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Abstract

We introduce our TMEKU1 system submitted
to the English→Japanese Multimodal Trans-
lation Task for WAT 2021. We participated
in the Flickr30kEnt-JP task and Ambiguous
MSCOCO Multimodal task under the con-
strained condition using only the officially pro-
vided datasets. Our proposed system employs
soft alignment of word-region for multimodal
neural machine translation (MNMT). The ex-
perimental results evaluated on the BLEU
metric provided by the WAT 2021 evalua-
tion site show that the TMEKU system has
achieved the best performance among all the
participated systems. Further analysis of the
case study demonstrates that leveraging word-
region alignment between the textual and vi-
sual modalities is the key to performance en-
hancement in our TMEKU system, which
leads to better visual information use.

1 Introduction

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) has achieved
state-of-the-art translation performance. However,
there remain numerous situations where textual
context alone is insufficient for correct translation,
such as in the presence of ambiguous words and
grammatical gender. Therefore, researchers in this
field have established multimodal neural machine
translation (MNMT) tasks (Specia et al., 2016; El-
liott et al., 2017; Barrault et al., 2018), which trans-
lates sentences paired with images into a target
language.

Due to the lack of multimodal datasets, mul-
timodal tasks on the English→Japanese (En→Ja)
language pair have not been paid attention to. Since
the year 2020, as the multimodal dataset on the

1TMEKU is the abbreviation of the combination of the
Tokyo Metropolitan University, the Ehime University and the
Kyoto University.

En→Ja language pair has been made publicly avail-
able, the multimodal machine translation (MMT)
tasks on the En→Ja were held at the WAT 2020
(Nakazawa et al., 2020) for the first time. Some
studies (Tamura et al., 2020) have started to focus
on incorporating multimodal contents, particularly
images, to improve the translation performance on
the En→Ja task.

In this study, we apply our system (Zhao et al.,
2021) for the MMT task on the En→Ja language
pair, which is called TMEKU system. This system
is designed to translate a source word into a target
word, focusing on a relevant image region. To
guide the model to translate certain words based
on certain image regions, explicit alignment over
source words and image regions is needed. We
propose to generate soft alignment of word-region
based on cosine similarity between source words
and visual concepts. While encoding, textual and
visual modalities are represented interactively by
leveraging the word-region alignment, which is
associating image regions with respective source
words.

The contributions of this study are as follows:

1. Our TMEKU system outperforms baselines
and achieves the first place evaluated by
BLEU metric among all the submitted sys-
tems in the multimodal translation task of
WAT 20212 (Nakazawa et al., 2021) on the
En→Ja.

2. Further analysis demonstrates that our
TMEKU system utilizes visual information
effectively by relating the textual to visual in-
formation.

2https://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2021/

https://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2021/
https://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2021/
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Figure 1: The soft alignment of word-region.

2 TMEKU System

2.1 Word-Region Alignment
As shown in Figure 1, we propose to create an
alignment between semantically relevant source
words and image regions.

For the regions, we follow Anderson et al. (2018)
in detecting object-level image regions from each
image, which are denoted by bounding boxes on
the figure. In particular, each bounding box is de-
tected along with a visual concept consisting of an
attribute class followed by an object class instead
of only the object class. We take these visual con-
cepts to represent the image regions. We set each
image labeled with 36 visual concepts of image
regions, which are space-separated phrases. For
the words, we lowercase and tokenize the source
English sentences via the Moses toolkit.3

The soft alignment is a similarity matrix filled
with the cosine similarity between source words
and visual concepts. To avoid unknown words,
we convert the words and concepts into subword
units using the byte pair encoding (BPE) model
(Sennrich et al., 2016). Subsequently, we utilize
fastText (Bojanowski et al., 2017) to learn subword
embeddings. We use a pre-trained model4 contain-
ing two million word vectors trained with subword
information on Common Crawl (600B tokens). The
source subword embeddings can be generated di-
rectly, whereas the generation of visual concept
embeddings should take an average of the embed-
dings of all constituent subwords because they are
phrases. As shown in Figure 1, source subwords
are represented by W = {w1,w2,w3, · · · ,wn},
and the visual concepts are represented by C =
{c1, c2, c3, · · · , c36}. These embeddings provide
a mapping function from a subword to a 300-dim
vector, where semantically similar subwords are

3https://github.com/moses-smt/
mosesdecoder

4https://fasttext.cc/docs/en/
english-vectors.html

embedded close to each other. Finally, we calcu-
late a cosine similarity matrix of the word-region
as a soft alignment Asoft.

