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Abstract

In deployment, systems that use speech as in-
put must make use of automated transcriptions.
Yet, typically when these systems are evalu-
ated, gold transcriptions are assumed. We
explicitly examine the impact of transcrip-
tion errors on the downstream performance of
a multi-modal system on three related tasks
from three datasets: emotion, sarcasm, and
personality detection. We include three sepa-
rate transcription tools and show that while all
automated transcriptions propagate errors that
substantially impact downstream performance,
the open-source tools fair worse than the paid
tool, though not always straightforwardly, and
word error rates do not correlate well with
downstream performance. We further find that
the inclusion of audio features partially miti-
gates transcription errors, but that a naive us-
age of a multi-task setup does not. We make
available all code and data splits needed to re-
produce all of our experiments.1

1 Introduction

With the large amount of available speech data,
multimodal approaches to classic natural language
processing tasks are becoming increasingly preva-
lent. Many of these proposed systems, however,
demonstrate their gains under the assumption of
gold transcriptions (e.g., Poria et al., 2019; Ghosal
et al., 2020; Castro et al., 2019), a condition which
is highly unrealistic in real-world scenarios. In
practice, deployed systems will need to utilize an
automatic speech recognition (ASR) tool to obtain
transcriptions. However, when selecting the best
tool given the constraints of the use case, the re-
sults of an intrinsic evaluation such as the word
error rate (WER) are not necessarily correlated
with extrinsic performance on the downstream task

1https://github.com/clulab/
tomcat-speech

of interest (Faruqui et al., 2016). This issue is ex-
acerbated when considering that ASR tools may
perform quite differently across different domains
(Georgila et al., 2020).

In this initial work, we explore how much tran-
scription errors affect performance of a multimodal
system on several related but distinct downstream
tasks and domains. We compare two open-source
and one paid transcription tools and evaluate on
three multimodal English-language tasks: emotion,
sarcasm, and personality detection. We explicitly
compare intrinsic and extrinsic evaluations, and
discuss the utility of WER as an indicator of task-
performance.

Our specific contributions are:

1. An exploration of the relationship between
transcription WER and performance on down-
stream multimodal tasks. We show that over-
all, the transcriptions from the paid tool may
be more useful than those of the open-source
tools, but that they perform worse than gold.
Further, we show that differences in WER do
not describe well the differences in the down-
stream tasks.

2. We explore using multitask (MT) training for
mitigating issues with transcription quality.
We find that, in this setting, MT does not help
model performance, suggesting that problems
with transcription quality need a more thought-
ful approach to overcome. On the other hand,
we show that inclusion of the audio modal-
ity does improve performance for all datasets
when using automatic transcriptions, indicat-
ing that additional modalities can be helpful
to mitigate transcription errors.

2 Related Work

Multimodal language work frequently makes use of
video, audio, and text modalities to examine emo-

https://github.com/clulab/tomcat-speech
https://github.com/clulab/tomcat-speech
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tion (Zadeh et al., 2018), sentiment (Soleymani
et al., 2017), and personality (Rissola et al., 2019).
Previous work in emotion recognition has used
speech features alone (Latif et al., 2020), speech
and text (Atmaja and Akagi, 2020), and speech,
text, and video (Tsai et al., 2018) to make predic-
tions. Ghosal et al. (2020) use transformer-based
models to establish a new state of the art on mul-
tiple multimodal datasets. Recent work in person-
ality detection has often examined the OCEAN
traits (openness, conscientiousness, extraversion,
agreeableness, and neuroticism; Ponce-López et al.,
2016), using either apparent (as perceived by oth-
ers) (Yan et al., 2020) or self-reported traits (Celli
et al., 2014).

ASR systems have also been emphasized in re-
cent decades. Some can be custom trained or used
with pretrained models (Povey et al., 2011; Lamere
et al., 2003), while others are extensively trained
but limited in their customization (Bano et al.,
2020). Georgila et al. (2020) examine the perfor-
mance of different ASR transcription tools on mul-
tiple ASR datasets, providing a strong reference for
WERs; however, to the best of our knowledge, we
are the first to compare this form of intrinsic per-
formance to performance on the downstream tasks
of emotion, personality, and sarcasm detection.

