Sen Avg. Len w wo
Test-n 5,230 82.67 76.68 74.60
Test-n1 2,000 85.60 75.90 75.11
Test-n2 3,000 80.32 78.13 74.86
Test-n3 230 87.8 64.47 66.25

Table 7: Ablation studies for JPC2 Ja → Ko sub-
task.“w” and “wo” represents the BLEU score of the
model trained with and without the additional dataset,
repectively. “Avg. Len” represents the average of the
number of characters per Japanese sentence.

data 20 times more than the given training dataset.
We noticed that the average of the sentence length
in the collected dataset is much longer than the
given dataset. This represents that the collected
dataset is quite different from original data. There-
fore, we weighted the given train dataset five times
for Ja→ En and two times for En→ Ja task.

In the inference time, we used the seven inde-
pendent models ensemble for Ja→ En and the six
independent models for En→ Ja task. We selected
each model’s checkpoint which performed best in
the validation data. We set the beam size to 7. The
model ensemble method led to a performance im-
provement by 1.25 and 0.85 of the BLEU score
for Ja→ En and En→ Ja, respectively. The best
performance of our model was a BLEU score of
47.44 in the En → Ja and 45.13 in the Ja → En
task.
Korean – Japanese Our collected data 13 times
more than the given one. Similar to En↔ Ja, we
weighted the original dataset three times for both Ja
→ Ko and Ko→ Ja. In the inference time, we used
the five independent models ensemble for both Ja
→ Ko and for Ko→ Ja. We set the beam size to 7.
The best performance of our model was a BLEU
score of 75.82 for the Ko→ Ja task and 76.68 for
the Ja→ Ko task.

To validate the effect of additional data, we con-
ducted an ablation studies on the Ja → Ko task.
Table 7 shows the sub-tasks in the JPC2 dataset.
Each test data in JPC2 can be split according to
the publish year and the way they were collected.
Test-n1 consists of the patent documents published
between 2011 and 2013. Test-n2 and test-n3 con-
sist of patent documents between 2016 and 2017,
but test-n3 are manually created by translating
source sentences. While the model trained with ad-
ditional data outperforms the other model in test-n1
and test-n2, it shows poor performance on test-n3

which consists of manual translations.
Chinese – Japanese Similar to En↔ Ja and Ko
↔ Ja, we weighted the original dataset two times
for both Ja→ Zh and three times for Zh→ Ja. In
the inference time, we used the five independent
models ensemble for Ja→ Zh and seven models
for Zh→ Ja. We set the beam size to 7. The best
performance of our model was a BLEU score of
51.28 in the Zh→ Ja dataset and 42.92 in the Ja
→ Zh dataset.

4.2 NICT-SAP IT domain translation task
Table 6 shows the overall results on NICT-SAP IT
domain. While we trained transformer on OPUS
dataset from scratch, most of the high-ranked mod-
els used the pre-trained mBART (Chipman et al.,
2021) and finetuned it. Therefore, others got bene-
fit from the multilingualism and gigantic additional
corpus. Even though we used relatively small data,
we achieved the state-of-the-art scores on the four
out of eight tasks.

For all language pairs, we weighted IT dataset
(Ubuntu, GNOME, KDE4) 2.5 times to the general
one. We saved the checkpoint at every 20000 step,
then submitted the models which showed the best
performance for validation set. Except for Thai,
our models ranked first on the sub-tasks whose
input is English. Furthermore, our models out-
performed competitors on En↔ Id, achieving an
improvement of 7.83 for En→ Id and 8.79 for Id
→ En dataset. We used relatively rich amount of
dataset in this subtask. In contrast, on the En↔
Th sub-task, our model performed relatively poor
since we used small amount of data to train it.

5 Conclusion

In this work, we described the Bering Lab’s sub-
mission to the WAT 2021 shared tasks. We col-
lected the in-domain dataset for both JPC2 and
NICT–SAP tasks and built transformer-based MT
systems on those corpora. which were trained on
given train dataset and additional crawled patent
data. Our models ranked first place in eight out of
fourteen tasks, amounting a high improvements for
both tasks.
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Abstract

This paper provides the description of
shared tasks to the WAT 2021 by our
team “NLPHut”. We have participated
in the English→Hindi Multimodal trans-
lation task, English→Malayalam Multi-
modal translation task, and Indic Multi-
lingual translation task. We have used
the state-of-the-art Transformer model
with language tags in different settings
for the translation task and proposed a
novel “region-specific” caption generation
approach using a combination of image
CNN and LSTM for the Hindi and Malay-
alam image captioning. Our submission
tops in English→Malayalam Multimodal
translation task (text-only translation, and
Malayalam caption), and ranks second-
best in English→Hindi Multimodal transla-
tion task (text-only translation, and Hindi
caption). Our submissions have also per-
formed well in the Indic Multilingual trans-
lation tasks.

1 Introduction
Machine translation (MT) is considered to be
one of the most successful applications of nat-
ural language processing (NLP)1. It has sig-
nificantly evolved especially in terms of the
accuracy of its output. Though MT perfor-
mance reached near to human level for several
language pairs (see e.g. Popel et al., 2020), it
remains challenging for low resource languages
or translation effectively utilizing other modal-
ities (e.g. image, Parida et al., 2020).

1https://morioh.com/p/d596d2d4444d

The Workshop on Asian Translation (WAT)
is an open evaluation campaign focusing
on Asian languages since 2013 (Nakazawa
et al., 2020). In WAT2021 (Nakazawa
et al., 2021) Multimodal track, a new In-
dian language Malayalam was introduced for
English→Malayalam text, multimodal transla-
tion, and Malayalam image captioning task.2
This year, the MultiIndic3 task covers 10 Indic
languages and English.

In this system description paper, we explain
our approach for the tasks (including the sub-
tasks) we participated in:

Task 1: English→Hindi (EN-HI) Multimodal
Translation

• EN-HI text-only translation
• Hindi-only image captioning

Task 2: English→Malayalam (EN-ML) Mul-
timodal Translation

• EN-ML text-only translation
• Malayalam-only image captioning

Task 3: Indic Multilingual translation task.

Section 2 describes the datasets used in our
experiment. Section 3 presents the model
and experimental setups used in our approach.
Section 4 provides the official evaluation re-
sults of WAT20214 followed by the conclusion
in Section 5.

2https://ufal.mff.cuni.
cz/malayalam-visual-genome/
wat2021-english-malayalam-multi

3http://lotus.kuee.kyoto-u.ac.jp/WAT/
indic-multilingual/

4http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/index.html
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2 Dataset
We have used the official datasets provided by
the WAT2021 organizers for the tasks.

Task 1: English→Hindi Multimodal
Translation For this task, the organiz-
ers provided HindiVisualGenome 1.1 (Parida
et al., 2019)5 dataset (HVG for short). The
training part consists of 29k English and Hindi
short captions of rectangular areas in photos
of various scenes and it is complemented by
three test sets: development (D-Test), evalua-
tion (E-Test) and challenge test set (C-Test).
Our WAT submissions were for E-Test (de-
noted “EV” in WAT official tables) and C-
Test (denoted “CH” in WAT tables). Addition-
ally, we used the IITB Corpus6 which is sup-
posedly the largest publicly available English-
Hindi parallel corpus (Kunchukuttan et al.,
2017). This corpus contains 1.59 million par-
allel segments and it was found very effective
for English-Hindi translation (Parida and Bo-
jar, 2018). The statistics of the datasets are
shown in Table 1.

Tokens
Set Sentences English Hindi Malayalam
Train 28930 143164 145448 107126
D-Test 998 4922 4978 3619
E-Test 1595 7853 7852 5689
C-Test 1400 8186 8639 6044
IITB Train 1.5 M 20.6 M 22.1 M –

Table 1: Statistics of our data used in the
English→Hindi and English→Malayalam Multi-
modal task: the number of sentences and tokens.

Task 2: English→Malayalam Multi-
modal Translation For this task, the orga-
nizers provided MalayalamVisualGenome 1.0
dataset7 (MVG for short). MVG is an ex-
tension of the HVG dataset for supporting
Malayalam, which belongs to the Dravidian
language family (Kumar et al., 2017). The
dataset size and images are the same as HVG.
While HVG contains bilingual (English and
Hindi) segments, MVG contains bilingual (En-
glish and Malayalam) segments, with the En-
glish shared across HVG and MVG, see Ta-
ble 1.

5https://lindat.mff.cuni.cz/repository/
xmlui/handle/11234/1-3267

6http://www.cfilt.iitb.ac.in/iitb_parallel/
7https://lindat.mff.cuni.cz/repository/

xmlui/handle/11234/1-3533

Task 3: Indic Multilingual Translation
For this task, the organizers provided a train-
ing corpus that comprises in total 11 million
sentence pairs collected from several corpora.
The evaluation (dev and test set) contain fil-
tered data of the PMIndia dataset (Haddow
and Kirefu, 2020).8 We have not used any ad-
ditional resources in this task. The statistics
of the dataset are shown in Table 2.

3 Experimental Details
This section describes the experimental details
of the tasks we participated in.

3.1 EN-HI and EN-ML text-only
translation

For the HVG text-only translation track, we
train a Transformer model (Vaswani et al.,
2017) using the concatenation of IIT-B train-
ing data and HVG training data (see Table 1).
Similar to the two-phase approach outlined in
Section 3.3, we continue the training using
only the HVG training data to obtain the final
checkpoint. For the MVG text-only transla-
tion track, we train a Transformer model using
only the MVG training data.

For both EN-HI and EN-ML translation, we
trained SentencePiece subword units (Kudo
and Richardson, 2018) setting maximum vo-
cabulary size to 8k. The vocabulary was
learned jointly on the source and target sen-
tences of HVG and IIT-B for EN-HI and of
MVG for EN-ML. The number of encoder and
decoder layers was set to 3 each; while the
number of heads was set to 8. We have set
the hidden size to 128, along with the dropout
value of 0.1. We initialized the model param-
eters using Xavier initialization (Glorot and
Bengio, 2010) and used the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
5e−4 for optimizing model parameters. Gradi-
ent clipping was used to clip gradients greater
than 1. The training was stopped when the
development loss did not improve for 5 consec-
utive epochs. While EN-HI training using con-
catenated IIT-B + HVG data and the subse-
quent training using only HVG data, we used
the same HVG dev set for determining early
stopping. For generating translations, we used
greedy decoding and generated tokens autore-

8http://data.statmt.org/pmindia/
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Language pair en-bn en-hi en-gu en-ml en-mr en-ta en-te en-pa en-or en-kn
Train (ALL) 1756197 3534387 518015 1204503 781872 1499441 686626 518508 252160 396865
Train (PMI) 23306 50349 41578 26916 28974 32638 33380 28294 31966 28901

Dev 1000
Test 2390

Table 2: Statistics of the data used for Indic multilingual translation.

gressively till the end-of-sentence token was
generated or the maximum translation length
was reached, which was set to 100.

We show the training and development per-
plexities for EN-HI and EN-ML translations
during training in Figure 4b. The dev per-
plexity for EN-HI translation is lower in the
beginning (after epoch 1) because the model is
trained using more training samples (IIT-B +
HVG) in comparison to EN-ML. Overall, EN-
HI training takes around twice as much time as
EN-ML training, again due to the involvement
of the bigger IIT-B training data. The drop in
perplexity midway for EN-HI is because of the
change of training data from IIT-B + HVG to
only HVG after the first phase of the training
converges.

Upon evaluating the translations using the
development set, we obtained the following
scores for Hindi translations. The BLEU score
was 46.7 upon using HVG + IIT-B training
data. In comparison, we observed that the
BLEU score was 39.9 upon using only the
HVG training data (without IIT-B training
data). For Malayalam translations, the BLEU
score on the development set was 31.3. BLEU
scores were computed using sacreBLEU (Post,
2018).

3.2 Image Caption Generation

This task in WAT 2021 is formulated as gen-
erating a caption in Hindi and Malayalam for
a specific region in the given image. Most ex-
isting research in the area of image caption-
ing refers to generating a textual description
for the entire image (Yang and Okazaki, 2020;
Yang et al., 2017; Lindh et al., 2018; Staniūtė
and Šešok, 2019; Miyazaki and Shimizu, 2016;
Wu et al., 2017). However, a naive approach
of using only a specified region (as defined by
the rectangular bounding box) as an input to
the generic image caption generation system
often does not yield meaningful results. When
a small region of the image with few objects is
considered for captioning, it lacks the context

English Text: The snow is white. Hindi Text: बफर् सफेद है
Malayalam Text: മഞ്ഞ് െവളുത്തതാണ് Gloss: Snow is white

Figure 1: Sample image with specific region and
its description for caption generation. Image taken
from Hindi Visual Genome (HVG) and Malayalam
Visual Genome (MVG) (Parida et al., 2019)

(i.e., overall understanding) around the region
that can essentially be captured from the en-
tire image as shown in Figure 1. It is chal-
lenging to generate the caption “snow” only
considering the specific region (red bounding
box).

We propose a region-specific image caption-
ing method through the fusion of encoded fea-
tures of the region as well as that of the com-
plete image. Our proposed model for this task
consists of three modules – an encoder, fusion,
and decoder – as shown in Figure 2.

Image Encoder: To textually describe an
image or a region within, it first needs to be
encoded into high-level complex features that
capture its visual attributes. Several image
captioning works (Yang and Okazaki, 2020;
Yang et al., 2017; Lindh et al., 2018; Staniūtė
and Šešok, 2019; Miyazaki and Shimizu, 2016;
Wu et al., 2017) have demonstrated that
the outputs of final or pre-final convolutional
(conv) layers of deep CNNs are excellent fea-
tures for the aforementioned objective. Along
with features of the entire image, we propose
to extract the features of the subregion as well
using the same set of outputs of the conv layer.
Let F ∈ RMNC be the features of the final conv
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Figure 2: Architecture of the proposed model for region-specific image caption generator. The Encoder
module consists of a pre-trained image CNN as feature extractor, while an LSTM-based decoder generates
captions. Both modules are connected by a Fusion module.

layer of a pre-trained image CNN where C rep-
resents the number of channels or maps, and
M,N are the spatial dimensions of each fea-
ture map. From the dimensions of the input
image and the values of M,N , we compute
the spatial scaling factor. Through this factor
and nominal interpolation, we obtain a corre-
sponding location of the subregion in the conv
layer, say with dimensionality (m, n). This
subset, Fs ∈ RmnC , predominantly consists of
features from the subregion. The subset Fs is
obtained through the region of interest (RoI)
pooling (Girshick, 2015). We do not modify
the channel dimensions of Fs. The final fea-
tures, thus obtained, are linearized to form a
single column vector. We denote the region-
subset features as Sfeat. The features of the
complete image are nothing but F. We apply
spatial pooling on this feature set to reduce
their dimensionality, and obtain the linearized
vector of full-image features denoted as Ifeat.

Fusion Module: The region-level features
capture details of the region (objects) to be
described; whereas image-level features pro-
vide an overall context. To generate mean-
ingful captions for a region of the image, we
consider the features of the region Sfeat along
with the features of the entire image Ifeat. This
combining of feature vectors is crucial in gen-
erating descriptions for the region. In this
work, we propose to conduct fusion through
the concatenation of weighted features from
the region and those from the entire image
for region-specific caption generation. The
fused feature, f, can be represented as f =
[αSfeat; (1−α) Ifeat], where α is the weightage

parameter in [0.50, 1] indicating relative im-
portance provided to region-features Sfeat over
the features of the whole image. For α = 0.66,
the region-level features are weighted twice as
high as the entire image-level features. The
weighing of a feature vector scales the magni-
tude of the corresponding vector without al-
tering its orientation. Unlike the fusion mech-
anisms based on weighted addition, we do not
modify the complex information captured by
the features (except for scale); however, its rel-
ative importance with respect to the other set
of features is adjusted for better caption gen-
eration. The fused feature f with the dimen-
sionality of the sum of both feature vectors are
then fed to the LSTM-based decoder.

LSTM Decoder: In the proposed approach,
the encoder module is not trainable, it only ex-
tracts the image features however the LSTM
decoder is trainable. We used LSTM decoder
using the image features for caption genera-
tion using greedy search approach (Soh). We
used the cross-entropy loss during decoding
(Yu et al., 2019).

3.3 Indic Multilingual Translation
Sharing parameters across multiple lan-
guages, particularly low-resource Indic lan-
guages, results in gains in translation perfor-
mance (Dabre et al., 2020). Motivated by
this finding, we train neural MT models with
shared parameters across multiple languages
for the Indic multilingual translation task. We
additionally apply transfer learning where we
train a neural MT model in two phases (Kocmi
and Bojar, 2018). The first phase consists of
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Figure 3: Architecture for Indic Multilingual trans-
lation. We show here the setup in which both the
source and the target language tags are used.

training a multilingual translation model on
training pairs drawn from one of the follow-
ing options: (a) any Indic language from the
dataset as the source and corresponding En-
glish target; (b) English as the source and
any corresponding Indic language as the tar-
get; and (c) combination of (a) and (b), that is,
the model is trained to enable translation from
any Indic language to English and also English
to any Indic language. The second phase in-
volves fine-tuning of the model at the end of
phase 1 using pairs from a single language pair.
For phase 1, we used the PMI dataset for all
the languages combined; whereas, for phase
2, we used either only the PMI portion or all
the bilingual data available for the desired lan-
guage pair. In Table 2, the training data sizes
are denoted as Train (PMI) for phase 1 of
training.

To support multilinguality (i.e., going be-
yond a bilingual translation setup), we have
to either fix the target language (many-to-one
setup) or provide a language tag for control-
ling the generation process. We highlight be-
low the four setups to achieve this:

Many-to-one setup with no tag In this
setup, we use a transformer model (Vaswani
et al., 2017) without any architectural modifi-
cation that would enable the model to explic-
itly distinguish between languages. In phase 1
of the training process, we concatenate across
all Indic languages the pairs drawn from an In-
dic language as the source and the correspond-
ing English target and use the resulting data
for training.

Many-to-one setup with source language
tag We use a transformer model where the
source language tag explicitly informs the
model about the language of the source sen-
tence as in Lample and Conneau (2019). We
provide the language information at every po-
sition by representing each source token as the
sum of token embedding, positional embed-
ding, and language embedding; which is then
fed to the encoder (see Figure 3 for the inputs
to the encoder). The training data for phase
1 of the training process is the same as in the
previous setup.

One-to-many setup with target language
tag This setup is based on a transformer
model where the target language embedding
is injected to the decoder at every step and it
explicitly informs the model about the desired
language of the target sentence (Lample and
Conneau, 2019). In this setup, the source is al-
ways in English. Similar to the previous setup,
we represent each target token as the sum of
token embeddings, positional embedding, and
language embedding. Figure 3 shows the in-
puts to the decoder. In phase 1 of the training
process, we concatenate across all Indic lan-
guages the pairs drawn from English as the
source and the corresponding Indic language
target and use the resulting data for training.

Many-to-many setup with both the
source and target language tags In this
setup, we use a transformer model where
both the encoder and decoder are informed
about the source and target languages explic-
itly through language embedding at every to-
ken (Lample and Conneau, 2019). For in-
stance, the same model can be used for hi-
en translation and also for en-hi translation.
As shown in the architecture in Figure 3, the
source token representation is computed as
the sum of the token embedding, positional
embedding, and source language embedding.
Similarly, the target token representation is
computed as the sum of the token embedding,
positional embedding, and target language em-
bedding. The source and the target token rep-
resentations are provided to the encoder and
decoder, respectively. The rest of the mod-
ules in the transformer model architecture are
same as in Vaswani et al. (2017). The training
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Figure 4: Training and development perplexity for: (a) EN-HI and EN-ML translation training; and (b)
Indic multilingual translation training in various setups (only phase 1 training curves are shown).

data for phase 1 of the training process is the
combination of the training datasets for the
previous two setups.

In all the four setups described above, the
training data for phase 2 is the bilingual data
corresponding to the desired language pair.
The bilingual data is either the PMI train-
ing data or all the available bilingual training
data– sizes for which are provided in Table 2.

We now outline the training details for
all the setups. We first trained sentence-
piece BPE tokenization (Kudo and Richard-
son, 2018) setting maximum vocabulary size
to 32k.9 The vocabulary was learnt jointly on
all the source and target sentence pairs. The
number of encoder and decoder layers was set
to 3 each, and the number of heads was set to
8. We have considered the hidden size of 128;
while the dropout rate was set to 0.1. We ini-
tialized the model parameters using Xavier ini-
tialization (Glorot and Bengio, 2010). Adam
optimizer (Kingma and Ba, 2014) with a learn-
ing rate of 5e−4 was used for optimizing model
parameters. Gradient clipping was used to
clip gradients greater than 1. The training
was stopped when the development loss did
not improve for 5 consecutive epochs. The
same early stopping criterion was followed for
both phase 1 and phase 2 of the training pro-
cess. For phase 1, we used the combination
of the development data for all the language
pairs in the training data; whereas, for phase
2, we only used the desired language pair’s de-

9BPE based tokenization performed better in com-
parison to word-level tokenization using Indic tokeniz-
ers (Kunchukuttan, 2020).

velopment data. For generating translations,
we used greedy decoding where we picked the
most likely token at each generation time step.
The generation was done token-by-token till
the end-of-sentence token is generated or the
maximum translation length is reached. The
maximum translation length was set to 100.

To compare the training under various se-
tups related to the usage of language tags, we
show the perplexity of the training and the
development data in Figure 4a. The best (low-
est) perplexity is obtained by using the target
language tag. However, using the target lan-
guage tag requires more epochs to converge,
where convergence is determined by the early
stopping criterion described above.

We show the development BLEU scores,
computed using sacreBLEU (Post, 2018) in Ta-
ble 3 for each language pair. Results indicate
that the usage of language tags produces bet-
ter translation overall. It may also be noted
that using both languages’ (source and tar-
get) tags resulted in the highest development
BLEU scores for 8 out of 10 Indic languages
while translating to English. For translation
from English to Indic languages, the target lan-
guage tag setup performed the best overall ob-
taining the highest development BLEU scores
in 9 out of 10 languages. We selected the best
systems (20 in total) based on the dev BLEU
scores for each language pair and used them
to generate translations of the test inputs.

The choices related to the hyperparameters
that determine the model size and the choice
of the training data for phase 1 of the training
process were made such that the per epoch
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Language No tag Src. tag Trg. tag Src. & trg. tags
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

pair PMI ALL PMI ALL PMI ALL PMI ALL

bn-en 11.8 12.1 11.5 12.9 13.2 11.7 - - - 14.1 14.7 11.7
gu-en 17.7 17.8 24.4 19.4 19.3 24.9 - - - 22.7 23.1 23.1
hi-en 18.7 19.6 25.6 21.3 21.6 26.0 - - - 25.1 25.7 26.2
kn-en 14.5 15.1 16.5 16.6 16.8 15.5 - - - 18.7 19.5 17.0
ml-en 12.2 12.6 12.2 13.6 13.4 12.3 - - - 15.4 15.9 12.4
mr-en 13.3 12.9 16.1 14.9 15.1 17.0 - - - 16.6 17.2 17.3
or-en 14.0 14.1 16.9 15.5 15.6 18.7 - - - 17.5 17.8 20.3
pa-en 17.4 17.8 27.0 18.9 19.0 26.3 - - - 22.2 22.8 26.4
ta-en 13.2 13.2 15.0 14.7 14.3 14.6 - - - 15.8 16.4 15.9
te-en 14.4 14.5 16.5 15.6 16.3 16.8 - - - 16.9 17.9 16.7
en-bn - - - - - - 6.2 6.5 4.6 5.6 5.9 4.4
en-gu - - - - - - 18.4 19.9 18.8 16.9 18.4 18.5
en-hi - - - - - - 22.4 24.5 24.7 20.6 23.2 24.2
en-kn - - - - - - 12.6 13.4 10.6 10.9 12.6 9.8
en-ml - - - - - - 3.9 4.4 2.6 3.6 4.0 2.0
en-mr - - - - - - 10.2 11.2 10.4 8.8 10.6 10.1
en-or - - - - - - 12.4 13.2 14.0 11.4 12.3 14.2
en-pa - - - - - - 18.8 19.7 20.9 16.5 18.8 20.5
en-ta - - - - - - 8.5 9.6 8.4 7.8 8.3 8.0
en-te - - - - - - 2.2 2.9 2.4 2.0 2.6 2.9

Table 3: Development BLEU scores for Indic multilingual translations in various setups after phase 1 and
phase 2 of the training process. Scores are shown for each language pair separately.

training time is below an hour on a single GPU.
We note that there is room for improvement
in our results: (a) the model size in any of
the setups described earlier can be increased
to match the size of the transformer big model
(Vaswani et al., 2017), and (b) all the available
training data can be used for phase 1 of the
training process instead of just the PMI data.

4 Results

WAT BLEU
System and WAT Task
Label

NLPHut Best Comp

English→Hindi MM
Task
MMEVTEXT21en-hi 42.11 44.61
MMEVHI21en-hi 1.30 -
MMCHTEXT21en-hi 43.29 53.54
MMCHHI21en-hi 1.69 -
English→Malayalam
MM Task
MMEVTEXT21en-ml 34.83∗ 30.49
MMEVHI21en-ml 0.97 -
MMCHTEXT21en-ml 12.15 12.98
MMCHHI21en-ml 0.99 -

Table 4: WAT2021 Automatic Evaluation Re-
sults for English→Hindi and English→Malayalam.
Rows containing “TEXT" in the task label name
denote text-only translation track, and the rest of
the rows represent image-only track. For each task,
we show the score of our system (NLPHut) and the
score of the best competitor in the respective task.
The scores marked with ‘∗’ indicate the best per-
formance in its track among all competitors.

We report the official automatic evaluation
results of our models for all the participated
tasks in Table 4 and Table 5. We have pro-
vided the automatic evaluation score (BLEU)

From English Into English
WAT Task NLPHut Best Comp NLPHut Best Comp
INDIC21en-bn 8.13 15.97 13.88 31.87
INDIC21en-hi 25.37 38.65 24.55 46.93
INDIC21en-gu 17.76 27.80 23.10 43.98
INDIC21en-ml 4.57 15.49 15.47 38.38
INDIC21en-mr 10.41 20.42 17.07 36.64
INDIC21en-ta 7.68 14.43 15.40 36.13
INDIC21en-te 4.88 16.85 16.48 39.80
INDIC21en-pa 22.60 33.43 24.35 46.39
INDIC21en-or 12.81 20.15 18.92 37.06
INDIC21en-kn 11.84 21.30 17.72 40.34

Table 5: WAT2021 Automatic Evaluation Results
for Indic Multilingual Task. For each task, we show
the score of our system (NLPHut) and the score of
the best competitor (‘Best Comp’) in the respec-
tive task.

for the image captioning task, although it is
not apt for evaluating the quality of the gen-
erated caption. Thus, we have also provided
some sample outputs in Table 6.

5 Conclusions

In this system description paper, we presented
our systems for three tasks in WAT 2021 in
which we participated: (a) English→Hindi
Multimodal task, (b) English→Malayalam
Multimodal task, and (c) Indic Multilingual
translation task. As the next steps, we plan
to explore further on the Indic Multilingual
translation task by utilizing all given data and
using additional resources for training. We are
also working on improving the region-specific
image captioning by fine-tuning the object de-
tection model.
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Gold: एक लड़की टेिनस खेल रही है Gold: आदमी समुद्र में सर्िंफ͆ग
Gloss: A girl is playing tennis Gloss: man surfing in ocean
Output:एक टेिनस रैकेट पकड़े हुए आदमी Output: पानी में एक व्यिक्त
Gloss: A man holding a tennis
racket

Gloss: A man in the water

Gold: एक कुत्ता कूदता है Gold: हेलमेट पहनना
Gloss: A dog is jumping Gloss: Wearing helmet
Output: कुत्ता भाग रहा है Output: एक आदमी के िसर पर एक

काला हेलमेट
Gloss: A dog is running Gloss: A black helmet on the

head of a person

Gold: തിളക്കമുള്ള പച്ചൈകറ്റ് Gold: ഒരു ʌവത്തിെല ǵാഫിക്
ൈലറ്റ്

Gloss: Bright green kite Gloss: Traffic light at a pole
Output:ആകാശത്ത് പറŉന്ന ൈക-
റ്റ്

Output: ǵാഫിക് ൈലറ്റ് ചുവപ്പ് തി-
ളƵʮ

Gloss: Kite flying in the sky Gloss: The traffic light glows
red

Gold: തൂങ്ങി കിടŉന്ന ഒരു കൂട്ടം വാ-
ഴപ്പഴം

Gold: ചുമരിൽ ഒരു ഘടികാരം വാഴ-
പ്പഴം

Gloss: A bunch of hanging ba-
nanas

Gloss: A clock on the wall

Output: ഒരു കൂട്ടം വാഴപ്പഴം Output: ചുമരിൽ ഒരു ചിɃം
Gloss: A bunch of bananas Gloss: A picture on the wall

Table 6: Sample captions generated for the evaluation test set using the proposed method: the top two
rows present results of Hindi captions; and the bottom two rows are results of Malayalam caption.
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Abstract

Machine translation performs automatic trans-
lation from one natural language to another.
Neural machine translation attains a state-of-
the-art approach in machine translation, but
it requires adequate training data, which is
a severe problem for low-resource language
pairs translation. The concept of multimodal
is introduced in neural machine translation
(NMT) by merging textual features with visual
features to improve low-resource pair transla-
tion. WAT2021 (Workshop on Asian Trans-
lation 2021) organizes a shared task of mul-
timodal translation for English to Hindi. We
have participated the same with team name
CNLP-NITS-PP in two submissions: multi-
modal and text-only translation. This work
investigates phrase pairs injection via data
augmentation approach and attains improve-
ment over our previous work at WAT2020
on the same task in both text-only and mul-
timodal translation. We have achieved sec-
ond rank on the challenge test set for English
to Hindi multimodal translation where Bilin-
gual Evaluation Understudy (BLEU) score of
39.28, Rank-based Intuitive Bilingual Evalua-
tion Score (RIBES) 0.792097, and Adequacy-
Fluency Metrics (AMFM) score 0.830230 re-
spectively.

1 Introduction

Multimodal NMT (MNMT) intends to draw in-
sights from the input data through different modali-
ties like text, image, and audio. Combining infor-
mation from more than one modality attempts to
amend the quality of low resource language trans-
lation. (Shah et al., 2016) show, combining the vi-
sual features of images with corresponding textual
features of the input bitext to translate sentences
outperform text-only translation. Encoder-decoder
architecture is a widely used technique in the MT
community for text-only-based NMT as it handles

various issues like variable-length phrases using se-
quence to sequence learning, the problem of long-
term dependency using Long Short Term Memory
(LSTM) (Sutskever et al., 2014). Nevertheless, the
basic encoder-decoder architecture cannot encode
all the information when it comes to very long
sentences. The attention mechanism is proposed
to handle such issues, which pays attention to all
source words locally and globally (Bahdanau et al.,
2015; Luong et al., 2015). The attention-based
NMT yields substantial performance for Indian lan-
guage translation (Pathak and Pakray, 2018; Pathak
et al., 2018; Laskar et al., 2019a,b, 2020a, 2021b,a).
Moreover, NMT performance can be enhanced by
utilizing monolingual data (Sennrich et al., 2016;
Zhang and Zong, 2016; Laskar et al., 2020b) and
phrase pair injection (Sen et al., 2020), effective
in low resource language pair translation. This
paper aims English to Hindi translation using the
multimodal concept by taking advantage of mono-
lingual data and phrase pair injections to improve
the translation quality at the WAT2021 translation
task.

2 Related Works

For the English-Hindi language pair, the literature
survey revealed minor existing works on transla-
tion using multimodal NMT (Dutta Chowdhury
et al., 2018; Sanayai Meetei et al., 2019; Laskar
et al., 2019c). (Dutta Chowdhury et al., 2018) uses
synthetic data, following multimodal NMT settings
(Calixto and Liu, 2017), and attains a BLEU score
of 24.2 for Hindi to English translation. However,
in the WAT 2019 multimodal translation task of
English to Hindi, we achieved the highest BLEU
score of 20.37 for the challenge test set (Laskar
et al., 2019c). This score was improved later in
the task of WAT2020 (Laskar et al., 2020c) to ob-
tain the BLEU score of 33.57 on the challenge

155



Type Name Items/Instances Tokens in millions (En / Hi)

Train Text Data (En - Hi) 28,927 0.143164 / 0.145448
Image Data 28,927

Test (Evaluation Set) Text Data (En - Hi) 1,595 0.007853 / 0.007852
Image Data 1,595

Test (Challenge Set) Text Data (En - Hi) 1,400 0.008186 / 0.008639
Image Data 1,400

Validation Text Data (En - Hi) 998 0.004922 / 0.004978
Image Data 998

Table 1: Parallel Data Statistics (Nakazawa et al., 2021; Parida et al., 2019).