2.2 Encoder
2.2.1 Representing Textual Input
In Figure 2, the textual encoder is a bi-directional
RNN. Given a source sentence of n source words,
the encoder generates the forward annotation vec-
tors (

−→
h1,
−→
h2,
−→
h3, · · · ,

−→
hn), and backward annota-

tion vectors (
←−
h1,
←−
h2,
←−
h3, · · · ,

←−
hn). By concatenat-

ing the forward and backward vectors hi = [
−→
hi;
←−
hi],

all words are denoted as H = (h1,h2, · · · ,hn).

2.2.2 Representing Visual Input
We follow Anderson et al. (2018) in extracting the
region-of-interest (RoI) features of detected image
regions in each image. There are 36 object-level
image region features, each of which is represented
as a 2,048-dim vector r, and all features in an image
are denoted as R = (r1, r2, r3, · · · , r36).

2.2.3 Representations with Word-Region
Alignment

As shown in Figure 2, we represent
textual annotation of n source words
as Atxt = (atxt1 ,atxt2 ,atxt3 , · · · ,atxtn ),
and visual annotation of 36 regions as
Aimg = (aimg

1 ,aimg
2 ,aimg

3 , · · · ,aimg
36 ).

We represented the visual annotation Aimg by
concatenating R with the aligned textual features
Halign and the textual annotation Atxt using textual
input representation H directly.

The calculation of the Aimg is computed as fol-
lows:

Aimg = CONCAT(R,Halign)

Halign =
AT

soft ·H
|H|

where the |R| and |H| represent the length of source
words and the numbers of image regions: n and 36;
the CONCAT is a concatenation operator.

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
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Figure 2: The TMEKU system.

2.3 Decoder
To generate target word yt at time step t, a hidden
state proposal s(1)t is computed in the first cell of
deepGRU (Delbrouck and Dupont, 2018) (GRU
(1)) by function fgru1(yt−1, st−1). The function
considers the previously emitted target word yt−1
and generated hidden state st−1 as follows.

s
(1)
t = (1− ξ̂t)� ṡt + ξ̂t � st−1

ṡt = tanh(WEY [yt−1] + γ̂t � (Ust−1))

γ̂t = σ(WγEY [yt−1] + Uγst−1)

ξ̂t = σ(WξEY [yt−1] + Uξst−1)

where Wξ, Uξ,Wγ , Uγ ,W , and U are training pa-
rameters, and EY is the target word embedding.

2.3.1 Text-Attention
At time step t, the text-attention focuses on every
textual annotation atxti in Atxt and assigns an at-
tention weight. The textual context vector zt is
generated as follows.

etextt,i = (V text)Ttanh(U texts
(1)
t +W textatxti ),

αtext
t,i = softmax(etextt,i )

zt =

n∑
i=1

αtext
t,i atxti

where V text, U text, and W text are the training pa-
rameters; etextt,i is the attention energy; and αtext

t,i is
the attention weight matrix.

2.3.2 Image-Attention
Similarly, the visual context vector ct is generated
as follows.

eimg
t,j = (V img)Ttanh(U imgs

(1)
t +W imgaimg

j ),

αimg
t,j = softmax(eimg

t,j )

ct =
36∑
j=1

αimg
t,j aimg

j

where V img, U img, and W img are the training pa-
rameters; αimg

t,j is a weight matrix of each aimg
j ;

and eimg
t,j is the attention energy.

2.3.3 DeepGRU
As shown in Figure 2, deepGRU consists of three
layers of GRU cells, which are variants of the con-
ditional gated recurrent unit (cGRU).5 The hidden
state st is computed in GRU (3) as follows. Be-
cause the calculation of fgru2 and fgru3 are similar
to function fgru1 , they are not included in the paper.

st = fgru3([ct, yt−1], s
(2)
t )

s
(2)
t = fgru2(zt, s

(1)
t )

We use a gated hyperbolic tangent activation
(Teney et al., 2018) instead of tanh. This nonlinear
layer implements function fght : x ∈ Rm → y ∈
Rn with parameters defined as follows.

y′ = tanh(Kx+ b)

g = σ(K ′x+ b′)

y = y′ � g

where K,K ′ ∈ Rn×m and b, b′ ∈ Rn are the
training parameters.