3 Approach

When multimodal data including speech is used in
a deployed system, the related text features gen-
erally come from automatic transcriptions of the
speech itself. Here, we compare how errors in these
transcriptions affect the performance of a neural
network model on three distinct tasks. Further, we
compare results from both a single-task and a mul-
titask (MT) network composed of data from two
datasets, a common strategy for mitigating issues
with limited or flawed data (Schulz et al., 2018).

As we are not trying to define a new state of the
art, we use a simple model for our experiments.
This model takes as input text and audio features
from MELD and FirstImpr (Section 4), and feeds
them through a late-fusion network (i.e., one which
processes the modalities separately, then concate-
nates them before predicting). In the MT setting,
the final layers are task specific, and the base layers
share parameters.

We generate transcriptions for each dataset using
three separate ASR systems (Section 4.3) and find

the intrinsic performance (WER2; Section 6.1) as
well as the extrinsic performance for each (i.e.,
performance on the downstream tasks of interest;
Section 6).

4 Data

For our experiments we use three datasets covering
distinct tasks. For each data point, we extract acous-
tic features and obtain three different transcriptions,
in addition to the dataset-provided gold transcrip-
tions, which form the basis for our comparative
study. Dataset sizes are shown in Table 1.3

Dataset Train Dev Test

MELD 8878 2220 2610
MUStARD 414 138 138
FirstImpr 6000 2000 2000

Table 1: Number of utterances in each data partition.

4.1 Datasets
Our selected datasets represent distinct tasks that
may have different levels of reliance upon each
modality for successful prediction. For example,
while emotions and personality may be expressed
through word choice as much as pronunciation,
sarcasm detection should rely much more heavily
upon acoustics.

Multimodal Emotion Lines Dataset (MELD;
Zahiri and Choi, 2017; Poria et al., 2019):
MELD provides 13708 annotated utterances (< 5
words, with an average length of 3.59s) from 1,433
dialogues from the TV series Friends. Utterances
are annotated for emotion (anger, disgust, sadness,
joy, neutral, surprise and fear) and sentiment.

Multimodal Sarcasm Detection (MUStARD;
Castro et al., 2019): MUStARD is a collection
of 690 utterances (average of 14 tokens and 5.22s)
from Friends, The Golden Girls, The Big Bang
Theory, and Sarcasmaholics Anonymous. Each is
gold-annotated as sarcastic or non-sarcastic.

First Impressions V2 dataset (FirstImpr;
Ponce-López et al., 2016): FirstImpr contains
10,000 English utterances (average length 15s)
taken from 3,000 YouTube video blogs and
annotated for the OCEAN personality traits.

2We use the JiWER Python library (https://pypi.
org/project/jiwer/) and the dataset-provided tran-
scriptions to calculate WER.

3Note that for MELD we redistributed the train and dev
partitions to make dev closer in size to test (we did not modify
test in any way).

https://pypi.org/project/jiwer/
https://pypi.org/project/jiwer/


252

4.2 Acoustic features

We extract acoustic features with the Open-source
Speech and Music Interpretation by Large-space
Extraction toolkit v2.3.0 (OpenSMILE; Eyben
et al., 2010). We use the INTERSPEECH 2010
(IS10; Schuller et al., 2010) or 2013 Paralinguistics
Challenges (IS13; Schuller et al., 2013) features,
using the set that performed the best on a task’s de-
velopment partition. These sets contain low-level
descriptors (such as MFCCs and fundamental fre-
quency) and the associated functionals, extracted
at 10ms intervals (total 76 for IS10, 141 for IS13).
We capture features only from the middle 50 per-
cent of each audio file, and calculate mean feature
values per utterance for both feature sets, with min-
imum, maximum, and mean plus/minus standard
deviation concatenated to this for IS10.

