
Proceedings of the Sixth Arabic Natural Language Processing Workshop, pages 208–212
Kyiv, Ukraine (Virtual), April 19, 2021.

208

QuranTree.jl: A Julia package for Quranic Arabic Corpus

Al-Ahmadgaid B. Asaad
UnionBank of the Philippines, Inc.
alahmadgaid@gmail.com

Abstract

QuranTree.jl is an open-source package for
working with the Quranic Arabic Corpus
(Dukes and Habash, 2010). It aims to pro-
vide Julia APIs as an alternative to the Java
APIs of JQuranTree. QuranTree.jl currently
offers functionalities for intuitive indexing of
chapters, verses, words and parts of words of
the Qur’an; for creating custom transliteration;
for character dediacritization and normaliza-
tion; and, for handling the Morphological Fea-
tures. Lastly, it can work well with Julia’s
TextAnalysis.jl1 and Python’s CAMeL Tools
(Obeid et al., 2020).

1 Introduction

The Quranic Arabic Corpus (Dukes and Habash,
2010) provides a complete annotation of the Mor-
phological Features of the Qur’an. These features
include part-of-speech tags, morphological seg-
ments, semantic ontology, and syntactic analysis us-
ing dependency graph. The corpus can be accessed
through either the Java package, JQuranTree, or by
downloading it as a Text (.txt) file from:

https://corpus.quran.com/

The corpus was made to produce a resource that
enables further analysis of the Qur’an, the 1,400
year old central religious text of Islam. The 77,430
words of the Qur’an form a distinct genre difficult
to compare to other texts of Arabic; and process-
ing Quranic Arabic is a unique challenge from a
computational point of view, since it differs sig-
nificantly from Modern Standard Arabic (MSA)
(Dukes and Habash, 2010).

In an effort to make the corpus accessible com-
putationally, Dukes and Habash (2010) developed
the Java package, JQuranTree. It includes APIs
for accessing and analyzing the said corpus in its

1https://github.com/JuliaText/
TextAnalysis.jl

Arabic form, through the Uthmani distribution of
the Tanzil2 project. This distribution is encoded as
a Orthographic Object Model, that is immutable
and follows the following hierarchy: Document
→ Chapter → Verse → Token → Character → Di-
acritic. The package uses extended3 Buckwalter
(Buckwalter, 2002) encoding as transliteration for
the Qur’an’s Arabic texts, whilst also offering Sim-
ple Encoding4 as another type of Arabic to Roman
mapping. Lastly, JQuranTree supports APIs for
Search and Analysis table for analyzing the corpus.

While JQuranTree provides all the fundamen-
tal functionalities for working with the corpus, it
is, however, not easily accessible to researchers
with little to no experience in programming. This
is mainly due to the programming language used
for the APIs, which is Java. Indeed, it is a pow-
erful language but is only taught to engineering
and computer science students, and rarely used
in other non-engineering or non-IT courses. As
such, it is therefore safe to assume, that most non-
engineering or non-IT researchers who started cod-
ing for their research papers, are likely to be users
of a high-level programming languages (relative to
Java), like R, Python or Julia.

High-level languages are, by design, easier to
learn compared to low-level languages. This is
because high-level languages are often, if not al-
ways, aimed at abstracting some complexities of
a low-level languages. On top of that, algorithms
and models for scientific computing are often im-
plemented in high-level programming languages.
This is the motivation of QuranTree.jl, by provid-
ing APIs on a high-level language as an alternative
module to JQuranTree’s Java APIs, without com-

2http://tanzil.net/docs/tanzil_project
3https://corpus.quran.com/java/

buckwalter.jsp
4https://corpus.quran.com/java/

simpleencoding.jsp

https://github.com/JuliaText/TextAnalysis.jl
https://github.com/JuliaText/TextAnalysis.jl
http://tanzil.net/docs/tanzil_project
https://corpus.quran.com/java/buckwalter.jsp
https://corpus.quran.com/java/buckwalter.jsp
https://corpus.quran.com/java/simpleencoding.jsp
https://corpus.quran.com/java/simpleencoding.jsp

209

promising on the speed and robustness of the latter
library.

While the availability of the Text file for the
Quranic Arabic Corpus meant that anyone can load
it into their favorite programming languages for
analysis, it requires, however, heavy text process-
ing on the Morphological Features, an advanced
task for non-engineering researchers. It is, there-
fore, part of this project to abstract these complexi-
ties by providing intuitive high-level APIs.

Lastly, the fact that there are other libraries (see
discussions in Section 2) dedicated for handling
the Quranic datasets, simply suggests that there
are growing interest for such tool, especially with
the proliferation of computational approaches to
learning from the data.