5https://github.com/nyu-dl/
dl4mt-tutorial/blob/master/docs/cgru.pdf

https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
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To ensure that both representations have their
own projections to compute the candidate probabil-
ities, a textual GRU block and visual GRU block
(Delbrouck and Dupont, 2018) obtained as below.

bv
t = fght(W

v
b st)

bt
t = fght(W

t
bs

(2)
t )

yt ∼ pt = softmax(W t
projb

t
t +W v

projb
v
t ),

where W v
b ,W

t
b,W

t
proj,W

v
proj are training parame-

ters.

3 Experiments

3.1 Dataset
Firstly, we conducted experiments for the En→Ja
task using the official Flickr30kEnt-JP dataset
(Nakayama et al., 2020), which was extended from
the Flickr30k (Young et al., 2014) and Flickr30k
Entities (Plummer et al., 2017) datasets, where
manual Japanese translations were newly added.

For training and validation, we used the
Flickr30kEnt-JP dataset6 for Japanese sentences,
the Flickr30k Entities dataset7 for English sen-
tences, and the Flickr30k dataset8 for images. They
were sharing the same splits of training and val-
idation data made in Flickr30k Entities. For test
data, we used the officially provided data of the
Flickr30kEnt-JP task, and their corresponding im-
ages were in the Flickr30k dataset.

Note that the Japanese training data size is orig-
inally 148,915 sentences, but five sentences are
missing. Thus, we used 148,910 sentences for train-
ing. In summary, we used 148,910 pairs for train-
ing, 5k pairs for validation, and 1k monolingual
English sentences for translating test results.

Secondly, we also conducted experiments for
the En→Ja task using the official Ambiguous
MSCOCO dataset (Merritt et al., 2020),9 which
was extended from the Ambiguous COCO captions
and images,10 where the Japanese translations were
newly added. It was including a validation set
with 230 pairs and a test set with 231 pairs. For
standard training data, the training data from the
Flickr30kEnt-JP dataset was officially designated.

6https://github.com/nlab-mpg/
Flickr30kEnt-JP

7http://bryanplummer.com/
Flickr30kEntities/

8http://shannon.cs.illinois.edu/
DenotationGraph/

9https://github.com/knccch/JaEnCOCO
10http://www.statmt.org/wmt17/

multimodal-task.html

3.2 Preprocessing

For English sentences, we applied lowercase, punc-
tuation normalization, and the tokenizer in the
Moses Toolkit. Then we converted space-separated
tokens into subword units using the BPE model
with 10k merge operations. For Japanese sentences,
we used MeCab11 for word segmentation with the
IPA dictionary. The resulting vocabulary sizes of
En→Ja were 9,578→22,274 tokens.

For image regions, we used Faster-RCNN (Ren
et al., 2015) in Anderson et al. (2018) to detect up
to 36 salient visual objects per image and extracted
their corresponding 2,048-dim image region fea-
tures and attribute-object combined concepts.

3.3 Settings

(i) NMT: the baseline NMT system (Bahdanau
et al., 2015) is the architecture comprised a 2-layer
bidirectional GRU encoder and a 2-layer cGRU
decoder with attention mechanism, which only en-
codes the source sentence as the input.
(ii) MNMT: the baseline MNMT system without
word-region alignment (Zhao et al., 2020). This
architecture comprised a 2-layer bidirectional GRU
encoder and a 2-layer cGRU decoder with double
attentions to integrate visual and textual features.
(iii) TMEKU system: our proposed MNMT system
with word-region alignment.

We conducted all experiments on Nmtpy toolkit
(Caglayan et al., 2017).

3.3.1 Parameters
We ensured that the parameters were consistent in
all the settings. We set the encoder and decoder
hidden state to 400-dim; word embedding to 200-
dim; batch size to 32; beam size to 12; text dropout
to 0.3; image region dropout to 0.5; dropout of
source RNN hidden states to 0.5; and blocks bt

t

and bv
t to 0.5.

Specifically, the textual annotation Atxt was 800-
dim, which was consistent with H. Further, the vi-
sual annotation Aimg was 4,096-dim by a concate-
nation of R and Halign, where R was 2,048-dim
and Halign was 2,048-dim by a linear transforma-
tion from 800-dim.