Monolingual
Data

Sentences Tokens in millions

En 107,597,494 1832.008594
Hi 44,949,045 743.723731

Table 2: Monolingual Data Statistics collected from
IITB and WMT16.

test set. In (Laskar et al., 2020c), we have used
bidirectional RNN (BRNN) at encoder type, and
doubly-attentive RNN at decoder type following
default settings of (Calixto and Liu, 2017; Calixto
et al., 2017) and utilizes pre-train word embeddings
of the monolingual corpus and additional parallel
data of IITB. This work attempts to utilize phrase
pairs (Sen et al., 2020) to enhance the translational
performance of the WAT2021: English to Hindi
multimodal translation task.

3 Dataset Description

We have used the Hindi Visual Genome 1.1 dataset
provided by WAT2021 organizers (Nakazawa et al.,
2021; Parida et al., 2019). The train data con-
tains English-Hindi 28,930 parallel sentences and
28,928 images. After removing duplicate sen-
tences having ID numbers 2391240, 2385507,
2328549 from parallel data and one image hav-
ing ID number 2326837 (since corresponding text
not present in parallel data), the parallel and image
train data reduced to 28,927. Moreover, English-
Hindi (En-Hi) parallel and Hindi monolingual cor-
pus1 (Kunchukuttan et al., 2018) and also, English
monolingual data available at WMT162 are used.
Table 1 and 2 depict the data statistics.

1http://www.cfilt.iitb.ac.in/iitb_
parallel/

2http://www.statmt.org/wmt16/
translation-task.html

Figure 1: Data augmentation for English-to-Hindi mul-
timodal NMT.

4 System Description

To build multimodal and text-only NMT models,
OpenNMT-py (Klein et al., 2017) tool is used.
There are four operations which include data aug-
mentation, preprocessing, training and testing. Our
multi-model NMT gets advantages from both im-
age and textual features with phrase pairs and word
embeddings.

4.1 Data Augmentation

In (Sen et al., 2020), authors used SMT-based
phrase pairs to augment with the original paral-
lel data to improve low-resource language pairs
translation. In SMT3, Giza++ word alignment
tool is used to extract phrase pair. Inspired by the
work (Sen et al., 2020), we have extracted phrase

3http://www.statmt.org/moses/
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Figure 2: Examples of our best predicted output on
challenge test data.

pairs using Giza++4. Then after removing dupli-
cates and blank lines, the obtained phrase pairs are
augmented to the original parallel data. The data
statistics of extracted phrase pairs is given in Ta-
ble 3. Additionally, IITB parallel data is directly
augmented with the original parallel to expand the
train data. The diagram of data augmentation is
presented in Figure 1.

4.2 Data Preprocessing

To extract visual features from image data, we
have used publicly available5 pre-trained CNN with
VGG19. The visual features are extracted indepen-
dently for train, validation, and test data. To get the
advantage of monolingual data on both multimodal
and text-only, GloVe (Pennington et al., 2014) is
used to generate vectors of word embeddings. For
tokenization of text data, the OpenNMT-py tool is
utilized and obtained a vocabulary size of 50004
for source-target sentences. We have not used any
word-segmentation technique.

4.3 Training

The multimodal and text-only based NMT are
trained independently. During the multimodal train-
ing process, extracted visual features, pre-trained

4https://github.com/ayushidalmia/
Phrase-Based-Model

5https://github.com/iacercalixto/
MultimodalNMT

Figure 3: Examples of our worst predicted output on
challenge test data.

word vectors are fine-tuned with the augmented
parallel data. The bidirectional RNN (BRNN) at
encoder type and doubly-attentive RNN at decoder
type following default settings of (Calixto and Liu,
2017; Calixto et al., 2017) are used for multimodal
NMT. Two different RNNs are used in BRNN, one
for backward and another for forwards directions,
and two distinct attention mechanisms are utilized
over source words and image features at a single
decoder. The multimodal NMT is trained up to
40 epochs with 0.3 drop-outs and batch size 32
on a single GPU. During the training process of
text-only NMT, we have used only textual data i.e.,
pre-trained word vectors are fine-tuned with the
augmented parallel data, and the model is trained
up to 100000 steps using BRNN encoder and RNN
decoder following default settings of OpenNMT-
py. The primary difference between our previous
work (Laskar et al., 2020c) and this work is that
the present work uses phrase pairs in augmented
parallel data.

4.4 Testing

The obtained trained NMT models of both multi-
modal and text-only are tested on both test data:
evaluation and challenge set independently. During
testing, the only difference between text-only and
multimodal NMT is that multimodal NMT uses
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Number of Phrase Pairs Tokens in millions
En Hi

158,131 0.392966 0.410696

Table 3: Data Statistics of extracted phrase pairs.

Our System Test Set BLEU RIBES AMFM

Text-only NMT
Challenge 37.16 0.770621 0.798670
Evaluation 37.01 0.795302 0.812190

Multi-modal NMT
Challenge 39.28 0.792097 0.830230
Evaluation 39.46 0.802055 0.823270

Table 4: Our system’s results on English to Hindi multimodal translation Task.

visual features of image test data.

5 Result and Analysis

The WAT2021 shared task organizer published the
evaluation result6 of multimodal translation task
for English to Hindi and our team stood second
position in multimodal submission for challenge
test set. Our team name is CNLP-NITS-PP, and we
have participated in the multimodal and text-only
submission tracks of the same task. In both multi-
modal and text-only translation submission tracks,
a total of three teams participated in both evaluation
and challenges test data. The results are evaluated
using automatic metrics: BLEU (Papineni et al.,
2002), RIBES (Isozaki et al., 2010) and AMFM
(Banchs et al., 2015). The results of our system is
reported in Table 4, and it is noticed that the mul-
timodal NMT obtains higher than text-only NMT.
It is because the combination of textual and visual
features outperforms text-only NMT. Furthermore,
our system’s results are improved as compared to
our previous work on the same task (Laskar et al.,
2020c). It shows the BLEU, RIBES, AMFM scores
of present work show (+5.71, +9.41), (+0.037956,
+0.055641), (+0.04291, +0.04835) increments on
the challenge test set for multimodal and text-only
NMT, where it is realised that phrase pairs augmen-
tation improves translational performance. The
sample examples of best and worst outputs, along
with Google translation and transliteration of Hindi
words, are presented in Figure 2 and 3. In Figure 2
and 3, highlighted the region in the image for the
given caption by a red colour rectangular box.

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

6 Conclusion and Future Work

In this work, we have participated in a shared task
at WAT2021 multimodal translation task of English
to Hindi, where translation submitted at tracks:
multimodal and text-only. This work investigates
phrase pairs through data augmentation approach in
both multimodal and text-only NMT, which shows
better performance than our previous work on the
same task (Laskar et al., 2020c). In future work, we
will investigate a multilingual approach to improve
the performance of multimodal NMT.
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Abstract

Neural Machine Translation (NMT) is a predomi-
nant machine translation technology nowadays be-
cause of its end-to-end trainable flexibility. How-
ever, NMT still struggles to translate properly in
low-resource settings specifically on distant lan-
guage pairs. One way to overcome this is to use
the information from other modalities if available.
The idea is that despite differences in languages,
both the source and target language speakers see
the same thing and the visual representation of both
the source and target is the same, which can posi-
tively assist the system. Multimodal information
can help the NMT system to improve the transla-
tion by removing ambiguity on some phrases or
words. We participate in the 8th Workshop on
Asian Translation (WAT - 2021) for English-Hindi
multimodal translation task and achieve 42.47 and
37.50 BLEU points for Evaluation and Challenge
subset, respectively.

1 Introduction

Recent progress in neural machine translation
(NMT) focuses on translating a source language
into a particular target language. Various methods
have been proposed for this task and most of them
deal with the textual data. There are certain draw-
backs while performing machine translation using
only textual datasets.

Human performs translation which is based upon
language grounding: our sense of meaning emerges
from interacting with the world. NMT methods
do not have any mechanism to perform language
grounding; thus they are devoid of capturing the
true meaning of sentences or phrases while translat-
ing them into the other languages. For example, it

∗Equal contribution

needs to translate the word “cricket”, it can get con-
fused if it is the game cricket or the insect cricket.
But the visual information can clear the ambigu-
ity. Multi-modal translation aims to alleviate this
issue by training an NMT model on textual data
along with associated images to perform language
grounding.
This shared task deals with developing multi-modal
NMT models for English-Hindi translation. The
choice of languages depends on the following is-
sues: i). Hindi is the most spoken language in
India and the fourth most spoken language in the
world with 600 million speakers1. Despite the huge
amount of speakers, suitable resources in Hindi is
limited due to the various factors. ii) Automatic
translation of texts from one language to the an-
other is a difficult task. Specifically, when one or
both of them are resource-poor and distant from
each other.
In Multimodal NMT (MNMT), information from
the other modalities like audio, image, video, etc.
are used along with text to generate the transla-
tion. In low-resource languages, this is particularly
used to improve the low-quality translations as even
though vocabularies, grammar of two languages
are different but their visual representation is the
same. There are several proposed multi-modal
methods for translations that exploit the features of
the associated image for better translation. State-
of-the-art methods might achieve better accuracy
than the models we used. Our main motivation
for using simplistic models is to demonstrate a
proof-of-concept to be used for multi-modal trans-
lation among the resource-poor language pairs. We
achieved good results on both Challenge and Eval-
uation set in different evaluation metrics including
BLEU, RIBES, AMFM. In subsequent modifica-
tions, we aim to develop our models incorporating

1https://www.ethnologue.com/guides/ethnologue200
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several state-of-the-art features. The following sec-
tions describe our processes in greater details.

2 Related Works

There have been many attempts to use informa-
tion other than the source for better translation.
Uni-modal systems include document-level NMT
(Wang et al., 2017), sentence-level NMT with con-
textual information (Gain et al., 2021), etc. Among
multimodal systems, (Huang et al., 2016) used an
object detection system and extracted local and
global image features. Thereafter, they used those
image features as additional inputs to encoder and
decoder. (Delbrouck and Dupont, 2017) used at-
tention mechanism on visual inputs for the source
hidden states. (Lin et al., 2020) used Dynamic
Context-guided Capsule Network (Sabour et al.,
2017) (DCCN) for iterative extraction of related
visual features.

Multimodal Machine Translation (MMT) for
English-Hindi has not been well explored yet.
(Dutta Chowdhury et al., 2018) used synthetic data
for training. Furthermore they used multi-modal,
attention-based MMT which incorporate visual fea-
tures into different parts of both the encoder and the
decoder (Calixto and Liu, 2017). (Sanayai Meetei
et al., 2019) used a Recurrent Neural Network
(RNN) based approach achieving BLEU score of
28.45 on Evaluation set and 12.58 on Challenge set.
(Laskar et al., 2020) exploited monolingual data
for better translation. Recent works tried to focus
on developing unsupervised model for multi-modal
NMT. Su et al. (2018) demonstrated an unsuper-
vised method based on the language translation cy-
cle consistency loss conditional on the image. This
is done to learn the bidirectional multi-modal trans-
lation simultaneously. Moreover, Su et al. (2021)
showed that jointly learning text-image interaction
instead of modeling them separately using atten-
tional networks is more useful. This result is in line
with several state-of-the-art visual transformer re-
lated models, such as VisualBERT (Li et al., 2019),
UNITER (Chen et al., 2019) etc.

3 Methodology

3.1 Dataset Description

We use Hindi Visual Genome 1.1 dataset (Parida
et al., 2019)(Nakazawa et al., 2020)(Nakazawa
et al., 2021) for our experiments. This dataset
consists of 28,929 parallel English-Hindi sentence

Figure 1: An example of multimodal dataset

pairs along with the associated images. Further-
more, we use HindEnCorp dataset for pre-training
containing 273K English-Hindi sentence pairs with-
out images. Statistics of the datasets are shown in
Table 1.

Multimodal dataset consists of an image along
with a description of certain rectangular portion
of the image. We are given the coordinates of
the portion. We aim to translate the description
with help of the image. An example of multimodal
dataset is given in Figure 1.

3.2 Pre-processing

For text data, we lowercase all the utterances. Then,
we jointly learn byte-pair-encoding (Sennrich et al.,
2016) combining both source and target with a
vocabulary of 10,000. We treat the images by crop-
ping a specified rectangular portions. This oper-
ation is used to discard the portions that do not
contribute much to the translation performance. Af-
ter we get those cropped-out images, we use the
pre-trained VGG19-bn (Simonyan and Zisserman,
2015) to obtain the image representations. We use
OpenNMT-py (Klein et al., 2017) framework to
perform this step.

3.3 Training

We use OpenNMT-py (Klein et al., 2017) for our
NMT systems. We use Bidirectional RNN encoder
and doubly attentive RNN decoder (Calixto et al.,
2017) for our experiments. We train our system
in two ways viz. With pre-training, and Without
pre-training.:

1. With pre-training We pre-train one of our
models on HindEnCorp dataset. This step
does not use any visual features as the dataset
used for pre-training is devoid of any visual
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Dataset Type Sentences Avg length source Avg length target
Pre-training Parallel 273,885 12.33 13.36
Train parallel + multimodal 28929 4.95 5.02
Valid parallel + multimodal 998 4.93 4.99
Evaluation parallel + multimodal 1595 4.92 4.92
Challenge parallel + multimodal 1400 5.85 6.17

Table 1: Descriptions of datasets used for our experiments

Figure 2: An example of translation generated by the system. Here, the target is Ek vyakti railgari mein chad raha
hai (A man climbing into train.) The translation by Google NMT system is Train mein chadta Aadmi (Man climbs
into train); whereas our NMT system translates it as: Ek aadmi ek train mein chadta hai (A man climbs into a
train.)

features. After pre-training, we fine-tune the
pre-trained model with VisualGenome dataset
containing textual and visual features.

2. Without pre-training We do not pre-train the
model. We directly fine-tune the models on
VisualGenome dataset which contains both
text and associated image. Consequently, both
textual and visual features are used.

Following step is taken into account while doing
inference step:
We take the best hypothesis from both the mod-
els and filter out any hypothesis containing
<unk>token. Then, we pick the hypothesis with
best log-likelihood during generation.

3.4 Hyper-parameters

We set the word embedding size and size of RNN
hidden states to 500. We set the batch size to 40
and train for a maximum 25 epochs. We restrict
maximum source and target sequence length to 50.
We use the Adam optimizer (Kingma and Ba, 2017)
for optimization with β1 = 0.9 and β2 = 0.999.
During training, we use 0.3 as dropout rate to avoid
over-fitting. During generation of translation, we
use 5 as the beam width.

4 Experimental Results

We obtain impressive results on our submissions.
There are two sets designed for evaluating our
model, i) Evaluation set, ii) Challenge set. We
evaluate our model on both of these test set and
tabulate our results in Table 2. We use different
evaluation metrics (BLEU, RIBES, AMFM) to test
our model. The results shown in the table are sorted
according to the obtained BLEU scores. As it can
be seen from Table 2, we obtain 42.47 BLEU points
and achieve second position in terms of BLEU on
Evaluation set on multimodal task. Please refer to
Figure 2 for example of translation by our system.
We obtain 37.50 BLEU points on Challenge set.
One reason for not so good results on Challenge
set could be:

• The challenge test set was created by search-
ing for (particularly) ambiguous English
words based on the embedding similarity and
manually selecting those where the image
helps to resolve the ambiguity. Hence, it is dif-
ficult to translate compared to the Evaluation
set, which was randomly selected.

• Difference between utterance length during
training and testing, i.e. while average length
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Team Evaluation Challenge
BLEU RIBES AMFM BLEU RIBES AMFM

Volta 44.21 0.818689 0.835480 52.02 0.854139 0.874220
iitp (Ours) 42.47 0.807123 0.819720 37.50 0.790809 0.830230
CNLP-NITS 40.51 0.803208 0.820980 39.28 0.792097 0.812360
CNLP-NITS 39.46 0.802055 0.823270 33.57 0.754141 0.787320
Organizer 38.63 0.767422 0.772870 20.34 0.644230 0.669760

Table 2: Details of obtained results by different submissions

of Train, Evaluation and Validation set is 5
but average length of Challenge set is 6.

5 Conclusion

We participate in WAT-2021 Multimodal Transla-
tion Task for English to Hindi. We achieve good
results on both the Challenge and Evaluation sets
achieving 42.47 and 37.50 BLEU points, respec-
tively. We rank second place on Evaluation set and
third place on Challenge set on WAT-2021 Multi-
modal Translation Task for English to Hindi. In
future, we would like to extend our work by train-
ing with additional monolingual data and better
ways to incorporate multimodal features.
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Abstract

Multimodal Machine Translation (MMT) en-
riches the source text with visual information
for translation. It has gained popularity in re-
cent years, and several pipelines have been pro-
posed in the same direction. Yet, the task lacks
quality datasets to illustrate the contribution
of visual modality in the translation systems.
In this paper, we propose our system under
the team name Volta for the Multimodal Trans-
lation Task of WAT 20211 (Nakazawa et al.,
2021) from English to Hindi. We also partic-
ipate in the textual-only subtask of the same
language pair for which we use mBART, a
pretrained multilingual sequence-to-sequence
model. For multimodal translation, we pro-
pose to enhance the textual input by bringing
the visual information to a textual domain by
extracting object tags from the image. We also
explore the robustness of our system by sys-
tematically degrading the source text. Finally,
we achieve a BLEU score of 44.6 and 51.6 on
the test set and challenge set of the multimodal
task.

1 Introduction

Machine Translation deals with the task of transla-
tion between language pairs and has been an active
area of research in the current stage of globaliza-
tion. In the task of multimodal machine translation,
the problem is further extended to incorporate vi-
sual modality in the translations. The visual cues
help build a better context for the source text and
are expected to help in cases of ambiguity.

With the help of visual grounding, the machine
translation system has scope for becoming more
robust by mitigating noise from the source text and
relying on the visual modality as well.

In the current landscape of multimodal trans-
lation, one of the issues is the limited datasets

1http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

available for the task. Another contributing fac-
tor is that often the images add irrelevant infor-
mation to the sentences, which may act as noise
instead of an added feature. The available datasets,
like Multi30K (Elliott et al., 2016), are relatively
smaller when compared to large-scale text-only
datasets (Bahdanau et al., 2015). The scarcity of
such datasets hinders building robust systems for
multimodal translation.

To address these issues, we propose to bring
the visual information to a textual domain and
fine-tune a high resource unimodal translation sys-
tem to incorporate the added information in the
input. We add the visual information by extracting
the object classes by using an object detector and
add them as tags to the source text. Further, we
use mBART, a pretrained multilingual sequence-
to-sequence model, as the base architecture for
our translation system. We fine-tune the model
on a textual-only dataset released by Kunchukut-
tan et al. (2018) consisting of 1,609,682 parallel
sentences in English and Hindi. Further, we fine-
tune it on the training set enriched with the ob-
ject tags extracted from the images. We achieve
state-of-the-art performance on the given dataset.
The code for our proposed system is available at
https://github.com/kshitij98/vita.

The main contributions of our work are as fol-
lows:

• We explore the effectiveness of fine-tuning
mBART to translate English sentences to
Hindi in the text-only domain.

• We further propose a multimodal system for
translation by enriching the input with the ob-
ject tags extracted from the images using an
object detector.

• We explore the robustness of our system by
a thorough analysis of the proposed pipelines
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by systematically degrading the source text
and finally give a direction for future work.

The rest of the paper is organized as follows. We
discuss prior work related to multimodal transla-
tion. We describe our systems for the textual-only
and multimodal translation tasks. Further, we re-
port and compare the performance of our models
with other systems from the leaderboard. Lastly,
we conduct a thorough error analysis of our sys-
tems and conclude with a direction for future work.

2 Related Work

Earlier works in the field of machine translation
largely used statistical or rule-based approaches,
while neural machine translation has gained popu-
larity in the recent past. Kalchbrenner and Blunsom
(2013) released the first deep learning model in this
direction, and later works utilize transformer-based
approaches (Vaswani et al., 2017; Song et al., 2019;
Conneau and Lample, 2019; Edunov et al., 2019;
Liu et al., 2020) for the problem.

Multimodal translation aims to use the visual
modality with the source text to help create a
better context of the source text. Specia et al.
(2016) first conducted a shared task on the prob-
lem and released the dataset, Multi30K (Elliott
et al., 2016). It is an extended German version of
Flickr30K (Young et al., 2014), which was further
extended to French and Czech (Elliott et al., 2017;
Barrault et al., 2018). For multimodal translation
between English and Hindi, Parida et al. (2019)
propose a subset of Visual Genome dataset (Kr-
ishna et al., 2017) and provide parallel sentences
for each of the captions.

Although both English and Hindi are spoken
by a large number of people around the world,
there has been limited research in this direction.
Dutta Chowdhury et al. (2018) created a synthetic
dataset for multimodal translation of the language
pair and further used the system proposed by Cal-
ixto and Liu (2017). Later, Sanayai Meetei et al.
(2019) work with the same architecture on the mul-
timodal translation task in WAT 2019. Laskar et al.
(2019) used a doubly attentive RNN-based encoder
and decoder architecture (Calixto and Liu, 2017;
Calixto et al., 2017). Laskar et al. (2020) also pro-
posed a similar architecture and pretrained on a
large textual parallel dataset (Kunchukuttan et al.,
2018) in their system.

Train Valid Test Challenge

#sentence pairs 28,930 998 1,595 1,400
Avg. #tokens (source) 4.95 4.93 4.92 5.85
Avg. #tokens (target) 5.03 4.99 4.92 6.17

Table 1: The statistics of the provided dataset. The aver-
age number of tokens in the source and target language
are reported for all the sentence pairs.

3 System Overview

In this section, we describe the systems we use for
the task.

3.1 Dataset Description
We use the dataset provided by the shared task or-
ganizers (Parida et al., 2019), which consists of
images and their associated English captions from
Visual Genome (Krishna et al., 2017) along with
the Hindi translations of the captions. The dataset
also provides a challenge test which consists of sen-
tences where there are ambiguous English words,
and the image can help in resolving the ambiguity.
The statistics of the dataset are shown in Table 1.
We use the provided dataset splits for training our
models.

We also use the dataset released by Kunchukut-
tan et al. (2018) which consists of parallel sen-
tences in English and Hindi. We use the training
set, which contains 1,609,682 sentences, for train-
ing our systems.

3.2 Model
We fine-tune mBART, which is a multilingual
sequence-to-sequence denoising auto-encoder that
has been pre-trained using the BART (Lewis et al.,
2020) objective on large-scale monolingual corpora
of 25 languages, including both English and Hindi.
The pre-training corpus consists of 55,608 million
English tokens (300.8 GB) and 1,715 million Hindi
tokens (20.2 GB). Its architecture is a standard
sequence-to-sequence Transformer (Vaswani et al.,
2017), with 12 encoder and decoder layers each
and a model dimension of 1024 on 16 heads re-
sulting in ∼680 million parameters. To train our
systems efficiently, we prune mBART’s vocabu-
lary by removing the tokens which are not present
in the provided dataset or the dataset released by
Kunchukuttan et al. (2018).

3.2.1 mBART
We fine-tune mBART for text-only translation from
English to Hindi and feed the English sentences
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Model
Test Set Challenge Set

BLEU RIBES AMFM BLEU RIBES AMFM

Text-only Translation

CNLP-NITS-PP 37.01 0.80 0.81 37.16 0.77 0.80
ODIANLP 40.85 0.79 0.81 38.50 0.78 0.80
NLPHut 42.11 0.81 0.82 43.29 0.82 0.83
mBART (ours) 44.12 0.82 0.84 51.66 0.86 0.88

Multimodal Translation

CNLP-NITS 40.51 0.80 0.82 33.57 0.75 0.79
iitp 42.47 0.81 0.82 37.50 0.79 0.81
CNLP-NITS-PP 39.46 0.80 0.82 39.28 0.79 0.83
ViTA (ours) 44.64 0.82 0.84 51.60 0.86 0.88

Table 2: Performance of our proposed systems on the test and challenge set.

to the encoder and decode Hindi sentences. We
first fine-tune the model on the dataset released by
Kunchukuttan et al. (2018) for 30 epochs, and then
fine-tune it on the Hindi Visual Genome dataset for
30 epochs.

3.2.2 ViTA
We again fine-tune mBART for multimodal trans-
lation from English to Hindi but add the visual
information of the image to the text by adding the
list of object tags detected from the image. We
feed the English sentences along with the list of
object tags to the encoder and decode Hindi sen-
tences. For feeding the data to the encoder, we
concatenate the English sentence, followed by a
separator token ‘##’, followed by the object tags
which are separated by ‘,’. We use Faster R-CNN
with ResNet-101-C4 backbone2 (Ren et al., 2015)
to detect the list of objects present in the image.
We sort the objects by their confidence scores and
choose the top ten objects.

For training the model, we first fine-tune the
model on the dataset released by Kunchukuttan
et al. (2018). Since this is a text-only dataset, we
do not add any object tag information. Afterward,
we fine-tune the model on Hindi Visual Genome
dataset, where each sentence has been concatenated
with object tags. Initially, we mask ∼15% of the
tokens in each sentence to incentivize the model to
use the object tags along with the text and fine-tune
the model on masked sentences along with object
tags for 30 epochs. Finally, we train the model for
30 more epochs on Hindi Visual Genome dataset

2We use the implementation available in Detec-
tron2 (https://github.com/facebookresearch/
detectron2).

with unmasked sentences and object tags.

3.3 Experimental Setup

We implement our systems using the implementa-
tion of mBART available in the fairseq library3 (Ott
et al., 2019). We fine-tune on 4 Nvidia GeForce
RTX 2080 Ti GPUs with an effective batch size
of 1024 tokens per GPU. We use the Adam opti-
mizer (ε = 10−6, β1 = 0.9, β2 = 0.98) (Kingma
and Ba, 2015) with 0.1 attention dropout, 0.3
dropout, 0.2 label smoothing and polynomial decay
learning rate scheduling. We validate the models
every epoch and select the best checkpoint after
each training based on the best validation BLEU
score. To train our systems efficiently, we prune
the vocabulary of our model by removing the to-
kens which do not appear in any of the datasets
mentioned in the previous section. While decoding,
we use beam search with a beam size of 5.

4 Results and Discussion

The BLEU score (Papineni et al., 2002) is the
official metric for evaluating the performance of
the models in the leaderboard. The leaderboard
further uses RIBES (Isozaki et al., 2010) and
AMFM (Banchs and Li, 2011) metrics for the
evaluations. We report the performance of our
models after tokenizing the Hindi outputs using
indic-tokenizer4 in Table 2.

It can be seen that our model is able to general-
ize well on the challenge set as well and performs
better than other systems by a large margin. To

3https://github.com/pytorch/fairseq
4https://github.com/ltrc/

indic-tokenizer
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English Sentence A large pipe extending from the wall of the court.
Hindi Translation कोट� की दीवार से िन�ी �ई एक बड़ी पाइप

Object Tags building, man, flowers, shorts, racket, hat, court,
shoe, shirt, window

mBART output अदालत की दीवार से िव�ा�रत एक बड़ा पाइप
ViTA output कोट� की दीवार से िव�ा�रत एक बड़ा पाइप

Figure 1: A translation example from the challenge set
which illustrates the advantage of using ViTA to resolve
ambiguities. mBART is translating the word court to
judicial court, while ViTA translates it to tennis court.

Train Valid Test Challenge

#entities in text 29,583 1,028 1,631 1,592
#objects tags in images 253,051 8,679 13,855 12,507
#entities in object tags 13,959 498 758 442
%entities in object tags 47.18% 48.44% 46.47% 27.76%

Table 3: We show the overlap between the entities in
the text and the object tags detected using Faster R-
CNN model. The entities were identified using the
en core web sm model from the spaCy library5.

further analyze the results, we find a few cases in
the challenge set wherein ViTA is able to resolve
ambiguities, and an example is illustrated in Fig-
ure 1. Yet, the performance of the models is very
similar across the textual-only and multimodal do-
mains, and there are no significant improvements
observed in the multimodal system.

4.1 Degradation

Although there is no significant improvement in
the multimodal systems over the textual-only mod-
els, Caglayan et al. (2019) explore the robustness
of multimodal systems by systematically degrad-
ing the source text for translations. We employ
a similar approach and degrade the source text to
compare our systems.

4.1.1 Entity masking
The goal of entity masking is to mask out the vi-
sually depictable entities in the source text so that
the multimodal systems can make use of the visual

English Sentence A person riding a motorcycle.
Masked Sentence A <mask> riding a <mask>.

Object Tags helmet, building, sign, man, shirt, bike, flowers,
barrier, tree, wheel

mBART output एक आदमी घोड़े की सवारी करता है
ViTA output एक आदमी एक बाइक की सवारी कर रहा है

Figure 2: The effect of object tags on an entity masked
input from the test set. ViTA is able to use the context
built from the object tags to predict a motorcycle, while
mBART is predicting a horse instead.

No masking Entity Masking Degradation %

mBART 44.2 15.1 65.8
ViTA 44.6 22.5 49.6
ViTA-gt 43.6 25.4 41.7

Table 4: The effect of entity masking on the BLEU
score of the proposed models on the test set.

cues in the image. To identify such entities, we
use the en core web sm model in spaCy5 to pre-
dict the nouns in the sentence. The statistics of the
tagged entities can be seen in Table 3.

We progressively increase the percentage of
masked entities to better compare the degradation
of our systems and it can be seen in Figure 3a. The
final degraded values are reported in Table 4. Since
the masked entities can also be predicted by using
only the textual context of the sentence, we simi-
larly add a training step of masking ∼15% tokens
while training mBART for a valid comparison. An
example of the performance of our systems on an
entity masked input is illustrated in Figure 2.

As an upper bound to the scope of our system,
we propose ViTA-gt, which uses the ground-
truth object labels from the Visual Genome dataset.
Since the number of annotated objects is large, we
filter them by removing the objects far from the
image region.

5https://spacy.io/
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Figure 3: BLEU score comparison of the proposed models by increasing the masking percentage in the source
text.

No masking Color Deprivation Degradation %

mBART 44.2 39.0 11.8
ViTA 44.6 39.2 12.1
ViTA-col 43.7 40.0 8.5
ViTA-gt-col 43.8 40.9 6.6

Table 5: The effect of color deprivation on the BLEU
score of the proposed models on the test set.

4.1.2 Color deprivation

The goal of color deprivation is to similarly mask
tokens that are difficult to predict without the visual
context of the image. To identify the colors in the
source text, we maintain a list of colors and check
whether the words in the sentence are present in the
list. Similar to entity masking, we progressively
increase the percentage of masked colors in the
dataset to compare our systems. The comparison
of our systems can be seen in Figure 3b. The final
values of color deprivation are reported in Table 5.

As an upper bound to the scope of our system,
we believe that colors can further be added to the
object tags to help build a more robust system. As
an added experiment, we propose ViTA-col by
using the ground-truth annotations from the Vi-
sual Genome dataset and adding colors to our pre-
dicted object tags, which are present in the ground-

No masking Adjective Masking Degradation %

mBART 44.2 36.1 18.3
ViTA 44.6 36.1 19.1
ViTA-adj 44.3 36.9 16.7
ViTA-gt-adj 43.9 37.2 15.3

Table 6: The effect of adjective masking on the BLEU
score of the proposed models on the test set.

truth objects as well. As a part of future work, we
would like to extend our system to predict the col-
ors from the image itself. We further experiment
with ViTA-gt-col, which uses ground-truth ob-
jects with added colors in the input.

4.1.3 Adjective Masking
Similar to color deprivation, we propose adjective
masking as several of the adjectives are visually
depictable, and the degradation comparison should
not be limited to just entities and colors. We pre-
dict the adjectives in the sentence by using the POS
tagging model en core web sm from spaCy li-
brary.

The performance of our models is compared in
Figure 3c. The final values are reported in Table 6.

As an upper bound to the scope of our system,
we propose to add all the adjectives to their cor-
responding object tags in the input. We propose

170



ViTA-adj by adding the ground truth adjectives
annotated in the Visual Genome dataset to the ob-
ject tags which are also predicted by our object
detector. We also propose ViTA-gt-adj, which
uses the ground-truth objects with their correspond-
ing adjectives. The objects which are from the im-
age region are removed to mitigate the noise added
by the large number of objects in the annotations.

4.1.4 Random Masking
For a general robustness comparison of our models,
we remove the limitation of manually masking the
source sentences and progressively mask the text
by random sampling.

The performance of our models is compared in
Figure 3d.

