
Proceedings of the 8th VarDial Workshop on NLP for Similar Languages, Varieties and Dialects, pages 128–134
April 20, 2021 ©2021 Association for Computational Linguistics

128

N-gram and Neural Models for Uralic Language Identification: NRC at
VarDial 2021

Gabriel Bernier-Colborne, Serge Léger, Cyril Goutte
National Research Council Canada

{Gabriel.Bernier-Colborne, Serge.Leger, Cyril.Goutte}@nrc-cnrc.gc.ca

Abstract

We describe the systems developed by the Na-
tional Research Council Canada for the Uralic
language identification shared task at the 2021
VarDial evaluation campaign. We evaluated
two different approaches to this task: a prob-
abilistic classifier exploiting only character 5-
grams as features, and a character-based neural
network pre-trained through self-supervision,
then fine-tuned on the language identification
task. The former method turned out to per-
form better, which casts doubt on the useful-
ness of deep learning methods for language
identification, where they have yet to convinc-
ingly and consistently outperform simpler and
less costly classification algorithms exploiting
n-gram features.

1 Introduction

The goal of the Uralic language identification (ULI)
shared task at VarDial 2021 (Chakravarthi et al.,
2021) was to identify and discriminate 29 Uralic
language varieties, among a total of 178 language
varieties from various families, given a short text
(typically a sentence). This was a re-run of the ULI
task at VarDial 2020 (Găman et al., 2020).

We experimented with two different approaches
to the ULI task. The first is a probabilistic classi-
fier that exploits only character 5-grams as fea-
tures. The second is a deep learning approach
based on character embeddings and a transformer
network (Vaswani et al., 2017), which is first pre-
trained through self-supervision, then fine-tuned on
the ULI task, in a similar fashion to BERT (Devlin
et al., 2019).

This second approach is essentially an improved
version of the one developed by the NRC team
for the first run of the ULI task (Bernier-Colborne
and Goutte, 2020). By improving the sampling
functions used to sample training and evaluation
data, and making a few other small changes to the

model, we were able to achieve much better results.
However, our best results were achieved using the
simpler approach, based on character 5-grams.

In this paper, we explain these two approaches
to language identification and compare the results
obtained on the ULI task.

2 Data and Task Definition

The ULI data and task are described by Jauhiainen
et al. (2020). The goal of the task is to identify
the language of a short text, typically a single sen-
tence. If more than one language is used (e.g. code
switching), the main language must be identified.

This was a closed task, so the only data that
could be used was the training set provided. The
data contain both relevant and non-relevant lan-
guages. The 29 relevant languages are part of the
Uralic group of languages, spoken mainly in north-
ern Eurasia. Some are very under-resourced, and
some are already extinct. Besides these, there are
149 non-relevant languages, belonging to various
language families. These include the three largest
Uralic languages, i.e. Estonian, Finnish, and Hun-
garian. In total, the data covers 178 language vari-
eties, which is the highest number covered so far
in a language identification shared task.

The training set contains 646,043 examples for
the relevant languages and 63,772,445 examples
for the non-relevant ones. So there is about 100
times more data for the non-relevant languages, and
there are 5 times more non-relevant languages than
relevant ones, therefore the number of examples is
about 20 times greater for non-relevant languages,
on average. Both parts of the training set are highly
unbalanced. The class frequencies of relevant lan-
guages range from 19 to 214,225, and those of
non-relevant ones range from 10,000 to 3,000,000.

The task was divided into three tracks, the differ-
ence being the way in which the evaluation metric



129

is computed. For tracks 1 and 2, the evaluation met-
rics are the macro-averaged F1 and micro-averaged
F1 respectively, and it only considers examples
where either the predicted label or the true label
is a relevant language. For track 3, the metric is
macro-averaged F1, computed over all examples.

Some of the challenges of this task were high-
lighted by Bernier-Colborne and Goutte (2020) and
Jauhiainen et al. (2020). These include: the pres-
ence of low-resource and closely-related language
varieties; the large size of the training set; the large
and complex class imbalances in the training set;
and the absence of an official development set,
which, while a valid design choice for this com-
petition, added a degree of complexity.

3 Models

We evaluated two approaches to this task, which
we describe in this section.