2 Related Work

There have been efforts on bringing the Qur’an
into packages of a high-level languages for accessi-
ble analyses. For R language, for example, Heiss
(2019) came up with the quRan library. The said
library provides four types of datasets encoded as
R data frames for the Qur’an: two in Arabic texts
(with and without diacritics), and two as English
translations (Saheeh International and Yusuf Ali).
Each data frame contains columns describing the
descriptive feature of the Surah or Chapter; for ex-
ample, features like Surah ID, Ayah ID, Surah Title,
etc.; and other indicator features like if a Sajdah is
obligatory for the verse, or if it is recommended.
As such, quRan lacks columns for Morphological
Features of the Qur’an, which is useful for further
analysis of the linguistic style of the said scripture.

For Python, on the other hand, Yousef et al.
(2018) came up with PyQuran, which unlike
quRan, this package provides extra utilities for
analyses. For example, APIs for character dedi-
acritization; Buckwalter transliteration; other func-
tionalities like grouping letters based on its diacrit-
ics; and, search functionalities. However, like the
quRan, PyQuran is not using the Quranic Arabic
Corpus (Dukes and Habash, 2010), and thus lack-
ing Morphological Features as well, which again
are useful for the analysis of the linguistic style of
the Qur’an, a step further than just the descriptive
part.

3 Design and Implementation

QuranTree.jl is an open-souce library consisting of
a set of Julia APIs for working with the Quranic

Arabic Corpus (Dukes and Habash, 2010), and in
this section, we are going to discuss the design and
implementation of the package.

3.1 Design Philosophy

The main philosophy on the design of the
QuranTree.jl, is to make it Julia with little-else.
That is, as much as possible the package should
only provide the nuts and bolts, so users won’t
have difficulty in learning the package and give
them the opportunity to create their own wrappers
for specific functionalities. Further, this philosophy
should also revolve around the three main design
features: speed, robustness and modularity.

3.2 Implementation

QuranTree.jl was implemented on top of Julia,
a new general-purpose programming language
with heavy emphasis on numerical and high-
performance computing (Bezanson et al., 2017).
There are several reasons as to why Julia was a
good choice for the project, all of which are geared
towards the three design features mentioned. In its
core, Julia aims to solve the two-language prob-
lem, which describes the process where high-level
languages like R and Python are often used for
prototyping, and then are rewritten to low-level lan-
guages like Java and C at the operationalization
stage, for optimal performance. In short, Julia aims
to be as fast as C but with the friendly syntax like
that of Python (or other high-level programming
languages). The choice of Julia therefore addresses
the first design principle, which is speed. Mov-
ing on, the expressive type trait of Julia makes it a
good choice for creating a robust and scalable pack-
age. Note that, the type trait of Julia is optional,
so Python and R users can easily skip it. Another
trait of Julia is Multiple-Dispatch, a feature that
enables users to create interface to other Julia li-
braries with minimal effort. This built-in feature
plus the extensive Julia’s interoperability packages
like PyCall.jl and RCall.jl, enables QuranTree.jl
to connect to other languages as well, making the
package modular.

4 Installation

QuranTree.jl is a registered Julia package with
source code available on Github5, and can be in-
stalled in the Julia REPL as follows:

5https://github.com/alstat/QuranTree.
jl

https://github.com/alstat/QuranTree.jl
https://github.com/alstat/QuranTree.jl

210

using Pkg
Pkg.add("QuranTree")

Or by pressing] in the said REPL and then enter
add QuranTree to run the installation.

5 Package Features

At the time of writing, QuranTree.jl has the follow-
ing features:

1. Indexing - Intuitive indexing for Chapters,
Verses, Words and Parts of Words.

2. Transliteration - Buckwalter (Buckwalter,
2002) as default; has function for creating
custom transliterator; and, can update translit-
eration in 1 line of code.

3. Morphological features - Complete type for
all Morphological Features and Parts of
Speech.

4. Seamless transition between Arabic and Buck-
walter (or custom transliteration).

5. Simple Encoding6

6. Character Normalization - For both Arabic
and Buckwalter (or custom transliteration).

7. Character Dediacritization - For both Arabic
and Buckwalter (or custom transliteration).

8. Utilities - Function for displaying detailed de-
scription of the Morphological Features.

9. Modularity and Type-Safe - Can easily inter-
operate with Python (using PyCall.jl) and R
(using RCall.jl) for packages that are not yet
in Julia; Type-safe like JQuranTree.

10. Others - Read-only array for raw datasets
(Quranic Arabic Corpus and Tanzil7 Data).

In the following subsections, we will discuss
how the design principles (robustness, modularity,
and speed) are implemented in the package.