We trained the model using stochastic gradient
descent with ADAM (Kingma and Ba, 2015) and a
learning rate of 0.0004. We stopped training when
the BLEU (Papineni et al., 2002) score did not
improve for 20 evaluations on the validation set,

11https://taku910.github.io/mecab/

https://github.com/nlab-mpg/Flickr30kEnt-JP
https://github.com/nlab-mpg/Flickr30kEnt-JP
http://bryanplummer.com/Flickr30kEntities/
http://bryanplummer.com/Flickr30kEntities/
http://shannon.cs.illinois.edu/DenotationGraph/
http://shannon.cs.illinois.edu/DenotationGraph/
https://github.com/knccch/JaEnCOCO
http://www.statmt.org/wmt17/multimodal-task.html
http://www.statmt.org/wmt17/multimodal-task.html
https://taku910.github.io/mecab/
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Model Test Score

Baseline NMT 46.16
Baseline MNMT 46.33

TMEKU System 47.02
v.s. baseline NMT ↑ 0.86
v.s. baseline MNMT ↑ 0.69

Ensemble (top 10 models) 48.57 4.7225

Table 1: Flickr30kEnt-JP task: BLEU scores and hu-
man evaluation score (full score is 5) on the En→Ja.

Model Test Score

TMEKU System 30.23

Ensemble (8 models) 31.04 4.4825

Table 2: Ambiguous MSCOCO task: BLEU scores and
human evaluation score (full score is 5) on the En→Ja.

and one validation evaluation was performed after
every epoch.

3.3.2 Ensembling Models
For the Flickr30kEnt-JP task on the En→Ja, each
experiment is repeated with 12 different seeds to
mitigate the variance of BLEU. At last, we choose
the top 10 trained models that evaluated by BLEU
scores on the validation set for ensembling.

For the Ambiguous MSCOCO task on the
En→Ja, each experiment is repeated with 8 dif-
ferent seeds to mitigate the variance of BLEU and
benefit from ensembling these 8 trained models for
the final testing.

3.4 Evaluation
We evaluated the quality of the translation results
using the official evaluation system provided by
WAT 2021. We submitted the final translation re-
sults in Japanese, which was translated from the
official test data in English. On the WAT 2021
evaluation site, an automatic evaluation server was
prepared and the BLEU was the main metric to
evaluate our submitted translation results.

3.5 Results
In Table 1, we presented the results of the baselines
and our TMEKU system on the Flickr30kEnt-JP
task. We compared all the results based on BLEU
scores evaluated by WAT 2021 evaluation site. For
instance, the TMEKU system outperformed the

NMT baseline by BLEU scores of 0.86 and out-
performed the MNMT baseline by BLEU scores
of 0.69 on the official test set. Our TMEKU sys-
tem achieved significant improvement over both
the NMT and MNMT baselines. Moreover, the re-
sult of ensembling the top 10 models has achieved
the first place in the ranking of this task.

We also participated in the Ambiguous
MSCOCO task on the En→Ja translation using
our TMEKU system. Our reported BLEU scores
are shown in Table 2, and the result of ensembling
8 models has ranked the first among all the submis-
sions in this task.

3.6 Human Evaluation

To further validate the translation performance, a
human evaluation was done by the organizers.

There are two native speakers of Japanese to rate
the translation results with a score of 1 to 5 (1 is
the worst and 5 is the best), who are informed to
focus more on semantic meaning than grammatical
correctness. There are 200 randomly selected ex-
amples for evaluation on the En→Ja language pair
of Flickr30kEnt-JP task and Ambiguous MSCOCO
task, respectively.

The human evaluation scores provided by the
organizers are added in Table 1 and Table 2, which
have achieved the best scores among the partici-
pated systems in their respective tasks.

4 Case Study

We show two cases in Figure 3, and improvement
is highlighted in green.

We perform two types of visualization for each
case: (1) We visualize the source-target word align-
ment of the text-attention. (2) We visualize the
region-target alignment of the image-attention at a
time step that generates a certain target word along
with attending to the most heavily weighted image
region feature.

In the case shown on the left, our TMEKU sys-
tem translates “entering” to “entrant,” but the base-
lines under-translate. By visualization, the text-
attention and image-attention assign the highest
weights to the word and region that are semanti-
cally relevant at that time step of generating “en-
trant.” This example shows that translation quality
improvement is due to the simultaneous attentions
of semantically related image regions and words.

In the case shown on the right, our TMEKU
system correctly translates “backyard” to a com-
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English: a man in a red shirt entering an establishment.
Reference: un homme en t-shirt rouge entrant dans un établissement.

NMT Baseline: un homme en chemise rouge dans un établissement.
MNMT Baseline: un homme en chemise rouge dans un établissement.
TMEKU System: un homme en t-shirt rouge entrant (entering) dans un établissement.

English: a man is grilling out in his backyard.
Reference: un homme fait un barbecue dans son arrière-cour.

NMT Baseline: un homme fait griller quelque chose dans sa cour (yard).
MNMT Baseline: un homme fait griller quelque chose dans sa cour (yard).
TMEKU System: un homme fait griller quelque chose dans sa arrière-cour (backyard).