3.1 Probcat

The first approach employs a probabilistic clas-
sifier (Gaussier et al., 2002), that we call Prob-
cat, which we trained using character 5-grams as
features. The classifier is similar to multinomial
Naive Bayes except that it does not assume that
all n-grams in a given text are generated from a
single class. It has been used in the past to obtain
state-of-the-art results on language identification
tasks (Goutte and Léger, 2016) . For more details
on this classification algorithm, refer to Goutte et al.
(2014, Sec. 2.2).

For reference, running inference on the official
test, which contains over 1.5 million examples,
takes about four and a half hours using four In-
tel Xeon CPUs @ 2.6 GHz, and could be reduced
by using more CPUs. Training takes about five and
a half hours. Memory requirement is below 32 GB.

3.2 Transformer

The second approach is a deep learning approach,
which the NRC team has previously applied, with
very different levels of success, to Cuneiform
language identification (Bernier-Colborne et al.,
2019) and Uralic language identification (Bernier-
Colborne and Goutte, 2020). In the former case,
it produced a winning submission, whereas in the
latter, it was well under the baseline, because of
a flaw in the methods used to sample training and
evaluation data.

The model is a deep neural network which takes

sequences of characters as input. Characters are
embedded and fed through a stack of bidirectional
transformers (Vaswani et al., 2017), which encodes
the sequence. The output of this encoder is a se-
quence of hidden state vectors (one per input char-
acter), which is then fed to various output heads (or
modules) during training.

The model is trained in two stages: self-
supervised pre-training on a masked language mod-
eling (MLM) task (Devlin et al., 2019), followed
by supervised fine-tuning on the target task, i.e.
language identification. For MLM, the objective
is to predict one or more randomly chosen charac-
ters in the input sequence, which are replaced with
a special masking symbol before the embedding
stage. This produces a model that can predict char-
acters in context for any of the languages used for
training, and must therefore have learned some of
the specific surface regularities of each. The output
head for this task is a softmax over the vocabulary
(or alphabet), which takes as input the encoding
(i.e. final hidden state) of a masked character, and
the loss is cross-entropy.

After pre-training, we fine-tune for language
identification by keeping the pre-trained encoder,
discarding the MLM head, and replacing it with a
head containing: an average pooling layer, that
averages the final hidden states of the encoder
to produce a fixed-length encoding of the sen-
tence (Reimers and Gurevych, 2019); followed by
a relu activation; and finally a softmax over the 178
languages. Again, the loss is cross-entropy.

The vocabulary (or alphabet) contains every char-
acter that appears more than once in the training
portion of the train/dev/test split we created (see
Section 4.1). Characters that are not in this vocab
are replaced with a special symbol reserved for
unknown characters, before the encoding stage.

The hyperparameter settings we used largely fol-
low the recommendations of Devlin et al. (2019),
except that we use fewer layers than their base
architecture (to reduce training time and memory
requirements):

• Nb transformer layers: 8

• Nb attention heads: 12

• Hidden layer size: 768

• Feed forward/filter size: 3072

• Hidden activation: gelu



130

• Dropout probability: 0.1

• Optimizer: Adam

• Learning rate (pre-training): 1e-4

• Nb steps (pre-training): 1M

• Warmup steps (pre-training): 10K

• Batch size (pre-training): 64

• Maximum input length (pre-training): 128

• Learning rate (fine-tuning): 1e-5

• Batch size (fine-tuning): 32

• Maximum input length (fine-tuning): 256

During pre-training, examples were sampled
from our training set using the frequency-based
sampling function described by Bernier-Colborne
and Goutte (2020). We refer the reader to this
paper for the full equations. In essence, we com-
pute the relative frequencies of relevant and non-
relevant languages separately, damp each of the
two resulting distributions using exponent α, mul-
tiply the distribution of relevant languages by co-
efficient γ, then combine the two distributions and
re-normalize. We arbitrarily set α = 1 and γ = 1,
which means that relevant and non-relevant exam-
ples are sampled in approximately equal proportion,
so the relevant languages will end up being sampled
about 5 times more frequently than non-relevant
ones, on average, as there are about 5 times fewer
relevant languages.

During fine-tuning, we experimented with vari-
ous functions to sample the labeled training exam-
ples from the training set, including this frequency-
based function. The other functions we experi-
mented with were:

• Class-wise uniform sampling

• Accuracy-based sampling using a dynamic
estimate of class-wise accuracy. We tested
two different functions to estimate this,
both based on the same score, which is the
class-wise, one-vs-rest binary accuracy on
the dev set. If we call the set of class-wise
scores m, then the two functions we tested
to compute sampling probabilities can be
formulated as follows:

pinv(mi) =
1−mi∑
j(1−mj)

prank(mi) =
rank(mi,m)∑
j rank(mj ,m)

where rank(mi,m) returns the rank of mi.