4.3 Text features

Our text features consist of tokens extracted di-
rectly from the transcripts using the basic english
tokenizer in torchtext.4 We compare the tran-
scriptions from the following:

CMU Sphinx Open Source Toolkit (Sphinx;
Lamere et al., 2003): We utilize the open-
source, lightweight PocketSphinx5 version of
Sphinx for transcription, using the pretrained acous-
tic and language models provided by CMU.

Google Cloud Speech-to-Text6 (Google):
Google Cloud Speech-to-Text is a commercial tool
trained on data collected by Google and provided
by users who have used Speech-to-Text and agreed
to share their data. We use synchronous speech
recognition.

Kaldi Speech Recognition Toolkit (Kaldi; Povey
et al., 2011): Kaldi is an open-source tool for
speech recognition. We use the Librispeech ASR
model,7 which is trained on Librispeech (Panay-
otov et al., 2015), and the online-decoding function.

Gold: Each dataset also provides a gold transcrip-
tion. For MELD this is extracted from subtitles,
MUStARD’s comes both from subtitles and man-
ual transcription, and FirstImpr’s comes from a

4https://pytorch.org/text/stable/index.
html

5https://github.com/cmusphinx/
pocketsphinx

6https://cloud.google.com/
speech-to-text

7https://kaldi-asr.org/models/m13

professional transcription service. With these we
calculate the WERs (Section 6.1) and a ceiling per-
formance in our extrinsic evaluations (Section 6).

5 Models

To evaluate the impact of transcription on perfor-
mance, we create (a) baseline models that use only
text or only audio features, plus (b) a multimodal
model that uses audio and text. Note that as our
goal here is not to achieve a new state of the art, but
rather to explore the impact of real-world options
for transcriptions, we use straightforward models
that are not particularly architecturally tuned.

Text-only baseline: The text baseline consists of
a two-layer LSTM (Hochreiter and Schmidhuber,
1997). 300d GloVe embeddings trained on 42B
words (Pennington et al., 2014) are concatenated
with 30d trainable text embeddings and fed through
the network. The 100d output vectors representing
each utterance are then fed through a prediction
layer with a cross-entropy loss function8.

Audio-only baseline The audio baseline is a sim-
ple feedforward neural network, where extracted
audio features are averaged over the course of the
utterance,9 and used as input into two fully con-
nected layers. The first layer decreases the audio
to a 50-dimensional vector, while the second in-
creases it back to its original size. The vector is
finally fed through a prediction layer. We use IS10
features for MUStARD and IS13 for MELD and
FirstImpr, chosen based on dev performance.

Multimodal model (MM) For our multimodal
model, we concatenate the 100d output from the
text component to the 141d (IS13) or 380d (IS10)
output of the acoustic layers. These vectors are
then fed through two fully connected layers and a
prediction layer. This model works in both single
task and multitask settings. As a multitask network
(MM-MT), the two final layers are distinct for each
dataset.

6 Experiments and Results

We evaluate how the automated transcriptions from
different ASR tools affect performance on three
distinct downstream tasks. We show the intrinsic

8used for this and all other models
9While we also experimented with a version that used an

RNN over the acoustic features, we found that it did not affect
performance and it was far slower to train.

https://pytorch.org/text/stable/index.html
https://pytorch.org/text/stable/index.html
https://github.com/cmusphinx/pocketsphinx
https://github.com/cmusphinx/pocketsphinx
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text
https://kaldi-asr.org/models/m13


253

performance of the tools (in terms of WERs) and
compare it to the extrinsic performance.

Dataset Sphinx Kaldi Google

MELD 114.9 104.4 82.6
MUStARD 96.8 73.0 54.3
FirstImpr 97.4 83.5 63.8

Table 2: WER of MELD, MUStARD, and FirstImpr; results
show the difficulty of ASR tools with these datasets’ speech.