5 Conclusion

We propose a multimodal translation system and
utilize the textual-only pre-training of a neural ma-
chine translation system, mBART, by extracting
object tags from the image. Further, we explore
the robustness of our proposed multimodal system
by systematically degrading the source texts and
observe improvements from the textual-only coun-
terpart. We also explore the shortcomings of the
currently available object detectors and use ground-
truth annotations in our experiments to show the
scope of our methodology. The addition of colors
and adjectives further adds to the robustness of the
system and can be explored further in the future.
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Abstract

We introduce our TMEKU1 system submitted
to the English→Japanese Multimodal Trans-
lation Task for WAT 2021. We participated
in the Flickr30kEnt-JP task and Ambiguous
MSCOCO Multimodal task under the con-
strained condition using only the officially pro-
vided datasets. Our proposed system employs
soft alignment of word-region for multimodal
neural machine translation (MNMT). The ex-
perimental results evaluated on the BLEU
metric provided by the WAT 2021 evalua-
tion site show that the TMEKU system has
achieved the best performance among all the
participated systems. Further analysis of the
case study demonstrates that leveraging word-
region alignment between the textual and vi-
sual modalities is the key to performance en-
hancement in our TMEKU system, which
leads to better visual information use.

1 Introduction

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) has achieved
state-of-the-art translation performance. However,
there remain numerous situations where textual
context alone is insufficient for correct translation,
such as in the presence of ambiguous words and
grammatical gender. Therefore, researchers in this
field have established multimodal neural machine
translation (MNMT) tasks (Specia et al., 2016; El-
liott et al., 2017; Barrault et al., 2018), which trans-
lates sentences paired with images into a target
language.

Due to the lack of multimodal datasets, mul-
timodal tasks on the English→Japanese (En→Ja)
language pair have not been paid attention to. Since
the year 2020, as the multimodal dataset on the

1TMEKU is the abbreviation of the combination of the
Tokyo Metropolitan University, the Ehime University and the
Kyoto University.

En→Ja language pair has been made publicly avail-
able, the multimodal machine translation (MMT)
tasks on the En→Ja were held at the WAT 2020
(Nakazawa et al., 2020) for the first time. Some
studies (Tamura et al., 2020) have started to focus
on incorporating multimodal contents, particularly
images, to improve the translation performance on
the En→Ja task.

In this study, we apply our system (Zhao et al.,
2021) for the MMT task on the En→Ja language
pair, which is called TMEKU system. This system
is designed to translate a source word into a target
word, focusing on a relevant image region. To
guide the model to translate certain words based
on certain image regions, explicit alignment over
source words and image regions is needed. We
propose to generate soft alignment of word-region
based on cosine similarity between source words
and visual concepts. While encoding, textual and
visual modalities are represented interactively by
leveraging the word-region alignment, which is
associating image regions with respective source
words.

The contributions of this study are as follows:

1. Our TMEKU system outperforms baselines
and achieves the first place evaluated by
BLEU metric among all the submitted sys-
tems in the multimodal translation task of
WAT 20212 (Nakazawa et al., 2021) on the
En→Ja.

2. Further analysis demonstrates that our
TMEKU system utilizes visual information
effectively by relating the textual to visual in-
formation.

2https://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/
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Figure 1: The soft alignment of word-region.

2 TMEKU System

2.1 Word-Region Alignment
As shown in Figure 1, we propose to create an
alignment between semantically relevant source
words and image regions.

For the regions, we follow Anderson et al. (2018)
in detecting object-level image regions from each
image, which are denoted by bounding boxes on
the figure. In particular, each bounding box is de-
tected along with a visual concept consisting of an
attribute class followed by an object class instead
of only the object class. We take these visual con-
cepts to represent the image regions. We set each
image labeled with 36 visual concepts of image
regions, which are space-separated phrases. For
the words, we lowercase and tokenize the source
English sentences via the Moses toolkit.3

The soft alignment is a similarity matrix filled
with the cosine similarity between source words
and visual concepts. To avoid unknown words,
we convert the words and concepts into subword
units using the byte pair encoding (BPE) model
(Sennrich et al., 2016). Subsequently, we utilize
fastText (Bojanowski et al., 2017) to learn subword
embeddings. We use a pre-trained model4 contain-
ing two million word vectors trained with subword
information on Common Crawl (600B tokens). The
source subword embeddings can be generated di-
rectly, whereas the generation of visual concept
embeddings should take an average of the embed-
dings of all constituent subwords because they are
phrases. As shown in Figure 1, source subwords
are represented by W = {w1,w2,w3, · · · ,wn},
and the visual concepts are represented by C =
{c1, c2, c3, · · · , c36}. These embeddings provide
a mapping function from a subword to a 300-dim
vector, where semantically similar subwords are

3https://github.com/moses-smt/
mosesdecoder

4https://fasttext.cc/docs/en/
english-vectors.html

embedded close to each other. Finally, we calcu-
late a cosine similarity matrix of the word-region
as a soft alignment Asoft.

2.2 Encoder
2.2.1 Representing Textual Input
In Figure 2, the textual encoder is a bi-directional
RNN. Given a source sentence of n source words,
the encoder generates the forward annotation vec-
tors (

−→
h1,
−→
h2,
−→
h3, · · · ,

−→
hn), and backward annota-

tion vectors (
←−
h1,
←−
h2,
←−
h3, · · · ,

←−
hn). By concatenat-

ing the forward and backward vectors hi = [
−→
hi;
←−
hi],

all words are denoted as H = (h1,h2, · · · ,hn).
2.2.2 Representing Visual Input
We follow Anderson et al. (2018) in extracting the
region-of-interest (RoI) features of detected image
regions in each image. There are 36 object-level
image region features, each of which is represented
as a 2,048-dim vector r, and all features in an image
are denoted as R = (r1, r2, r3, · · · , r36).
2.2.3 Representations with Word-Region

Alignment
As shown in Figure 2, we represent
textual annotation of n source words
as Atxt = (atxt1 ,atxt2 ,atxt3 , · · · ,atxtn ),
and visual annotation of 36 regions as
Aimg = (aimg

1 ,aimg
2 ,aimg

3 , · · · ,aimg
36 ).

We represented the visual annotation Aimg by
concatenating R with the aligned textual features
Halign and the textual annotation Atxt using textual
input representation H directly.

The calculation of the Aimg is computed as fol-
lows:

Aimg = CONCAT(R,Halign)

Halign =
AT

soft ·H
|H|

where the |R| and |H| represent the length of source
words and the numbers of image regions: n and 36;
the CONCAT is a concatenation operator.
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Figure 2: The TMEKU system.

2.3 Decoder
To generate target word yt at time step t, a hidden
state proposal s(1)t is computed in the first cell of
deepGRU (Delbrouck and Dupont, 2018) (GRU
(1)) by function fgru1(yt−1, st−1). The function
considers the previously emitted target word yt−1
and generated hidden state st−1 as follows.

s
(1)
t = (1− ξ̂t)� ṡt + ξ̂t � st−1
ṡt = tanh(WEY [yt−1] + γ̂t � (Ust−1))

γ̂t = σ(WγEY [yt−1] + Uγst−1)

ξ̂t = σ(WξEY [yt−1] + Uξst−1)

where Wξ, Uξ,Wγ , Uγ ,W , and U are training pa-
rameters, and EY is the target word embedding.

2.3.1 Text-Attention
At time step t, the text-attention focuses on every
textual annotation atxti in Atxt and assigns an at-
tention weight. The textual context vector zt is
generated as follows.

etextt,i = (V text)Ttanh(U texts
(1)
t +W textatxti ),

αtext
t,i = softmax(etextt,i )

zt =

n∑

i=1

αtext
t,i atxti

where V text, U text, and W text are the training pa-
rameters; etextt,i is the attention energy; and αtext

t,i is
the attention weight matrix.

2.3.2 Image-Attention
Similarly, the visual context vector ct is generated
as follows.

eimg
t,j = (V img)Ttanh(U imgs

(1)
t +W imgaimg

j ),

αimg
t,j = softmax(eimg

t,j )

ct =
36∑

j=1

αimg
t,j aimg

j

where V img, U img, and W img are the training pa-
rameters; αimg

t,j is a weight matrix of each aimg
j ;

and eimg
t,j is the attention energy.

2.3.3 DeepGRU
As shown in Figure 2, deepGRU consists of three
layers of GRU cells, which are variants of the con-
ditional gated recurrent unit (cGRU).5 The hidden
state st is computed in GRU (3) as follows. Be-
cause the calculation of fgru2 and fgru3 are similar
to function fgru1 , they are not included in the paper.

st = fgru3([ct, yt−1], s
(2)
t )

s
(2)
t = fgru2(zt, s

(1)
t )

We use a gated hyperbolic tangent activation
(Teney et al., 2018) instead of tanh. This nonlinear
layer implements function fght : x ∈ Rm → y ∈
Rn with parameters defined as follows.

y′ = tanh(Kx+ b)

g = σ(K ′x+ b′)

y = y′ � g

where K,K ′ ∈ Rn×m and b, b′ ∈ Rn are the
training parameters.

5https://github.com/nyu-dl/
dl4mt-tutorial/blob/master/docs/cgru.pdf
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To ensure that both representations have their
own projections to compute the candidate probabil-
ities, a textual GRU block and visual GRU block
(Delbrouck and Dupont, 2018) obtained as below.

bv
t = fght(W

v
b st)

bt
t = fght(W

t
bs

(2)
t )

yt ∼ pt = softmax(W t
projb

t
t +W v

projb
v
t ),

where W v
b ,W

t
b,W

t
proj,W

v
proj are training parame-

ters.

3 Experiments

3.1 Dataset
Firstly, we conducted experiments for the En→Ja
task using the official Flickr30kEnt-JP dataset
(Nakayama et al., 2020), which was extended from
the Flickr30k (Young et al., 2014) and Flickr30k
Entities (Plummer et al., 2017) datasets, where
manual Japanese translations were newly added.

For training and validation, we used the
Flickr30kEnt-JP dataset6 for Japanese sentences,
the Flickr30k Entities dataset7 for English sen-
tences, and the Flickr30k dataset8 for images. They
were sharing the same splits of training and val-
idation data made in Flickr30k Entities. For test
data, we used the officially provided data of the
Flickr30kEnt-JP task, and their corresponding im-
ages were in the Flickr30k dataset.

Note that the Japanese training data size is orig-
inally 148,915 sentences, but five sentences are
missing. Thus, we used 148,910 sentences for train-
ing. In summary, we used 148,910 pairs for train-
ing, 5k pairs for validation, and 1k monolingual
English sentences for translating test results.

Secondly, we also conducted experiments for
the En→Ja task using the official Ambiguous
MSCOCO dataset (Merritt et al., 2020),9 which
was extended from the Ambiguous COCO captions
and images,10 where the Japanese translations were
newly added. It was including a validation set
with 230 pairs and a test set with 231 pairs. For
standard training data, the training data from the
Flickr30kEnt-JP dataset was officially designated.

6https://github.com/nlab-mpg/
Flickr30kEnt-JP

7http://bryanplummer.com/
Flickr30kEntities/

8http://shannon.cs.illinois.edu/
DenotationGraph/

9https://github.com/knccch/JaEnCOCO
10http://www.statmt.org/wmt17/

multimodal-task.html

3.2 Preprocessing

For English sentences, we applied lowercase, punc-
tuation normalization, and the tokenizer in the
Moses Toolkit. Then we converted space-separated
tokens into subword units using the BPE model
with 10k merge operations. For Japanese sentences,
we used MeCab11 for word segmentation with the
IPA dictionary. The resulting vocabulary sizes of
En→Ja were 9,578→22,274 tokens.

For image regions, we used Faster-RCNN (Ren
et al., 2015) in Anderson et al. (2018) to detect up
to 36 salient visual objects per image and extracted
their corresponding 2,048-dim image region fea-
tures and attribute-object combined concepts.

3.3 Settings

(i) NMT: the baseline NMT system (Bahdanau
et al., 2015) is the architecture comprised a 2-layer
bidirectional GRU encoder and a 2-layer cGRU
decoder with attention mechanism, which only en-
codes the source sentence as the input.
(ii) MNMT: the baseline MNMT system without
word-region alignment (Zhao et al., 2020). This
architecture comprised a 2-layer bidirectional GRU
encoder and a 2-layer cGRU decoder with double
attentions to integrate visual and textual features.
(iii) TMEKU system: our proposed MNMT system
with word-region alignment.

We conducted all experiments on Nmtpy toolkit
(Caglayan et al., 2017).

3.3.1 Parameters
We ensured that the parameters were consistent in
all the settings. We set the encoder and decoder
hidden state to 400-dim; word embedding to 200-
dim; batch size to 32; beam size to 12; text dropout
to 0.3; image region dropout to 0.5; dropout of
source RNN hidden states to 0.5; and blocks bt

t

and bv
t to 0.5.

Specifically, the textual annotation Atxt was 800-
dim, which was consistent with H. Further, the vi-
sual annotation Aimg was 4,096-dim by a concate-
nation of R and Halign, where R was 2,048-dim
and Halign was 2,048-dim by a linear transforma-
tion from 800-dim.

We trained the model using stochastic gradient
descent with ADAM (Kingma and Ba, 2015) and a
learning rate of 0.0004. We stopped training when
the BLEU (Papineni et al., 2002) score did not
improve for 20 evaluations on the validation set,

11https://taku910.github.io/mecab/
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Model Test Score

Baseline NMT 46.16
Baseline MNMT 46.33

TMEKU System 47.02
v.s. baseline NMT ↑ 0.86
v.s. baseline MNMT ↑ 0.69
Ensemble (top 10 models) 48.57 4.7225

Table 1: Flickr30kEnt-JP task: BLEU scores and hu-
man evaluation score (full score is 5) on the En→Ja.

Model Test Score

TMEKU System 30.23

Ensemble (8 models) 31.04 4.4825

Table 2: Ambiguous MSCOCO task: BLEU scores and
human evaluation score (full score is 5) on the En→Ja.

and one validation evaluation was performed after
every epoch.

3.3.2 Ensembling Models
For the Flickr30kEnt-JP task on the En→Ja, each
experiment is repeated with 12 different seeds to
mitigate the variance of BLEU. At last, we choose
the top 10 trained models that evaluated by BLEU
scores on the validation set for ensembling.

For the Ambiguous MSCOCO task on the
En→Ja, each experiment is repeated with 8 dif-
ferent seeds to mitigate the variance of BLEU and
benefit from ensembling these 8 trained models for
the final testing.

3.4 Evaluation
We evaluated the quality of the translation results
using the official evaluation system provided by
WAT 2021. We submitted the final translation re-
sults in Japanese, which was translated from the
official test data in English. On the WAT 2021
evaluation site, an automatic evaluation server was
prepared and the BLEU was the main metric to
evaluate our submitted translation results.

3.5 Results
In Table 1, we presented the results of the baselines
and our TMEKU system on the Flickr30kEnt-JP
task. We compared all the results based on BLEU
scores evaluated by WAT 2021 evaluation site. For
instance, the TMEKU system outperformed the

NMT baseline by BLEU scores of 0.86 and out-
performed the MNMT baseline by BLEU scores
of 0.69 on the official test set. Our TMEKU sys-
tem achieved significant improvement over both
the NMT and MNMT baselines. Moreover, the re-
sult of ensembling the top 10 models has achieved
the first place in the ranking of this task.

We also participated in the Ambiguous
MSCOCO task on the En→Ja translation using
our TMEKU system. Our reported BLEU scores
are shown in Table 2, and the result of ensembling
8 models has ranked the first among all the submis-
sions in this task.

3.6 Human Evaluation

To further validate the translation performance, a
human evaluation was done by the organizers.

There are two native speakers of Japanese to rate
the translation results with a score of 1 to 5 (1 is
the worst and 5 is the best), who are informed to
focus more on semantic meaning than grammatical
correctness. There are 200 randomly selected ex-
amples for evaluation on the En→Ja language pair
of Flickr30kEnt-JP task and Ambiguous MSCOCO
task, respectively.

The human evaluation scores provided by the
organizers are added in Table 1 and Table 2, which
have achieved the best scores among the partici-
pated systems in their respective tasks.

4 Case Study

We show two cases in Figure 3, and improvement
is highlighted in green.

We perform two types of visualization for each
case: (1) We visualize the source-target word align-
ment of the text-attention. (2) We visualize the
region-target alignment of the image-attention at a
time step that generates a certain target word along
with attending to the most heavily weighted image
region feature.

In the case shown on the left, our TMEKU sys-
tem translates “entering” to “entrant,” but the base-
lines under-translate. By visualization, the text-
attention and image-attention assign the highest
weights to the word and region that are semanti-
cally relevant at that time step of generating “en-
trant.” This example shows that translation quality
improvement is due to the simultaneous attentions
of semantically related image regions and words.

In the case shown on the right, our TMEKU
system correctly translates “backyard” to a com-
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English: a man in a red shirt entering an establishment.
Reference: un homme en t-shirt rouge entrant dans un établissement.

NMT Baseline: un homme en chemise rouge dans un établissement.
MNMT Baseline: un homme en chemise rouge dans un établissement.
TMEKU System: un homme en t-shirt rouge entrant (entering) dans un établissement.

English: a man is grilling out in his backyard.
Reference: un homme fait un barbecue dans son arrière-cour.

NMT Baseline: un homme fait griller quelque chose dans sa cour (yard).
MNMT Baseline: un homme fait griller quelque chose dans sa cour (yard).
TMEKU System: un homme fait griller quelque chose dans sa arrière-cour (backyard).

Figure 3: Examples for case study. The improved translation is highlighted in green.

pound noun of “arrière-cour.” But the baselines
mistranslates it to “cour,” which means “yard” in
English. Through visualization, we find that the
text-attention and image-attention focus on the fea-
tures that are semantically relevant at that time step.
This example shows that the image region feature
associated with its semantically relevant textual fea-
ture can overcome the deficiency, where the object
attribute cannot be specifically represented by only
the image region feature.

5 Conclusion

We presented our TMEKU system to the
English→Japanese MMT tasks for WAT 2021,
which is designed to simultaneously consider rele-
vant textual and visual features during translation.
By integrating the explicit word-region alignment,
the object-level regional features can be further
specified with respective source textual features.
This leads the two attention mechanisms to under-
stand the semantic relationships between textual
objects and visual concepts.

Experimental results show that our TMEKU
system exceeded baselines by a large margin and
achieved the best performance among all the partic-
ipated systems. We also performed analysis of case
study to demonstrate the specific improvements
resulting from related modalities.

In the future, we plan to propose a more efficient
integration method to make modalities interactive
with each other.
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UMONS submission for WMT18 multimodal trans-
lation task. In WMT, pages 643–647.

Desmond Elliott, Stella Frank, Loı̈c Barrault, Fethi
Bougares, and Lucia Specia. 2017. Findings of the

179



second shared task on multimodal machine transla-
tion and multilingual image description. In WMT,
pages 215–233.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR, pages
1–15.

Andrew Merritt, Chenhui Chu, and Yuki Arase. 2020.
A corpus for english-japanese multimodal neu-
ral machine translation with comparable sentences.
CoRR, abs/2010.08725.

Hideki Nakayama, Akihiro Tamura, and Takashi Ni-
nomiya. 2020. A visually-grounded parallel cor-
pus with phrase-to-region linking. In LREC, pages
4204–4210.

Toshiaki Nakazawa, Hideki Nakayama, Chenchen
Ding, Raj Dabre, Shohei Higashiyama, Hideya
Mino, Isao Goto, Win Pa Pa, Anoop Kunchukut-
tan, Shantipriya Parida, Ondřej Bojar, Chenhui
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Abstract

Dravidian languages, such as Kannada and
Tamil, are notoriously difficult to translate
by state-of-the-art neural models. This stems
from the fact that these languages are mor-
phologically very rich as well as being low-
resourced. In this paper, we focus on subword
segmentation and evaluate LinguisticallyMoti-
vated Vocabulary Reduction (LMVR) against
the more commonly used SentencePiece (SP)
for the task of translating from English into
four different Dravidian languages. Addition-
ally we investigate the optimal subword vocab-
ulary size for each language. We find that SP
is the overall best choice for segmentation, and
that larger subword vocabulary sizes lead to
higher translation quality.

1 Introduction

Dravidian languages are an important family of
languages spoken by about 250 million of people
primarily located in Southern India and Sri Lanka
(Steever, 2019). Kannada (KN),Malayalam (MA),
Tamil (TA) and Telugu (TE) are the four most
spoken Dravidian languages with approximately
47, 34, 71 and 79 million native speakers, respec-
tively. Together, they account for 93% of all Dra-
vidian language speakers. While Kannada, Malay-
alam and Tamil are classified as South Dravidian
languages, Telugu is a part of South-Central Dra-
vidian languages. All four languages are SOV
(Subject-Object-Verb) languages with free word
order. They are highly agglutinative and inflection-
ally rich languages. Additionally, each language
has a different writing system. Table 1 presents
an English sentence example and its Dravidian-
language translations.
The highly complex morphology of the Dravid-

ian languages under study is illustrated if we com-
pare translated sentence pairs. The analysis of our
parallel datasets (section 4.1, Table 3) shows for

instance that an average English sentence contains
almost ten times as many words as its Kannada
equivalent. For the other three languages, the ra-
tio is a bit smaller but the difference with English
remains considerable. This indicates why it is im-
portant to consider word segmentation algorithms
as part of the translation system.
In this paper we describe our work on Neural

Machine Translation (NMT) from English into the
Dravidian languages Kannada, Malayalam, Tamil
and Telugu. We investigated the optimal transla-
tion settings for the pairs and in particular looked at
the effect of word segmentation. The aim of the pa-
per is to answer the following research questions:

• Does LMVR, a linguistically motivated
word segmentation algorithm, outperform the
purely data-driven SentencePiece?

• What is the optimal subword dictionary size
for translating fromEnglish into these Dravid-
ian languages?

In what follows, we review the relevant previ-
ous work (Sect. 2), introduce the two segmenters
(Sect. 3), describe the experimental setup (Sect. 4),
and present our answers to the above research ques-
tions (Sect. 5).

2 Previous Work

2.1 Translation Systems
Statistical Machine Translation One of the ear-
liest automatic translation systems for English into
a Dravidian language was the English→Tamil sys-
tem by Germann (2001). They trained a hy-
brid rule-based/statistical machine translation sys-
tem that was trained on only 5k English-Tamil
parallel sentences. Ramasamy et al. (2012) cre-
ated SMT systems (phrase-based and hierarchical)
which were trained on a dataset of 190k parallel
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EN He was born in Thirukkuvalai village in Nagapattinam District on 3rd June, 1924.

KN ಅವರು ³ಗಪಟɫ ಣಂ ÎĻಯ Öರುಕುɡ ವಲȗ¢ɻಮದʉ 1924ರ ಜೂȑ 3ರಂದು ಜÚèದɲ ರು.
avaru nāgapatṭạnạm jilleya tirukkuvalay grāmadalli 1924ra jūn 3randu janisiddaru.

1924ല ്നാഗപ�ണം ജി�യിെല തിരു�ുവൈള wഗാമ�ിലാണ് അേ�ഹം ജനി�ത�്ML 1924l nāgapatṭạnạm jillayile tirukkuvalại grāmattilān ̣ addēham janiccat.

நாகïபê�னð மாவêடð �Êå¾வைளå �ராமì�ô அவò 1924-ஆð ஆëÂ
ஜூî மாதð 3-ஆð ேத� �றíதாò.TA nāgappatṭịnam māvatṭạm tirukkuvalạik kirāmattil avar 1924-ām ānṭụ jūn mātam 3-ām tēti
pirantār.

ఆయన Ƶగపట˸ణం Ǎƾ̊ Ǖ̡͞ˮǀȪౖ Ƥ̫మంʖ 1924 ˧˕ 3న జǙ̆ంƧ͞.
TE āyana nāgapatṭạnạm jillā tirukkuvālai grāmanlō 1924 jūn 3na janmincāru.

Table 1: Example sentence in English along with its translation and transliteration in the four Dravidian languages.

sentences (henceforth referred to as UFAL). They
also reported that applying pre-processing steps in-
volving morphological rules based on Tamil suf-
fixes improved the BLEU score of the baseline
model to a small extent (from 9.42 to 9.77). For
the Indic languages multilingual tasks of WAT-
2018, the Phrasal-based SMT system of Ojha et al.
(2018) with a BLEU score of 30.53.
Subsequent papers also focused on SMT sys-

tems for Malayalam and Telugu with some notable
work including: (Anto and Nisha, 2016; Sreelekha
and Bhattacharyya, 2017, 2018) for Malayalam
and (Lingam et al., 2014; Yadav and Lingam,
2017) for Telugu.

Neural Machine Translation On the neural
machine translation (NMT) side, there have
been a handful of NMT systems trained on
English→Tamil. On the aforementioned Indic
languages multilingual tasks of WAT-2018, Sen
et al. (2018), Dabre et al. (2018) reported only
11.88 and 18.60 BLEU scores, respectively, for
English→Tamil. The poor performance of these
systems compared to the 30.53 BLEU score of the
SMT system (Ojha et al., 2018) showed that those
NMT systems were not yet suitable for translating
into the morphologically rich Tamil.
However, the following year, Philip et al. (2019)

outperformed Ramasamy et al. (2012) on the
UFAL dataset with a BLEU score of 13.05 (the pre-
vious best score on this test set was 9.77). They
report that techniques such as domain adaptation
and back-translation can make training NMT sys-
tems on low-resource languages possible. Similar

findings was also reported by Ramesh et al. (2020)
for Tamil and Dandapat and Federmann (2018) for
Telugu .
To the best of our knowledge and as of 2021,

there has not been any scientific publication involv-
ing translation to and from Kannada, except for
Chakravarthi et al. (2019). One possible reason for
this could be the fact that sizeable corpora involv-
ing Kannada (i.e. in the order of magnitude of at
least thousand sentences) have been readily avail-
able only since 2019, with the release of the JW300
Corpus (Agić and Vulić, 2019).

Multilingual NMT Since 2018 several studies
have presented multilingual NMT systems that can
handle English → Malayalam, Tamil and Telugu
translation (Dabre et al., 2018; Choudhary et al.,
2020; Ojha et al., 2018; Sen et al., 2018; Yu et al.,
2020; Dabre and Chakrabarty, 2020). In particular,
Sen et al. (2018) presented results where the BLEU
score improved when comparing monolingual and
multilingual models. Conversely, Yu et al. (2020)
found that NMT systems that were multi-way (In-
dic ↔ Indic) performed worse than English ↔ In-
dic systems.
To our knowledge, no work so far has explored

the effect of the segmentation algorithm and dictio-
nary size on the four languages: Kannada, Malay-
alam, Tamil and Telugu.

3 Subword Segmentation Techniques

Prior to the emergence of subword segmenters,
translation systems were plagued with the issue of
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Name Domain Available in:
Kannada Malayalam Tamil Telugu

Bible Religion 18 1 14
ELRC COVID-19 <1 <1 <1
GNOME Technical <1 <1 <1 <1
JW300 Religion 70 45 52 45
KDE Technical 1 <1 <1 <1
NLPC General <1
OpenSubtitles Cinema 26 3 3
CVIT-PIB Press 5 10 10
PMIndia Politics 10 4 3 8
Tanzil Religion 18 9
Tatoeba General <1 <1 <1 <1
Ted2020 General <1 <1 <1 1
TICO-19 COVID-19 <1
Ubuntu Technical <1 <1 <1 <1
UFAL Mixed 11
Wikimatrix General <1 10 18
Wikititles General 1

Table 2: Composition of training corpora. The numbers indicate the relative size (in percentages) of the correspond-
ing part for that language.

out-of-vocabulary (OOV) tokens. This was partic-
ularly an issue for translations involving agglutina-
tive languages such as Turkish (Ataman and Fed-
erico, 2018) or Malayalam (Manohar et al., 2020).
Various segmentation algorithms were brought for-
ward to circumvent this issue and in turn, improve
translation quality.

Perhaps themost widely used algorithm in NMT
to date is the language-agnostic Byte Pair Encod-
ing (BPE) by Sennrich et al. (2016). Initially pro-
posed by Gage (1994), BPE was repurposed by
Sennrich et al. (2016) for the task of subword
segmentation, and is based on a simple principle
whereby pairs of character sequences that are fre-
quently observed in a corpus get merged itera-
tively until a predetermined dictionary size is at-
tained. In this paper we use a popular implemen-
tation of BPE, called SentencePiece (SP) (Kudo
and Richardson, 2018).

While purely statistical algorithms are able to
segment any token into smaller segments, there is
no guarantee that the generated tokens will be lin-
guistically sensible. Unsupervised morphological
induction is a rich area of research that also aims
at learning a segmentation from data, but in a lin-
guistically motivated way. The most well-known
example is Morphessor with its different variants
(Creutz and Lagus, 2002; Kohonen et al., 2010;
Grönroos et al., 2014). An important obstacle to
applying Morfessor to the task of NMT is the lack
of a mechanism to determine the dictionary size.

To address this, Ataman et al. (2017) proposed a
modification ofMorfessor FlatCat (Grönroos et al.,
2014), called Linguistically Motivated Vocabu-
lary Reduction (LMVR). Specifically, LMVR
imposes an extra condition on the cost function of
Morfessor Flatcat so as to favour vocabularies of
the desired size. In a comparison of LMVR toBPE,
Ataman et al. (2017) reported a +2.3 BLEU im-
provement on the English-Turkish translation task
of WMT18.
Given the encouraging results reported on the

agglutinative Turkish language, we hypothesise
that translation into Dravidian languages may also
benefit from a linguistically motivated segmenter,
and evaluate LMVR against SP across varying vo-
cabulary sizes.

4 Experimental Setup

4.1 Training Corpora

The parallel training data is mostly taken from the
datasets available for the MultiIndicMT task from
WAT 2021. If a certain dataset is not available
from the MultiIndicMT training repository, we re-
sorted to extract that dataset from OPUS (Tiede-
mann, 2012) or WMT20. Table 2 reports on the
datasets that we used along with their domain and
their source.
After extracting and cleaning the data (see be-

low), approximately 8 million English tokens and
their corresponding target language tokens are se-
lected as our training corpora. We fixed the num-
ber of source tokens across language pairs in or-
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Target Language Tokens(k) EN Tokens(k) Sentences(k) Source/Target Token Ratio

Kannada 817 7791 361 9.53
Malayalam 1153 7973 458 6.91
Tamil 1171 7854 345 6.71
Telugu 1027 7872 385 7.67

Table 3: Approximate sizes (in thousands) of the parallel training corpora

der to compare the efficacy of a segmentation tech-
nique across the languages without a size bias.
Table 3 presents the statistics on the corpora for
all language pairs. One takeaway from the table
is that there is a very large difference in the to-
ken sizes between English and the Dravidian lan-
guages. On average, there are 6 to 9 times more
tokens on the English side of a corpus than on its
Dravidian language translation. This shows that
all our Dravidian languages are morphologically
very complex, but there are also important differ-
ences among them, with Kannada having the high-
est source/target ratio, considerably higher than the
more widely studied Tamil language.

4.2 Pre-Processing
Sentence pairs with identical source and target
sides, or with more than 150 tokens are removed.
The target language texts are then normalized us-
ing the Indic NLP Library1. Afterwards, either
SP2 or LMVR3 is used to segment both source and
target sentences. To further reduce noise in the
datasets, we discard sentences pairs with either (i)
a target to source length ratio above 0.7 or (ii) a
language match threshold below 85% according to
the lang-id tool (Lui and Baldwin, 2011), and (iii)
duplicate sentence pairs.

4.3 NMT Training
Wedeveloped ourNMT systems using Fairseq (Ott
et al., 2019). We adopt the Transformer-Base im-
plementation (BASE)with a fewmodifications fol-
lowing the architecture setup of Philip et al. (2019)
and Dhar et al. (2020). These modifications in-
clude: setting both encoder and decoder layers to
6, embedding dimensions to size 1024 and number
of attention heads to 8. Training is performed us-
ing batches of 4k tokens, using a label-smoothed
cross entropy loss. The hidden layers are of 1024

1http://anoopkunchukuttan.github.io/indic_
nlp_library/

2https://github.com/google/sentencepiece
3https://github.com/d-ataman/lmvr

dimensions and layer normalization is applied be-
fore each encoder and decoder layer. Dropout is
set to 0.001 and weight decay to 0.2. Our loss
function is cross-entropy with label smoothing of
0.3. The models are trained for a maximum of 100
epochs with early stopping criterion set to 5.

4.4 Dictionary Size

The segmentation algorithms are trained on the
training data described in Section 4.1. We exper-
iment with the following subword dictionary sizes:
1k, 5k, 10k, 15k, 20k, 30k, 40k and 50k. In all ex-
periments, we learn separate subword dictionaries
for the source and target languages, for two rea-
sons: (i) LMVR is a linguistically motivated mor-
phology learning algorithm that models the compo-
sition of a word based on the transitions between
different morphemes and their categories. There-
fore, training jointly on two languages would not
be a principled choice. (ii) Prior studies such as
(Dhar et al., 2020) have reported better transla-
tion scores for English-Tamil using SP models that
were separately trained on the source and target
sides.

