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Abstract

In this paper we describe our submission to the
multilingual Indic language translation task
“MultiIndicMT” under the team name “NICT-
5”. This task involves translation from 10 In-
dic languages into English and vice-versa. The
objective of the task was to explore the util-
ity of multilingual approaches using a variety
of in-domain and out-of-domain parallel and
monolingual corpora. Given the recent success
of multilingual NMT pre-training we decided
to explore pre-training an MBART model on a
large monolingual corpus collection covering
all languages in this task followed by multilin-
gual fine-tuning on small in-domain corpora.
Firstly, we observed that a small amount of pre-
training followed by fine-tuning on small bilin-
gual corpora can yield large gains over when
pre-training is not used. Furthermore, multilin-
gual fine-tuning leads to further gains in trans-
lation quality which significantly outperforms
a very strong multilingual baseline that does
not rely on any pre-training.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014) is known to give state-of-the-art trans-
lations for a variety of language pairs. NMT is
known to perform poorly for language pairs for
which parallel corpora are scarce. This happens due
to lack of translation knowledge as well as due to
overfitting which is inevitable in a low-resource set-
ting. Fortunately, transfer learning via cross-lingual
transfer (Zoph et al., 2016; Dabre et al., 2019), mul-
tilingualism (Firat et al., 2016; Dabre et al., 2020),
back-translation (Sennrich et al., 2016) or mono-
lingual pre-training (Liu et al., 2020; Lewis et al.,
2020; Mao et al., 2020) can significantly improve
translation quality in a low-resource situation.

Cross-lingual transfer learning involves pre-
training a model using a parallel corpus for a
resource-rich language pair XX − Y Y and then

fine-tuning on a parallel corpus for a resource-poor
language pair AA − BB. Naturally the improve-
ments in translation quality will be impacted by if
XX = AA or Y Y = BB1 and it is often better to
have a shared target language. Cross-lingual trans-
fer despite its simplicity and effectiveness relies
on shared source or target languages for effective
transfer and thus depending on methods that use
monolingual corpora are preferable. This also ap-
plies to vanilla multilingual training which does
not rely on monolingual corpora. Another reason
for focusing on utilizing monolingual corpora is
that they are extremely abundant when compared
to parallel corpora and they contain a large amount
of language modeling information. In this regard,
back-translation and multilingual pre-training are
two of the most reliable methods.

While back-translation is easy to use, it involves
the translation of millions of monolingual sen-
tences and quite often it is necessary to perform
multiple iterations of the back-translation process
to yield the best results (Hoang et al., 2018) which
means that it is quite resource intensive. This leaves
us with multilingual pre-training using methods
such as BART/MBART (Liu et al., 2020; Lewis
et al., 2020) which we use for developing our trans-
lation system. The advantage of BART/MBART
is that we need to pre-train these models once and
then fine-tune not only for machine translation but
also for any natural language generation task such
as summarization (Shi et al., 2021). These mod-
els can be upgraded to include additional language
pairs in the future by simply resuming pre-training
(Tang et al., 2020).

In this paper, we describe our simple approach in-
volving MBART pre-training and fine-tuning. First,
we use the official monolingual corpora to train
an MBART model spanning all 11 languages in

1If XX − Y Y and AA−BB are the same pairs then it
is known as domain adaptation.
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the shared task. Following this we fine-tune the
MBART model using the officially provided in-
domain corpora in two different ways: bilingual
fine-tuning and multilingual fine-tuning. Addition-
ally we also train multilingual models without any
pre-training. The multilingual models are one-to-
many (English to Indic) and many-to-one (Indic to
English) in nature. The bilingual fine-tuning and
non pre-trained multilingual model serve as strong
baselines which significantly outperform the orga-
nizers weak bilingual baselines. Our multilingual
fine-tuning models exhibit the best translation qual-
ity out of all our models which shows the power
of effectively combining monolingual corpora with
multilingualism.

We refer readers to the workshop overview paper
(Nakazawa et al., 2021) for a better understanding
of the task and the comparison of our results with
those of other participants.