6.1 Intrinsic Transcription Evaluation
We use the provided gold transcriptions to calcu-
late WERs, shown in Table 2. We see that Google
consistently has lower WERs than either of the
open-source tools, and that Kaldi consistently out-
performs Sphinx, though the difference is smaller
in MELD than the other datasets.

6.2 Extrinsic Evaluation
The results of our models trained on each transcrip-
tion type for each task is given in Table 3. We re-
port all results as weighted average F1 scores over
all classes and we evaluate statistical significance
by calculating p-values with bootstrap resampling
over 10,000 iterations on model predictions with
Bonferroni correction applied.

We include the comparable10 state of the art
(SotA) performance for reference for MELD and
MUStARD. As FirstImpr was previously evalu-
ated as a regression task, and here we perform
maximum-class prediction for consistency, there is
no relevant SotA to include. For MELD, Poria et al.
(2019), use a CNN over GloVe embeddings and
an LSTM over audio features from OpenSMILE.11

For MUStARD, Castro et al. (2019) employ SVMs
trained over the BERT (Devlin et al., 2018) encod-
ing of the utterance, combined with extracted audio
features, averaged over the utterance. We include
this result only to give context to what we report;
recall that here we evaluate on a test split, whereas
they used 5-fold cross validation.

For text-only results, ASR transcriptions show
significantly lower performance than the gold tran-
scriptions in MELD (p<0.001) and, to a smaller
degree, MUStARD, although the Kaldi transcrip-
tions are better in FirstImpr (p<0.001). With audio

10Since we do not use the surrounding context or external
resources in this initial work, we provide the results of the
previous best performing system that did likewise.

11We are reading between the lines on this, as the paper
does not provide clear explanation of this model, which they
call cMKL.

MELD MUStARD FirstImpr
(7cls) (2cls) (5cls)

Poria et al. (2019) 55.51 – —
Castro et al. (2019) – 71.80 —

Aud 37.38 75.42 32.99

Txt (Kaldi) 33.94 52.61 32.35
Txt (Sphinx) 32.68 57.12 30.11
Txt (Google) 37.60 58.11 31.66
Txt (Gold) 57.32 59.48 30.20

MM (Kaldi) 39.47 69.51 34.22
MM (Sphinx) 37.90 70.89 32.71
MM (Google) 40.94 70.12 35.98
MM (Gold) 56.28 73.98 35.05

MM-MT (Kaldi) 39.36 — 32.99
MM-MT (Sphinx) 39.30 — 32.81
MM-MT (Google) 40.17 — 34.75
MM-MT (Gold) 56.57 — 34.21

Table 3: Extrinsic task performance of our single-task system
using acoustic features (Aud), text features (Txt), or multi-
modal (MM). We also show performance of the multimodal
multitask system (MM-MT) that utilizes MELD and FirstImpr.
All results presented are weighted average F1.

MELD MUStARD FirstImpr

Gold 139580 10991 523387
(95.7%) (98.7%) (98.4%)

Google 88913 7315 436272
(99.8%) (99.8%) (100%)

Kaldi 89082 7039 369201
(100%) (99.9%) (100%)

Sphinx 103659 6891 419214
(100%) (100%) (100%)

Table 4: GloVe coverage (in tokens) for each transcrip-
tion type with each dataset. Percentage of all corpus
tokens appearing in GloVe are shown in parentheses.

included, i.e., the multimodal systems, we again
see that gold transcription models achieve higher
performance than those with ASR transcriptions for
MELD (p<0.001) and MUStARD. For FirstImpr,
the Google transcriptions yield the best perfor-
mance, although this difference is not significant.

However, when only considering the ASR mod-
els (i.e., in the deployment scenario), the inclusion
of audio features improves all models, indicating
that these features are able to mitigate some of the
noise arising from imperfect transcriptions. That
said, it is worth noting that for MUStARD, the best
performance is achieved by using audio features
only, though again this difference is not significant.