5 Results

The NMT systems are evaluated and tested on
the official development and test sets, respectively
from WAT21. These evaluation sets are sourced
from the PMIndia dataset (Haddow and Kirefu,
2020). During validation, models are evaluated by
BLEU on the segmented data, whereas final test
scores are computed on the un-segmented and de-
tokenized sentences (de-tokenization is performed
with the Indic NLP library tool). In addition to
BLEU (Papineni et al., 2002), we also report on
CHRF score (Popović, 2015), which is based on
character n-grams and is therefore more suitable to
assess translation quality in morphologically com-
plex languages.4 We report the macro-averaged

4We compute BLEU scores with SacreBLEU (Post, 2018),
and CHRF scores with chrF++.py https://github.com/
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Target Language Dictionary Size BLEU CHRF Jaccard Similarity (%)
SP LMVR SP LMVR Types Tokens

Kannada

1k 10.4 6.2 48.3 40.6 17.0 2.5
5k 13.0 5.9 50.2 40.7 14.8 0.6
10k 13.9 6.8 49.6 42.8 13.1 0.4
15k 13.4 6.4 48.8 41.8 10.7 0.3
20k 13.0 7.3 48.3 43.4 10.6 0.3
30k 12.6 6.6 47.4 42.4 10.1 0.2
40k 12.3 7.4 46.5 43.9 9.5 0.2
50k 12.0 6.8 46.0 42.7 9.0 0.2

Malayalam

1k 8.1 8.8 47.4 46.1 15.6 3.3
5k 11.2 12.6 52.3 50.5 16.6 1.3
10k 14.6 15.9 55.3 50.5 14.2 0.8
15k 17.0 18.6 57.9 54.9 14.2 0.7
20k 19.2 19.7 60.1 55.2 12.0 0.6
30k 23.4 23.8 63.6 58.3 11.8 0.5
40k 24.5 27.3 63.7 60.2 11.3 0.5
50k 24.4 28.5 63.6 60.9 11.3 0.5

Tamil

1k 10.4 8.1 48.3 45.7 16.7 2.4
5k 13.2 8.2 50.6 46.2 15.7 0.6
10k 15.6 10.0 51.8 48.7 14.2 0.3
15k 20.1 10.9 53.6 49.1 11.7 0.2
20k 21.8 12.4 54.5 50.0 11.8 0.2
30k 23.8 11.3 55.3 49.2 11.6 0.2
40k 22.8 10.5 54.0 48.8 11.2 0.2
50k 27.3 9.1 55.9 47.3 10.8 0.2

Telugu

1k 5.3 11.8 40.7 45.9 16.8 4.5
5k 5.6 10.8 44.6 43.5 17.8 1.6
10k 6.2 12.8 45.4 45.6 15.3 1.1
15k 10.4 14.1 50.1 47.6 15.7 1.0
20k 11.1 23.7 50.8 54.7 13.7 0.7
30k 14.1 23.8 54.0 58.3 14.2 0.7
40k 18.6 18.8 58.1 50.7 14.2 0.7
50k 19.3 24.5 59.4 54.6 14.1 0.6

Table 4: BLEU and CHRF scores for English-to-X NMT, using different segmenters and varying subword vocab-
ulary size. SP refers to the purely statistical SentencePiece segmenter, LMVR to Linguistically Motivated Vocab-
ulary Reduction. Dictionary size refers to the size of both the source and target subword dictionaries. Rightmost
columns show the Jaccard similarity (percentage) for the types and tokens from the segmenter outputs.

document level F3-score.Results are presented in
Table 4.

SP clear winner for Kannada and Tamil: SP
presented the highest BLEU and CHRF scores
for Kannada and Tamil. When we compare the
best systems for both SP and LMVR, large differ-
ences are observed. For Kannada differences of +6
BLEU and +7.4 are observed and for Tamil the dif-
m-popovic/chrF

ferences are +14.9 for BLEU and +5.9 for CHRF.

Mixed results for Telugu and Malayalam:
However, we find no clear winner for the other two
languages. When observing only BLEU scores,
LMVR appears to have the upper hand, with an
improvement of +2.8 BLEU and +4.5 BLEU for
Malayalam and Telugu, respectively. However
the results are flipped when we look at the CHRF
scores. SP systems here report higher scores, with
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+3.5 improvement in Malayalam and +1.1 for Tel-
ugu. Given the morphological richness of our tar-
get languages, we take CHRF as the more reliable
score, and conclude that the purely statistical seg-
menter SP is a better choice for translation intoDra-
vidian languages in our setup.

Larger dictionary sizes better: When observ-
ing the effect of the dictionary size, we find that the
size 50k gives the highest BLEU scores for Malay-
alam, Tamil and Telugu. This is in contrast with
studies such as (Philip et al., 2019; Sennrich and
Zhang, 2019) who suggest to use a smaller dic-
tionary size for low-resource settings. For these
language pairs, we see a steady increase in BLEU
and CHRF as we increase the dictionary size. For
Kannada, the best results are obtained for much
smaller dictionary sizes, but in contrast with the
other three languages, the differences between the
scores for other dictionary sizes is much smaller.
For instance, looking at the CHRF scores of SP,
the numbers decrease from 48.3 to 46.0, whereas
for instance for Malayalam, these numbers range
from 47.4 to 63.6.

Kannada hardest to translate: When compar-
ing more in general translation difficulty across
target languages, Kannada appears to be the most
challenging language by far. A possible explana-
tion for this difference is the genre distribution of
our datasets (cf. Table 2): While the test sets are
from PMIndia (a mixture of background informa-
tion, news and speeches), the majority of our Kan-
nada training data consists of religion related texts.
Another possible confounding factor is that we
based our NMT configuration on prior work that
focused only on English-Tamil (Philip et al., 2019;
Dhar et al., 2020), and this may be sub-optimal for
the other Dravidian languages despite the similar
training data size.

6 Analysis

6.1 Different Subtokens generated
Table 4 presents the Jaccard similarity (JS) be-
tween the segmenter outputs between LMVR and
SP. The outputs are either the types (dictionaries)
or the tokens in the training sentences. A JS of 0
denotes that none of the subwords were the same
in the sentences being compared, while a score of
100 denotes a complete match (i.e, they are iden-
tical). As visible from the scores, though there
is some sharing of types between the segmenters

(ranging from 9-17%), there is no such sharing of
subwords in the training data, with a maximum JS
score of only around 4% for the smallest dictionary
sizes. In fact, these values reduce even further as
the dictionary size are increased. For the largest
dictionary size (50k), almost no subtoken sharing
occurs.

6.2 Effect of Unknown Subwords

We carried out an analysis on the effect of un-
known subwords found in the development set af-
ter the application of a given segmentation algo-
rithm.We present these statistics in Figure 1. Few
details stand out:

High percentage of unknown subwords in Kan-
nada with LMVR While development sets en-
coded with SP reported the lowest percentage of
unknowns, it is the complete opposite for the ones
encoded with LMVR (0.2% vs 15% on average).
This could have played a role in the lowest CHRF
scores achieved by the LMVR systems on Kan-
nada.

LMVR sensitive to dictionary size This is ob-
served in particular for Kannada and Malayalam,
where the increase in dictionary size leads to higher
numbers of unknown subwords. Conversely for
SP, increasing the dictionary size causes no major
change in the number of unknowns found for these
two languages. On the other hand, SP is more sus-
ceptible to the dictionary size for Tamil while Tel-
ugu, in general, does not present any such trends.
Overall we find no strong correlation between

system performance and percentage of unknown
subwords. By contrast, and quite surprisingly so,
our best NMT systems for Malayalam, Tamil and
Telugu are those with larger dictionary sizes and
higher percentage of unknowns in the development
set.

6.3 Effect of subword lengths

We also looked at the effect of the segmenter on the
subword length. Given a language and segmenter,
we calculate the average length of a subword (in
characters) for the training sets. In Figure 2we plot
the distribution of the average subword lengths for
all our settings. Few observations are apparent,

• For every language and dictionary size,
LMVR results in shorter subwords. Taking
dictionary size of 50k as an example, the dif-
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Figure 1: Number of unknown tokens (in percentages) in the development set vs Dictionary size for each language
and segmentation type. Also systems that reported the lowest and highest CHRF scores (on the development set)
for each language and segmentation are marked.

ference between LMVR and SP ranges from
1.2 for Malayalam to 1.7 for Tamil.

• As the dictionary size increases, we see the
distributions spreading out. As the dictionary
size decreases, the distributions becomemore
centered. This is particularly seen for LMVR.
As the dictionary size increases, the distribu-
tions of the SP systems spread out more than
their LMVR counterparts.

• While it makes sense that the average sub-
word length increases as we increase the dic-
tionary size (from 3 to 5), the apparent widen-
ing in the difference between SP and LMVR
is not so easily explained.

In the end however, we find no discernible connec-
tion between the subword length and the perfor-
mance of a segmenter. Across all languages, we
see similar trends of how the distrubtions change,
but this does not seem to affect the translation qual-
ity, as seen in the difference in the CHRF scores.

7 Conclusion

We presented our work on Neural Machine Trans-
lation from English into four Dravidian languages

(Kannada, Malayalam, Tamil and Telugu). Sev-
eral experiments were carried out to find out
whether a linguistically motivated subword seg-
menter (LMVR) is more suitable than a purely sta-
tistical one (SentencePiece) for translating into the
morphologically complex Dravidian languages,
while using a Transformer architecture. While
BLEU results were mixed on Malayalam and Tel-
ugu, CHRF scores clearly suggest that Sentence-
Piece remains the best option for all of our tested
language pairs.
We also found interesting differences among the

four target languages. Though they all belong to
the same language family and share various lin-
guistic phenomena, they are different with respect
to source/target token ratio (Table 3), and the rate
of unknown subwords in the development set (Fig-
ure 1). Whether this is due to linguistic characteris-
tics or to genre differences in the training corpora
remains hard to gauge.
Finally, we invite future researchers to carry out

research on Dravidian languages, especially Kan-
nada. Compared to the plethora of work found for
other languages, the work on Dravidian languages
is lagging behind. As our results show, there re-
mains a large space for improvements, particularly

187



Figure 2: The Probability density function plot showing the distribution of the average subword length for a given
segmenter and language on the training sets. The colored boxes denote the mean of the respective distributions.
Also included are the differences in the CHRF scores between SP and LMVR.

when translating into these languages.
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Abstract

This work introduces Itihāsa, a large-scale
translation dataset containing 93,000 pairs of
Sanskrit shlokas and their English transla-
tions. The shlokas are extracted from two
Indian epics viz., The Rāmāyana and The
Mahābhārata. We first describe the motivation
behind the curation of such a dataset and fol-
low up with empirical analysis to bring out its
nuances. We then benchmark the performance
of standard translation models on this corpus
and show that even state-of-the-art transformer
architectures perform poorly, emphasizing the
complexity of the dataset.1

1 Introduction

Sanskrit is one of the oldest languages in the world
and most Indo-European languages are influenced
by it (Beekes, 1995). There are about 30 million
pieces of Sanskrit literature available to us today
(Goyal et al., 2012), most of which have not been
digitized. Among those that have been, few have
been translated. The main reason for this is the lack
of expertise and funding. An automatic translation
system would not only aid and accelerate this pro-
cess, but it would also help in democratizing the
knowledge, history, and culture present in this liter-
ature. In this work, we present Itihāsa, a large-scale
Sanskrit-English translation corpus consisting of
more than 93,000 shlokas and their translations.

Itihāsa, literally meaning ‘it happened this way’
is a collection of historical records of important
events in Indian history. These bodies of work are
mostly composed in the form of verses or shlokas,
a poetic form which usually consists of four parts
containing eight syllables each (Fig. 1). The most
important among these works are The Rāmāyana

1The processed and split dataset can be found
at https://github.com/rahular/itihasa and a
human-readable version can be found at http://rahular.
com/itihasa.

मा नषाद प्रतष्ठां त्वमगमश्शाश्वतीस्समा:।
यत्क्रौञ्चमथुनादेकमवधी: काममोहतम॥्

O fowler, since you have slain one of a pair of 
Krauñcas, you shall never attain prosperity (respect)!

Figure 1: An introductory shloka from The Rāmāyana.
The four parts with eight syllables each are highlighted
with different shades of gray.

and The Mahābhārata. The Rāmāyana, which de-
scribes the events in the life of Lord Rāma, consists
of 24,000 verses. The Mahābhārata details the war
between cousins of the Kuru dynasty, in 100,000
verses. The Mahābhārata is the longest poem ever
written with about 1.8 million words in total and
is roughly ten times the length of the Iliad and the
Odyssey combined.

Only two authors have attempted to translate the
unabridged versions of both The Rāmāyana and
The Mahābhārata to English: Manmatha Nāth Dutt
in the 1890s and Bibek Debroy in the 2010s. M.
N. Dutt was a prolific translator whose works are
now in the public domain. These works are pub-
lished in a shloka-wise format as shown in Fig. 1
which makes it easy to automatically align shlokas
with their translations. Though many of M. N.
Dutt’s works are freely available, we choose to
extract data from The Rāmāyana (Vālmiki and
Dutt, 1891), and The Mahābhārata (Dwaipāyana
and Dutt, 1895), mainly due to its size and popu-
larity. As per our knowledge, this is the biggest
Sanskrit-English translation dataset to be released
in the public domain.

We also train and evaluate standard translation
systems on this dataset. In both translation di-
rections, we use Moses as an SMT baseline, and
Transformer-based seq2seq models as NMT base-
lines (see §4). We find that models which are gen-
erally on-par with human performance on other
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Figure 2: Pre-processing Pipeline: The three steps shown here are: (i) invert the colour scheme of the PDF and
dilate every detectable edge, (ii) find the indices of the longest vertical and horizontal lines in the page, and (iii)
split the original PDF along the found separator lines.

translation tasks, perform poorly on Itihāsa, with
the best models scoring between 7-8 BLEU points.
This indicates the complex nature of the dataset
(see §3 for a detailed analysis of the dataset and its
vocabulary).

Motivation The main motivation behind this
work is to provide an impetus for the Indic NLP
community to build better translation systems for
Sanskrit. Additionally, since The Rāmāyana and
The Mahābhārata are so pervasive in Indian culture,
and have been translated to all major Indian lan-
guages, there is a possibility of creating an n-way
parallel corpus with Sanskrit as the pivot language,
similar to Europarl (Koehn, 2005) and PMIndia
(Haddow and Kirefu, 2020) datasets.

The existence of Sanskrit-English parallel data
has other advantages as well. Due to Sanskrit being
a morphologically rich, agglutinative, and highly
inflexive, complex concepts can be expressed in
compact forms by combining individual words
through Sandhi and Samasa.2 This also enables
a speaker to potentially create an infinite number of
unique words in Sanskrit. Having a parallel corpus
can help us induce word translations through bilin-
gual dictionary induction (Søgaard et al., 2018). It
also allows us to use English as a surrogate lan-
guage for tasks like knowledge base population.
Constituency or dependency parsing, NER, and
word sense disambiguation can be improved us-
ing indirect supervision (Täckström, 2013). Es-
sentially, a parallel corpus allows us to apply a
plethora of transfer learning techniques to improve

2Sandhi refers to the concatenation of words, where the
edge characters combine to form a new one. Samasa can be
thought of as being similar to elliptic constructions in English
where certain phrases are elided since their meaning is obvious
from the context.

NLP tools for Sanskrit.

2 Data Preparation

The translated works of The Rāmāyana and The
Mahābhārata were published in four and nine vol-
umes respectively.3 All volumes have a standard
two-column format as shown in Fig. 2. Each page
has a header with the chapter name and page num-
ber separated from the main text by a horizontal
line. The two columns of text are separated by a
vertical line. The process of data preparation can
be divided into (i) automatic OCR extraction, and
(ii) manual inspection for alignment errors.

Automatic Extraction The OCR systems we ex-
perimented with performed poorly on digitized doc-
uments due to their two-column format. They often
fail to recognize line breaks which result in the con-
catenation of text present in different columns. To
mitigate this issue, we use an edge detector4 to
find the largest horizontal and vertical lines, and
using the indices of the detected lines, split the orig-
inal page horizontally and vertically to remove the
header and separate the columns (see Fig. 2). We
then input the single-column documents to Google
Cloud’s OCR API5 to extract text from them. To
verify the accuracy of the extracted text, one chap-
ter from each volume (13 chapters in total) is man-
ually checked for mistakes. We find that the ex-
tracted text is more than 99% and 97% accurate in
Sanskrit and English respectively. The surprising
accuracy of Devanagari OCR can be attributed to

3The digitized (scanned) PDF versions of these books are
available at https://hinduscriptures.in

4We invert the color scheme and apply a small dilation for
better edge detection using OpenCV (Bradski, 2000).

5More information can be found at https://cloud.
google.com/vision/docs/pdf
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(a) Print error. (b) Input error. (c) Subjective error.

Figure 3: Different types of errors found in the original text while performing manual inspection.

the distinctness of its alphabet. For English, this
number decreases as the OCR system often mis-
classifies similar-looking characters (viz., e and c,
i and l, etc.).

Manual Inspection An important limitation of
the OCR system is its misclassification of align-
ment spaces and line breaks. It sometimes wrongly
treats large gaps between words as line breaks and
the rest of the text on the line is moved to the end
of the paragraph which results in translations being
misaligned with its shlokas. Therefore, the output
of all 13 volumes was manually inspected and such
misalignments were corrected.6

Upon manual inspection, other kinds of errors
were discovered and corrected where possible.7

These errors can be categorized as follows: (i) print
errors: this type of error is caused by occluded or
faded text, smudged ink, etc. An example can be
seen in Fig. 3a, (ii) input errors: these are human er-
rors during typesetting the volumes which include
typos (Fig, 3b), exclusion of words, inclusion of
spurious words, etc., (iii) subjective errors: these
are contextual errors in the translation itself. For
example, in Fig. 3c, the word dharma is incorrectly
translated as ‘religion’ instead of ‘righteousness’,
and (iv) OCR errors: these errors arise from the
underlying OCR system. An example of such er-
rors is the improper handling of split words across
lines in the Devanagari script. If the OCR system
encounters a hyphen as the last character of a line,
the entire line is ignored. In general, print errors
are corrected as much as possible, subjective errors
are retained for originality, and other types of errors
are corrected when encountered.

6This was a time-consuming process and the first author
inspected the output manually over the course of one year.

7It was not feasible for the authors to correct every error,
especially the lexical ones. The most common error that exists
in the corpus is the swapping of e and c. For example, ‘thcir’
instead of ‘their’. Though these errors can easily be corrected
using automated tools like the one proposed in (Boyd, 2018),
it is out-of-scope of this paper and is left for future work.

Train Dev. Test Total

Rāmayana
Chapters 514 42 86 642
Shlokas 15,834 1,115 2,422 19,371

Mahābhārata
Chapters 1,688 139 283 2,110
Shlokas 59,327 5,033 9,299 73,659

Overall
Chapters 2202 181 369 2,752
Shlokas 75,161 6,148 11,721 93,030

Table 1: Size of training, development, and test sets.

3 Analysis

In total, we extract 19,371 translation pairs from
642 chapters of The Rāmāyana and 73,659 transla-
tion pairs from 2,110 chapters of The Mahābhārata.
It should be noted that these numbers do not cor-
respond to the number of shlokas because, in the
original volumes, shlokas are sometimes split and
often combined to make the English translations
flow better. We reserve 80% of the data from each
text for training MT systems and use the rest for
evaluation. From the evaluation set, 33% is used
for development and 67% for testing. The absolute
sizes of the split data are shown in Tab. 1.

Due to Sanskrit’s agglutinative nature, the
dataset is asymmetric in the sense that, the number
of words required to convey the same information,
is less in Sanskrit when compared with English.
The Rāmāyana’s English translations, on average,
have 2.54 words for every word in its shloka. This
value is even larger in The Mahābhārata with 2.82
translated words per shloka word.

This effect is clearly seen when we consider the
vocabulary sizes and the percentage of common
tokens between the texts. For this, we tokenize the
data with two different tokenization schemes: word-
level and byte-pair encoding (Sennrich et al., 2016,
BPE). For word-level tokenization, the translations
of The Rāmāyana (The Mahābhārata) have 16,820
(31,055) unique word tokens, and the shlokas have
66,072 (184,407) tokens. The English vocabularies
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Figure 4: Comparison of vocabulary sizes. Sanskrit’s
morphological and agglutinative nature accounts for
the large number of unique tokens in the vocabularies.

have 11,579 common tokens which is 68.8% of The
Rāmāyana’s and 37.3% of The Mahābhārata’s. But
the overlap percentages drop significantly for the
Sanskrit vocabularies. In this case, we find 21,635
common tokens which amount to an overlap of
32.7% and 11.7% respectively. As shown in Fig. 4,
this trend holds for BPE tokenization as well.

4 Experiments

We train one SMT and five NMT systems in both di-
rections and report the (i) character n-gram F-score,
(ii) token accuracy, (iii) BLEU (Papineni et al.,
2002), and (iv) Translation Edit Ratio (Snover
et al., 2006, TER) scores in Tab. 2. For SMT,
we use Moses (Koehn et al., 2007) and for NMT,
we use sequence-to-sequence (seq2seq) Transform-
ers (Vaswani et al., 2017). We train the seq2seq
models from scratch by initializing the encoders
and decoders with standard BERT (B2B) architec-
tures. These Tiny, Mini, Small, Medium, and
Base models have 2/128, 4/256, 4/512, 8/512, and
12/768 layers/dimensions respectively. See Turc
et al. (2019) for more details. In our early experi-
ments, we also tried initializing the encoders and
decoders with weights from pre-trained Indic lan-
guage models like MuRIL (Khanuja et al., 2021),
but they showed poor performance and thus are not
reported here.

Implementation Details All models are trained
using HuggingFace Transformers (Wolf et al.,
2020). Both source and target sequences are trun-
cated at 128 tokens. We train WordPiece tokenizers
on our dataset and use them for all models. Adam
optimizer (Kingma and Ba, 2014) with weight-

Model chrF Tok.
Acc. BLEU TER

(↓)

English to Sanskrit
Moses 25.9 5.48 0.21 1.53

B2B-Tiny 15.1 8.07 2.85 1.04
B2B-Mini 21.6 8.52 5.66 1.03

B2B-Small 23.4 8.75 6.93 1.03
B2B-Medium 23.7 8.67 6.94 1.02

B2B-Base 24.3 8.89 7.59 1.04
Sanskrit to English

Moses 29.3 8.03 5.67 0.91
B2B-Tiny 24.5 8.61 5.64 0.98
B2B-Mini 29.3 8.58 7.28 0.95

B2B-Small 30.1 8.55 7.49 0.95
B2B-Medium 30.4 8.49 7.48 0.94

B2B-Base 30.5 8.38 7.09 0.93

Table 2: Character F1, Token accuracy, BLEU, and
TER scores for Moses and Transformer models. Scores
marked with (↓) are better if they are lower.

decay of 0.01, and learning rate of 5 × 10−5 is
used. All models are trained for 100 epochs. The
learning rate is warmed up over 8,000 steps and
decayed later with a linear scheduler. We use a
batch size of 128, and use standard cross-entropy
loss with no label smoothing. We run into memory
errors on bigger models (medium and base), but
maintain the effective batch-size and optimization
steps by introducing gradient accumulation and in-
creasing the number of epochs, respectively. Also,
to reduce the total training time of bigger models,
we stop training if the BLEU score does not im-
prove over 10 epochs. During generation, we use
a beam size of 5 and compute all metrics against
truncated references.

Discussion We see that all models perform
poorly, with low token accuracy and high TER.
While the English to Sanskrit (E2S) models get
better with size, this pattern is not clearly seen in
Sanskrit to English (S2E) models. Surprisingly for
S2E models, the token accuracy progressively de-
creases as their size increases. Also, Moses has
the best TER among S2E models which suggests
that the seq2seq models have not been able to learn
even simple co-occurrences between source and
target tokens. This leads us to hypothesize that the
Sanskrit encoders produce sub-optimal representa-
tions. One way to improve them would be to add
a Sandhi-splitting step to the tokenization pipeline,
thereby decreasing the Sanskrit vocabulary size.
Another natural extension to improve the quality of
representations would be to initialize the encoders
with a pre-trained language model.
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EN
Hearing the words of Viśvāmitra, Rāghava, 
together with Laksmana, was struck with 
amazement, and spoke to Viśvāmitra, saying,

SN वश्वामत्रवचः श्रुत्वा राघवः सहलक्ष्मणः। 
वस्मयं परमं गत्वा वश्वामत्रमथाब्रवीत॥्

Pred.
वश्वामत्रवचः श्रुत्वा लक्ष्मणः सहलक्ष्मणः। 
वश्वामत्रवचः श्रुत्वा वश्वामत्रोऽब्रवीददम॥्

Figure 5: A gold sentence and shloka from the test set,
and its corresponding small model prediction.

Though it is clear that there is a large scope for
improvement, the models are able to learn some in-
teresting features of the dataset. Fig. 5 shows a ran-
dom gold translation pair and the small model’s
prediction. Though we see repetitions of phrases
and semantic errors, the prediction follows the me-
ter in which the original shlokas are written, i.e. it
also consists of 4 parts containing 8 syllables each.

5 Related Work

Early translation efforts from Sanskrit to English
were limited to the construction of dictionaries
by Western Indologists (Müller, 1866; Monier-
Williams, 1899). Over the years, though notable
translation works like Ganguli (1883) have been
published, the lack of digitization has been a bot-
tleneck hindering any meaningful progress towards
automatic translation systems. This has changed
recently, at least for monolingual data, with the cu-
ration of digital libraries like GRETIL8 and DCS9.
Currently, the largest freely available repository of
translations are for The Bhagavadgita (Prabhakar
et al., 2000) and The Rāmāyana (Geervani et al.,
1989).

However, labeled datasets for other tasks, like
the ones proposed in (Kulkarni, 2013; Bhardwaj
et al., 2018; Krishnan et al., 2020) have resulted in
parsers (Krishna et al., 2020, 2021) and sandhi split-
ters (Aralikatte et al., 2018; Krishnan and Kulkarni,
2020) which are pre-cursors to modular translation
systems. Though there have been attempts at build-
ing Sanskrit translation tools (Bharati and Kulkarni,
2009), they are mostly rule-based and rely on man-
ual intervention. We hope that the availability of
the Itihāsa corpus pushes the domain towards end-
to-end systems.

8http://gretil.sub.uni-goettingen.de/
gretil.html

9http://www.sanskrit-linguistics.org/
dcs/index.php

6 Conclusion

In this work, we introduce Itihāsa, a large-scale
dataset containing more than 93,000 pairs of San-
skrit shlokas and their English translations from
The Rāmāyana and The Mahābhārata. First, we
detail the extraction process which includes an au-
tomated OCR phase and a manual alignment phase.
Next, we analyze the dataset to give an intuition of
its asymmetric nature and to showcase its complex-
ities. Lastly, we train state-of-the-art translation
models which perform poorly, proving the neces-
sity for more work in this area.
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Abstract

In this paper we describe our submission to the
multilingual Indic language translation task
“MultiIndicMT” under the team name “NICT-
5”. This task involves translation from 10 In-
dic languages into English and vice-versa. The
objective of the task was to explore the util-
ity of multilingual approaches using a variety
of in-domain and out-of-domain parallel and
monolingual corpora. Given the recent success
of multilingual NMT pre-training we decided
to explore pre-training an MBART model on a
large monolingual corpus collection covering
all languages in this task followed by multilin-
gual fine-tuning on small in-domain corpora.
Firstly, we observed that a small amount of pre-
training followed by fine-tuning on small bilin-
gual corpora can yield large gains over when
pre-training is not used. Furthermore, multilin-
gual fine-tuning leads to further gains in trans-
lation quality which significantly outperforms
a very strong multilingual baseline that does
not rely on any pre-training.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014) is known to give state-of-the-art trans-
lations for a variety of language pairs. NMT is
known to perform poorly for language pairs for
which parallel corpora are scarce. This happens due
to lack of translation knowledge as well as due to
overfitting which is inevitable in a low-resource set-
ting. Fortunately, transfer learning via cross-lingual
transfer (Zoph et al., 2016; Dabre et al., 2019), mul-
tilingualism (Firat et al., 2016; Dabre et al., 2020),
back-translation (Sennrich et al., 2016) or mono-
lingual pre-training (Liu et al., 2020; Lewis et al.,
2020; Mao et al., 2020) can significantly improve
translation quality in a low-resource situation.

Cross-lingual transfer learning involves pre-
training a model using a parallel corpus for a
resource-rich language pair XX − Y Y and then

fine-tuning on a parallel corpus for a resource-poor
language pair AA − BB. Naturally the improve-
ments in translation quality will be impacted by if
XX = AA or Y Y = BB1 and it is often better to
have a shared target language. Cross-lingual trans-
fer despite its simplicity and effectiveness relies
on shared source or target languages for effective
transfer and thus depending on methods that use
monolingual corpora are preferable. This also ap-
plies to vanilla multilingual training which does
not rely on monolingual corpora. Another reason
for focusing on utilizing monolingual corpora is
that they are extremely abundant when compared
to parallel corpora and they contain a large amount
of language modeling information. In this regard,
back-translation and multilingual pre-training are
two of the most reliable methods.

While back-translation is easy to use, it involves
the translation of millions of monolingual sen-
tences and quite often it is necessary to perform
multiple iterations of the back-translation process
to yield the best results (Hoang et al., 2018) which
means that it is quite resource intensive. This leaves
us with multilingual pre-training using methods
such as BART/MBART (Liu et al., 2020; Lewis
et al., 2020) which we use for developing our trans-
lation system. The advantage of BART/MBART
is that we need to pre-train these models once and
then fine-tune not only for machine translation but
also for any natural language generation task such
as summarization (Shi et al., 2021). These mod-
els can be upgraded to include additional language
pairs in the future by simply resuming pre-training
(Tang et al., 2020).

In this paper, we describe our simple approach in-
volving MBART pre-training and fine-tuning. First,
we use the official monolingual corpora to train
an MBART model spanning all 11 languages in

1If XX − Y Y and AA−BB are the same pairs then it
is known as domain adaptation.

198



the shared task. Following this we fine-tune the
MBART model using the officially provided in-
domain corpora in two different ways: bilingual
fine-tuning and multilingual fine-tuning. Addition-
ally we also train multilingual models without any
pre-training. The multilingual models are one-to-
many (English to Indic) and many-to-one (Indic to
English) in nature. The bilingual fine-tuning and
non pre-trained multilingual model serve as strong
baselines which significantly outperform the orga-
nizers weak bilingual baselines. Our multilingual
fine-tuning models exhibit the best translation qual-
ity out of all our models which shows the power
of effectively combining monolingual corpora with
multilingualism.

We refer readers to the workshop overview paper
(Nakazawa et al., 2021) for a better understanding
of the task and the comparison of our results with
those of other participants.

2 Related Work

The techniques used in this paper revolve
around multilingualism, sequence-to-sequence pre-
training and transfer learning.

Firat et al. (2016) proposed multilingual neural
translation using multiple encoders and decoders
which was then simplified by Johnson et al. (2017)
to require a single encoder and decoder to be shared
among multiple language pairs. Due to the simplic-
ity of the latter approach, most modern multilin-
gual models are based on it and in this paper we
also use the same approach. Multilingualism in-
volves implicit transfer learning but a more explicit
way to do the same is to use fine-tuning (Zoph
et al., 2016). However all these aforementioned
approaches rely on bilingual data which is not al-
ways readily available. This can be remedied by
the use of monolingual corpora for backtranslation
(Sennrich et al., 2016) or for pre-training (Lewis
et al., 2020; Liu et al., 2020; Mao et al., 2020).
As backtranslation is resource intensive, given that
it involves translation of a large amount of mono-
lingual corpora, pre-training is more attractive as
a pre-trained model can be used for a variety of
natural language generation tasks. In this paper
we combine sequence-to-sequence pre-training fol-
lowed by multilingual fine-tuning. For an overview
of multilingual NMT we refer readers to a survey
paper on multilingualism and low-resource NMT
in general (Dabre et al., 2020).

3 Our Approaches

For our submissions we focused on combining mul-
tilingual denoising pre-training (MBART) and mul-
tilingual fine tuning.

3.1 Multilingual NMT Training

We follow the multilingual NMT training approach
proposed by Johnson et al. (2017). Consider a
multilingual parallel corpora collection spanning
corpora for N language pairs Li

src − Li
tgt for

i ∈ [1, N ]. The sizes of the parallel corpora are typ-
ically different, often radically different, in which
case it is important to balance corpora sizes to pre-
vent the model from focusing too much on some
language pairs. Johnson et al. (2017) showed that
training by oversampling smaller corpora to match
the size of the largest corpus is the best approach.
However, since then newer corpora balancing ap-
proaches have been proposed and the most recent
effective method is known as the temperature based
sampling approach (Aharoni et al., 2019). Suppose
that the size of the ith corpus is si which means the
probability of sampling a sentence pair from each
corpus is pi = si

S where S =
∑

i si. Using this de-
fault sampling probability is biased towards larger
corpora so first the probability values are tempered
using a temperature T . The resultant probabilities
pti are obtained as follows:

pti =
p

1
T
i

∑
j p

1
T
j

(1)

When T = 1, pti = pi and when T = ∞,
pti =

1
N . Aharoni et al. (2019) showed that a value

of T = 5 works well in practice which is what
we use in our experiments. During training, sen-
tence pairs are sampled from each corpus following
which the source sentence is prepended with a to-
ken < 2Li

tgt > which indicates that the source
sentence should be translated into Li

tgt. Thereafter,
the pre-processed source sentence and target sen-
tence are fed to the NMT model which learns how
to translate between multiple language pairs.

