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Abstract

Arabic is characterised by a considerable num-
ber of varieties including spoken dialects. In
this paper, we presented our models devel-
oped to participate in the NADI subtask 1.2
that requires building a system to distinguish
between 21 country-level dialects. We in-
vestigated several classical machine learning
approaches and deep learning models using
small datasets. We examined an integration
technique between two machine learning ap-
proaches. Additionally, we created dictionar-
ies automatically based on Pointwise Mutual
Information and labelled datasets, which en-
riched the feature space when training mod-
els. A semi-supervised learning approach was
also examined and compared to other methods
that exploit large unlabelled datasets, such as
building pre-trained word embeddings. Our
winning model was the Support Vector Ma-
chine with dictionary-based features and Point-
wise Mutual Information values, achieving an
18.94% macros-average F1-score.

1 Introduction

Arabic Dialect Identification (ADI) no doubt
caught the attention of researchers (Althobaiti,
2020a,b). Recently, many events and campaigns
have been organised to handle ADI and all asso-
ciated challenges (Molina et al., 2016; Malmasi
et al., 2016; Zampieri et al., 2017; Bouamor et al.,
2019; Abdul-Mageed et al., 2020, 2021). Dialectal
Arabic (DA) started to appear online in text form
with the rise of Web 2.0, which has allowed users
to generate online content, such as social media
posts, blogs, discussion forums, and emails. How-
ever, the ADI problem has become challenging due
to a lack of data to represent a wide spectrum of
Arabic dialects and their complex taxonomy. In
this paper, we examined the possibility of exploit-
ing small datasets in order to build an ADI system
with solid performance. We experimented with an

integration technique between two classical Ma-
chine Learning (ML) approaches. We also auto-
matically created dictionaries based on Pointwise
Mutual Information (PMI) and labelled datasets.
We exploited the automatically created dictionaries
to enrich the feature space when training the mod-
els. A semi-supervised learning paradigm, namely,
co-training was also designated to exploit the noisy
and unlabelled data available hugely online. We
also investigated another approach to leverage large
unlabelled data, such as building pre-trained word
embeddings to be used later in the training process.
Two Deep Learning (DL) models, the Gated Recur-
rent Unit (GRU) and the Bidirectional Long-Short
Term Memory (BiLSTM), were investigated along
with a co-training method and word embeddings
(either pre-trained, or learned during training).

2 Datasets

The dataset used in this paper is the NADI cor-
pus, consisting of 31,000 labelled tweets and en-
compassing 21 country-level Arabic dialects. The
dataset is divided into three parts: 68% for train-
ing (21,000 tweets), 16% for the development set
(5,000 tweets), and 16% for the test set (5,000
tweets). The NADI shared task organisers also
shared with participating teams around 10M unla-
belled tweets.

The text pre-processing steps are essential in any
Natural Language Processing (NLP) application
and may affect positively or negatively the final
outputs. The pre-processing pipeline we followed
in our study before training our proposed mod-
els includes tokenising, the removal of stop words
and one-character words, and cleaning the texts.
The cleaning step involves the removal of diacriti-
cal marks, non-alphanumeric characters including
emojis and excessive white spaces.
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3 Feature Extraction

In this section, we illustrate the extracted features
and the text representation of the input data before
feeding them to the proposed models.

3.1 Pointwise Mutual Information (PMI)
The PMI represents a statistical measure of associ-
ation strength between two events x and y, given
their individual and joint distributions (Manning
et al., 1999). In our study, the PMI was utilised
to assess the significance of specific words to their
corresponding Arabic dialects by measuring the
correlation between the word and that Arabic di-
alect. Mathematically, it is the log of the probability
of the word being utilised in a certain Arabic di-
alect divided by the product of the probability of
the word and the probability of that Arabic dialect
independently.

pmi(w, Tdialect) = log
p(w, Tdialect)

p(w) ∗ p(Tdialect)

Where w is a word in the corpus and Tdialect repre-
sents the tweets from Arabic dialects in the corpus.
To compute the required probabilities for the words
and Arabic dialects, we relied on the training cor-
pus of the NADI shared task for the country-level
DA identification as illustrated in Section 2. The
words with the highest PMI scores for a particular
dialect have a high probability to appear in tweets
of that specific Arabic dialect. On the other hand,
the negative PMI score between a word and a cer-
tain Arabic dialect indicates the lack of relatedness
between this word and that dialect. Clearly, the
use of PMI helps to rank the words in the dataset
according to their degree of association to each
Arabic dialect. We used PMI scores to train some
of our proposed models, as follows:

1. Dictionary-based features: We automatically
created a dictionary for each Arabic dialect by ex-
ploiting the labelled training data and the PMI
scores of the dataset’s vocabulary in relation to
relevant Arabic dialects. That is, only words with
positive PMI scores higher than 1.5 were automati-
cally added to the dictionary of each dialect. Con-
sequently, the dictionary of each Arabic dialect
includes only dialectal words that correlate most
to that dialect. The distribution of the subtask 1.2
dataset, however, is not balanced. In addition, the
tweets of each country may be biased to the top-
ics mentioned in this dataset’s tweets. Thus, the
unbalanced data and limited topics may result in

some MSA words with positive PMI values higher
than 1.5. To this end, we utilised the MSA corpus
provided by the NADI organisers for the subtask
1.1 in order to prevent MSA words from being
included in the dictionary of each dialect. The
dictionary-based features are used as binary fea-
tures to indicate whether the word in a tweet exists
in the dictionary of an Arabic dialect or not.

2. Tweet’s PMI value: Each example in the
dataset (i.e., each tweet) has been given a total
PMI value, calculated by summing the PMI score
of each word in the tweet with each Arabic di-
alect. That is, for each tweet, 21 PMI values have
been computed, which represent the strength of
the whole tweet’s association with each of the 21
Arabic dialects.

3.2 Word Embeddings
Distributed representations of text at various lev-
els of granularity, including words and sentences,
have become the dominant method for vectorising
textual data for various NLP tasks (Mikolov et al.,
2013b,a, 2018; Pennington et al., 2014; Zahran
et al., 2015; Abdul-Mageed et al., 2018). Word
embedding representation captures a considerable
number of semantic and syntactic word relation-
ships where the words are vectorised by training
a neural network on a large corpus. In our study,
we vectorised the words of the corpus using two
methods of embeddings :

(1) Pre-trained embeddings on 300K Twitter
data: We built a word vectors model using 300K
tweets from the 10M unlabelled tweets provided by
the NADI shared task organisers. The Continuous
Bag of Words (CBOW) algorithm was adopted for
training the model with the number of dimensions
of the embeddings set to 100 (i.e., default value).
Other hyper-parameters were set as follows: the
window size = 5 and the minimum count of words
to consider = 5. We built the word2vec model using
the Gensim toolkit in Python (Rehurek and Sojka,
2010). We adopted the same pre-processing steps
illustrated in Section 2.

(2) Learned embeddings during the training of
the ADI system: The word embeddings layer is
learned jointly with a neural network model during
training the model on the NADI shared task corpus
of country-level dialectal identification.

3.3 Other Features
We used the Term Frequency-Inverse Document
Frequency (TFIDF) to represent text when we mod-
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elled our ADI systems using classical machine
learning approaches. The TFIDF is another nu-
merical measure that represents how important a
word is to a specific Arabic dialect. The importance
increases proportionally to the number of times the
word appears in an Arabic dialect, but is offset by
the number of times a word appears in other Arabic
dialects (Jones, 1972; Yun-tao et al., 2005; Schütze
et al., 2008).

We also utilised word unigram, bigrams, and
trigrams as features, as well as the character n-
grams where n ranges from 2 to 5.

4 System Description

This section presents the approaches we employed
in our experiments to examine various traditional
ML and DL models when working on country-level
ADI problem, covering 21 countries, with small
datasets and various features.

4.1 Classical Machine Learning

Support Vector Machine: We utilised the Support
Vector Machine (SVM) to perform the country-
level ADI task. The 21 dictionaries built automati-
cally, as explained in Section 3, are used as binary
features fed to the SVM in conjunction with other
features like Tweet’s PMI values and TFIDF vec-
tors, as well as character (2-5)-grams and word
(1-3)-grams.

Integrated Machine Learning Technique: It
involves integrating two classical ML approaches,
where the predictions of one are exploited as addi-
tional features to train the second machine learning
method. We utilised the Logistic Regression (LR)
model as a first classifier whereby its predictions
were fed, in conjunction with other features, to the
SVM model.

Ensemble Classifier: The final decision of the
ensemble classifier employed for country-level
ADI relies on hard voting of three individual clas-
sifiers: SVM, LR, and a Random Forest (RF).

The features utilised to train each individual clas-
sifier in the integrated ML Method and ensemble
classifier are: dictionary-based features, Tweet’s
PMI values, character (2-5)-grams, word (1-3)-
grams, as well as TFIDF as a way to represent
texts.

Co-Training: We attempted to add additional
training data to the limited amount of NADI la-
belled data (a total of 21,000 training tweets)
for country-level DA identification (Blum and

Mitchell, 1998). To this end, we utilised an au-
tomatic labelling approach, namely co-training to
annotate additional data without human interven-
tion. Although the NADI organisers shared 10M
unlabelled tweets with the participating teams, we
decided to label only 300K tweets.