6https://corpus.quran.com/java/
simpleencoding.jsp

7http://tanzil.net/docs/tanzil_project

5.1 Robustness: Morphological Features
Among the main efforts in the Quranic Arabic Cor-
pus project, is the morphological annotation of the
Qur’an down to the level of every part of every
word. The definition for the tags of the Morpho-
logical Features are detailed in Dukes and Habash
(2010), including the tags for Parts of Speech. In
QuranTree.jl, all tags from the said article are de-
fined as Julia’s immutable structs. For example,
the type for Indicative and Subjunctive Verb fea-
tures are express as part of a hierarchy of types
shown in Figure 1. This hierarchy of types allows
users to create methods for particular type or group
of types. For example, methods for the parent type
AbstractVerb are shared across all Verb types un-
der it.

Figure 1: QuranTree.jl’s Verb Mood Type Hierarchy.

These type hierarchy are useful for searching
or filtering the corpus based on the Morphological
Features as will be shown later. The Morphological
Features in its raw form is a String that looks like
this:

"STEM|POS:N|LEM:{som|ROOT:smw|M|GEN"

QuranTree.jl’s parse(Features, x) parses
String x into a Morphological Features object with
Features as its type. This parsed input will have
methods for processing the morphological annota-
tions. For example, to check whether the parsed fea-
tures is a particular Part of Speech, is done through
the method isfeature(parsed x, Masculine),
which checks whether the parsed features contains
Masculine as part of the description of the token.

The expressive type system for the Morpholog-
ical Features of the QuranTree.jl, allows users to
create robust wrappers based on these types – some-
thing that is lacking in other high-level languages
like R and Python, where both have the risks of

https://corpus.quran.com/java/simpleencoding.jsp
https://corpus.quran.com/java/simpleencoding.jsp
http://tanzil.net/docs/tanzil_project

211

accepting any input to any defined wrappers or
functions due to lack of type capabilities, out-of-
the-box.

5.2 Modularity: Working with NLP packages

In studying the linguistic style of the Qur’an,
computationally, researchers are expected to use
some Natural Language Processing algorithms.
QuranTree.jl was designed to be as modular as pos-
sible to existing NLP toolkits both in Julia and other
programming languages. Succeeding subsections
will illustrate how to use QuranTree.jl with Julia’s
leading NLP toolkit (TextAnalysis.jl8), and how it
interoperate with recently released Python’s lead-
ing (in terms of features) Universal Arabic NLP
toolkit, the CAMeL Tools (Obeid et al., 2020).

5.2.1 TextAnalysis.jl
TextAnalysis.jl is the leading (in terms of features)
library for analyzing texts in Julia. It offers util-
ities for basic NLP modeling but with close in-
tegration to Flux.jl (Innes, 2018) — Julia’s lead-
ing (in terms of popularity) Deep Learning library.
TextAnalysis.jl is specifically useful for creating
feature matrix that can later be used as input to any
Machine Learning models. An example of this, is
on applying TextRank on summarizing Qur’an’s
Chapter 18 (The Cave) detailed in QuranTree.jl’s
documentation9. TextAnalysis.jl, however, was
built for general text analyses, and working with
specific feature of a language is obviously a limita-
tion. For example in Arabic, disambiguation of all-
consonants token is a problem in itself, which does
not occur in English (default language assumed in
TextAnalysis.jl) or other non-Semitic languages.

5.2.2 CAMeL Tools
At the time of writing, by far, the first package to
offer toolkit for Universal Arabic NLP in terms of
features, is the project from New York University
Abu Dhabi, known as the CAMeL Tools (Obeid
et al., 2020). The said library is written in Python,
and offers a suite of tools for handling and mod-
eling Arabic texts. For example, it has methods
for analyzing, generating and reinflecting a given
Morphological Features of a token. The said pack-
age has functions for the following: Disambiguator,
Tagger, Tokenizers, Dialectic Identification, Senti-

8https://github.com/JuliaText/
TextAnalysis.jl

9https://alstat.github.io/QuranTree.
jl/dev/man/nlp/text_summarization/

ment Analysis and Named Entity Recognization.
All tailored specifically for Arabic language.

QuranTree.jl can take advantage of the Python
APIs available in CAMeL Tools. This is possible
with the extensive list of Julia’s interoperation li-
braries to other languages, including Python via
the package PyCall.jl. As an example, Figure 2 il-
lustrates the disambiguation of a dediacritized bas-
mala. In this figure, CAMeL APIs work seamlessly
in Julia, specifically with QuranTree.jl’s APIs like:
dediac, encode and normalize.

Figure 2: CAMeL Tools’ disambiguation on dedia-
critized basmala.