3.2 MBART Pre-training and Fine-Tuning

Liu et al. (2020) extended the BART model (Lewis
et al., 2020) by denoising pre-training the BART
model on 25 languages instead of 2 which leads
to an MBART model. The main advantage of an
MBART model is that it can be fine-tuned with cor-
pora for a variety of language pairs which naturally
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,

Language #Lines
as 1.39M
bn 39.9M
en 54.3M
gu 41.1M
hi 63.1M
kn 53.3M
ml 50.2M
mr 34.0M
or 6.94M
pa 29.2M
ta 31.5M
te 47.9M

Table 1: Monolingual corpora statistics.

includes many zero-shot pairs. The way to train
an MBART model is by “corrupting” an input sen-
tence, feeding it to the encoder and then training the
model to predict the original sentence. Corruption
can be done in a variety of ways and in this paper
we use ‘text infilling’ approach which finds ran-
dom spans of the source tokens and replaces them
with a token such as < MASK > till a certain
percentage of the sentence is masked. The length
of the span is sampled from a Poisson distribution
with a mean of λ. Liu et al. (2020) determined an
optimal value of λ = 3.5 which we also use. The
denoising objective helps the MBART model learn
about using context to translate and also helps it
acquire language modeling information.

After an MBART model is trained it is fine-tuned
on a bilingual or multilingual parallel corpus which
is then used for translation. The language modeling
priors help account for missing translation knowl-
edge in low-resource settings which leads to large
improvements in translation quality over baselines
which only use parallel corpora.

4 Experimental Setup

Our goal was to study how far the translation qual-
ity can be pushed via MBART pre-training and
multilingual fine-tuning. To do so, we describe the
datasets, implementation details, evaluation met-
rics and the models trained.

4.1 Datasets and Preprocessing

The languages involved in the task are: Bengali,
Gujarati, Hindi, Kannada, Malayalam, Marathi,
Oriya, Punjabi, Tamil, Telugu and English. We

Language Pair #Lines
bn-en 23,306
gu-en 41,578
hi-en 50,349
kn-en 28,901
ml-en 26,916
mr-en 28,974
or-en 31,966
pa-en 28,294
ta-en 32,638
te-en 33,380

Table 2: Bilingual corpora statistics for the PMI dataset
only.

used the official parallel corpora2 provided by the
organizers. The 11-way evaluation development
and test sets come from the PMI dataset3. Although
the organizers provided corpora from other sources
as well, we decided to restrict ourselves to the PMI
part of the parallel corpora to avoid the need for
data selection. Instead we relied on pre-training
to compensate for using smaller amount of par-
allel corpora. For MBART pre-training we used
the AI4Bharat’s monolingual corpora known as In-
dicCorp 4 (Kunchukuttan et al., 2020). Note that
MBART pre-training supposes the monolingual
data is available as documents however since we
only use the masking denoising approach, sentence
level corpora5 are sufficient. The IndicCorp covers
an additional language Assamese which is not in
this shared task. Nevertheless, we use the monolin-
gual corpus for this language as well because it can
potentially improve translation involving Bengali
given their similarity. However, the small size of
Assamese data (1.39M lines) relative to the Bengali
data (39.9M lines) should not significantly affect
the final outcome for translation involving Benglai6.
The monolingual corpora stats are given in Table 1
and the bilingual corpora stats are given in Table 2.

Regarding pre-processing, we do not perform
anything specific and instead let our implementa-
tion handle everything via its internal mechanisms.

2https://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/
index.html

3http://data.statmt.org/pmindia
4https://indicnlp.ai4bharat.org/corpora
5The IndicCorp is supposed to be document level but the

downloadable version is sentence level.
6However, this may significantly improve translation in-

volving Assamese thanks to the Bengali data.
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4.2 Implementation Details

We implement the methods mentioned in Section 3
in our in-house toolkit which we make publicly
available7. This toolkit is based on the Hugging-
Face transformers library (Wolf et al., 2020) v4.3.2.
Note that the MBART implementation in the library
shares the encoder embedding, decoder embedding
and decoder softmax projection layers. We imple-
ment denoising, temperature based data sampling
and multilingual training ourselves. We also use
the HuggingFace transformer tokenizer library to
train tokenizers. These tokenizers are wrappers
around Byte Pair Encoding (BPE) (Gage, 1994)
or SentencePiece (SPM) (Kudo and Richardson,
2018) models and we choose8 the latter as opposed
to the former which is used by the original MBART
implementation.

4.3 Training and Evaluation

We first trained a tokenizer with a joint vocabulary
size of 64,000 sub-words which is learned on the
IndicCorp monolingual data. We consider this vo-
cabulary size to be sufficient for all languages. For
pre-training, we use hyperparameters correspond-
ing to the “transformer big” (Vaswani et al., 2017)
with a few exceptions such as dropout of 0.1, posi-
tional embeddings instead of positional encodings
and a maximum learning rate of 0.001. When per-
forming batching we truncate all sequences longer
than 256 subwords. Our MBART model is pre-
trained on 48 NVIDIA V-100 GPUs using the dis-
tributed data parallel mechanism in PyTorch. Due
to lack of time we only trained for 150,000 batches
which corresponded to roughly 1 epoch over the en-
tire monolingual data. After pre-training we train
unidirectional models using the bilingual data on a
single GPU. We train the one-to-many (English to
Indic) and many-to-one (Indic to English) models
on the multilingual data on 8 GPUs. For both cases
we use a dropout of 0.3 and train till convergence on
the development BLEU score and choose the model
with the best development set BLEU score for de-
coding the test set. In our initial experiments we
did additional exploration to choose the particular
checkpoint which yields best average development
BLEU score over all language pairs for decoding

7https://github.com/prajdabre/yanmtt
8We choose SPM because SPM can work with unseg-

mented, untokenized raw text for any language. Inside the
transformers library, the AlbertTokenizer acts as a wrapper for
the SPM model. Our implementation also allows the usage of
the BPE model but we do not use it in this paper.

the test set. We found that the results are inferior
compared to when the best model is chosen lan-
guage pairwise. We use beam search for decoding
with a beam size of 4 and a length penalty of 0.89.
For unidirectional models this is strightforward but
for multilingual models train till convergence on
the global development set BLEU score, an average
of BLEU scores for each language pair. Different
from most previous works, instead of decoding a
single final model, we choose a particular model
for a language pair with the highest development
set BLEU score for that pair. Therefore, we treat
multilingualism as a way get a (potentially) dif-
ferent model per language pair leading to the best
BLEU scores for that pair and not as a way to get
a single model that gives the best performance for
each language pair.

For evaluation, as we have mentioned before, we
use BLEU (Papineni et al., 2002) as the primary
evaluation metric. WAT also uses metrics such
as RIBES (Isozaki et al., 2010), AM-FM (Zhang
et al., 2021) and human evaluation (Nakazawa et al.,
2019, 2020, 2021). All these metrics focus on
different aspects of translations and may lead to
different rankings for submissions, however this
multi-metric evaluation helps us understand that
there may not be one perfect model. To avoid
confusing the reader with a clutter of scores, we
only show BLEU scores and we refer the reader to
the evaluation page where all scores and rankings10

can be seen11.

4.4 Models Trained

We trained the following models:

• A pre-trained MBART model.

• Unidirectional models for each language pair
trained from scratch or via fine-tuning the
MBART model.

• One-to-many (English to Indic) and many-to-
one (Indic to English) multilingual models
trained from scratch or via fine-tuning the
MBART model.

9We have not tuned these decoding hyperparameters and
our BLEU scores may improve.

10As can be seen, the rankings of translation can change
depending on the metric which indicates that multi-metric
ranking is important

11http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.
html
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Model
Source Language

Bn Gu Hi Kn Ml Mr Or Pa Ta Te
Unidirectional 11.27 26.21 28.21 20.33 13.64 15.10 16.35 23.66 16.07 14.70
Many-to-one 20.06 27.72 30.86 24.66 21.79 22.66 23.04 27.61 21.90 23.39

MBART+
Unidirectional

21.37 33.65 35.80 29.29 26.55 25.45 25.81 34.34 24.72 27.76

MBART+
Many-to-one

23.89 33.53 36.20 30.87 28.23 27.88 27.93 35.81 26.90 28.77

Official Best Submission 31.87 43.98 46.93 40.34 38.38 36.64 37.06 46.39 36.13 39.80

Model
Target Language

Bn Gu Hi Kn Ml Mr Or Pa Ta Te
Unidirectional 5.58 16.38 23.31 10.11 3.34 8.82 9.08 21.77 6.38 2.80
One-to-many 11.56 23.49 29.12 17.53 6.22 15.01 16.43 28.37 10.82 3.81

MBART+
Unidirectional

10.59 23.04 29.59 16.13 5.98 14.69 15.01 26.94 10.33 4.59

MBART+
One-to-many

12.84 24.26 30.18 18.22 6.51 16.38 16.69 29.15 11.42 4.20

Official Best Submission 15.97 27.80 38.65 21.30 15.49 20.42 20.15 33.43 14.43 16.85

Table 3: Evaluation results of all language pairs. All scores are taken from the leaderboard. Our best results are in
bold. Differences in BLEU smaller than 0.5 are not significant in most cases.

5 Results and Observations

Table 3 contains the results of the unidirectional12,
and multilingual models. We also show the the best
submissions for reference.

5.1 Without Fine-tuning

It is clear from the results that multilingual mod-
els are vastly superior than unidirectional models
which shows that multilingualism is very helpful in
a low-resource setting. Secondly, comparing with
corpora sizes (see Table 2), it can be seen that the
gains in BLEU are (roughly) inversely proportional
to the size of the parallel corpora.

5.2 Non Fine-Tuned Multilingual Models vs
Fine-Tuned Unidirectional Models

In the case of Indic to English translation,
MBART+unidirectional models are significantly
better than many-to-one models. We can attribute
this phenomenon to the fact that the PMI corpus
has a limited number of English sentences and
even though combining all corpora might seem
to increase the number of English sentences, most
of them are redundant which causes some form
of overfitting. This is remedied by the MBART
model with incorporates additional language mod-
eling information through the monolingual corpora.

12The unidirectional scores without fine-tuning are actu-
ally organizer baselines but we were the ones who actually
developed them so we use the scores as is.

On the other hand, for English to Indic transla-
tion, the one-to-many models are often compara-
ble if not better than the fine-tuned unidirectional
models. Fine-tuning significantly outperforms non
fine-tuned unidirectional models which means pre-
training is useful. However, given that multilingual
training is better, this indicates that it may not be
necessary to perform pre-training for one-to-many
translation. Remember that the English side of the
text contains a large number of redundant sentences
and this may be one of the reasons for this kind of
behavior. We think that this deserves some future
investigation.

5.3 Multilingual Fine-tuning

Ultimately, multilingual fine-tuning of an MBART
model leads to the best translation quality for all
language pairs, except two (Gujarati to English and
English to Telugu). This approach combines the
best of both worlds and the outcome is not surpris-
ing. Our MBART models consisted of only 6 lay-
ers and was trained for only 1 epoch and this may
not be enough to incorporate knowledge from the
full monolingual corpus. We also did not perform
any hyperparameter tuning with parameters such as
dropout and learning rate13 We expect that a larger
model with more careful hyperparameter tuning
should lead to even better results. However, we are

13We used a high learning rate which may not have been a
good idea in retrospect.
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confident that a multilingual fine-tuned model will
reign supreme.

5.4 Comparison With Other Submissions

For Indic to English translation the several submis-
sions outperformed ours and we think that this is
because the other participants have indicated that
they have performed data selection, backtranslation
and script mapping. In our case we only performed
pre-training and fine-tuning with PMI data. Al-
though MBART pre-training is helpful, it can never
compare with the power of a large parallel corpus
obtained via careful data selection and script manip-
ulation. While for PMI, the largest parallel corpus,
Hindi-English, contains roughly 50,000 lines, the
full Hindi-English corpus is larger than 2M lines
and most pairs have more than 500,000 lines. In
the future we will try training with larger parallel
corpora and script mapping to see what kind of
results we get.

On the other hand for English to Indic transla-
tion, the gap between the the best submissions and
ours is much smaller than for the reverse direction.
This also shows that, at least for this task, multilin-
gualism benefits translation into English a lot more
than it benefits translation from English.

6 Conclusion

In this paper we have described our NMT systems
and results for the MultiIndicMT task in WAT 2021.
We worked on MBART pre-training and multilin-
gual fine-tuning which we found to significantly
outperform unidirectional models with and with-
out pre-training and multilingual models without
pre-training. We did not train our MBART mod-
els for more than 1 epoch and used only the PMI
data for fine-tuning instead of the whole parallel
corpus. We did not try any additional methods such
as back-translation either. Despite this, our results
are competitive and despite the simplicity of our
methods our results do not lag far behind those of
the best systems that use advanced methods such as
data selection, domain adaptation, back-translation
etc. This also means that we have a lot of room for
improvement in the future.
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Abstract

This work shows that competitive translation
results can be obtained in a constrained setting
by incorporating the latest advances in mem-
ory and compute optimization. We train and
evaluate large multilingual translation models
using a single GPU for a maximum of 100
hours and get within 4-5 BLEU points of the
top submission on the WAT 2021 leaderboard.
We also benchmark standard baselines on the
PMI corpus and re-discover well-known short-
comings of current translation metrics.

1 Introduction

Machine Translation is one of the few tasks in NLP
which has the luxury of data. Due to the efforts of
the community over the last two decades (Koehn,
2005; Tiedemann, 2012, 2020), most major lan-
guages of the world have millions of translated
sentence pairs with English. With the introduction
of sequence to sequence models (Sutskever et al.,
2014; Cho et al., 2014), transformers (Vaswani
et al., 2017), and large pre-trained language mod-
els (Devlin et al., 2019; Radford et al., 2019; Yang
et al., 2019; Liu et al., 2019), the accuracy of ma-
chine translation models has almost risen to that of
humans (Wu et al., 2016). Yet, the ability to train
such models is limited by the availability of com-
pute. Today’s state-of-the-art models are trained by
industry research labs, using large compute infras-
tructure which is usually unavailable or unafford-
able to others. Such training is also shown to have
large carbon footprints (Strubell et al., 2019).

In this work, we show that competitive transla-
tion performance can be achieved even with limited
resources. We first train a statistical MT system that
does not require GPUs, as a baseline. Next, we run
inference on the best publicly available pre-trained
models to benchmark their performance. Finally,
we train graph2seq, seq2seq, and text2text models,

Source Language(s)

CVIT-PIB (2020) BN,GU,HI,ML,MR,OR,PA,TA,TE
JW (2019) BN,GU,HI,KN,ML,MR,PA,TA,TE

TED (2012) BN,GU,HI,KN,ML,MR,PA,TA,TE
PMIndia (2020) BN,GU,HI,KN,ML,MR,

OR,PA,TA,TE
Bible-uedin (2014) GU,HI,KN,ML,MR,TE

OpenSubtitles (2016) BN,HI,ML,TA,TE
WikiMatrix (2019) HI,ML,MR,TA,TE
Wiki Titles (2021) GU,TA

ALT (2016) BN,HI
IITB 3.0 (2018) HI

NLPC (2020) TA
UFAL EnTam (2012) TA
Uka Tarsadia (2019) GU

MTEnglish2Odia (2018) OR
OdiEnCorp 2.0 (2020) OR

Table 1: Sources of MultiIndicMT data.

which progressively perform better. All our experi-
ments are constrained both in compute1 and train-
ing time: we use one NVIDIA Titan RTX GPU for
a maximum of 100 hours. Our main findings are:
(i) pre-trained seq2seq and text2text models per-
form the best, especially when trained only on the
PMI corpus, (ii) the benefits of pre-trained multilin-
gual language models diminish for Indic language
decoding due to their under-representation in pre-
training data, and (iii) a small empirical evaluation
on 2 languages shows that the prediction fluency
and faithfulness start plateauing at 100 hours.

2 Data

The MultiIndicMT data is a combination of parallel
corpora from different sources as shown in Tab. 1.
It contains translations from 10 Indic languages to
English. The Indic languages included are Ben-
gali (BN), Gujarati (GU), Hindi (HI), Kannada (KN),
Malayalam (ML), Marathi (MR), Oriya (OR), Pun-
jabi (PA), Tamil (TA), and Telugu (TE). The train-
ing split contains about 11 million translation pairs

1which in turn constrains the number of model parameters
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Sentence Translation Fluency Faithfulness Comment

Big Business! बड़ा व्यवसाय ! 5 5 -

It affects all of us . It helps us   — and it 
harms us . हम सब पर इसका प्रभाव पड़ता है । 5 3 Translation of second 

sentence missing
And there are things we can do about it . A 
giant , or “ big , ” corporation may have 
assets worth $ 1,500,000,000 .

यह हमारी सहायता करता है — और हमें 
हान भी पहँुचाता है । 5 0

Translation of the 
previous line’s second 
sentence

Many have far more . That kind of money 
represents power .

और कुछ ऐसी बातें हैं जो हम उसके बारे 
में कर सकत ेहैं । 5 0 Misalignment

Giant corporations have tussled with 
countries   — and won . No wonder so 
many are suspicious of them !

एक वशाल , या “ बड़ े” नगम के पास 
शायद १,५०,००,००,००० डॉलर की 
सम्पत्ति हो ।

5 0 Misalignment

Figure 1: A sample from the JW corpus which shows misalignments between the translation pairs.

from these languages. The development and test
splits contain 1000 and 2390 11-way parallel sen-
tences taken from the PMIndia corpus (Haddow
and Kirefu, 2020), respectively.

Analysis To understand the data better, a small
analysis is performed by randomly sampling 100
sentences from each language the authors can read
(HI and KN). Overall, the translations are of high
quality, except in a few sources where the parallel
sentences are automatically extracted. For exam-
ple, we found that JW (Agić and Vulić, 2019) has
alignment issues, where a part of the translation is
moved to the next line, thereby starting a chain of
misalignments, as shown in Fig. 1. We manually
annotate 100 translations for fluency and faithful-
ness on a scale of 0-5 and get a score of 4.01 for
fluency and 3.54 for faithfulness.

3 Models

We train four types of models: (i) a phrase-based
statistical model, (ii) a graph-to-text model, (iii) a
sequence-to-sequence model, and (iv) a text-to-text
model. Brief descriptions of the models are given
below.

3.1 Moses

We train a statistical phrase-based model with
Moses (Koehn et al., 2007) using default settings,
following the guidelines for training a baseline.2

We prune words that occur less than three times in
the corpus and use the same tokenizer as for the
other models and de-tokenize predictions before
evaluating. We train a separate model for each lan-
guage pair and use the respective development set

2http://www.statmt.org/moses/?n=Moses.
Baseline

for tuning before translating the test set.

3.2 GRAPH-TO-TEXT model

We also train a graph2seq model with a GCN (Kipf
and Welling, 2016) encoder and LSTM decoder. In
addition to text, we input the source syntax trees
obtained from a parser trained on Universal Depen-
dencies (Nivre et al., 2016). We borrow hyperpa-
rameter settings from Bastings et al. (2017) and
input a bag of source words to the encoder and
expect subword units from the decoder. We train
separate models for each language pair.

3.3 SEQ2SEQ model

For training multilingual models, we use pre-
trained transformer-based language models to ini-
tialize the encoder and decoder of our seq2seq mod-
els. For English, we use standard uncased BERT-
Base (Devlin et al., 2019) and for Indic languages,
we use MuRIL (Khanuja et al., 2021). MuRIL’s ar-
chitecture is similar to BERT and is pre-trained on
17 Indic languages including all ten required for our
translation task. It is pre-trained on publicly avail-
able corpora from Wikipedia and Common Crawl.
It also uses automatically translated and transliter-
ated data for pre-training. We add cross-attention
between the encoder and decoder following Rothe
et al. (2020).

The model has 375M trainable parameters.
When the decoder is multilingual, we follow pre-
vious works and force a language identifier as the
BOS token. We use a learning rate of 5 × 10−5

and a batch size of 12. We truncate sequences
to a maximum length of 128 and use a cosine
learning rate scheduler with a warmup of 10,000
steps. We denote our models as BERT2MURIL and
MURIL2BERT when translating from and to En-
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Model Bn Gu Hi Kn Ml Mr Or Pa Ta Te
chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu

m2m100 (418M) 0.30 2.98 0.11 0.40 0.48 21.21 0.15 0.05 0.21 0.69 0.31 3.96 0.05 0.06 0.11 0.66 0.20 1.43 - -
m2m100 (1.2B) 0.35 4.48 0.16 1.35 0.49 22.22 0.18 0.15 0.28 1.29 0.35 6.19 0.05 0.04 0.16 1.84 0.23 1.26 - -

Moses (PMI) 0.40 4.90 0.46 12.4 0.48 15.7 0.44 8.00 0.39 2.60 0.41 7.50 0.42 8.40 0.44 14.1 0.42 5.20 0.35 3.40
Moses (all) 0.38 5.00 0.47 13.0 0.51 18.0 0.43 7.90 0.41 3.50 0.45 9.50 0.44 10.5 0.44 14.5 0.42 7.00 0.36 3.60

GCN (PMI) 0.40 5.20 0.48 14.3 0.50 17.1 0.44 9.10 0.36 2.10 0.41 7.30 0.40 8.90 0.46 16.7 0.48 8.20 0.35 4.90

mT5-large (PMI) 0.40 7.14 0.52 20.8 0.55 26.5 0.52 15.0 0.46 5.37 0.46 12.6 - - 0.48 20.8 0.49 10.1 0.39 3.89
mT5-large (all) 0.36 5.52 0.46 16.0 0.54 26.5 0.45 9.18 0.42 3.83 0.41 9.40 - - 0.43 16.9 0.47 8.46 0.35 3.79

bert2muril (PMI) 0.42 7.68 0.51 19.6 0.53 23.5 0.49 14.0 0.43 5.62 0.46 12.8 0.46 13.6 0.49 21.8 0.46 8.30 0.39 6.04
bert2muril (all) 0.37 5.09 0.50 18.9 0.53 23.3 0.45 11.0 0.38 3.95 0.46 12.3 0.48 14.8 0.48 19.4 0.43 7.03 0.36 4.68

+FT on PMI 0.44 8.89 0.52 20.2 0.55 25.5 0.52 16.0 0.46 5.91 0.48 14.3 0.49 15.3 0.52 24.1 0.49 9.83 0.41 6.54

Table 2: Character F1 and BLEU scores of English to Indic translations.

Model Bn Gu Hi Kn Ml Mr Or Pa Ta Te
chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu chrF bleu

m2m100 (418M) 0.43 13.8 0.10 0.18 0.55 26.0 0.10 0.08 0.32 7.45 0.40 13.4 0.15 0.75 0.36 9.65 0.25 2.44 - -
m2m100 (1.2B) 0.44 14.7 0.10 0.16 0.55 26.7 0.09 0.16 0.36 11.0 0.41 14.1 0.15 0.42 0.36 9.08 0.21 2.91 - -

Moses (PMI) 0.37 6.00 0.46 10.6 0.49 12.6 0.42 8.30 0.39 5.90 0.41 7.50 0.41 7.60 0.44 10.0 0.38 6.20 0.41 7.00
Moses (all) 0.40 8.00 0.48 12.5 0.52 16.1 0.43 8.80 0.43 8.50 0.44 10.4 0.43 10.6 0.48 13.0 0.42 9.60 0.43 8.80

GCN (PMI) 0.40 8.30 0.49 12.8 0.54 14.8 0.44 10.9 0.48 11.5 0.48 13.5 0.46 7.20 0.45 12.6 0.43 14.3 0.45 14.7

mT5-large (PMI) 0.51 24.2 0.60 34.5 0.62 36.3 0.57 30.9 0.55 28.4 0.54 27.5 - - 0.61 35.7 0.53 26.6 0.57 30.4
mT5-large (all) 0.49 21.5 0.59 31.9 0.62 35.2 0.55 27.9 0.53 25.7 0.52 25.3 - - 0.59 33.4 0.51 24.4 0.54 26.5

muril2bert (PMI) 0.48 16.6 0.56 24.3 0.59 26.9 0.54 22.1 0.52 20.5 0.51 19.8 0.51 20.1 0.57 26.1 0.50 19.2 0.53 21.3
muril2bert (all) 0.37 11.0 0.41 13.8 0.46 17.1 0.41 13.3 0.40 13.0 0.39 12.0 0.38 11.8 0.42 14.6 0.39 12.1 0.41 13.1

+FT on PMI 0.47 16.6 0.55 24.0 0.58 26.5 0.53 21.7 0.52 20.5 0.51 19.6 0.50 19.7 0.57 25.5 0.50 19.1 0.52 21.2

Table 3: Character F1 and BLEU scores of Indic to English translations.

glish, respectively.3

3.4 TEXT2TEXT model
To push the extent to which a single GPU can be
utilized, we also train the large multilingual-T5
(mT5-large; Xue et al., 2020) model on our transla-
tion task. This model is pre-trained on mC4, a mul-
tilingual version of the Common Crawl consisting
of text from 101 languages. It contains 1.2B train-
able parameters which do not fit on our 24GB GPU,
even if trained with mixed-precision and a batch
size of one. Therefore, we resort to optimizer state
and gradient partitioning with ZeRO (Rajbhandari
et al., 2020). ZeRO is a zero-redundancy optimizer
that offloads some computations and memory to
the host’s CPU and provides a better GPU manage-
ment system that uses smart allocation methods to
reduce memory fragmentation. For more details,
see Rasley et al. (2020). With these modifications,
we train the model with a learning rate of 3× 10−5.
All other hyper-parameters remain unchanged.

4 Results

We report results in both English to Indic, and In-
dic to English directions. We use character F1 and

3This is the largest model we could train on our GPU
without using optimization tricks.

BLEU (Papineni et al., 2002), which are standard
metrics to evaluate translations. We train two vari-
ants of all models: (i) only on the PMI corpus, and
(ii) on the full training data. The English to Indic
results are shown in Tab. 2 and the Indic to English
results, in Tab. 3.4

m2m100 We first benchmark the performance of
the Many-to-Many multilingual model (m2m100;
Fan et al., 2020) which is trained on non-English
centric translation. It can translate to and from all
Indic languages in our task, except Telugu. As ex-
pected, with no finetuning, both the small (418M
parameters) and large (1.2B parameters) models
perform poorly, on all languages except Hindi.
This is expected as the other languages are under-
represented in the mC4 dataset.

Moses We see that simple phrase-based transla-
tion works relatively well. Though significantly
worse than the best model, Moses produces results
comparable to that of mT5-large (all) in both di-
rections. Although this can be attributed to mT5-
large being under-trained, it gives us an insight into

4Note that we report local evaluation metrics which do not
exactly match with the leaderboard numbers because of the
differences in tokenization. We do this to avoid uploading
multiple prediction files and overloading the evaluation server.
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Language
En→* *→En

Loc. Off. Loc. Off.

Bengali 8.89 11.1 24.2 24.4
Gujarati 20.8 20.4 34.5 34.6

Hindi 26.5 31.7 36.3 36.5
Kannada 16.0 16.1 30.9 31.0

Malayalam 5.91 6.27 28.4 28.5
Marathi 14.3 14.5 27.5 27.7

Oriya 15.3 15.7 20.1 19.6
Punjabi 24.1 27.2 35.7 35.9

Tamil 10.1 10.0 26.6 26.7
Telugu 6.54 12.9 30.4 30.5

Table 4: Comparison of BLEU scores obtained during
local and official evaluations.

the ability of simpler models to learn quickly in
constrained environments. We also note that just
training on the PMI corpus gives a result that is
almost on par with the results obtained by training
on the entire training split. The model trained on
PMI even surpasses the other model, on Kannada
indicating a strong in-domain training bias.

GCN In this setup, we only train on the PMI cor-
pus due to time constraints. We find that while it
comfortably surpasses Moses, it also comes close
to the much bigger models, especially when trans-
lating to Indic languages. It is to be noted that,
this small gap in results can be mainly attributed
to the lack of convergence of the bigger models, as
discussed next.

mT5 mT5 can translate to and from all Indic lan-
guages required by our task, except Oriya. We note
that the model trained only on the PMI corpus is al-
ways better than the model trained on the complete
data. We postulate that 100 hours is not enough
time for the model to converge on the full data.
We also see that mT5’s performance is far superior
compared to all other models for Indic to English
translation. This may be expected as the model
is pre-trained to generate fluent English text. For
English to Indic translation, mT5 performs on-par
or slightly worse than bert2muril finetuned on PMI
data, except for Hindi and Tamil, where it is better.

MuRIL and BERT Following the mT5 models,
these models also perform better when trained only
on the PMI corpus as it fails to converge on the
larger data in the given time. As an additional
step, we finetune these under-fit models on the PMI

Figure 2: Increase in BLEU score across languages
when trained on the full training data, at different in-
tervals of time.

data for 5 hours and see a significant performance
gain in the English to Indic direction (bert2muril).
The model outperforms the much bigger mT5 on
7 languages with Gujarati, Hindi, and Tamil be-
ing the exceptions. However, finetuning does not
seem to have a major effect in the other direction
(muril2bert). As in the case of mT5, we believe
that the BERT decoder’s pre-training subsumes any
gains from extra finetuning.

Official Evaluation Since Tab. 2 and 3 show
BLEU scores obtained by evaluating the generated
predictions locally, they do not exactly match the
official scores on the leaderboard.5 For a fair com-
parison, we present both local and official BLEU
scores of our best submissions in Tab. 4. We see
that the scores are similar when translating from
Indic languages to English. But when translating
from English, the official scores are often signifi-
cantly higher. This is a result of our use of mini-
mal tokenization (mteval-v13a) before computing
BLEU, while the official evaluation uses the Indic-
tokenizer (Kunchukuttan, 2020).

5 Discussion

As reported in §4, the text2text and seq2seq mod-
els perform better when trained only on the PMI
corpus when compared to them being trained on
the entire train split. Though it can be argued that
they perform better since the test set also comes
from the same domain,6 we hypothesize that 100

5http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/index.html

6The development and test sets are taken from the PMI
corpus.
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hours is not enough time for the models to converge
when trained on the full training set. Fig 2 shows
the BLEU scores of BERT2MuRIL model after 80
and 100 hours of training, respectively. We see
that the model gets significantly better in the last
20 hours. A 5 hour finetuning with the PMI cor-
pus, further increases its performance. This clearly
shows that the model would become more accu-
rate if it is trained for a longer period or with more
compute.

To establish whether an increase in BLEU scores
corresponds to an increase in the fluency and faith-
fulness of the translations, we manually annotate
50 Hindi and Kannada test predictions from the
best model to find that the increase in both cases
is marginal. In the 20 additional training hours,
the fluency and faithfulness increased by 0.005 and
0.01 respectively which suggests that BLEU may
not be the best metric to quantify the goodness of
translation systems, as shown in works like Zhang
et al. (2004); Callison-Burch et al. (2006).

6 Conclusion

In this work, we show that it is possible to get com-
petitive translation results using a single GPU for a
limited amount of time by carefully selecting and
training large pre-trained encoder-decoder models.
We also show that we can train models which have
more than 109 trainable parameters using the latest
advances in GPU resource optimization. Finally,
through a small empirical study, we find that while
longer training can increase BLEU scores, it may
not increase their fluency and faithfulness.
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Abstract

This paper describes the work and the systems
submitted by the IIIT-Hyderbad team (Id: IIIT-
H) in the WAT 2021 (Nakazawa et al., 2021)
MultiIndicMT shared task. The task covers
10 major languages of the Indian subconti-
nent. For the scope of this task, we have built
multilingual systems for 20 translation direc-
tions namely English-Indic (one-to-many) and
Indic-English (many-to-one). Individually, In-
dian languages are resource poor which ham-
pers translation quality but by leveraging mul-
tilingualism and abundant monolingual cor-
pora, the translation quality can be substan-
tially boosted. But the multilingual systems
are highly complex in terms of time as well
as computational resources. Therefore, we
are training our systems by efficiently select-
ing data that will actually contribute to most
of the learning process. Furthermore, we are
also exploiting the language relatedness found
in between Indian languages. All the compar-
isons were made using BLEU score and we
found that our final multilingual system signif-
icantly outperforms the baselines by an aver-
age of 11.3 and 19.6 BLEU points for English-
Indic (en-xx) and Indic-English (xx-en) direc-
tions, respectively.