In our study, the co-training involves the use of
three classifiers: LR, SVM, and RF in order to label
the same tweet with labels l1, l2, and l3. The tweet
is finally labelled l if l = l1 = l2 = l3. That is,
the tweet will be labelled and included in the final
corpus only when the three classifiers agree. We
called the 300 annotated tweets that resulted from
the co-training technique the CoTraininglabelled
corpus.

4.2 Deep Learning

GRU: The Gated Recurrent Unit (GRU) was also
examined in our study for the country-level DA
identification. Our GRU-based model consists of
a GRU layer with 50 units. A softmax layer is
applied on top for classification (No. of epochs =
30). For word vectors, an embedding layer was
added to the beginning of the network with di-
mensions equal to 100. In addition, we carried
out another experiment in which we initialised the
words with pre-trained word embeddings on the
CoTraininglabelled corpus.

BiLSTM: We developed a Bidirectional Long-
Short Term Memory (BiLSTM) network, consist-
ing of 50 hidden units, followed by a fully con-
nected layer with 50 hidden units. Lastly, a dense
layer with 21 hidden units and softmax activation
function was utilised to predict the country of the
dialect. We used 300 as input sequence length, 0.1
for dropout rate, and 30 for epochs. We specified
Adam as the optimisation algorithm and categori-
cal crossentropy as the loss function. Two exper-
iments were conducted: one using the word em-
beddings learned during the training, and the other
using initialised values of words with pre-trained
embeddings on the CoTraininglabelled corpus. In
both cases of word embeddings the dimension was
equal to 100.

In order to examine the co-training method and
to make experimental evaluations of various meth-
ods, the CoTraininglabelled corpus was utilised to
implement multiple classical ML and DL models,
as well as integrated ML techniques with the same
settings as explained in previous subsections.
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5 Results

We conducted several experiments in which we ex-
amined various classical ML and DL models to per-
form multi-way ADI using small datasets. We also
examined various features, as explained in Section
3 and Section 4. We started with character (2-5)-
grams and word (1-3)-grams as features to develop
an SVM model. We created dictionaries automati-
cally based on Pointwise Mutual Information and
labelled datasets. Including the automatically gen-
erated dictionaries in the feature space to train the
SVM model boosted the model’s performance espe-
cially in terms of recall measure. The use of dictio-
naries alone as binary features increased the perfor-
mance of the SVM model, but adding the Tweet’s
PMI values to the features set yielded the better
SVM performance. Furthermore, we experimented
with an integration approach between SVM and
LR, as well as set of features including dictionary-
based features and PMI values. This approach out-
performed the SVM model in terms of precision,
as expected, but fell behind slightly in terms of re-
call and F1-score. We also experimented with the
ensemble method by combining the decisions of
three individual classifiers: LR, SVM, and RF. The
ensemble classifier with dictionary-based features
and Tweet’s PMI values surpassed the performance
of all models in terms of precision, a predictable
outcome as the ensemble classifier relied on hard
voting. Moreover, the BiLSTM and GRU-based
models fell short in comparison to classical ML
techniques. The small dataset of 21,000 tweets
may significantly affect the overall performance of
the DL models.

Table 1 shows the performance of various classi-
cal ML and DL models evaluated on development
and test sets. Table 2 shows the performance of the
models when training on the CoTraininglabelled
corpus that consists of 300K annotated tweets. The
increase in training data size by implementing the
co-training labelling method resulted in a drop in
the overall performance of all models. The classi-
cal ML techniques with PMI values and dictionary-
based features still outperformed DL models, even
on the 300K annotated tweets. This can be at-
tributed to the fact that labelling new tweets was
conducted automatically based on other models
trained on a small dataset (i.e., NADI training
data). We also considered the available unlabelled
tweets as resources to build a pre-trained word
embeddings model to initialise the word values

in DL models, as explained in Section 3. In or-
der to build the pre-trained word embeddings we
used CoTraininglabelled corpus, the same data em-
ployed to train the models to compare both the
co-training automatic labelling approach and the
use of pre-trained word embeddings model. The
results clearly showed that the two techniques per-
formed on par. For example, the BiLSTM-based
model achieved macro-average F1-score equal to
12.85 when using NADI training data and word
embeddings vectors, which are pre-trained on the
CoTraininglabelled corpus. On the other hand, us-
ing CoTraininglabelled corpus as the training data
of the BiLSATM model resulted in 12.63 macro-
average F1-score.