As shown in the figure, the simplicity of the
@pyimport macro enables users to use Python APIs
with little boilerplate. Further, this seamless inter-
operability allows QuranTree.jl to be modular since
Julia APIs can now work well with Python APIs
from the CAMeL Tools.

Needless to say, all other functionalities in
CAMeL Tools not illustrated here are also accessi-
ble to QuranTree.jl.

5.3 Speed: Experiment
Finally, for the third design feature, we attempt
to compare CAMeL Tools’ APIs on translitera-
tion and dediacritization against the QuranTree.jl’s
APIs. The task is to transliterate the Uthmani Cor-
pus to Buckwalter, then dediacritized, then encode
again to its Arabic form. The task was replicated

https://github.com/JuliaText/TextAnalysis.jl
https://github.com/JuliaText/TextAnalysis.jl
https://alstat.github.io/QuranTree.jl/dev/man/nlp/text_summarization/
https://alstat.github.io/QuranTree.jl/dev/man/nlp/text_summarization/

212

for 16 times and summarized into the following
table:

Metric CAMeL Tools QuranTree.jl

Min 342.3ms 418.3ms
Mean 352.4ms 434.9ms

Median 350.6ms 436.2ms
Max 375.6ms 452.7ms

Table 1: Speed of CAMeL Tools vs QuranTree.jl in
milliseconds (ms).

While QuranTree.jl is aimed at speed, at the time
of writing, the transliteration and dediacritization
APIs are not well optimized compared to that of
CAMeL Tools, as evident in the table. Indeed, this
optimization is still a work-in-progress.

6 Conclusion and Future Work

In conclusion, QuranTree.jl provides the nuts and
bolts for doing Arabic text analysis for the Quranic
Arabic Corpus in Julia, with the main advantage of
being able to work seamlessly with existing Julia’s
general NLP toolkit, TextAnalysis.jl; and seam-
lessly interoperate with other packages outside Ju-
lia, like CAMeL Tools. This modularity has in-
deed been part of the main design principles of the
package, along with the robustness provided by the
expressive type system of Julia, and of course the
inherited speed – still a work-in-progress for the
package.

There are still room for improvements, however,
given the fact that QuranTree.jl was just recently
added to Julia’s package registry, at the time of writ-
ing. Among the future works, the first one is the
standardization of the mappings for dediacritiza-
tion and normalization functionalities. Specifically,
to align QuranTree.jl to JQuranTree and CAMeL
Tools to avoid confusion and unnecessary adjust-
ments; second, the binary encoding of the Text
(.txt) files of the raw data in the backend; third, the
development of a pure Julia library for Universal
Arabic NLP, with close integration to QuranTree.jl.
This is a huge effort but will indeed complete the
Arabic NLP toolkit for Julia; and lastly, any sugges-
tions to further improve the package are welcome,
simply open an issue in the Github repository10.

10https://github.com/alstat/QuranTree.
jl

References
Jeff Bezanson, Alan Edelman, Stefan Karpinski, and

Viral B Shah. 2017. Julia: A fresh approach to nu-
merical computing. SIAM review, 59(1):65–98.

Tim Buckwalter. 2002. Buckwalter arabic morpholog-
ical analyzer version 1.0. Linguistic Data Consor-
tium, University of Pennsylvania.

Kais Dukes and Nizar Habash. 2010. Morphological
annotation of quranic arabic. In Proceedings of the
International Conference on Language Resources
and Evaluation, LREC 2010, 17-23 May 2010, Val-
letta, Malta. European Language Resources Associ-
ation.

Andrew Heiss. 2019. andrewheiss/quran: Initial cran
release.

Mike Innes. 2018. Flux: Elegant machine learn-
ing with julia. Journal of Open Source Software,
3(25):602.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash.
2020. CAMeL tools: An open source python toolkit
for Arabic natural language processing. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 7022–7032, Marseille, France.
European Language Resources Association.

Waleed A. Yousef, Taha M. Madbouly, Omar M.
Ibrahime, Ali H. El-Kassas, Ali O. Hassan, and
Abdallah R. Albohy. 2018. Pyquran: The
python package for quranic analysis. https://hci-
lab.github.io/PyQuran-Private.

https://github.com/alstat/QuranTree.jl
https://github.com/alstat/QuranTree.jl
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
http://www.lrec-conf.org/proceedings/lrec2010/summaries/276.html
http://www.lrec-conf.org/proceedings/lrec2010/summaries/276.html
https://doi.org/10.5281/zenodo.2531792
https://doi.org/10.5281/zenodo.2531792
https://doi.org/10.21105/joss.00602
https://doi.org/10.21105/joss.00602
https://www.aclweb.org/anthology/2020.lrec-1.868
https://www.aclweb.org/anthology/2020.lrec-1.868