2 Related Work

The techniques used in this paper revolve
around multilingualism, sequence-to-sequence pre-
training and transfer learning.

Firat et al. (2016) proposed multilingual neural
translation using multiple encoders and decoders
which was then simplified by Johnson et al. (2017)
to require a single encoder and decoder to be shared
among multiple language pairs. Due to the simplic-
ity of the latter approach, most modern multilin-
gual models are based on it and in this paper we
also use the same approach. Multilingualism in-
volves implicit transfer learning but a more explicit
way to do the same is to use fine-tuning (Zoph
et al., 2016). However all these aforementioned
approaches rely on bilingual data which is not al-
ways readily available. This can be remedied by
the use of monolingual corpora for backtranslation
(Sennrich et al., 2016) or for pre-training (Lewis
et al., 2020; Liu et al., 2020; Mao et al., 2020).
As backtranslation is resource intensive, given that
it involves translation of a large amount of mono-
lingual corpora, pre-training is more attractive as
a pre-trained model can be used for a variety of
natural language generation tasks. In this paper
we combine sequence-to-sequence pre-training fol-
lowed by multilingual fine-tuning. For an overview
of multilingual NMT we refer readers to a survey
paper on multilingualism and low-resource NMT
in general (Dabre et al., 2020).

3 Our Approaches

For our submissions we focused on combining mul-
tilingual denoising pre-training (MBART) and mul-
tilingual fine tuning.

3.1 Multilingual NMT Training

We follow the multilingual NMT training approach
proposed by Johnson et al. (2017). Consider a
multilingual parallel corpora collection spanning
corpora for N language pairs Li

src − Li
tgt for

i ∈ [1, N ]. The sizes of the parallel corpora are typ-
ically different, often radically different, in which
case it is important to balance corpora sizes to pre-
vent the model from focusing too much on some
language pairs. Johnson et al. (2017) showed that
training by oversampling smaller corpora to match
the size of the largest corpus is the best approach.
However, since then newer corpora balancing ap-
proaches have been proposed and the most recent
effective method is known as the temperature based
sampling approach (Aharoni et al., 2019). Suppose
that the size of the ith corpus is si which means the
probability of sampling a sentence pair from each
corpus is pi = si

S where S =
∑

i si. Using this de-
fault sampling probability is biased towards larger
corpora so first the probability values are tempered
using a temperature T . The resultant probabilities
pti are obtained as follows:

pti =
p

1
T
i∑
j p

1
T
j

(1)

When T = 1, pti = pi and when T = ∞,
pti =

1
N . Aharoni et al. (2019) showed that a value

of T = 5 works well in practice which is what
we use in our experiments. During training, sen-
tence pairs are sampled from each corpus following
which the source sentence is prepended with a to-
ken < 2Li

tgt > which indicates that the source
sentence should be translated into Li

tgt. Thereafter,
the pre-processed source sentence and target sen-
tence are fed to the NMT model which learns how
to translate between multiple language pairs.

3.2 MBART Pre-training and Fine-Tuning

Liu et al. (2020) extended the BART model (Lewis
et al., 2020) by denoising pre-training the BART
model on 25 languages instead of 2 which leads
to an MBART model. The main advantage of an
MBART model is that it can be fine-tuned with cor-
pora for a variety of language pairs which naturally
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,

Language #Lines
as 1.39M
bn 39.9M
en 54.3M
gu 41.1M
hi 63.1M
kn 53.3M
ml 50.2M
mr 34.0M
or 6.94M
pa 29.2M
ta 31.5M
te 47.9M

Table 1: Monolingual corpora statistics.

includes many zero-shot pairs. The way to train
an MBART model is by “corrupting” an input sen-
tence, feeding it to the encoder and then training the
model to predict the original sentence. Corruption
can be done in a variety of ways and in this paper
we use ‘text infilling’ approach which finds ran-
dom spans of the source tokens and replaces them
with a token such as < MASK > till a certain
percentage of the sentence is masked. The length
of the span is sampled from a Poisson distribution
with a mean of λ. Liu et al. (2020) determined an
optimal value of λ = 3.5 which we also use. The
denoising objective helps the MBART model learn
about using context to translate and also helps it
acquire language modeling information.