During fine-tuning, the maximum input length
was increased to 256; the extra position embed-
dings are still randomly initialized at this point, and
are learned during fine-tuning. To reduce useless
computation, rather than padding or truncating all
sequences in a given batch to the maximum length
of 256, we pad or truncate them to the length of
the longest sequence in the batch. This change re-
duced computation time significantly with respect
to our previous implementation, as the vast major-
ity (over 99%) of examples in the ULI training data
are shorter than 256 characters.

Our code, which exploits the Transformers
library by HuggingFace (Wolf et al., 2020),
is available is at https://www.github.com/

gbcolborne/vardial2021.
All experiments were conducted on a single GPU

with 12 GB of memory. Inference on the official
test set takes about 70 minutes using a v100. Pre-
training took about 10 days, and we fine-tuned for
about 3 days.

4 Experiments

To evaluate and optimize our two approaches, we
first had to create a development set, as none was
provided for this shared task, as mentioned in Sec-
tion 2.

4.1 Making a Development Set
To sample our development sets, we used the
frequency-based sampling function described in
Section 3.2, with α = 1 and γ = 1, to sample a
‘dev’ set containing 20,000 examples and a ‘dev-
test’ set containing 100,000 examples. The idea
was to use the dev set to tune the hyperparameters
of the models, then use the dev-test set to get an
unbiased estimate of the accuracy of the fully tuned
models. However, due to time constraints, in the
case of the transformer model, we ended up adding
the dev-test set to the training set, and using the
dev set for model selection. We will come back to
this in the following section.

4.2 Model Selection
To optimize Probcat, we compared 4 different n-
gram lengths, from 2 to 5. The models were trained

https://www.github.com/gbcolborne/vardial2021
https://www.github.com/gbcolborne/vardial2021


131

on our training set and evaluated on both our de-
velopment sets. Results showed that 5-grams pro-
duced the best results, as shown in Table 1. Note
that after the official evaluation, we tried combin-
ing various n-gram lengths, but did not observe any
improvements on our development sets.

n
Track 1 Track 2 Track 3

Dev Test Dev Test Dev Test
2 0.760 0.763 0.769 0.774 0.766 0.743
3 0.917 0.844 0.941 0.936 0.912 0.890
4 0.960 0.916 0.973 0.970 0.939 0.929
5 0.963 0.936 0.978 0.976 0.951 0.943

Table 1: F-scores of Probcat on dev and dev-test sets,
with respect to n-gram length (n).

We made a single submission using this ap-
proach, using only 5-grams as features. The entire
training set was used to train the classifier for this
submission.

As for the transformer model, we conducted var-
ious experiments involving: optimizing the archi-
tecture (e.g. replacing the tanh activation in the
pooling layer with a relu activation); developing
better sampling functions for training; and tuning
a few hyperparameters, such as the learning rate
and batch size. We will not present the full results
of these experiments here, because of their ad hoc
nature.

We ended up making a first set of two submis-
sions, and a final set of four submissions. As the
results of the latter were better, we will not go into
the model selection tests that led to the first set of
submissions.

For our final model selection experiment, we
decided to add the dev-test set to the training set
(for lack of time to re-train models on the entire
training set), and rely on the dev set evaluation to
select models. Note that, because of this reason,
the results of these tests are not directly comparable
to the dev scores of Probcat.

We focused on the sampling function used to
fine-tune the model, and compared the functions
described in Section 3.2:

• Frequency-based sampling, with a few differ-
ent values of α and γ, i.e. (α = 1, γ = 1),
(α = 0.75, γ = 1), and (α = 0.75, γ = 0.5).

• Uniform sampling.

• Accuracy-based sampling, using either pinv
or prank to convert class-wise dev-scores to

sampling probabilities.

We compared a couple different learning rates
(i.e. 3e-6 and 1e-5). Models were fine-tuned for
a maximum of 820K steps, and validated every
20K steps, with early stopping on the dev set, us-
ing either the track 1 or track 3 score as stopping
criterion.