Among the ASR systems, we see that despite
the substantial differences in WERs (Table 2), on
the extrinsic evaluation, the story is more nuanced.
Google transcription models do the best on MELD
and FirstImpr, but on MUStARD, Sphinx transcrip-
tions have the best performance. Further, none of
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Anger Disgust Fear Joy Sadness Surprise All Emotions

Gold 934 / 207 747 / 159 1398 / 239 2306 / 198 1182 / 220 1080 / 138 4428 / 656
Google 805 / 208 612 / 158 1056 / 245 1919 / 198 978 / 202 863 / 135 3666 / 644
Kaldi 664 / 216 521 / 157 1282 / 270 2008 / 241 1054 / 260 978 / 143 3861 / 741
Sphinx 973 / 239 665 / 168 1126 / 279 1806 / 211 1070 / 249 1063 / 145 3704 / 712

Table 5: Number of tokens (left) and types (right) of words from the NRC Word-Emotion Association Lexicon (Mo-
hammad and Turney, 2010, 2013) for each emotion type appearing in the MELD transcriptions. Each word may
be associated with more than one emotion, so the overall count is lower than the sum of the individual emotions.

these differences are statistically significant. Thus,
depending on the task of interest, there may be no
large advantage to more expensive tools. We also
experiment with using a multi-task (MT) setup to
determine whether using MT can mitigate transcrip-
tion errors. We use only MELD and FirstImpr, as
they both did best with the IS13 features. Further,
the majority of utterances in MUStARD appear
in MELD and cannot be restricted to the training
partition, so it cannot be used fairly in a multitask
system with MELD. For all transcription types, the
MT setup performs similarly to the corresponding
multimodal single-task models, suggesting that a
more thoughtful approach may be needed to lever-
age external data to mitigate transcription noise,
which is beyond the scope of the current work.

6.3 Error analysis

While transcription WERs are not intrinsically
linked to model performance on a global level, it is
possible that additional factors are at play. As such,
we analyze GloVe’s coverage for each transcription
of each dataset and examine emotion words present
in each transcription for MELD.

Results of Table 4 reveal that gold transcriptions
contain both a larger number of overall tokens and
a smaller percentage of coverage by GloVe than all
other datasets. This larger number of tokens may
allow a system to make fine-grained distinction, in-
dicating potential need for caution with automatic
transcription selection depending upon the dataset
of interest. Google has the second highest num-
ber of tokens covered in GloVe for FirstImpr and
MUStARD, while Sphinx has the second most for
MELD. As models using sphinx transcriptions per-
form numerically worst with MELD, this indicates
that GloVe coverage alone does not always corre-
spond to downstream task performance.

For more fine-grained detail, we examine tran-
scription success in one particular domain: identifi-
cation of emotion words. To do this, we determine
the number of emotion words identified for each
transcription using the NRC Word-Emotion Asso-

ciation Lexicon (EmoLex; Mohammad and Turney,
2010, 2013).

As shown in Table 5, between the gold and au-
tomatic transcriptions, we see different patterns
between the type and token frequencies of emotion
words. Overall, the token frequency of emotion
words is lower in the automatic transcripts than in
the gold transcriptions, largely due to the increase
in tokens of words expressing joy and fear, but the
type frequency is higher, particularly with Kaldi
and Sphinx. That is, there are fewer distinct emo-
tion words in the gold transcriptions but they have
more mentions. These frequency patterns may be
partially responsible for the worse performance of
models using Kaldi and Sphinx transcriptions, as
some data points contain spurious false positive
mentions of emotion words, and other data points
are missing mentions of emotion words, due to
transcription error.

7 Conclusions

We demonstrated that selecting the appropriate tran-
scription service for a task is dependent upon the
task and models to be used. Paid transcriptions
may result in better model performance, but differ-
ences in task performance may be much smaller
than suggested by only considering WER. Further,
depending on the task, the noise introduced from
automatic transcriptions may be mitigated by in-
cluding additional input modalities, such as audio.
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