After an MBART model is trained it is fine-tuned
on a bilingual or multilingual parallel corpus which
is then used for translation. The language modeling
priors help account for missing translation knowl-
edge in low-resource settings which leads to large
improvements in translation quality over baselines
which only use parallel corpora.

4 Experimental Setup

Our goal was to study how far the translation qual-
ity can be pushed via MBART pre-training and
multilingual fine-tuning. To do so, we describe the
datasets, implementation details, evaluation met-
rics and the models trained.

4.1 Datasets and Preprocessing

The languages involved in the task are: Bengali,
Gujarati, Hindi, Kannada, Malayalam, Marathi,
Oriya, Punjabi, Tamil, Telugu and English. We

Language Pair #Lines
bn-en 23,306
gu-en 41,578
hi-en 50,349
kn-en 28,901
ml-en 26,916
mr-en 28,974
or-en 31,966
pa-en 28,294
ta-en 32,638
te-en 33,380

Table 2: Bilingual corpora statistics for the PMI dataset
only.

used the official parallel corpora2 provided by the
organizers. The 11-way evaluation development
and test sets come from the PMI dataset3. Although
the organizers provided corpora from other sources
as well, we decided to restrict ourselves to the PMI
part of the parallel corpora to avoid the need for
data selection. Instead we relied on pre-training
to compensate for using smaller amount of par-
allel corpora. For MBART pre-training we used
the AI4Bharat’s monolingual corpora known as In-
dicCorp 4 (Kunchukuttan et al., 2020). Note that
MBART pre-training supposes the monolingual
data is available as documents however since we
only use the masking denoising approach, sentence
level corpora5 are sufficient. The IndicCorp covers
an additional language Assamese which is not in
this shared task. Nevertheless, we use the monolin-
gual corpus for this language as well because it can
potentially improve translation involving Bengali
given their similarity. However, the small size of
Assamese data (1.39M lines) relative to the Bengali
data (39.9M lines) should not significantly affect
the final outcome for translation involving Benglai6.
The monolingual corpora stats are given in Table 1
and the bilingual corpora stats are given in Table 2.

Regarding pre-processing, we do not perform
anything specific and instead let our implementa-
tion handle everything via its internal mechanisms.

2https://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/
index.html

3http://data.statmt.org/pmindia
4https://indicnlp.ai4bharat.org/corpora
5The IndicCorp is supposed to be document level but the

downloadable version is sentence level.
6However, this may significantly improve translation in-

volving Assamese thanks to the Bengali data.

https://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
https://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
http://data.statmt.org/pmindia
https://indicnlp.ai4bharat.org/corpora
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4.2 Implementation Details

We implement the methods mentioned in Section 3
in our in-house toolkit which we make publicly
available7. This toolkit is based on the Hugging-
Face transformers library (Wolf et al., 2020) v4.3.2.
Note that the MBART implementation in the library
shares the encoder embedding, decoder embedding
and decoder softmax projection layers. We imple-
ment denoising, temperature based data sampling
and multilingual training ourselves. We also use
the HuggingFace transformer tokenizer library to
train tokenizers. These tokenizers are wrappers
around Byte Pair Encoding (BPE) (Gage, 1994)
or SentencePiece (SPM) (Kudo and Richardson,
2018) models and we choose8 the latter as opposed
to the former which is used by the original MBART
implementation.

4.3 Training and Evaluation

We first trained a tokenizer with a joint vocabulary
size of 64,000 sub-words which is learned on the
IndicCorp monolingual data. We consider this vo-
cabulary size to be sufficient for all languages. For
pre-training, we use hyperparameters correspond-
ing to the “transformer big” (Vaswani et al., 2017)
with a few exceptions such as dropout of 0.1, posi-
tional embeddings instead of positional encodings
and a maximum learning rate of 0.001. When per-
forming batching we truncate all sequences longer
than 256 subwords. Our MBART model is pre-
trained on 48 NVIDIA V-100 GPUs using the dis-
tributed data parallel mechanism in PyTorch. Due
to lack of time we only trained for 150,000 batches
which corresponded to roughly 1 epoch over the en-
tire monolingual data. After pre-training we train
unidirectional models using the bilingual data on a
single GPU. We train the one-to-many (English to
Indic) and many-to-one (Indic to English) models
on the multilingual data on 8 GPUs. For both cases
we use a dropout of 0.3 and train till convergence on
the development BLEU score and choose the model
with the best development set BLEU score for de-
coding the test set. In our initial experiments we
did additional exploration to choose the particular
checkpoint which yields best average development
BLEU score over all language pairs for decoding