1 Introduction

Good translation systems are an important
requirement due to substantial government,
business and social communication among people
speaking different languages. Neural machine
translation (Sutskever et al., 2014; Bahdanau
et al., 2014; Vaswani et al., 2017) is the current
state-of-the-art approach for Machine Translation
in both academia and industry. The success of
NMT heavily relies on substantial amounts of
parallel sentences as training data (Koehn and
Knowles, 2017) which is again an arduous task

for low resource languages like Indian languages
(Philip et al., 2021). Many techniques have been
devised to improve the translation quality of low
resource languages like back translation (Sennrich
et al., 2015), dual learning (Xia et al., 2016),
transfer learning (Zoph et al., 2016; Kocmi and
Bojar, 2018), etc. Also, using the traditional
approaches, one would still need to train a separate
model for each translation direction. So, building
multilingual neural machine translation models by
means of sharing parameters with high-resource
languages is a common practice to improve the
performance of low-resource language pairs (Firat
et al., 2017; Johnson et al., 2017; Ha et al., 2016).
Low resource language pairs perform better when
combined opposed to the case where the models
are trained separately due to sharing of parameters.
It also enables training a single model that supports
translation from multiple source languages to a
single target language or from a single source lan-
guage to multiple target languages. This approach
mainly works by combining all the parallel data
in hand which makes the training process quite
complex in terms of both time and computational
resources (Arivazhagan et al., 2019). Therefore,
we are training our systems by efficiently selecting
data that will actually contribute to most of the
learning process. Sometimes, this learning is
hindered in case of language pairs that do not show
any kind of relatedness among themselves. But on
the other hand, Indian languages exhibit a lot of
lexical and structural similarities on account of
sharing a common ancestry (Kunchukuttan and
Bhattacharyya, 2020). Therefore, in this work,
we have exploited the lexical similarity of these
related languages to build efficient multilingual
NMT systems.

This paper describes our work in the WAT
2021 MultiIndicMT shared task (cite). The task
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Domain PMI Cvit IITB ocor m2o ufal Wmat ALT JW Osub Ted Wtile nlpc Tanz urst Bible
Vocab Overlap 100 74.14 72.04 70.60 65.30 47.47 42.93 31.12 29.99 22.44 22.15 16.70 16.28 14.86 10.58 10.09

Table 1: Vocab Overlap of domains with PMI

covers 10 Indic Languages (Bengali, Gujarati,
Hindi, Kannada, Malayalam, Marathi, Oriya,
Punjabi, Tamil and Telugu) and English. The
objective of this shared task is to build translation
models for 20 translation directions (English-Indic
and Indic-English). This paper is further organized
as follows. Section 2 describes the methodology
behind our experiments. Section 3 talks about the
experimental details like dataset pre-processing
and training details. Results and analysis have been
discussed in Section 4, followed by conclusion in
Section 5.

2 Methodology

2.1 Exploiting Language Relatedness

India is one of the most linguistically diverse coun-
tries of the world but underlying this vast diver-
sity in Indian languages are many commonalities.
These languages exhibit lexical and structural simi-
larities on account of sharing a common ancestry
or being in contact for a long period of time (Bhat-
tacharyya et al., 2016). These languages share
many common cognates and therefore, it is very
important to utilize the lexical similarity of these
languages to build good quality multilingual NMT
systems. To do this, we are using the two dif-
ferent approaches namely Unified Transliteration
and Sub-word Segmentation proposed by (Goyal
et al., 2020).

2.1.1 Unified Transliteration
The major Indian languages have a long written
tradition and use a variety of scripts but correspon-
dences can be established between equivalent char-
acters across scripts. These scripts are derived from
the ancient Brahmi script. In order to achieve this,
we transliterated all the Indian languages into a
common Devanagari script (which in our case is
the script for Hindi) to share the same surface form.
This unified transliteration is a string homomor-
phism, replacing characters in all the languages to
a single desired script.

2.1.2 Subword Segmentation
Despite sharing a lot of cognates, Indian languages
do not share many words at their non-root level.
Therefore, the more efficient approach is to exploit

Indian languages at their sub-word level which will
ensure more vocabulary overlap. Therefore, we
are converting every word to sub-word level using
the very well known technique Byte Pair Encod-
ing (BPE) (Sennrich et al., 2015). This technique
is applied after the unified transliteration in order
to ensure that languages share same surface form
(script). BPE units are variable length units which
provide appropriate context for translation systems
involving related languages. Since their vocabular-
ies are much smaller than the morpheme and word-
level models, data sparsity is also not a problem. In
a multilingual scenario, learning BPE merge rules
will not only find the common sub-words between
multiple languages but it also ensures consistency
of segmentation among each considered language
pair.

2.2 Data Selection Strategy
Since the traditional approaches of training a mul-
tilingual system simply work by combining all the
parallel dataset in hand, making it infeasible in
terms of both time as well as computational re-
sources. Therefore, in order to select only the rele-
vant domains, we are incrementally adding all the
domains in decreasing order of their vocab overlap
with the PMI domain (Haddow and Kirefu, 2020).
Detection of dip in the BLEU score (Papineni et al.,
2002) is considered as the stopping criteria for our
strategy. The vocab overlap between any two do-
mains is calculated using the formula shown below:

Vocab Overlap =
|V ocabd1 ∩ V ocabd2|

max(|V ocabd1|, |V ocabd2|)
∗100

Here, Vocabd1 & Vocabd2 represents vocabulary of
domain 1 and domain 2 respectively. Vocab overlap
of each domain with PMI is shown in Table 1.

2.3 Back Translation
Back translation (Sennrich et al., 2015)is a widely
used data augmentation method where the reverse
direction is used to translate sentences from target
side monolingual data into the source language.
This synthetic parallel data is combined with the
actual parallel data to re-train the model leading
to better language modelling on the target side,
regularization and target domain adaptation. Back
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Dataset En-hi En-pa En-gu En-mr En-bn En-or En-kn En-ml En-ta En-te
Parallel corpus

PMI 50349 28294 41578 28974 23306 31966 28901 26916 32638 33380
CVIT 266545 101092 58264 114220 91985 94494 - 43087 115968 44720
IITB 1603080 - - - - - - - - -

Monolingual corpus
En Hi Pa Gu Mr Bn Or Kn Ml Ta Te

PMI 89269 151792 87804 123008 118848 116835 103331 79024 81786 90912 111325

Table 2: Training dataset statistics

translation is particularly useful for low resource
languages. We use back translation to augment our
multilingual models. The back translation data is
generated by multilingual models in the reverse
direction, hence some implicit multilingual transfer
is incorporated in the back translated data also. For
the scope of this paper, we have used monolingual
data of the PMI given on the WAT website.

2.4 Multilingual NMT and Fine-tuning

Multilingual model enables us to translate to and
from multiple languages using a shared word piece
vocabulary, which is significantly simpler than
training a different model for each language pair.
We used the technique proposed by Johnson et al.
(2017) where he introduced a “language flag” based
approach that shares the attention mechanism and
a single encoder-decoder network to enable multi-
lingual models. A language flag or token is part of
the input sequence to indicate which direction to
translate to. The decoder learns to generate the tar-
get given this input. This approach has been shown
to be simple, effective and forces the model to gen-
eralize across language boundaries during training.
It is also observed that when language pairs with
little available data and language pairs with abun-
dant data are mixed into a single model, translation
quality on the low resource language pair is signif-
icantly improved. Furthermore, We are also fine
tuning our multilingual system on PMI (multilin-
gual) domain by the means of transfer learning b/w
the parent and the child model.

3 Experimental Details

3.1 Dataset and Preprocessing

We are using the dataset provided in WAT 2021
shared task. Our experiments mainly use PMI
(Haddow and Kirefu, 2020), CVIT (Siripragada
et al., 2020) and IIT-B (Kunchukuttan et al., 2017)
parallel dataset, along with monolingual data of
PMI for further improvements Table 2. We used

Moses (Koehn et al., 2007) toolkit for tokeniza-
tion and cleaning of English and Indic NLP library
(Kunchukuttan, 2020) for normalizing, tokeniza-
tion and transliteration of all Indian languages. For
our bilingual model we used BPE segmentation
with 16K merge operation and for multilingual
models we learned the Joint-BPE on source and
target side with 16K merges (Sennrich et al., 2015).

3.2 Training

For all of our experiments, we use the OpenNMT-
py (Klein et al., 2017) toolkit for training the NMT
systems. We used the Transformer model with 6
layers in both the encoder and decoder, each with
512 hidden units. The word embedding size is set
to 512 with 8 heads. The training is done in batches
of maximum 4096 tokens at a time with dropout set
to 0.3. We use Adam (Kingma and Ba, 2014) opti-
mizer to optimize model parameters. We validate
the model every 5,000 steps via BLEU (Papineni
et al., 2002) and perplexity on the development
set. We are training all of our models with early
stopping criteria based on validation set accuracy.
During testing, we rejoin translated BPE segments
and convert the translated sentences back to their
original language scripts. Finally, we evaluate the
accuracy of our translation models using BLEU.

4 Results and Analysis

We report the Bleu score on the test set provided in
the WAT 2021 MultiIndic shared task. Table 3 and
Table 4 represents the results for different experi-
ments we have performed for En-XX and XX-En
directions respectively. The rows corresponding
to PMI + CVIT + Back Translation + Fine tuning
on PMI multilingual is our final system submitted
for this shared task (Bleu scores shown in the table
for this task are from automatic evaluation system).
We observe that Multilingual system of PMI out-
performs the bilingual baseline model of PMI by
significant margins. The reason for this is the abil-
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En-XX en-hi en-pa en-gu en-mr en-bn en-or en-kn en-ml en-ta en-te
PMI Baselines 23.21 18.26 15.46 7.07 5.25 8.32 8.67 4.63 5.32 6.12
PMI Multilingual 28.22 26.00 21.19 13.37 10.53 14.78 15.39 8.99 9.38 8.57
PMI + CVIT Multilingual 32.86 28.29 23.85 16.74 11.71 16.79 15.63 10.71 11.85 9.18
PMI + CVIT + IITB Multilingual 32.68 23.55 22.36 15.74 8.66 13.88 13.71 8.03 9.23 7.31
PMI + CVIT + Back Translation 35.81 30.15 25.84 18.47 12.50 18.52 17.98 11.99 12.31 12.89
PMI + CVIT + Back Translation +
Fine Tuning on PMI Multilingual

38.25 33.35 26.97 19.48 14.73 20.15 19.57 12.76 14.43 15.61

Table 3: Results for En-XX direction

XX-En hi-en pa-en gu-en mr-en bn-en or-en kn-en ml-en ta-en te-en
PMI Baselines 24.69 19.80 20.16 11.70 10.25 13.80 13.32 11.30 9.82 13.39
PMI Multilingual 26.91 24.26 23.91 19.66 17.44 19.65 21.08 18.99 18.95 19.94
PMI + CVIT Multilingual 39.40 37.35 35.12 29.59 25.35 30.38 29.56 27.69 28.12 28.97
PMI + CVIT + IITB Multilingual 37.93 36.08 35.03 28.71 24.18 29.04 28.95 27.24 27.61 28.41
PMI + CVIT + Back Translation 41.41 39.15 37.84 32.17 26.90 32.52 32.58 28.99 29.31 30.29
PMI + CVIT + Back Translation+
Fine Tuning on PMI Multilingual

43.23 41.24 39.39 34.02 28.28 34.11 34.69 29.19 29.61 30.44

Table 4: Results for XX-En direction

ity to induce learning from multiple languages; also
there is increase in vocab overlap using our tech-
nique of exploiting language relatedness. Further
we tried to improve the performance of system us-
ing the relevant domains by incrementally adding
different domains based on vocab overlap to the
already existing system. We observed a decrease in
Bleu score after adding the IIT-B corpus and there-
fore we stopped our incremental training at that
point. Further we can see that our final multilin-
gual model using back translation and fine tuning
outperforms all other systems. Our submission
also got evaluated with AMFM scores which can
be found in the WAT 2021 evaluation website.

5 Conclusion

This paper presents the submissions by IIIT Hyder-
abd on the WAT 2021 MultiIndicMT shared Task.
We performed experiments by combining different
pre-processing and training techniques in series to
achieve competitive results. The effectiveness of
each technique is demonstrated. Our final submis-
sion able to achieve the second rank in this task
according to automatic evaluation.
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Abstract

Multilingual Neural Machine Translation has
achieved remarkable performance by training
a single translation model for multiple lan-
guages. This paper describes our submission
(Team ID: CFILT-IITB) for the MultiIndicMT:
An Indic Language Multilingual Task at WAT
2021. We train multilingual NMT systems by
sharing encoder and decoder parameters with
language embedding associated with each to-
ken in both encoder and decoder. Further-
more, we demonstrate the use of translitera-
tion (script conversion) for Indic languages in
reducing the lexical gap for training a multilin-
gual NMT system. Further, we show improve-
ment in performance by training a multilingual
NMT system using languages of the same fam-
ily, i.e., related languages.

1 Introduction

Neural Machine Translation (Sutskever et al., 2014;
Bahdanau et al., 2015; Wu et al., 2016) has become
a de-facto for automatic translation of language
pairs. NMT systems with Transformer (Vaswani
et al., 2017) based architectures have achieved com-
petitive accuracy on data-rich language pairs like
English-French. However, NMT systems are data-
hungry, and only a few pairs of languages have
abundant parallel data. For low resource setting,
techniques like transfer learning (Zoph et al., 2016)
and utilization of monolingual data in an unsuper-
vised setting (Artetxe et al., 2018; Lample et al.,
2017, 2018) have shown support for increasing
the translation accuracy. Multilingual Neural Ma-
chine Translation is an ideal setting for low re-
source MT (Lakew et al., 2018) since it allows
sharing of encoder-decoder parameters, word em-
beddings, and joint or separate vocabularies. It
also enables zero-shot translations, i.e., translating
between language pairs that were not seen during
training (Johnson et al., 2017a).

In this paper, we present our system for Multi-
IndicMT: An Indic Language Multilingual Task at
WAT 2021 (Nakazawa et al., 2021). The task covers
10 Indic Languages (Bengali, Gujarati, Hindi, Kan-
nada, Malayalam, Marathi, Oriya, Punjabi, Tamil,
and Telugu) and English.

To summarize our approach and contributions,
we (i) present a multilingual NMT system with
shared encoder-decoder framework, (ii) show re-
sults on many-to-one translation, (iii) use transliter-
ation to a common script to handle the lexical gap
between languages, (iv) show how grouping of lan-
guages in regard to their language family helps mul-
tilingual NMT and (v) use language embeddings
with each token in both encoder and decoder.

2 Related work

2.1 Neural Machine Translation

Neural Machine Translation architectures consist
of encoder layers, attention layers, and decoder lay-
ers. NMT framework takes a sequence of words
as an input; the encoder generates an intermediate
representation, conditioned on which, the decoder
generates an output sequence. The decoder also at-
tends to the encoder states. Bahdanau et al. (2015)
introduced the encoder-decoder attention to allow
the decoder to soft-search the parts of the source
sentence to predict the next token. The encoder-
decoder can be a LSTM framework (Sutskever
et al., 2014; Wu et al., 2016), CNN (Gehring et al.,
2017), or Transformer layers (Vaswani et al., 2017).
A Transformer layer comprises of self-attention
that bakes the understanding of input sequence with
positional encoding and passes on to the next com-
ponent, feed-forward neural network, layer normal-
ization, and residual connections. The decoder in
the transformer has an additional encoder-attention
layer that attends to the output states of the trans-
former encoder.
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NMT is data-hungry, and only a few pairs of lan-
guages have abundant parallel data. In recent years,
NMT has been accompanied by several techniques
to improve the performance of both low & high
resource language pairs. Back-translation (Sen-
nrich et al., 2016b) is used to augment the paral-
lel data with synthetically generated parallel data
by passing monolingual datasets to the previously
trained models. Currently, NMT systems also per-
form on-the-fly back-translation to train the model
simultaneously. Tokenization methods like Byte
Pair Encoding (Sennrich et al., 2016a) are used in
almost all NMT models. Pivoting (Cheng et al.,
2017) and Transfer Learning (Zoph et al., 2016)
have leveraged the language relatedness by indi-
rectly providing the model with more parallel data
from related language pairs.

2.2 Multilingual Neural Machine Translation

Multilingual NMT trains a single model utilizing
data from multiple language-pairs to improve the
performance. There are different approaches to
incorporate multiple language pairs in a single
system, like multi-way NMT, pivot-based NMT,
transfer learning, multi-source NMT and, multi-
lingual NMT (Dabre et al., 2020). Multilingual
NMT came into picture because many languages
share certain amount of vocabulary and share some
structural similarity. These languages together can
be utilized to improve the performance of NMT
systems. In this paper, our focus is to analyze the
performance of multi-source NMT. The simplest
approach is to share the parameters of NMT model
across multiple language pairs. These kinds of sys-
tems work better if languages are related to each
other. In Johnson et al. (2017b), the encoder, de-
coder, and attention are shared for the training of
multiple language pairs and a target language to-
ken is added at the beginning of target sentence
while decoding. Firat et al. (2016) utilizes a shared
attention mechanism to train multilingual models.
Recently many approaches have been proposed,
where monolingual data of multiple languages is
utilized to pre-train a single model using different
objectives like masked language modeling and de-
noising (Lample and Conneau, 2019; Song et al.,
2019; Lewis et al., 2020; Liu et al., 2020). Multi-
lingual pre-training followed by multilingual fine-
tuning has also proven to be beneficial (Tang et al.,
2020).

2.3 Language Relatedness
Telugu, Tamil, Kannada, and Malayalam are Dra-
vidian languages whose speakers are predomi-
nantly found in South India, with some speakers in
Sri Lanka and a few pockets of speakers in North
India. The speakers of these languages constitute
around 20% of the Indian population (Kunchukut-
tan and Bhattacharyya, 2020). Dravidian languages
are agglutinative, i.e., long and complex words are
formed by stringing together morphemes without
changing them in spelling or phonetics. Most Dra-
vidian languages have clusivity distinction. Hindi,
Bengali, Marathi, Gujarati, Oriya, Punjabi are Indo-
Aryan languages and are primarily spoken in North
and Central India and the neighboring countries
of Pakistan, Nepal, and Bangladesh. The speakers
of these languages constitute around 75% of the
Indian population. Both Dravidian and Indo-Aryan
language families follow the Subject(S)-Object(O)-
Verb(V) order.

Grouping languages concerning their families
have inherent advantages because they form a
closely related group with several linguistic phe-
nomenons shared amongst them. Indo-Aryan lan-
guages are morphologically rich and have huge
similarities when compared to English. A language
group also share vocabularies at both word and
character level. They contain similarly spelled
words that are derived from the same root. ‘

2.4 Transliteration
Indic languages share a lot of vocabulary, but most
languages utilize different scripts. Nevertheless,
these scripts have phoneme overlap and can be
converted easily from one to another using a simple
rule-based system. To convert all Indic language
data into the same script, we use IndicNLP1 which
maps different Unicode range for the conversion.
The conversion of all Indic language scripts to the
same script helps with better shared vocabulary
and leads to smaller subword vocabulary (Ramesh
et al., 2021).

3 System overview

In this section, we describe the details of the sub-
mitted systems to MultiIndicMT task at WAT2021.
We report results for four types of models:

• Bilingual: Trained only using parallel data for
a particular language pair (bilingual models).

1https://github.com/anoopkunchukuttan/
indic_nlp_library
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• All-En: Multilingual many-to-one system
trained using all available parallel data of all
language pairs.

• IA-En: Multilingual many-to-one system
trained using Indo-Aryan languages from the
provided parallel data.

• DR-En: Multilingual many-to-one system
trained using Dravidian languages from the
provided parallel data.

To train our multilingual models, we use shared
encoder-decoder transformer architecture. To han-
dle the lexical gap between Indic languages in mul-
tilingual models, we convert the data of all Indic
languages to a common script. We choose the
common script as Devanagari (arbitrary choice).
We also perform a comparative study of systems
when the encoder and decoder are shared only be-
tween related languages. To perform this com-
parative study, we group the provided set of lan-
guages in two parts based on the language families
they belong to, i.e, the system is trained from Indo-
Aryan (group) to English, and Dravidian (group)
to English. Indo-Aryan-to-English contains Ben-
gali, Gujarati, Hindi, Marathi, Oriya, Punjabi to
English, and Dravidian-to-English contains Kan-
nada, Malayalam, Tamil, Telugu to English. We
use shared subword vocabulary of the languages
involved while training multilingual models, and a
common vocabulary of source and target languages
to train bilingual models.

4 Experimental details

4.1 Dataset
Our models are trained using only the parallel data
provided for the task. The size of the parallel data
available and its source of origin are summarized
in Table 1. The validation and test data provided in
the task is n-way and contains 1000 sentences for
validation and 2390 sentences in test set.

4.2 Data preprocessing
We tokenize English language data using moses
tokenizer (Koehn et al., 2007), and Indian language
data using IndicNLP2 library. For multilingual
models, we transliterate (script mapping) all In-
dic language data into Devanagari script using the
IndicNLP library. Our aim here is to convert data

2https://github.com/anoopkunchukuttan/
indic_nlp_library

of all languages into the same script, hence the
choice of Devnagari as a common script is arbi-
trary. We use fastBPE3 to learn BPE (Byte pair
encoding) (Bojanowski et al., 2017). For bilin-
gual models, we use 60000 BPE codes over the
combined tokenized data of both languages. The
number of BPE codes is set to 100000 for All-En,
and 80000 for DR-En and IA-En.

4.3 Experimental Setup

We use six layers in the encoder, six layers in the
decoder, 8 attention heads in both encoder and de-
coder, and 1024 embedding dimension. The en-
coder and decoder are trained using Adam (Kingma
and Ba, 2015) optimizer with inverse square root
learning rate schedule. We use the same setting
as used in Song et al. (2019) for warmup phase,
in which the learning rate is increased linearly for
some initial steps starting from 1e−7 to 0.0001,
warmup phase is set to 4000 steps. We use mini-
batches of size 2000 tokens and set the dropout
to 0.1 (Gal and Ghahramani, 2016). Maximum
sentence length is set to 100 after applying BPE.
At decoding time, we use greedy decoding. For
experiments, we are using mt steps from MASS4

codebase. Our models are trained using only par-
allel data provided in the task, we are not training
the model using any kind of pretraining objective.
We train bilingual models for 100 epochs and mul-
tilingual models for 150 epochs. The epoch size
is set to 200000 sentences. Due to resource con-
straints, we train our model for fixed number of
epochs, it does not guarantee convergence. Similar
to MASS (Song et al., 2019), language embeddings
are added to each token in the encoder and decoder
to distinguish between languages. These language
embeddings are learnt during training.

4.4 Results and Discussion

We report BLEU scores for our four settings: bilin-
gual, All-En (multilingual many-to-one), IA-En
(multilingual many-to-one Indo-Aryan to English),
and DR-En (multilingual many-to-one Dravidian
to English) in Table 2. We use multi-bleu.perl 5 to
calculate BLEU scores of baseline models. BLEU
score is calculated using the tokenized reference
and hypothesis files as followed by organizers in

3https://github.com/glample/fastBPE
4https://github.com/microsoft/MASS
5https://github.com/moses-smt/

mosesdecoder/blob/RELEASE-2.1.1/scripts/
generic/multi-bleu.perl
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Lang Pair Size Data sources

bn-en 1.70M alt, cvit-pib, jw, opensubtitles, pmi, tanzil, ted2020, wikimatrix

gu-en 0.51M bibleuedin, cvit, jw, pmi, ted2020, urst, wikititles

hi-en 3.50M alt, bibleuedin, cvit-pib, iitb, jw, opensubtitles, pmi, tanzil, ted2020, wikimatrix

kn-en 0.39M bibleuedin, jw, pmi, ted2020

ml-en 1.20M bibleudein, cvit-pib, jw, opensubtitles, pmi, tanzil, ted2020, wikimatrix

mr-en 0.78M bibleuedin, cvit-pib, jw, pmi, ted2020, wikimatrix

or-en 0.25M cvit, mtenglish2odia, odiencorp, pmi

pa-en 0.51M cvit-pib, jw, pmi, ted2020

ta-en 1.40M cvit-pib, jw, nlpc, opensubtitles, pmi, tanzil, ted2020, ufal, wikimatrix, wikititles

te-en 0.68M cvit-pib, jw, opensubtitles, pmi, ted2020, wikimatrix

Table 1: Parallel Dataset amongst 10 Indic-English language pairs. Size is the number of parallel sentences (in
millions). (bn, gu, hi, kn, ml, mr, or, pa, ta, te and en: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi,
Oriya, Punjabi, Tamil, Telugu and English respectively

BLEU AMFM

Lang Pair Bilingual IA-En DR-En All-En IA-En DR-En All-En

bn-en 18.52 20.18 - 18.48 0.734491 - 0.730379

gu-en 26.51 31.02 - 28.79 0.776935 - 0.765441

hi-en 33.53 33.7 - 30.9 0.791408 - 0.775032

mr-en 21.28 25.5 - 23.57 0.767347 - 0.751917

or-en 22.6 26.34 - 25.05 0.780009 - 0.770941

pa-en 29.92 32.34 - 29.87 0.782112 - 0.772655

kn-en 17.93 - 24.18 24.01 - 0.744802 0.751223

ml-en 19.52 - 22.84 22.1 - 0.745908 0.744459

ta-en 23.62 - 22.75 21.37 - 0.74509 0.742311

te-en 19.89 - 24.02 22.37 - 0.745885 0.743435

Table 2: Results: XX-en is the translation direction. IA, DR, All are Indo-Aryan, Dravidian and All Indic lan-
guages respectively. The numbers under BLEU and AMFM headings represent BLEU score and AMFM score
respectively.

the evaluation of MultiIndicMT task6. Tokeniza-
tion is performed using moses-tokenizer (Koehn
et al., 2007). For IA-En, DR-En, and All-En, we re-
port results provided by the organizers. Table 2 also
reports the Adequacy-Fluency Metrics (AM-FM)
for Machine Translation (MT) Evaluation (Banchs
et al., 2015) provided by organizers.

6http://lotus.kuee.kyoto-u.ac.jp/WAT/
evaluation/automatic_evaluation_systems/
automaticEvaluationEN.html

The BLEU score in table 2 highlights that the
multilingual model outperforms the simpler bilin-
gual models. Although we did not submit bilingual
models in the shared task submission, we use it
here as a baseline to compare with multilingual
models. Moreover, upon grouping languages based
on their language families, significant improvement
in BLEU scores is observed due to less confusion
and better learning of the language representations
in shared encoder-decoder architecture. We ob-
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lang1
lang2 bn gu hi mr or pa kn ml ta te

bn - 37.86 80.63 55.1 34.81 35.93 24.69 54.83 61.79 60.89

gu 70.47 - 93.51 83.52 51.02 54.09 49.22 61.21 46.85 71.74

hi 68.96 42.97 - 59.62 30.79 38.29 27.66 52.68 55.77 60.5

mr 72.35 58.91 91.53 - 40.36 45.2 38.04 60.91 53.59 69.23

or 83.6 65.83 86.47 73.82 - 48.94 48.1 61.66 44.71 68.7

pa 72.39 58.54 90.19 69.36 41.05 - 36.64 60.16 59.18 68.58

kn 63.08 67.57 82.64 74.04 51.17 46.48 - 74.39 50.34 84.07

ml 67.37 40.4 75.68 56.99 31.54 36.69 35.77 - 66.00 68.86

ta 63.49 25.86 67.00 41.94 19.13 30.19 20.24 55.19 - 56.59

te 71.66 45.36 83.26 62.05 33.67 40.07 38.72 65.96 64.82 -

Table 3: Shared Vocabulary: Percentage of vocabulary (after applying BPE) of lang1 present in lang2 (rows: lang1,
columns: lang2) after transliteration to a common script (devnagari)

serve that the BLEU score increases by 14 percent
on average when the languages are grouped based
on their families (IA-En & DR-En) and by 7 per-
cent when all languages are combined in a single
multilingual model (All-En) as compared to the
bilingual models. The IA-En and DR-En BLEU
scores being better than both bilingual and multi-
lingual (All-En) models encourage the exploitation
of linguistic insights like languages relatedness and
lexical closeness among language families.

Table 3 shows the percentage of vocabulary over-
lap in two languages. We get the vocabulary of
each language using the source language part of
the BPE processed parallel train set files as used in
All-En experiment. The vocabulary size for each
language is different. Equation 1 states how the
value in each cell is calculated. V 1, V 2 are the
vocabularies of lang1 & lang2 respectively. The
numerator is the count of intersection of the two
vocabularies and denominator is the count of the
vocabulary of lang1.

|V 1 ∩ V 2|
|V 1| ∗ 100 (1)

Almost all indic languages provided in the task
bn, gu, (hi,mr), or, pa, kn, ml, ta, te, use different
scripts except hi and mr. Both hi and mr utilize the
same script (devnagari). It is clear from Table 3
that transliteration to a common script helps in in-
creasing the shared vocabulary and helps the model
to leverage the benefit of the lexical similarity be-

tween languages.

5 Conclusion

In this paper, we study the influence of sharing
encoder-decoder parameters between related lan-
guages in multilingual NMT by performing exper-
iments with the grouping of languages based on
language family. Furthermore, we also perform
experiments of multilingual NMT with all Indic
language data converted to the same script, which
helps the model in learning better translation by
utilizing the benefit of better shared vocabulary.
In the future, we plan to utilize monolingual data
from (Kakwani et al., 2020) to improve multilin-
gual NMT further.
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Adam Dobrowolski, Marcin Szymański, Marcin Chochowski, Paweł Przybysz
Samsung R&D Institute, Warsaw, Poland

{a.dobrowols2, m.szymanski, m.chochowski, p.przybysz} @samsung.com

MultiIndicMT: An Indic Language Multilingual Task
Team ID: SRPOL

Abstract

This paper describes the submission to the
WAT 2021 Indic Language Multilingual Task
by Samsung R&D Institute Poland. The task
covered translation between 10 Indic Lan-
guages (Bengali, Gujarati, Hindi, Kannada,
Malayalam, Marathi, Oriya, Punjabi, Tamil
and Telugu) and English.

We combined a variety of techniques: translit-
eration, filtering, backtranslation, domain
adaptation, knowledge-distillation and finally
ensembling of NMT models. We applied an ef-
fective approach to low-resource training that
consist of pretraining on backtranslations and
tuning on parallel corpora.

We experimented with two different domain-
adaptation techniques which significantly im-
proved translation quality when applied to
monolingual corpora. We researched and ap-
plied a novel approach for finding the best
hyperparameters for ensembling a number of
translation models.

All techniques combined gave significant im-
provement - up to +8 BLEU over baseline re-
sults. The quality of the models has been con-
firmed by the human evaluation where SRPOL
models scored best for all 5 manually evalu-
ated languages.

1 Introduction

Samsung R&D Poland Team researched effective
techniques that worked especially well for low-
resource languages: transliteration, iterative back-
translation followed by tuning on parallel corpora.
We successfully applied these techniques during
the WAT2021 competition (Nakazawa et al., 2021).
Especially for the competition we also applied cus-
tom domain-adaptation techniques which substan-
tially improved the final results.

Most of the applied techniques and ideas are
commonly used for works on Indian languages

machine translation (Chu and Wang, 2018) (Dabre
et al., 2020).

This document is structured as follows. In sec-
tion 2 we describe the sources and techniques of
corpora preparation used for the training. In sec-
tions 3 and 4 we describe the model architecture
and techniques used in training, tuning and ensem-
bling and finally Section 5 presents the results we
gained on every stage of the training.

All trainings were performed on Transformer
models. We used standard Marian NMT 1 v.1.9
framework.

2 Data

2.1 Multilingual trainings

Multilingual models trained for the competition use
a target language tag at the beginning of sentence
to select the direction of the translation.

2.2 Transliteration

Indian languages use a variety of scripts. Using
transliteration between scripts of similar languages
may improve the quality of multilingual models
as described in (Bawden et al., 2019) (Goyal and
Sharma, 2019). The transliteration we applied was
to replace Indian letters of various scripts to their
equivalents in Devanagari script. We used indic-
NLP 2 library to perform the transliteration.

In our previous experiments with Indian lan-
guages we noticed an overall improvement of the
quality for multi-indian models, so we used translit-
eration in all trainings. However, additional exper-
iments on transliteration during the competition
were not conclusive. The results for trainings on
raw corpora, without transliteration were similar
(see Table 1).

1github.com/marian-nmt/marian
2https://github.com/anoopkunchukuttan/

indic_nlp_library
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2.3 Parallel Corpora Filtering

The base corpus for all trainings was the concaten-
taion of complete bilingual corpora provided by
the organizers (further referenced as bitext) (11M
lines in total). No filtering or preprocessing (but
the transliteration) were performed on this corpus.
The corpus included parallel data from: CVIT-PIB,
PMIndia, IITB 3.0, JW, NLPC, UFAL EnTam, Uka
Tarsadia, Wiki Titles, ALT, OpenSubtitles, Bible-
uedin, MTEnglish2Odia, OdiEnCorp 2.0, TED,
WikiMatrix. During the competition we performed
several experiments to enrich/filter this parallel cor-
pora:

• Inclusion of CCAligned corpus

• Removing far from domain sentence pairs like
religious corpora

• Removing sentence pairs of low probability
(according to e.g. sentence lengths, detected
language etc.)