Figure 3: Examples for case study. The improved translation is highlighted in green.

pound noun of “arrière-cour.” But the baselines
mistranslates it to “cour,” which means “yard” in
English. Through visualization, we find that the
text-attention and image-attention focus on the fea-
tures that are semantically relevant at that time step.
This example shows that the image region feature
associated with its semantically relevant textual fea-
ture can overcome the deficiency, where the object
attribute cannot be specifically represented by only
the image region feature.

5 Conclusion

We presented our TMEKU system to the
English→Japanese MMT tasks for WAT 2021,
which is designed to simultaneously consider rele-
vant textual and visual features during translation.
By integrating the explicit word-region alignment,
the object-level regional features can be further
specified with respective source textual features.
This leads the two attention mechanisms to under-
stand the semantic relationships between textual
objects and visual concepts.

Experimental results show that our TMEKU
system exceeded baselines by a large margin and
achieved the best performance among all the partic-
ipated systems. We also performed analysis of case
study to demonstrate the specific improvements
resulting from related modalities.

In the future, we plan to propose a more efficient
integration method to make modalities interactive
with each other.
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Kurohashi. 2020. Overview of the 7th workshop on
Asian translation. In WAT, pages 1–44.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

Bryan A. Plummer, Liwei Wang, Christopher M. Cer-
vantes, Juan C. Caicedo, Julia Hockenmaier, and
Svetlana Lazebnik. 2017. Flickr30k entities: Col-
lecting region-to-phrase correspondences for richer
image-to-sentence models. IJCV, pages 74–93.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster R-CNN: Towards real-time object
detection with region proposal networks. In NIPS,
pages 91–99.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL, pages 1715–1725.

Lucia Specia, Stella Frank, Khalil Sima’an, and
Desmond Elliott. 2016. A shared task on multi-
modal machine translation and crosslingual image
description. In WMT, pages 543–553.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS, pages 3104–3112.

Hiroto Tamura, Tosho Hirasawa, Masahiro Kaneko,
and Mamoru Komachi. 2020. TMU Japanese-
English multimodal machine translation system for
WAT 2020. In WAT, pages 80–91.

D. Teney, P. Anderson, X. He, and A. v. d. Hengel.
2018. Tips and tricks for visual question answering:
Learnings from the 2017 challenge. In CVPR, pages
4223–4232.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. TACL, 2:67–78.

Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara,
and Chenhui Chu. 2020. Double attention-based
multimodal neural machine translation with seman-
tic image regions. In EAMT, pages 105–114.

Yuting Zhao, Mamoru Komachi, Tomoyuki Kajiwara,
and Chenhui Chu. 2021. Neural machine translation
with semantically relevant image regions. In NLP.

https://doi.org/10.18653/v1/w17-4718
https://doi.org/10.18653/v1/w17-4718
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2010.08725
https://arxiv.org/abs/2010.08725
https://www.aclweb.org/anthology/2020.lrec-1.518/
https://www.aclweb.org/anthology/2020.lrec-1.518/
https://www.aclweb.org/anthology/2020.wat-1.1/
https://www.aclweb.org/anthology/2020.wat-1.1/
https://www.aclweb.org/anthology/P02-1040/
https://www.aclweb.org/anthology/P02-1040/
https://doi.org/10.1007/s11263-016-0965-7
https://doi.org/10.1007/s11263-016-0965-7
https://doi.org/10.1007/s11263-016-0965-7
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.18653/v1/w16-2346
https://doi.org/10.18653/v1/w16-2346
https://doi.org/10.18653/v1/w16-2346
https://arxiv.org/abs/1409.3215
https://www.aclweb.org/anthology/2020.wat-1.7.pdf
https://www.aclweb.org/anthology/2020.wat-1.7.pdf
https://www.aclweb.org/anthology/2020.wat-1.7.pdf
http://openaccess.thecvf.com/content_cvpr_2018/html/Teney_Tips_and_Tricks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Teney_Tips_and_Tricks_CVPR_2018_paper.html
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/229
https://www.aclweb.org/anthology/2020.eamt-1.12/
https://www.aclweb.org/anthology/2020.eamt-1.12/
https://www.aclweb.org/anthology/2020.eamt-1.12/
https://www.anlp.jp/proceedings/annual_meeting/2021/pdf_dir/A8-1.pdf
https://www.anlp.jp/proceedings/annual_meeting/2021/pdf_dir/A8-1.pdf