7https://github.com/prajdabre/yanmtt
8We choose SPM because SPM can work with unseg-

mented, untokenized raw text for any language. Inside the
transformers library, the AlbertTokenizer acts as a wrapper for
the SPM model. Our implementation also allows the usage of
the BPE model but we do not use it in this paper.

the test set. We found that the results are inferior
compared to when the best model is chosen lan-
guage pairwise. We use beam search for decoding
with a beam size of 4 and a length penalty of 0.89.
For unidirectional models this is strightforward but
for multilingual models train till convergence on
the global development set BLEU score, an average
of BLEU scores for each language pair. Different
from most previous works, instead of decoding a
single final model, we choose a particular model
for a language pair with the highest development
set BLEU score for that pair. Therefore, we treat
multilingualism as a way get a (potentially) dif-
ferent model per language pair leading to the best
BLEU scores for that pair and not as a way to get
a single model that gives the best performance for
each language pair.

For evaluation, as we have mentioned before, we
use BLEU (Papineni et al., 2002) as the primary
evaluation metric. WAT also uses metrics such
as RIBES (Isozaki et al., 2010), AM-FM (Zhang
et al., 2021) and human evaluation (Nakazawa et al.,
2019, 2020, 2021). All these metrics focus on
different aspects of translations and may lead to
different rankings for submissions, however this
multi-metric evaluation helps us understand that
there may not be one perfect model. To avoid
confusing the reader with a clutter of scores, we
only show BLEU scores and we refer the reader to
the evaluation page where all scores and rankings10

can be seen11.

4.4 Models Trained

We trained the following models:

• A pre-trained MBART model.

• Unidirectional models for each language pair
trained from scratch or via fine-tuning the
MBART model.

• One-to-many (English to Indic) and many-to-
one (Indic to English) multilingual models
trained from scratch or via fine-tuning the
MBART model.

9We have not tuned these decoding hyperparameters and
our BLEU scores may improve.

10As can be seen, the rankings of translation can change
depending on the metric which indicates that multi-metric
ranking is important

11http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.
html

https://github.com/prajdabre/yanmtt
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index.html
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Model
Source Language

Bn Gu Hi Kn Ml Mr Or Pa Ta Te
Unidirectional 11.27 26.21 28.21 20.33 13.64 15.10 16.35 23.66 16.07 14.70
Many-to-one 20.06 27.72 30.86 24.66 21.79 22.66 23.04 27.61 21.90 23.39

MBART+
Unidirectional

21.37 33.65 35.80 29.29 26.55 25.45 25.81 34.34 24.72 27.76

MBART+
Many-to-one

23.89 33.53 36.20 30.87 28.23 27.88 27.93 35.81 26.90 28.77

Official Best Submission 31.87 43.98 46.93 40.34 38.38 36.64 37.06 46.39 36.13 39.80

Model
Target Language

Bn Gu Hi Kn Ml Mr Or Pa Ta Te
Unidirectional 5.58 16.38 23.31 10.11 3.34 8.82 9.08 21.77 6.38 2.80
One-to-many 11.56 23.49 29.12 17.53 6.22 15.01 16.43 28.37 10.82 3.81

MBART+
Unidirectional

10.59 23.04 29.59 16.13 5.98 14.69 15.01 26.94 10.33 4.59

MBART+
One-to-many

12.84 24.26 30.18 18.22 6.51 16.38 16.69 29.15 11.42 4.20

Official Best Submission 15.97 27.80 38.65 21.30 15.49 20.42 20.15 33.43 14.43 16.85

Table 3: Evaluation results of all language pairs. All scores are taken from the leaderboard. Our best results are in
bold. Differences in BLEU smaller than 0.5 are not significant in most cases.