• Domain adaptation by fastText

• Domain adaptation by language model

None of these techniques applied on parallel cor-
pora had led to quality improvement which is why
we decided to continue with the basic non-filtered
corpora as the base for future trainings.

2.4 Backtranslation

Backtranslation of monolingual corpora is a com-
monly used technique for improving machine trans-
lation. Especially for low-resource languages
where only small bilingual corpora are available
(Edunov et al., 2018). Training on backtransla-
tions enriches the target language model, which
improves the overall translation quality. The syn-
thetic backtranslated corpus was joined with the
original bilingual corpus for the trainings.

Using backtranslations of the full monolingual
corpuses led to the improvement of results on trans-
lation on Indian to English directions by 1.2 BLEU
on average. There was no improvement in the op-
posite directions. See Tables 5 and 6.

2.5 Domain adaptation

We enriched the parallel training corpora with back-
translated monolingual data selecting only sen-
tences similar to PMI domain to increase the rate of
in-domain data in the training corpus. We used two

different techniques to select the in domain sen-
tences for backtranslation. With these techniques
we trained two separate families of MT models.

Domain adaptation by fastText (FT) - We ap-
plied the domain adaptation described in (Yu et al.,
2020). Following the hints from the paper, we
trained the fastText (Joulin et al., 2017) model
using balanced corpus containing sentences from
PMIndia labelled as in-domain and CCAligned sen-
tences labelled as out-domain. Using the trained
model we filtered the parallel as well as monolin-
gual corpora.

Domain adaptation by language model (LM)
As the second approach to select a subset of
best PMI-like sentences from monolingual general-
domain AI4Bharat (Kunchukuttan et al., 2020) cor-
pora available for the task, we used the approach
described in (Axelrod et al., 2011). For each of
10 Indian languages two RNN language models
were constructed using Marian toolkit: in-domain
trained with a particular part of PMI corpus and
out-of-domain created using a similar number of
lines from a mix of all other corpora available for
that language respectively. All these models were
regularized with exponential smoothing of 0.0001,
dropout of 0.2 along with source and target word
token dropout of 0.1. For the AI4Bharat mono
corpus sentence ranking, we used a cross-entropy
difference between scores of previously mentioned
models as suggested in (Axelrod et al., 2011), nor-
malized by the line length. Only sentences with a
score above arbitrarily chosen threshold were se-
lected for further processing. We noticed a signifi-
cant influence of domain adaptation while selecting
mono corpora used for backtranslation (see Table
3).

2.6 Multi-Agent Dual Learning

For some of trainings, we used the simpli-
fied version of Multi-Agent Dual Learning
(MADL) (Wang et al., 2019), proposed in Kim
et al. (2019), to generate additional training data
from the parallel corpus. We generated n-best trans-
lations of both the source and the target sides of
the parallel data, with strong ensembles of, respec-
tively, the forward and the backward models. Next,
we picked the best translation from among n candi-
dates w.r.t. the sentence-level BLEU score. Thanks
to these steps, we tripled the number of sentences
by combining three types of datasets:
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1. original source – original target,

2. original source – synthetic target,

3. synthetic source – original target,

where the synthetic target is the translation of the
original source with the forward model, and the
synthetic source is the translation of the original
target with the backward model.

2.7 Postprocessing
In comparison to our competitors we noticed sig-
nificantly weaker performance on the En-Or di-
rection. After the analysis we found out that the
generated corpora contain sequences of characters
(U+0B2F-U+0B3C, U+0B5F) not present in the
devset corpora. Replacing these sequences with
sequence (U+0B5F-U+0B3E) gave a significant
improvement for En-Or of about +4 BLEU.

3 NMT System Overview

All of our systems are trained with the Marian
NMT3 (Junczys-Dowmunt et al., 2018) framework.

3.1 Baseline systems for preliminary
experiments

First experiments were performed with transformer
models (Vaswani et al., 2017), which we will now
refer to as transformer-base. The only difference
is that we used 8 encoder layers and 4 decoder
layers instead of default configuration 6-6. The
model has default embedding dimension of 512
and a feed-forward layer dimension of 2048.

We also used layer normalization (Ba et al.,
2016) and tied the weights of the target-side em-
bedding and the transpose of the output weight
matrix, as well as source- and target-side embed-
dings (Press and Wolf, 2017). Optimizer delay
was used to simulate batches of size up to 200GB,
Adam (Kingma and Ba, 2017) was used as an op-
timizer, with a learning rate of 0.0003 and linear
warm-up for the initial 48, 000 updates with sub-
sequent inverted squared decay. No dropout was
applied.

3.2 Final configuration
After the first experiments further trainings were
performed on a transformer-big model. It has big-
ger dimensions than the transformer-base: an em-
bedding dimension of 1024 and a feed-forward

3github.com/marian-nmt/marian

Parallel En-In In-En
bitext 18.03 31.41
CCAligned 6.82 12.15
PMIndia 5.59 11.94
bitext+CC 17.62 30.56
bitext, no religious 15.33 29.02
bitext, filtered FT 17.84 29.38
bitext, most likely 17.98 31.00
bitext, no transliteration 18.36 31.27
With backtranslation
bitext+BT filtered LM 18.22 31.38
bitext+BT filtered FT 18.71 32.77
bitext+CC+BT flitered FT 18.21 30.64
MADL
MADL 18.87 31.94
MADL+BT filtered FT 18.83 33.25

Table 1: Average BLEU for preliminary trainings (4.1)
on different corpora.

layer dimension of 4096. The transformer-big
trainings were regularized with a dropout between
transformer layers of 0.1 and a label smoothing of
0.1 unlike the transformer-base which was trained
without a dropout.

4 Trainings

4.1 Preliminary trainings
During preliminary trainings, we tested which tech-
niques of filtering/backtranslation/MADL work
best for the task. Preliminary trainings were per-
formed for all 20 directions on a single transformer-
base model with no dropout.

There was no clear answer, which of the tech-
niques work best. Generally, adding CCAligned
corpus worsened the results. Training only on a
big CCAligned corpus (15M lines) gave similar
results to training on small PMIndia corpus (300k
lines). For further trainings we decided to use the
most promising techniques: filtered backtranslation
(both methods fastText and Language Model) and
MADL.

The preliminary training for one transformer-
base model lasted 50 hours on two V100 GPUs -
13 epochs. A summary of the preliminary results
are gathered in Table 1

4.2 Pretraining with backtranslations
For the final trainings we prepared various cor-
pora with backtranslations filtered with a domain-
transfer. We applied two methods of domain-
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fastText filtering Source Selected
backtranslations 400M 86M
bitext filtered FT 11M 1,5M
CCAligned 15M 400k
PMIndia 300k 300k
bitext full 11M 11M
Language Model filtering Source Selected
backtranslations 400M 58M
bitext full 11M 11M
bitext distilled forward 11M 11M
bitext distilled backward 11M 11M

Table 2: Components of mixed corpora used for pre-
trainings with backtranslation (4.2) using fastText fil-
tering and language model filtering of monolingual cor-
pora.

transfer described in previous sections: fastText
and language model. Trainings were performed
on separate transformer-big models. One many-to-
one model for 10 directions to-English and second
one-to-many for 10 directions from-English.

The whole pretraining for one transformer-big
model lasted 200 hours on four V100 GPUs - 8
epochs. Further tunings took additional 20 hours
of processing.

4.3 Tuning with bitext

The best two pretrained models with domain-
transfer (LM filtered and FT filtered) were the base-
lines to start the tuning with the parallel corpora.
During the bitext tuning we used all bilingual data
provided by organizers except CCAligned corpus
- 11M sentences in total. Tuning of baselines with
the original parallel corpora improved the average
BLEU of pretrained models by 0.97-1.85 BLEU
(see Table 3)

4.4 Finetuning with PMIndia

We performed several attempts to finetune the final
results with different corpora:

1. PMIndia parallel corpus (300k lines)

2. Baktranslated PMIndia mono corpus (1,1M
lines)

3. MADL on PMIndia parallel corpus (3 * 300k
lines)

First of these attempts, finetuning with bilingual
PMIndia, gave the best improvement of final re-
sult - 0.25-0.6 BLEU on average. All 3 finetuned

BLEU Improvement
No filtering 2In 2En 2In 2En
Bitext only 18.81 31.80
Full BT 18.77 33.02 -0.04 1.22
LM filtering
Filtered BT 20.06 35.43 1.25 3.63
Tuned Bitext 21.03 36.95 0.97 1.52
FT PMIndia 21.39 37.26 0.36 0.31
fastText filtering
Filtered BT 19.77 36.62 0.96 4.86
Tuned BT-PMI 21.01 37.64 1.24 1.02
Tuned Bitext 21.31 38.47 1.54 1.85
FT PMIndia 21.91 38.72 0.60 0.25
FT BT-PMI 21.81 38.42 0.50 -0.05
FT MADL 38.67 0.20

Table 3: Comparison of domain-adaptation techniques
- Average BLEU over 10 directions for subsequent
stages of final training: pretraining with backtransla-
tion, tuning with bitext, tuning with mono PMIndia
backtranslated, finetuning with bitext PMIndia, finetun-
ing with backtranslated mono PMIndia, finetuning with
MADL.

models were taken into process of mixing the best
ensemble.

4.5 Ensembling

To further boost the translation quality, we used
ensembles of models during decoding. Two sep-
arate ensembles were formed and tuned, one for
transliterated Indian to English, the other in the
opposite direction. Each ensemble consisted of:
a number of Neural Translation Models, derived
from various stages of training and model tuning –
up to as much as 9 NMT were used during weight-
optimization; and a single Neural Language Model,
either English or common Indian (based on all lan-
guages, transliterated into Hindi), depending on the
direction.

The tuning of ensemble weights was performed
on the Development set and consisted of the fol-
lowing stages:

• Expectation-Maximization of posterior emis-
sion probability for a mixture of mod-
els(Kneser and Steinbiss, 1993), based on
NMT log-scores of Development sentence-
pairs, obtained using marian-score; this
procedure, as well as being fast due to not re-
quiring actual decoding, also worked well in
practice, despite being based on interpolation
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Set Indian-En En-Indian
Technique Dev Test Dev Test
Best sng 41.39 38.52 22.32 20.50

Unif w/o LM 42.33 39.6 22.57 20.79
Unif. w/ LM 40.69 37.88 21.51 20.01
Expert sel. 42.11 39.24 22.62 20.94

E-M∗ 42.35 39.71 22.64 20.99
+ ind. wgts 42.49 39.65 22.74 20.99
+ norm-fact. 42.50 39.58 n/a n/a

Table 4: BLEU scores for different techniques of deter-
mining ensemble weights.
∗ Expectation-Maximization of likelihoods optimized
weights of translation models only; Language Model
was then added with small arbitrary weight of ca. 0.3%,
and the presented scores were obtained using such an
ensemble.

in the linear probability domain, as opposed
to log-domain interpolation used in Marian;

• tuning single weights of the ensemble (bi-
sectioning procedure, performed for a limited
number of iterations; weights were tuned in
the arbitrary order), based on BLEU scores of
translated Development set (before normaliza-
tion and tokenization);

• (only for Indian-to-English) a sweep of
normalization-factor, also on BLEU. 4

Individual tuning for target languages of English-
to-Indian directions was originally planned, but
wasn’t eventually used for submission, mostly due
to lack of time, however visual inspection of the
partial results also showed that some weights var-
ied wildly, so devset over-fitting could be sus-
pected at this point; normalization-factor optimiza-
tion was planned to be performed after the afore-
mentioned optimization, so consequently it was
also skipped for English-to-Indian directions. Post-
submission tests showed an average improvement
of ca. 0.2 BLEU, when using tuning for individual
Indian target languages, but the gain was strongly
dominated by the improvement on a single direc-
tion (En→Hi).

We experimented with several beam sizes in-
creasing it up to 40. For the final submission we
chose the size of 16. The larger beam gave little or
no improvement at a cost of slowing down the de-
coding. For very large ensembles of 10 big models

4Translation score of each hypothesis is divided by
lengthfactor , this value is then used to select the final trans-
lation, default is 1.

the decoding of the whole devset for 10 directions
(10k lines) lasts about 25 minutes on a single V100
GPU.

Table 4 presents the impact of tuning on BLEU
scores on both devset and testset, in relation
to a few manually selected setups, namely best-
single-model, uniform and expert-selected ”50-25-
25%” ensemble. The final weight selection im-
proved translation of the Indian-to-En directions
by ca. 0.5 BLEU, compared to the expert ensemble
or ca. 1.2 BLEU compared to best single model;
on En-to-Indian directions, the improvement was
<0.1 BLEU or ca. 0.5 BLEU, respectively. The re-
sults on the testset differ slightly from our final
submissions as, during the ensemble tuning, we
used simplified BLEU calculations algorithm (be-
fore normalization and tokenization)

5 Final Results

The detailed results of each stage of the best branch
of trainings are gathered in Tables 5 and 6. The en-
semble values are the submission evaluation results
provided by the organizers.

Tables 7 and 8 contain the results of the models
submitted by SRPOL compared with best results of
competitors. The tables present values provided by
WAT2021 organizers, calculated by 3 different met-
rics: BLEU (Papineni et al., 2002), RIBES (Isozaki
et al., 2010), AMFM (Banchs and Li, 2011)

Figure 1 shows the results of the human evalu-
ation. The figure presents the values provided by
WAT2021 organizers showing significant advance
over the competitors. Especially amount of bad
translations (scored 1-2) has been significantly re-
duced.

5.1 English→ Indian

Application of all techniques for En→In directions
gave the overall improvement of 3.6 BLEU from
baseline average 18.8 to final 22.4 BLEU. Adding
non-filtered backtranslations gave no improvement,
probably because general Indian monocorpus is too
different from specific language used in PMIndia.
However, after domain adaptation of the training
corpus we gained improvement of 1 BLEU. Most
of the improvement was gained by finetuning on
parallel corpora (1.5 BLEU) and PMI corpora (0.6
BLEU). Final ensembling process gave the average
improvement of 0.5 BLEU.
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Stage Bn Gu Hi Kn Ml Mr Or Pa Ta Te AVG Boost
Baseline - bitext 13.1 23.7 35.8 15.8 12.2 16.7 17.0 29.8 12.0 11.9 18.81
Backtranslations 12.5 23.5 36.1 16.6 12.4 17.1 17.0 29.8 11.8 11.0 18.77 -0.04
Domain adapt. 13.4 23.8 36.8 17.2 13.8 18.7 18.3 30.6 12.9 12.2 19.77 1.00
Tuning bitext 14.6 25.9 38.1 19.5 14.9 19.6 19.5 32.3 13.6 14.9 21.31 1.54
Tuning PMIndia 15.5 27.2 38.1 20.8 15.1 19.8 19.1 32.9 13.7 16.8 21.91 0.60
Ensemble 16.0 27.8 38.7 21.3 15.5 20.4 19.9 33.4 14.2 16.9 22.40 0.49

Table 5: Final results - BLEU for 10 directions from-English in subsequent stages of final training

Stage Bn Gu Hi Kn Ml Mr Or Pa Ta Te AVG Boost
Baseline - bitext 25.2 36.4 39.9 31.0 29.5 29.8 30.2 38.0 28.5 29.5 31.80
Backtranslations 25.3 37.8 40.6 33.6 30.8 30.6 31.8 39.2 29.3 31.2 33.02 1.22
Domain adapt. 29.4 40.6 44.5 36.9 35.1 33.6 35.2 42.7 33.0 35.0 36.62 3.60
Tuning bitext 31.1 42.7 45.3 38.9 37.2 35.2 36.2 44.8 34.9 38.3 38.47 1.85
Tuning PMIndia 31.8 43.3 45.6 39.1 37.1 35.7 36.2 44.8 35.0 38.6 38.72 0.25
Ensemble 31.9 44.0 46.9 40.3 38.4 36.6 37.1 46.4 36.1 39.8 39.75 1.03

Table 6: Final results - BLEU for 10 directions to-English in subsequent stages of final training

5.2 Indian→ English

Application of all techniques for In→En directions
gave the overall improvement of 8 BLEU from
baseline average 31.8 to final 39.8 BLEU. Adding
non-filtered backtranslations gave 1.2 BLEU im-
provement but most of the improvement had been
gained by domain adaptation which gave surpris-
ingly high improvement of 3.6 BLEU. Further im-
provement was gained by finetuning on parallel
corpora (1.9 BLEU) and PMI corpora (0.3 BLEU).
The final ensembling process gave additional im-
provement of 1.0 BLEU.

6 Conclusions

We presented an effective approach to low-resource
training consisting of pretraining on backtransla-
tions and tuning on parallel corpora. We success-
fully applied domain-adaptation techniques which
significantly improved translation quality measured
by BLEU. We presented an effective approach for
finding best hyperparameters for the ensembling
number of single translation models.

We applied transliteration, but the final results
did not confirm that this approach is effective, at
least for that particular task.

We tried several filtering techniques for parallel
corpora but the results showed no improvement.
This may be a confirmation that the parallel corpora
provided by the competition organizers are of high
quality which is hard to improve.

Probably for the same reason domain-adaptation

on parallel corpora didn’t improve the results. How-
ever domain-adaptation worked surprisingly well
for monolingual corpora.
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Model Bn Gu Hi Kn Ml Mr Or Pa Ta Te AVG
BLEU
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AMFM
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Competitor 0.7796 0.8201 0.8228 0.8178 0.8053 0.8115 0.7699 0.8137 0.8029 0.7898 0.8033
Best single 0.7723 0.8199 0.8224 0.8213 0.8080 0.8108 0.7715 0.8132 0.7994 0.7930 0.8032
Ensemble 0.7710 0.8212 0.8246 0.8219 0.8081 0.8097 0.7718 0.8141 0.7988 0.7911 0.8032

Table 7: Official results of translations from-English by 3 metrics for submitted results of: baseline model, best
competitor’s result, submitted single SRPOL’s model and submitted best SRPOL’s ensemble

Model Bn Gu Hi Kn Ml Mr Or Pa Ta Te AVG
BLEU

Baseline 25.39 35.86 39.49 30.67 28.69 29.10 30.07 37.61 28.01 29.05 31.39
Competitor 29.96 39.39 43.23 35.46 33.21 34.02 34.11 41.24 31.94 35.44 35.80
Best single 31.82 42.87 45.61 39.01 37.04 35.68 36.04 44.87 35.06 38.57 38.66
Ensemble 31.87 43.98 46.93 40.34 38.38 36.64 37.06 46.39 36.13 39.80 39.75

RIBES
Baseline 0.7649 0.8186 0.8448 0.7984 0.7927 0.7879 0.7895 0.8335 0.7881 0.7803 0.7999
Competitor 0.7983 0.8394 0.8591 0.8209 0.8132 0.8103 0.8017 0.8495 0.8070 0.8168 0.8216
Best single 0.8001 0.8497 0.8677 0.8373 0.8304 0.8212 0.8128 0.8614 0.8160 0.8315 0.8328
Ensemble 0.8005 0.8533 0.8729 0.8405 0.8354 0.8248 0.8170 0.8658 0.8223 0.8364 0.8369

AMFM
Baseline 0.7699 0.8129 0.8250 0.7927 0.7936 0.7916 0.7940 0.8151 0.7884 0.7872 0.7970
Competitor 0.7786 0.8207 0.8345 0.8097 0.8068 0.7958 0.8082 0.8235 0.7961 0.8040 0.8078
Best single 0.7924 0.8331 0.8435 0.8204 0.8207 0.8103 0.8149 0.8364 0.8036 0.8204 0.8196
Ensemble 0.7897 0.8358 0.8471 0.8237 0.8230 0.8123 0.8173 0.8416 0.8065 0.8209 0.8218

Table 8: Official results of translations to-English by 3 metrics for submitted results of: baseline model, best
competitor’s result, submitted single SRPOL’s model and submitted best SRPOL’s ensemble

230



Figure 1: Summary results for all 5 manually evaluated languages - Bengali, Kannada, Malayalam, Marathi, Oriya
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Abstract

In this paper, we present the details of the sys-
tems that we have submitted for the WAT 2021
MultiIndicMT: An Indic Language Multilin-
gual Task. We have submitted two separate
multilingual NMT models: one for English to
10 Indic languages and another for 10 Indic
languages to English. We discuss the imple-
mentation details of two separate multilingual
NMT approaches, namely one-to-many and
many-to-one, that makes use of a shared de-
coder and a shared encoder, respectively. From
our experiments, we observe that the multilin-
gual NMT systems outperforms the bilingual
baseline MT systems for each of the language
pairs under consideration.

1 Introduction

In recent years, the Neural Machine Translation
(NMT) systems (Vaswani et al., 2017; Bahdanau
et al., 2014; Sutskever et al., 2014; Cho et al., 2014)
have consistently outperformed the Statistical Ma-
chine Translation (SMT) (Koehn, 2009) systems.
One of the major problems with NMT systems is
that they are data hungry, which means that they
require a large amount of parallel data to give better
performance. This becomes a very challenging task
while working with low-resource language pairs
for which a very less amount of parallel corpora
is available. Multilingual NMT (MNMT) systems
(Dong et al., 2015; Johnson et al., 2017) allevi-
ate this issue by using the phenomenon of transfer
learning among related languages, which are the
languages that are related by genetic and contact
relationships. (Kunchukuttan and Bhattacharyya,
2020) have shown that the lexical and orthographic
similarity among languages can be utilized to im-
prove translation quality between Indic languages
when limited parallel corpora is available. Another
advantage of using MNMT systems is that they
support zero-shot translation, that is, translation

among two languages for which no parallel cor-
pora is available during training.

A MNMT system can also drastically reduce
the total number of models required for a large
scale translation system by making use of a single
many-to-many MNMT model instead of having to
train a separate translation system for each of the
language pairs. This reduces the amount of com-
putation and time required for training. Among
various MNMT approaches, using a single shared
encoder and decoder will further reduce the num-
ber of parameters and allow related languages to
share vocabulary. In this paper, we describe the
two MNMT systems that we have submitted for
the WAT 2021 MultiIndicMT: An Indic Language
Multilingual Task (Nakazawa et al., 2021) as team
’CFILT’, namely one-to-many for English to Indic
languages and many-to-one for Indic languages to
English. This task covers 10 Indic languages which
are Bengali, Gujarati, Hindi, Kannada, Malayalam,
Marathi, Oriya, Punjabi, Tamil and Telugu.

2 Related Work

Dong et al. (2015) was the first to introduce MNMT.
The authors used a one-to-many model where a
separate decoder and an attention mechanism was
used for each target language. Firat et al. (2016)
extended this to a many-to-many setting using a
shared attention mechanism. In Zoph and Knight
(2016) a multi-source translation approach was pro-
posed where multiple encoders were used, each
having a separate attention mechanism. Lee et al.
(2017) proposed a CNN-based character level ap-
proach where a single encoder was shared across
all the source languages.

A second line of work on MNMT uses a sin-
gle shared encoder and decoder (Ha et al., 2016;
Johnson et al., 2017) irrespective of the number
of languages on the source or the target side. An
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en-bn en-gu en-hi en-kn en-ml en-mr en-or en-pa en-ta en-te

ALT 20 - 20 - - - - - - -
Bible-uedin - 16 62 61 61 61 - - - 62
CVIT-PIB 92 58 267 - 43 114 94 101 116 45
IITB 3.0 - - 1603 - - - - - - -
MTEnglish2Odia - - - - - - 35 - - -
NLPC - - - - - - - - 31 -
OdiEnCorp 2.0 - - - - - - 91 - - -
OpenSubtitles 411 - 92 - 383 - - - 32 27
PMIndia 23 41 50 29 27 29 32 28 33 33
TED2020 - - - 2 - - - 0.7 - -

Total 546 115 2094 92 514 204 252 130 212 167

Table 1: Statistics of number of parallel sentences for each of the English-Indic language pairs across different
datasets used for training. All the numbers are in thousands. (bn:Bengali, gu:Gujarati, hi:Hindi, kn:Kannada,
ml:Malayalam, mr:Marathi, or:Oriya, pa:Punjabi, ta:Tamil, te:Telugu)

advantage of this approach is that the number of
parameters are drastically reduced. Dabre et al.
(2019) gives a summary of various techniques that
can be used to implement MNMT systems. The
MNMT systems that we have implemented are
based on Johnson et al. (2017)’s approach where in
one-to-many and many-to-many models a language
specific token is prepended to the input sentence to
indicate the target language that the model should
translate to. We use transformer (Vaswani et al.,
2017) architecture which has proven to give su-
perior performance over the RNN based models
(Bahdanau et al., 2014; Sutskever et al., 2014; Cho
et al., 2014).

3 Our Approach

The various types of multilingual models that we
have implemented are one-to-many and many-to-
one, each of which are discussed below.

3.1 One-to-Many

In a one-to-many multilingual model, the trans-
lation task involves a single source language and
two or more target languages. One of the ways to
achieve this is by making use of a single encoder
for the source language and separate decoders for
each of the target languages. The disadvantage of
this method is that, as there are multiple decoders,
the size of the model increases. Another way to
achieve this is to use a single encoder and a single
shared decoder. An advantage of this method is that
the representations learnt by some language pair
can further be utilized by the some other language

pair. For example, the representations learnt during
the training of the English-Hindi language pair can
help training the English-Marathi language pair.
Also, in this approach, a language specific token
is prepended to the input sentence to indicate the
model to which target language the input sentence
should be translated.

3.2 Many-to-One

This approach is similar to the one-to-many ap-
proach. The major point of difference is that there
are multiple source languages and a single target
language. As a result, here we use a single shared
encoder and a single decoder. Also, as the target
language is same for all the source languages, it is
optional to prepend a token to the input sentence
unlike in the one-to-many approach which has mul-
tiple target languages for a given source language.

4 Experiments

In this section, we discuss the details of the system
architecture, dataset, preprocessing, models and
the training setup.

4.1 System Architecture

Table 4 lists the details of the transformer architec-
ture used for all the experiments.

4.2 Data

The dataset provided for the shared task by WAT
2021 was used for all the experiments. We did not
use any additional data to train the models. Table 1
lists the datasets used for each of the English-Indic
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Baseline One-to-Many
BLEU RIBES BLEU RIBES AMFM

en→ bn 12.14 0.691941 13.24 0.710664 0.777074
en→ gu 18.26 0.745845 24.56 0.806649 0.817681
en→ hi 33.06 0.836683 35.39 0.843969 0.821713
en→ kn 11.43 0.666605 17.98 0.747233 0.816981
en→ ml 10.56 0.668024 12.79 0.707437 0.805291
en→ mr - - 18.47 0.759182 0.811499
en→ or 11.19 0.644931 18.22 0.738397 0.768399
en→ pa 29.00 0.810395 31.16 0.826367 0.813658
en→ ta 10.97 0.662236 12.99 0.715699 0.802920
en→ te - - 15.52 0.725496 0.789820

Table 2: Results for the one-to-many MNMT model. To obtain the baseline results, we performed the same auto-
matic evaluation procedures as those performed in WAT 2021. The one-to-many results are the official evaluation
results provided by the organizers of WAT 2021. (bn:Bengali, gu:Gujarati, hi:Hindi, kn:Kannada, ml:Malayalam,
mr:Marathi, or:Oriya, pa:Punjabi, ta:Tamil, te:Telugu)

Baseline Many-to-One
BLEU RIBES BLEU RIBES AMFM

bn→ en 24.38 0.772800 25.98 0.760268 0.766461
gu→ en 31.92 0.799512 35.31 0.807849 0.797069
hi→ en 37.72 0.847265 39.71 0.837668 0.822034
kn→ en 21.30 0.738755 30.23 0.772913 0.778602
ml→ en 26.80 0.786290 29.28 0.784424 0.789095
mr→ en - - 29.71 0.786570 0.789075
or→ en - - 30.46 0.772850 0.793769
pa→ en 37.89 0.827826 38.01 0.818396 0.804561
ta→ en - - 29.34 0.784291 0.785098
te→ en - - 30.10 0.778981 0.783349

Table 3: Results for the many-to-one MNMT model. To obtain the baseline results, we performed the same auto-
matic evaluation procedures as those performed in WAT 2021. The many-to-one results are the official evaluation
results provided by the organizers of WAT 2021.(bn:Bengali, gu:Gujarati, hi:Hindi, kn:Kannada, ml:Malayalam,
mr:Marathi, or:Oriya, pa:Punjabi, ta:Tamil, te:Telugu)

language pairs along with the number of parallel
sentences. The validation and test sets have 1,000
and 2,390 sentences, respectively and are 11-way
parallel.

4.3 Preprocessing

We used Byte Pair Encoding (BPE) (Sennrich et al.,
2016) technique for data segmentation, that is,
break up the words into sub-words. This technique
is especially helpful for Indic languages as they are
morphologically rich. Separate vocabularies are
used for the source and target side languages. For
training the one-to-many and many-to-one models,
the data of all the 10 Indic languages is combined
before learning the BPE codes. 48000, 48000 and

8000 merge operations are used for learning the
BPE codes of the one-to-many, many-to-one and
bilingual baseline models, respectively.

4.4 Baseline Models

The baseline MT models are bilingual MT models
based on the vanilla transformer architecture. We
have trained 20 separate bilingual MT models, 10
for English to each Indic language and 10 for each
Indic language to English.

4.5 Models and Training

For this task, we built two separate MNMT systems,
a one (English) to many (10 Indic languages) model
and a many (10 Indic languages) to one (English)
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Encoder Decoder

No. of layers 6 6
No. of attention heads 8 8

Embedding dimensions 512 512
FFNN hidden layer dim 2048 2048

Table 4: System architecture details

model. In our one-to-many model, we used the
transformer architecture with a single encoder and
a single shared decoder. The encoder used the
English vocabulary and the decoder used a shared
vocabulary of all the Indic languages. In our many-
to-one model, we used the transformer architecture
with a single shared encoder and a single decoder.
Here the encoder used a shared vocabulary of all
the Indic languages and English vocabulary is used
for the decoder. In both of these MNMT models,
we prepended a language specific token to the input
sentence.

We used the fairseq (Ott et al., 2019) library
for implementing the multilingual systems. For
training, we used Adam optimizer with betas
’(0.9,0.98)’. The initial learning rate used was
0.0005 and the inverse square root learning rate
scheduler was used with 4000 warm-up updates.
The dropout probability value used was 0.3 and the
criterion used was label smoothed cross entropy
with label smoothing of 0.1. We used an update
frequency, that is, after how many batches the back-
ward pass is performed, of 8 for the multilingual
models and 4 for the bilingual baseline models.

During decoding we used the beam search algo-
rithm with a beam length of 5 and length penalty
of 1. The many-to-one model was trained for 160
epochs and the one-to-many model was trained
for 145 epochs. The model with the best average
BLEU score was chosen as the best model. The
average BLEU score for a MNMT model was cal-
culated by taking the average of the BLEU scores
obtained across all the language pairs.

5 Results and Analysis

The Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) metric, the Rank-based Intu-
itive Bilingual Evaluation Score (RIBES) (Isozaki
et al., 2010) metric and Adequacy-Fluency Metrics
(AMFM) (Banchs et al., 2015) are used to report
the results. Table 2 and 3 lists the results for all our
experiments.

The baseline results are obtained by training
bilingual models and then we have used automatic
evaluation procedures same as those performed in
WAT 2021. The one-to-many and many-to-one
results are those reported by WAT 2021 on our
submitted translation files.

We observe that for all language pairs in both
the translation directions, the MNMT models give
superior performance as compared to the bilingual
NMT models. For relatively high resource lan-
guage pairs like English-Hindi and English-Bengali
the increase in BLEU score is less while for rel-
atively low resource language pairs like English-
Kannada and English-Oriya the increase in BLEU
score is substantial. From the above observation
it follows that low resource language pairs benefit
much more from multilingual training than high
resource language pairs. An increase of up to 8.93
BLEU scores (for Kannada to English) is observed
using MNMT systems over the bilingual baseline
NMT systems.