Method
Dev Set Test Set

F1 ACC F1 ACC
SVM,c2-5,w1-
3,dict,PMI

18.71 35.68 18.94 35.94

SVM,c2-5,w1-
3,dict

18.52 35.54 18.66 35.53

SVM,c2-5,w1-
3

17 35.22 - -

Integrated
ML,c2-5,w1-
3,dict,PMI

17.87 36.74 18.06 38.47

Integrated
ML,c2-5,w1-
3,dict

17.57 36.86 18.08 37.21

Ensemble,c2-
5,w1-3,dict

17.45 37.26 - -

Ensemble,c2-
5,w1-
3,dict,PMI

17.23 37.48 - -

BiLSTM,
WElayer

13.2 26.16 - -

GRU,
WElayer

12.85 29.14 - -

Table 1: The performance of classical ML and DL mod-
els trained on NADI subtask 1.2 corpus and evaluated
on development and test sets. “c2-5” indicates char-
acter n-grams where n=2-5, “w1-3” indicates word n-
grams where n=1-3, “dict” indicates dictionary-based
features, “PMI” is Tweet’s PMI value, and “WElayer”
indicates word embeddings learned during the training.

6 Discussion and Analysis

We analysed the outputs of various models on the
development dataset. We noticed that many misla-
belled tweets are short in length and do not contain



269

Method F1 P R ACC
Integrated ML,c2-
5,w1-3,dict

14.45 17.12 15.88 24.6

SVM,c2-5,w1-
3,dict,PMI

14.2 17.09 15.4 24.14

SVM,c2-5,w1-3 14.04 16.45 15.63 23.76
BiLSTM,
WEpretrained

12.85 13.89 14.17 35.8

BiLSTM,
WElayer

12.63 14.24 13.13 22.96

GRU, WElayer 11.51 12.3 13.71 26.68
GRU,
WEpretrained

11.5 12.73 13.35 36.3

Table 2: The performance of classical ML and DL mod-
els trained on CoTraininglabelled corpus and evalu-
ated on the development set. “c2-5” indicates char-
acter n-grams where n=2-5, “w1-3” indicates word n-
grams where n=1-3, “dict” indicates dictionary-based
features, “PMI” is Tweet’s PMI value, “WElayer” indi-
cates word embeddings learned during the training, and
“WEpretrained” indicates the use of pre-trained word
embeddings.

any distinctive dialectal Arabic words (i.e, words
primarily used in one Arabic dialect and can be
used to distinguish that dialect from others). For
example, the tweet (YJ
» @ ÉÒº

�
K ú

�
æk) is labelled as

“Iraq” in the corpus but predicted as “Saudi Ara-
bic” by our system of integrated ML technique.
In addition, we noticed that a number of tweets
contain obvious distinctive dialectal words, how-
ever, the model failed to identify the correct dialect.
This can be partially attributed to the fact that the
training data for NADI subtask 1.2 is small and for
6 out of 21 dialects, the number of training sam-
ples is less than 250. On the other hand, although
the automatically created dictionaries led to bet-
ter performance for the classical ML techniques,
these dictionaries were collected based on a small
dataset (labelled data of NADI subtask 1.2 training
corpus). The unbalanced distribution of samples
per country in the corpus led to obtaining words
with high PMI values for some Arabic dialects and
with low PMI values for others, although the words
are shared between these dialects. For example, the
word ( �

��

	
¯AÓ) is used in Egypt and Yemen, so the

PMI values between the word and the two Arabic
dialects should not be high , since it is shared be-
tween the two dialects. However, the word’s PMI
value was high with the Yemeni dialect (1.167) and
relatively low with Egyptian (0.322), because the

number of Egypt samples in the corpus is 4283
while Yemen has only 429 samples. We expect
that a large corpus with relatively even numbers of
Arabic dialect samples will result in dictionaries
with a considerable number of entries and better
PMI values.

Normalisation is one of the preprocessing steps
when building NLP applications. For dialectal Ara-
bic normalisation is a vital step that should be taken
into consideration according to the Arabic NLP
application’s needs. In order to reduce the data
sparsity and increase its accuracy, one should take
normalisation of some Arabic letters into account,
especially when building pre-trained word embed-
dings or learning them during the training process.

7 Conclusion

In this paper, we investigated the possibility of ex-
ploiting small datasets in order to build a strongly
performing ADI system, by integrating various ma-
chine learning approaches. We also created dic-
tionaries automatically based on Pointwise Mutual
Information and labelled datasets, which enriched
the feature space when training models. A semi-
supervised learning paradigm, namely co-training
was also examined as a way to leverage the large
and noisy unlabelled dialectal Arabic datasets. An-
other approach examined in this study to exploit
large unlabelled datasets was building pre-trained
word embeddings model to be used later in the
training process. Both approaches to leverage large
and noisy unlabelled data showed similar results
and performed on par. Our winning model was the
Support Vector Machine with dictionary-based fea-
tures and PMI values, achieving 18.94% macros-
average F1-score on the NADI subtask 1.2 test
set. In terms of precision, the integration method
that merged two classical machine learning algo-
rithms surpassed all models with precision equal
to 22.70%. We also concluded that pre-processing
text is a vital step before building any dialectal Ara-
bic models and needs to be further investigated to
understand its side effects and benefits.
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