5 Results and Observations

Table 3 contains the results of the unidirectional12,
and multilingual models. We also show the the best
submissions for reference.

5.1 Without Fine-tuning

It is clear from the results that multilingual mod-
els are vastly superior than unidirectional models
which shows that multilingualism is very helpful in
a low-resource setting. Secondly, comparing with
corpora sizes (see Table 2), it can be seen that the
gains in BLEU are (roughly) inversely proportional
to the size of the parallel corpora.

5.2 Non Fine-Tuned Multilingual Models vs
Fine-Tuned Unidirectional Models

In the case of Indic to English translation,
MBART+unidirectional models are significantly
better than many-to-one models. We can attribute
this phenomenon to the fact that the PMI corpus
has a limited number of English sentences and
even though combining all corpora might seem
to increase the number of English sentences, most
of them are redundant which causes some form
of overfitting. This is remedied by the MBART
model with incorporates additional language mod-
eling information through the monolingual corpora.

12The unidirectional scores without fine-tuning are actu-
ally organizer baselines but we were the ones who actually
developed them so we use the scores as is.

On the other hand, for English to Indic transla-
tion, the one-to-many models are often compara-
ble if not better than the fine-tuned unidirectional
models. Fine-tuning significantly outperforms non
fine-tuned unidirectional models which means pre-
training is useful. However, given that multilingual
training is better, this indicates that it may not be
necessary to perform pre-training for one-to-many
translation. Remember that the English side of the
text contains a large number of redundant sentences
and this may be one of the reasons for this kind of
behavior. We think that this deserves some future
investigation.

5.3 Multilingual Fine-tuning

Ultimately, multilingual fine-tuning of an MBART
model leads to the best translation quality for all
language pairs, except two (Gujarati to English and
English to Telugu). This approach combines the
best of both worlds and the outcome is not surpris-
ing. Our MBART models consisted of only 6 lay-
ers and was trained for only 1 epoch and this may
not be enough to incorporate knowledge from the
full monolingual corpus. We also did not perform
any hyperparameter tuning with parameters such as
dropout and learning rate13 We expect that a larger
model with more careful hyperparameter tuning
should lead to even better results. However, we are

13We used a high learning rate which may not have been a
good idea in retrospect.
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confident that a multilingual fine-tuned model will
reign supreme.

5.4 Comparison With Other Submissions

For Indic to English translation the several submis-
sions outperformed ours and we think that this is
because the other participants have indicated that
they have performed data selection, backtranslation
and script mapping. In our case we only performed
pre-training and fine-tuning with PMI data. Al-
though MBART pre-training is helpful, it can never
compare with the power of a large parallel corpus
obtained via careful data selection and script manip-
ulation. While for PMI, the largest parallel corpus,
Hindi-English, contains roughly 50,000 lines, the
full Hindi-English corpus is larger than 2M lines
and most pairs have more than 500,000 lines. In
the future we will try training with larger parallel
corpora and script mapping to see what kind of
results we get.

On the other hand for English to Indic transla-
tion, the gap between the the best submissions and
ours is much smaller than for the reverse direction.
This also shows that, at least for this task, multilin-
gualism benefits translation into English a lot more
than it benefits translation from English.

6 Conclusion

In this paper we have described our NMT systems
and results for the MultiIndicMT task in WAT 2021.
We worked on MBART pre-training and multilin-
gual fine-tuning which we found to significantly
outperform unidirectional models with and with-
out pre-training and multilingual models without
pre-training. We did not train our MBART mod-
els for more than 1 epoch and used only the PMI
data for fine-tuning instead of the whole parallel
corpus. We did not try any additional methods such
as back-translation either. Despite this, our results
are competitive and despite the simplicity of our
methods our results do not lag far behind those of
the best systems that use advanced methods such as
data selection, domain adaptation, back-translation
etc. This also means that we have a lot of room for
improvement in the future.
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