6 Conclusion

In this paper, we have discussed our submission to
the WAT 2021 MultiIndicMT: An Indic Language
Multilingual Task. We have submitted two sepa-
rate MNMT models: a one-to-many (English to
10 Indic languages) model and a many-to-one (10
Indic languages to English) model. We evaluated
our models using BLEU and RIBES scores and
observed that the MNMT models outperform the
separately trained bilingual NMT models across all
the language pairs. We also observe that for the
lower resource language pairs the improvement in
performance is much more as compared to that for
the higher resource language pairs.
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Abstract

This paper describes the systems submitted
to WAT 2021 MultiIndicMT shared task by
IITP-MT team. We submit two multilingual
Neural Machine Translation (NMT) systems
(Indic-to-English and English-to-Indic). We
romanize all Indic data and create subword
vocabulary which is shared between all In-
dic languages. We use back-translation ap-
proach to generate synthetic data which is ap-
pended to parallel corpus and used to train
our models. The models are evaluated using
BLEU, RIBES and AMFM scores with Indic-
to-English model achieving 40.08 BLEU for
Hindi-English pair and English-to-Indic model
achieving 34.48 BLEU for English-Hindi pair.
However, we observe that the shared ro-
manized subword vocabulary is not helping
English-to-Indic model at the time of genera-
tion, leading it to produce poor quality transla-
tions for Tamil, Telugu and Malayalam to En-
glish pairs with BLEU score of 8.51, 6.25 and
3.79 respectively.

1 Introduction

In this paper, we describe our submission to the
MultiIndicMT shared task at the 8th Workshop on
Asian Translation 1 (WAT 2021) (Nakazawa et al.,
2021). The objective of this shared task is to build
Machine Translation (MT) models between 10 In-
dic languages (Bengali, Gujarati, Hindi, Kannada,
Malayalam, Marathi, Odia, Punjabi, Tamil, Telugu)
and English. We submit two Multilingual Neural
Machine Translation models (MNMT): one for XX
→ EN and one for EN→ XX (here XX denotes a
set of all 10 Indic languages).

Multilingual Machine Translation (Dong et al.,
2015; Firat et al., 2016; Johnson et al., 2017; Aha-
roni et al., 2019; Freitag and Firat, 2020) has gained

∗Equal contribution
1Our Team ID: IITP-MT

popularity in recent times due to the ability to train
a single model which is capable of translating be-
tween multiple language pairs. The main benefit
of multilingual model is transfer learning. When a
low resource language pair is trained together with
a high resource pair, the translation quality of a
low resource pair may improve (Zoph et al., 2016;
Nguyen and Chiang, 2017). This method of train-
ing is more suitable for Indic languages as they are
similar to each other (Dabre et al., 2017, 2020) and
relatively under-resourced when compared with
European languages (Sen et al., 2018).

Romanization is the process of converting char-
acters that are written in various scripts into Latin
script. Amrhein and Sennrich (2020) showed that
in a transfer learning setting, romanization im-
proves the transfer between related languages that
use different scripts. We train two MNMT models,
which translate between Indic languages and En-
glish with all Indic data romanized. The models are
evaluated using the BLEU (Papineni et al., 2002),
RIBES (Isozaki et al., 2010) and AMFM (Banchs
et al., 2015) metrics.

The paper is organized as follows. In section 2,
we briefly mention some notable works on multi-
lingual NMT and romanized NMT. In section 3,
we describe the systems submitted along with pre-
processing and romanization of Indic data. Results
are described in section 4. Finally, the work is
concluded in section 5.

2 Related Works

Multilingual Machine Translation enabled the abil-
ity to deploy a single model for multiple language
pairs without training multiple models. Dong et al.
(2015) proposes a multi-task learning framework to
translate one source language into multiple target
languages by adding language specific decoders.
Their method has shown improvements over base-
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line models which are trained for individual lan-
guage pairs. Firat et al. (2016) proposes a many-to-
many model for multi-way, multilingual translation
using shared attention and language specific en-
coders and decoders. However, with this setting,
model parameters will increase as the number of
languages increases.

Johnson et al. (2017) use shared encoder-decoder
model in which multiple languages share both en-
coder and decoder also the attention module. This
is achieved by combining multiple language pairs
data into a single corpus and adding a language
tag to every source sentence to specify its target
language. This method enables the zero-shot trans-
lation, in which the model can generate sentences
belonging to a language pair that is not seen at
training time. Aharoni et al. (2019) show that mul-
tilingual NMT models are capable of handling large
number of language pairs. Freitag and Firat (2020)
proposes that the use of multi-way alignment in-
formation will improve the translation quality of
language pairs for which training data is scarce in
multilingual settings.

Improving the quality of NMT models with
monolingual data is a common approach nowa-
days, especially in low resource settings. Back-
translation Sennrich et al. (2016) is an effective
approach to make use of target monolingual data.
In this approach, with the help of existing target-to-
source MT system target is translated into source
and resulting synthetic parallel corpus is combined
with clean corpus and used to train source-to-
target NMT system. Multi-task learning frame-
work (Zhang and Zong, 2016; Domhan and Hieber,
2017) is another way to utilize monolingual data to
improve the performance of NMT.

Recent studies (Du and Way, 2017; Gheini and
May, 2019; Briakou and Carpuat, 2019) show that
the romanization will improve the performance of
NMT system. However these approaches apply
romanization at source side only. Amrhein and
Sennrich (2020) showed that romanization can be
applied on the target side also followed by an addi-
tional, learned deromanization step.

In this work, we follow Johnson et al. (2017)
method to train multilingual NMT models. We ro-
manize Indic data and use it to train our models. We
also follow back-translation approach (Sennrich
et al., 2016) to create synthetic parallel data. We
report the results of the models which are trained
on combined synthetic and clean parallel corpus.

3 System Description

This section describes datasets, preprocessing and
experimental setup of our models.

3.1 Datasets
We use MultiIndicMT parallel corpus 2 consist-
ing of following languages: Bengali, Gujarati,
Hindi, Kannada, Malayalam, Marathi, Odia, Pun-
jabi, Tamil, Telugu and English. It contains the
parallel corpora for 10 Indic languages which are
translated into English. We also use PMI mono-
lingual corpus 3 to generate synthetic data with
back-translation (Sennrich et al., 2016) approach.
Table 1 shows the data sizes of corpora used in the
experiments. Development and Test sets contain
1,000 and 2,390 sentences respectively for each
language pair.

Language Parallel Monolingual
Bengali (BN) 1,341,284 117,757
Gujarati (GU) 518,015 125,647
Hindi (HI) 3,069,725 156,605
Kannada (KN) 396,865 79,433
Malayalam (ML) 1,142,053 82,026
Marathi (MR) 621,481 120,362
Odia (OR) 252,160 103,876
Punjabi (PA) 518,508 90,916
Tamil (TA) 1,354,247 91,324
Telugu (TE) 457,453 111,749
English (EN) - 109,480

Table 1: Language wise training set sizes in terms of
number of sentences. Parallel: Parallel corpus size of
Indic-EN language pair. Monolingual: PMI monolin-
gual corpora sizes of all languages.

3.2 Preprocessing and Romanization
We use a Python based transliteration tool 4 to ro-
manize all Indic language data. This tool supports
all Indic language scripts that are used in the exper-
iments. It also has deromanization support which
maps Latin script into various Indic scripts. We
romanize all Indic language data (Amrhein and
Sennrich, 2020) (both parallel and monolingual
corpora are romanized) and merge all parallel cor-
pora into single corpus. This combined parallel
corpus used to train baseline models.

2http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-
multilingual/indic wat 2021.tar.gz

3http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-
multilingual/filteredmono.tar.gz

4https://github.com/sanskrit-coders/indic transliteration
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We follow back-translation (Sennrich et al.,
2016) approach to generate synthetic parallel cor-
pora. We merge monolingual corpora of all In-
dic languages and generate synthetic English data
using baseline XX → EN model. The resulting
synthetic English - Clean Indic parallel corpus is
merged with clean English-Indic parallel corpus
and used to further train baseline EN→ XX model.
We also generate synthetic Indic languages data
using monolingual English data. We duplicate the
monolingual English data 10 times and the base-
line EN→ XX model is used to generate synthetic
Indic data. The reason to duplicate English data
is to get equal size synthetic parallel corpus for
all Indic languages. The resulting synthetic Indic -
Clean English parallel corpus is merged with clean
Indic-English parallel corpus and used to further
train baseline XX→ EN model.

For the training of EN→ XX model, we add lan-
guage tag to start of every source sentence (John-
son et al., 2017) to denote to which language 5 the
source should be translated to. We do not use lan-
guage tags for XX → EN model as the target is
English always. All the training data is shuffled
before feeding to the models. The training corpus
statistics are shown in Table 2. The combined De-
velopment set contains 10,000 sentences and is the
same for all models. Table 3 shows the contribu-
tion of each language pair in the combined training
corpus. Hindi-English pair being the most con-
tributing pair with almost 30% and Odia-English
pair being least contributing pair with 3.3%, in both
directions.

Model Train
XX→ EN 9,671,791
XX→ EN + BT 10,766,591
EN→ XX 9,671,791
EN→ XX + BT 10,751,486

Table 2: Training data sizes of combined corpora. {XX,
EN} → {EN, XX} denotes training data sizes of Base-
line models. BT denotes total training data sizes after
adding synthetic back-translated parallel corpora.

3.3 Experimental Setup

We train two multilingual models namely XX→
EN (Indic languages to English) and EN → XX
(English to Indic languages). All the models are

5We use following tags: ##2BN, ##2GU, ##2HI, ##2KN,
##2ML, ##2MR, ##2OR, ##2PA, ##2TA, ##2TE

Language Pair XX→ EN EN→ XX
HI-EN 29.53 30.0
TA-EN 13.60 13.45
BN-EN 13.47 13.57
ML-EN 11.62 11.38
MR-EN 6.79 6.90
GU-EN 5.83 6.0
PA-EN 5.83 5.67
TE-EN 5.27 5.29
KN-EN 4.70 4.43
OR-EN 3.36 3.31

Table 3: Contribution of each language pair (in %) in
the training set after merging clean corpus with syn-
thetic back-translated corpus. XX → EN: Indic-to-
English model. EN→ XX: English-to-Indic model.

trained on the Transformer architecture (Vaswani
et al., 2017). We use 6 layered Encoder-Decoder
stacks with 8 attention heads. Embedding size and
hidden sizes are set to 512, dropout rate is set to 0.1.
Feed-forward layer consists of 2048 cells. Adam
optimizer (Kingma and Ba, 2015) is used for train-
ing with 8,000 warm up steps with initial learning
rate of 2. We split the training data of baseline
models into subwords with the unigram language
model (Kudo, 2018) using SentencePiece (Kudo
and Richardson, 2018) implementation. We create
two subword vocabularies, one for English and one
for all romanized Indic data 6. The size of English
subword vocabulary is 60K and of Indic languages
is 100K, for both the models. We use OpenNMT
toolkit (Klein et al., 2017)7 to train our models with
batch size of 2048 tokens. Models are evaluated
on development sets after every 10,000 steps and
checkpoints are created. The baseline models are
trained for 100,000 steps and the last checkpoint
is used to create a synthetic corpus with the back-
translation approach as described in Section 3.2.
After creating synthetic parallel corpora, baseline
models are further trained for another 200,000 steps
8 on combined synthetic and clean parallel corpora
(see Table 2). Finally, all checkpoints that are cre-
ated by the model using the combined corpora are
averaged 9 and considered as the best parameters
for each model and used to test our models. We

6All Indic languages data is merged after romanization and
created subword vocabulary on combined corpus.

7https://github.com/OpenNMT/OpenNMT-py/tree/1.2.0
8We stop the training as there is no improvement in terms

of perplexity of models on training data.
9OpenNMT-py provides script to average model weights.
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Language Pair XX→ EN EN→ XX

BLEU RIBES AMFM BLEU RIBES AMFM

BN-EN 25.77 0.77 0.78 11.04 0.70 0.73
GU-EN 36.49 0.83 0.81 20.46 0.75 0.81
HI-EN 40.08 0.85 0.83 34.48 0.84 0.82
KN-EN 31.24 0.81 0.80 13.22 0.64 0.79
ML-EN 29.37 0.80 0.80 3.79 0.44 0.76
MR-EN 29.96 0.80 0.80 13.95 0.67 0.80
OR-EN 31.19 0.79 0.80 12.57 0.71 0.74
PA-EN 38.41 0.84 0.82 16.81 0.79 0.66
TA-EN 27.76 0.79 0.79 8.51 0.58 0.76
TE-EN 28.13 0.78 0.78 6.25 0.53 0.76

Table 4: Official BLEU, RIBES and AMFM scores of multilingual models for each language pair. XX → EN
denotes score of Indic-to-English model. EN→ XX denotes score of English-to-Indic model.

keep OpenNMT-py’s default beam size of 5 dur-
ing back-translation and inference. For the EN→
XX model, after getting the model predictions on
the test set, we deromanize these predictions and
convert them into respective language scripts.

4 Results and Analysis

The official BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) and AMFM (Banchs et al.,
2015) scores of the multilingual models are shown
in Table 4. We observe that the XX→ EN model
performance is consistent across all language pairs
in terms of all the three scores. HI-EN being the
most contributing pair (see Table 3), achieves the
BLEU score of 40.08 points. Even the language
pair with the least amount of data (OR-EN) yield a
BLEU score of 31.19 points. However, we do not
observe the same with EN→ XX model. The per-
formance of EN→ XX model is inconsistent with
achieving a high BLEU score of 34.48 points (EN-
HI) and least BLEU score of 3.79 (ML-EN). We
observe same in terms of RIBES score also. How-
ever, AMFM scores of EN→ XX model are quite
consistent despite having less BLEU and RIBES
scores for some language pairs.

Sen et al. (2018) observe that, in the multilin-
gual setting where a single decoder has to handle
information about more languages (7 in their case),
the performance of the model is limited because
of different vocabulary and different linguistic fea-
tures. In our case, we romanize all data and feed it
to the model. Still the EN→ XX model is unable
to produce good quality translations. We believe
that the main reason for such low quality transla-

tions is the romanized subword vocabulary, which
is shared across 10 different languages, is not help-
ing decoder at the time of generation. There can be
two possible ways to fix this issue. One is, using
a larger target vocabulary size as 100K subword
vocabulary is not giving good results in our case.
Another is, creating separate vocabularies for each
language instead of combining them together and
creating a joint vocabulary, while the data being
romanized.

5 Conclusion

In this paper, we describe our submission to the
MultiIndicMT shared task to WAT 2021. We sub-
mit two multilingual NMT models: many-to-one
(10 Indic languages to English) and one-to-many
(English to 10 Indic languages). We romanize all
Indic language data to convert all languages’ to-
kens in roman script. We also generate synthetic
data using the back-translation approach. We train
our models on the romanized data sets which is a
combination of clean corpora and synthetic back-
translated corpora. We evaluate our models using
BLEU, RIBES and AMFM scores and observed
that many-to-one model achieves highest BLEU
score of 40.08 for Hindi-English pair and one-to-
many model achieves highest BLEU score of 34.48
for English-Hindi pair. However, the shared sub-
word vocabulary at target side for the one-to-many
model lead to the poor performance of the one-
to-many model especially in Tamil, Telugu and
Malayalam to English pairs by achieving BLEU
score of 8.51, 6.25 and 3.79 respectively.
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Abstract

This paper describes ANVITA-1.0 MT sys-
tem, architected for submission to WAT
2021 MultiIndicMT shared task by mcairt
team, where the team participated in 20
translation directions: English→Indic and
Indic→English; Indic set comprised of 10
Indian languages. ANVITA-1.0 MT system
comprised of two multi-lingual NMT mod-
els one for the English→Indic directions and
other for the Indic→English directions with
shared encoder-decoder, catering 10 language
pairs and twenty translation directions. The
base models were built based on Transformer
architecture and trained over MultiIndicMT
WAT 2021 corpora and further employed back-
translation and transliteration for selective data
augmentation, and model ensemble for better
generalization. Additionally, MultiIndicMT
WAT 2021 corpora was distilled using a se-
ries of filtering operations before putting up
for training. ANVITA-1.0 achieved highest
AM-FM score for English→Bengali, 2nd for
English→Tamil and 3rd for English→Hindi,
Bengali→English directions on official test
set. In general, performance achieved by AN-
VITA for the Indic→English directions are rel-
atively better than that of English→Indic di-
rections for all the 10 language pairs when
evaluated using BLEU and RIBES, although
the same trend is not observed consistently
when AM-FM based evaluation was carried
out. As compared to BLEU, RIBES and AM-
FM based scoring placed ANVITA relatively
better among all the task participants.

1 Introduction

This paper presents ANVITA-1.0 (A Neural
Version of Indic Translation Assistance) MT sys-
tem, architected for submission to WAT 2021 Mul-
tiIndicMT shared task by mcairt team. WAT
2021 MultiIndicMT shared task (Nakazawa et al.,
2021) comprised of translation of 10 Indian lan-

guages Bengali(bn), Gujarati(gu), Hindi(hi), Kan-
nada(kn), Marathi(mr), Malayalam(ml), Oriya(or),
Punjabi(pa), Tamil(ta), Telugu(te) and Engish(en)
in 20 translation directions (English→Indic and
Indic→English) and our team participated in all 20
translation directions.

Developing quality machine translation system
for the Indian languages still remains a major chal-
lenge, as large number of Indian languages are
individually resource poor which greatly impacts
translation quality. However some of the recent
developments do show that careful utilization of
multilingualism and/or monolingual corpora, trans-
lation quality can be boosted (Johnson et al., 2017;
Sennrich et al., 2015).The purpose of WAT 2021
MultiIndicMT shared task is to validate the utility
of MT techniques that focus on multilingualism
and/or monolingual data in the context of Indian
languages.

Our ANVITA-1.0 is realized as a Multilingual
Neural Machine Translation(MNMT) system based
on Transformer architecture (Vaswani et al., 2017).
As transformer is sensitive to training noise (Liu
et al., 2018), we have rigorously cleaned up the
training corpus by applying set of heuristics. For
better transfer of translation knowledge among the
language pairs, ANVITA-1.0 used multilingual
NMT approach and trained two models, one for
the English→Indic and one for the Indic→English
with shared encoder-decoder similar to MNMT
models described by Johnson et.al (Johnson et al.,
2017). Additionally, we employed back-translation
(Sennrich et al., 2015) and transliteration tech-
niques between related languages (Li et al., 2019)
for selective data augmentation followed by model
ensemble for better generalization. As Indian lan-
guages are morphologically rich, instead of word
level tokenization, ANVITA-1.0 employed sub-
word level tokenization, sentence piece (Kudo and
Richardson, 2018) before putting up for training.
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Details are mentioned in the subsequent sections.
ANVITA-1.0 achieved highest AM-FM score

for English→Bengali, 2nd for English→Tamil and
3rd for English→Hindi, Bengali→English direc-
tions on the official WAT 2021 MultiIndicMT test
set. Overall, as compared to BLEU, RIBES and
Adequacy-Fluency based scoring relatively placed
us better in the ranking chart.

2 Related Work

A comprehensive survey covering challenges, de-
sign choices and other aspects related to Multilin-
gual Neural Machine Translation(MNMT) was pre-
sented by Dabre et.al (Dabre et al., 2020). Siripra-
gada et al. (2020) published a low resource Indian
language dataset and trained a Multilingual NMT
model on it. Aharoni et al. (2019) presented a
massive multilingual neural translation model with
102 languages. Li et al. (2019) has done rigor-
ous filtering of parallel corpora. Liu et al. (2018)
and Pinnis (2018) have proposed some heuristics
for rigorous filtering of noise from parallel cor-
pora. Li et al. (2019) have proposed combining
parallel corpora by transliteration of related lan-
guages(grammar similarity) which improves per-
formance. Back translation (Sennrich et al., 2015)
is considered by many as one of the effective mech-
anism for enhancing MT performance.

3 Data sets

ANVITA-1.0 was primarily trained using Mul-
tiIndicMT WAT 20211 corpora. Additionally
AI4Bharat2 monolingual corpora was used for gen-
erating synthetic parallel data by back translation.
No other additional corpora or linguistic resources
were used in ANVITA-1.0.

MultiIndicMT WAT 2021 corpora (Nakazawa
et al., 2021) as shared by the organizer com-
prises of approximately 10 million parallel sen-
tences covering 10 language pairs (Indic, English)
and sourced from the following multiple datasets.
CVIT-PIB, PMIndia, IITB 3.0, JW, NLPC, UFAL
EnTam, Uka Tarsadia, Wikititles, ALT, Open-
Subtitles, Bible-uedin, MTEnglish2Odia, OdiaEn-
corp2.0, TED, WikiMatrix. MultiIndicMT WAT
2021 training corpora is summarised in Table-1.
Hindi↔English has the highest number of sentence
pair and Oriya↔English lowest.

1http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/
2https://indicnlp.ai4bharat.org/corpora/

Sl. No. Indic↔En # Sentences %Share
1 bn-en 1302940 13.52%
2 gu-en 518179 5.37%
3 hi-en 3070239 31.86%
4 kn-en 396882 4.11%
5 ml-en 1142115 11.85%
6 mr-en 621725 6.45%
7 or-en 252160 2.62%
8 pa-en 518520 5.38%
9 ta-en 1354374 14.05%

10 te-en 457523 4.75%

Table 1: Statistics of MultiIndicMT WAT 2021 training
corpora (before filtering)

4 System Overview

This section describes ANVITA-1.0 MT system
and its subsystems with reasonable details.

4.1 Data Preprocessing
This section presents set of preprocessing steps
employed by ANVITA-1.0.

4.1.1 Data Filtering
Like most automatically curated corpora and cor-
pora compiled from such curated corpus, Multi-
IndicMT WAT 2021 corpora is also not free from
noises. A quick glance through the corpora pro-
vided with a rough assessment of noises present
and aided in employing set of heuristics to filter
out many of those noisy sentence pairs. This is
all the more critical as transformer based models
are sensitive to noises (Liu et al., 2018). Rigorous
distillation of training corpora was carried by em-
ploying set of heuristics similar to as described by
Bei Li (Li et al., 2019). The heuristics applied for
filtering out noises from MultiIndicMT WAT 2021
corpora are as given below.

• Filter out sentence pair, in which either source
or target sentence is empty.

• Filter out sentence pair, in which either source
or target sentence length greater than 800 char-
acters.

• Filter out sentence pair in which length of
source and target sentence ratio is greater than
2.5.

• Filter out sentence pair in which length of
source and target sentence ratio is less than
0.4.
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Indic↔En # Sentences %Share %Filtered
bn-en 1198915 13.73% 7.98%
gu-en 491036 5.62% 5.23%
hi-en 2885632 33.05% 6.01%
kn-en 336967 3.85% 15.09%
ml-en 967909 11.08% 15.25%
mr-en 587576 6.72% 5.49%
or-en 245077 2.80% 2.81%
pa-en 493337 5.65% 4.85%
ta-en 1123269 12.85% 17.06%
te-en 401318 4.60% 12.28%

Table 2: Statistics of MultiIndicMT WAT 2021 training
corpora after filtering noisy sentence pairs

• Filter out sentence pair , if source or target
sentence contains word having length greater
than 10.

• Filter out sentence pair, if source sentence has
at least 10 characters of other language.

• Filter out sentence pair, if source sentence
has at least 60% characters of other language
(used utf-8 ranges for other language character
identification).

Approximately 15% of the total sentence pairs,
amounting to 1.5 million sentence pairs were
tagged as noisy after applying the above heuristics
and were filtered out from the MultiIndicMT WAT
2021 training corpora. Detailed corpus statistics
after filtering operation is given in Table-2. Final
training data size after filtering turned out to be
8731036 sentence pairs. Data filtering improved
both translation performance and convergence rate.

4.1.2 Tokenization at Sub-word Level
To effectively make use of the morphological
richness property of Indian languages, sub-word
level tokenization is employed instead of word or
character level tokenization.

English→Indic: Sentence piece tokenizer
(Kudo and Richardson, 2018) was used with 80K
joint vocabulary of 10 target Indic languages, 16K
vocabulary of English and character coverage of
1.0.

Indic→English: Sentence piece tokenizer
(Kudo and Richardson, 2018) was used with 48K
joint vocabulary of 10 Indic source languages, 16K
vocabulary of English and character coverage of
1.0.

Indic↔English Special Token
bn-en @%+@
gu-en {%-}
hi-en — —̂
kn-en &*—&
ml-en ?:/?
mr-en # +#
or-en =&-=
pa-en ˜&[˜
ta-en :*&:
te-en *]̂*

Table 3: Special tokens used for tagging language pairs
at the source side

4.1.3 Tagging of Source Sentences
To guide the input-output sequence mapping task
better under multilingual setting, all sentences at
the source side were tagged with language pair in-
formation using special tokens and placed at the
beginning of each source sentence (Johnson et al.,
2017). Special language tokens consisted of 4 char-
acters and all having special symbols. Special sym-
bols were used to avoid overlapping of language
tokens with data tokens and token lengths were
decided based on minimum number of characters
required to tag 10 language pairs distinctly. Lan-
guage tokens were used only at the source side dur-
ing training of both the models i.e Indic→English
and English→Indic models. Table-3 lists out the
language tokens used.

4.2 Data Augmentation

Data augmentation has become a de-facto step for
low resource MT. Following strategies were ap-
plied for augmenting data in ANVITA-1.0.

4.2.1 Related Language Transliteration
As most of the languages fall under low resource
category, we employed related-language transliter-
ation strategy for the top three low resource lan-
guages. Relatedness is decided based on similari-
ties between languages (Li et al., 2019). Top three
low resource languages as found in MultiIndicMT
WAT 2021 corpora are Oriya(or), Kannada(kn),
and Gujarati(gu). To the best of our knowledge, re-
lated languages of these three low resource Indian
languages are listed in Table-4. Relatively high re-
source related language training data were translit-
erated into low resource language using translit-
erated method as described by Ahmad Bhat et
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Low Resource Language Related Language
Oriya Bengali

Kannada Telugu
Gujarati Hindi

Table 4: Related languages of top three low resource
languages

Language Pair # Sentence (%Share)
Indic↔English Indic→En En→Indic

bn-en 1198915 (7.67%) 1198915 (9.07%)
gu-en 3976668 (25.46%) 3376668 (25.54%)
hi-en 2885632 (18.47%) 2885632 (21.83%)
kn-en 1338285 (8.56%) 738285 (5.58%)
ml-en 967909 (6.19%) 967909 (7.32%)
mr-en 587576 (3.76%) 587576 (4.44%)
or-en 2043992 (13.08%) 1443992 (10.92%)
pa-en 1093337 (7.00%) 493337 (3.73%)
ta-en 1123269 (7.19%) 1123269 (8.49%)
te-en 401318 (2.56%) 401318 (3.03%)

Table 5: Statistics of final training data after applying
transliteration and back translation

al. (Bhat et al., 2014) and added to the low re-
source language training data. For instance, Ben-
gali sentences were transliterated into Oriya and
augmented with Oriya training data.

As Marathi and Hindi languages both share the
same script, so in order to avoid script overlap-
ping, we mapped characters of Marathi sentences
to Unicode Block 0D80- 0DFF. This seems to have
reduced sharing of translation knowledge and im-
pacted results. However this needs to be verified
further through experimentation.

4.2.2 Back Translation
Back translation (Sennrich et al., 2015) is consid-
ered as one of the effective mechanism for enhanc-
ing MT performance, specially involving low re-
source languages. As most of languages in the task
involved are low resource, back translation was
applied for the top four low resource languages
observed in the MultiIndicMT WAT 2021 corpora
namely Oriya, Kannada, Punjabi, and Gujarati. We
extracted monolingual corpora of 6 lakh sentences
for each of the four low resource language pair
from the AI4Bharat (Kakwani et al., 2020) corpora
for the purpose. Statistics of the final training cor-
pora after data augmentation is shown in Table-5.

4.3 Model Training
ANVITA-1.0 was trained based on Transformer
architecture and for better sharing of knowl-
edge among Indian languages, specially for re-

source poor languages, two multilingual mod-
els were trained in (a) One-to-Many fashion for
English→Indic and (b) Many-to-One fashion for
Indic→English with shared encoder-decoder, simi-
lar to as described by Johnson et.al (Johnson et al.,
2017).

Ensembling of multiple models, which are di-
verse in nature, have shown improvement of trans-
lation performance and better generalization (Li
et al., 2019). Due to time and resource limitations,
we could not work out on diverse models. How-
ever, we ensemble last 5 checkpoints i.e (560000-
600000 iterations).

5 Experimental Details

ANVITA-1.0 used OpenNMT-py 2.0 (Klein et al.,
2017) toolkit for training. Training configura-
tion are 600000 steps for Indic→English, 440000
steps for English→Indic, with batch size of 4096,
dropout 0.1, batch type tokens, adam optimizer,
warmup steps 8000, word embedding size 512, en-
coder layers 6, decoder layers 6, heads 8,feed for-
ward dimension of 2048, rnn size 512 and noam
as learning rate decay method. ANVITA-1.0 was
trained on NVIDIA DGX machine having 4 V100
GPU cards, each having 32GB of GPU memory.
Training of Indic→English took approximately 96
hours and English→Indic took approximately 72
hours.

6 Evaluation and Results

Translation quality of ANVITA-1.0 was assessed
by the organizer (Nakazawa et al., 2021) on the
official WAT 2021 MultiIndicMT test set using
BLEU, RIBES(Isozaki et al., 2010) and Adequacy-
Frequency(Banchs et al., 2015) based metrics. The
official evaluation results as declared by the orga-
nizer for all the 20 translation directions are shown
in Table-6 and Table-7.

Performance of Indic→English 10 translation di-
rections ranges from 27.29 to 40.05 BLEU points,
where Marathi→English happens to be the low-
est and Hindi→English highest scorers respec-
tively. For English→Indic 10 translation direc-
tions performance ranges from 35.85 to 6.17 BLEU
points, in which English→Malayalam scored low-
est and English→Hindi highest. We believe that,
because of the relatively high resource nature of
Hindi↔English language pair, this particular pair
outperformed all other pairs.

247



Indic→English BLEU RIBES AM-FM
bn→en 29.96 0.798326 0.786717
gu→en 36.77 0.829389 0.819546
hi→en 40.05 0.850322 0.832119
kn→en 31.16 0.803525 0.799216
ml→en 28.07 0.792884 0.794932
mr→en 27.29 0.785579 0.780231
or→en 29.96 0.798326 0.795586
pa→en 38.42 0.840360 0.818332
ta→en 28.04 0.793839 0.790184
te→en 29.26 0.790319 0.786396

Table 6: Performance of ANVITA-1.0 for
Indic→English directions on the official WAT
2021 MultiIndicMT test set.

Figure 1: Performance of ANVITA-1.0 wrt size
of training data, when evaluated using BLEU for
Indic→English and English→Indic directions on the
official WAT 2021 MultiIndicMT test set.

Figure 2: Performance of ANVITA-1.0 wrt size of
training data, when evaluated using AM-FM scores for
Indic→English and English→Indic directions on the
official WAT 2021 MultiIndicMT test set.

Figure-1 and Figure-2 show how performance
of ANVITA-1.0 changes as a parameter of train-
ing data size. This evaluated was carried out on
the official WAT 2021 MultiIndicMT test set using
BLEU and AM-FM metrics. Barring few excep-

English→Indic BLEU RIBES AM-FM
en→bn 13.02 0.715490 0.779592
en→gu 23.21 0.809389 0.816739
en→hi 35.85 0.846656 0.822626
en→kn 14.58 0.726259 0.805963
en→ml 6.17 0.622598 0.793308
en→mr 14.90 0.740079 0.791850
en→or 17.71 0.743984 0.763064
en→pa 30.56 0.830405 0.810106
en→ta 11.98 0.707054 0.801632
en→te 11.17 0.702337 0.783647

Table 7: Performance of ANVITA-1.0 for
English→Indic directions on the official WAT
2021 MultiIndicMT test set

tions, training data size seems to be positively corre-
lated with the translation performance. The excep-
tions are possibly due to implicit transfer of trans-
lation knowledge among the related languages.

7 Conclusion and Future Directions

The overall translation performance achieved by
ANVITA-1.0 for the Indic→English directions are
encouraging. Data augmentation largely aided the
relatively lower resource languages well. Transfer
of translation knowledge through shared encoder-
decoder seems to be aided the related language
better and data filtering improved the overall perfor-
mance. RIBES and AM-FM based scoring placed
us relatively better than BLEU.

Translation performance figures for the
Indic→English directions achieved by ANVITA-
1.0 are relatively better than that of English→Indic
directions for all language pairs, when evaluated
using BLEU and RIBES, though the same trend
is not observed consistently when AM-FM based
evaluation was carried out. Potential reasons could
be One to Many mapping is relatively harder
to learn as compared to Many to One mapping
with shared decoder. One of the future direction
would be to closely investigate whether having
shared encoder but separate decoders helps for
One-to-Many models in the Indic context. Though
we have applied a large number of data filtering
heuristics, we noticed that training data was still
not free from noises. So another potential future
direction would be to explore more effective
data filtering techniques and its impacts on MT
performance. Exploration of additional data
augmentation strategies and effective transfer of
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translation knowledge, their shares in improving
MT performance would be a critical direction
when it comes to handling low resource languages.
Having more diverse parallel corpora for the Indian
languages will help Indic MT tasks and automated
methods for compilation of large and diverse Indic
corpus is a much needed one.
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