Sampling Track 1 Track 2 Track 3
Frequency 0.977 0.989 0.978
Uniform 0.973 0.986 0.969
Acc. (pinv) 0.974 0.988 0.977
Acc. (prank) 0.975 0.987 0.974

Table 2: Best F-scores of transformer model on dev set,
with respect to sampling function.

The results, summarized in Table 2, suggested
frequency-based sampling worked best, but all
sampling functions achieved high scores, with
accuracy-based sampling working slightly better
than uniform sampling. The optimal learning rate
was 1e-5.

We submitted four runs, two of which were tuned
(in terms of the sampling function and early stop-
ping) to track 1, and two of which were tuned to
track 3:

• Track 1, run 1: frequency-based sampling
(with α = 0.75, γ = 0.5), early stopped for
track 1.

• Track 1, run 2: accuracy-based sampling (with
prank), early stopped for track 1.

• Track 3, run 1: frequency-based sampling
(with α = 0.75, γ = 0.5), early stopped for
track 3.

• Track 3, run 2: accuracy-based sampling (with
pinv), early stopped for track 3.

5 Official Results

The scores of our best runs on the official test set are
shown in Table 3. The baseline scores were com-
puted using the HeLI method (Jauhiainen et al.,
2017). Probcat was the only system to beat the
baseline on track 2, and one of two systems that
beat the baseline on track 1 (along with an ensem-
ble of SVM and naive Bayes models exploiting 3-,
4-, and 5-grams, which scored 0.809 on track 1, but
only 0.593 on track 2 according to the leaderboard1

1http://urn.fi/urn:nbn:fi:
lb-2020102201

http://urn.fi/urn:nbn:fi:lb-2020102201
http://urn.fi/urn:nbn:fi:lb-2020102201


132

at the time of writing). The baseline on track 3 has
yet to be beaten.

Our results using the transformer model are com-
petitive on tracks 2 and 3, but less so on track 1,
which focuses on the macro-averaged F-score on
relevant languages.

System Track 1 Track 2 Track 3
Baseline 0.800 0.963 0.925
Probcat 0.814 0.967 0.908
Transformer 0.743 0.953 0.904

Table 3: F-scores of our best runs and the baseline sys-
tem (i.e. HeLI) on the offical test set.

The scores of our final 4 runs of the transformer
model are shown in Table 4.

Run Track 1 Track 2 Track 3
Track 1, run 1 0.718 0.928 0.898
Track 1, run 2 0.737 0.953 0.904
Track 3, run 1 0.743 0.928 0.899
Track 3, run 2 0.615 0.830 0.784

Table 4: F-scores of our 4 final runs of the transformer
model on the offical test set.

These results suggest our development sets were
not very good estimators for model selection, as a
model that we (slightly) tuned for track 1 was best
on tracks 2 and 3, whereas a model we tuned for
track 3 was best on track 1. If we check how many
training steps each of the four models did before
early stopping, we see that the model that stopped
earliest produced the poorest results on the test set:

• Track 1, run 1: step 649375

• Track 1, run 2: step 651875

• Track 3, run 1: step 726875

• Track 3, run 2: step 590625

We also see that the model that stopped the latest
produced the best results on track 3; since the batch
size was 32, that model observed about 23 million
samples from the training set (including duplicate
samples from rare classes), which is less than the
total number of available training samples. Given
these observations, it seems likely that we could
have obtained better results by fine-tuning longer.
Other ways of improving the accuracy of this model
include: trying multiple random initializations; ex-
ploring the hyperparameter space more extensively

or efficiently; fine-tuning on the complete training
set; or adapting the model to the unlabeled test
examples (e.g. through self-supervised MLM or
self-training on the language identification task).

We could not conduct extensive error analysis
because we did not have access to the test labels at
the time of writing, but we did inspect the predic-
tions of our systems to try to gain insights on their
behaviour or the properties of the data.

If we look at the cumulative predicted frequency
of the 29 relevant languages, we find that Probcat
predicted a relevant language for 21,051 or 1.4%
of the 1,510,315 test cases. Since Probcat achieved
0.967 on track 2, this must be very close to the
actual number of relevant examples in the test set.
Thus, the distribution of relevant vs. non-relevant
examples is very different than the one we assumed
when we constructed our dev set. Furthermore, the
worst of our four transformer runs seems to have
over-detected relevant examples, as it predicted a
relevant language for 27,901 test cases.

If we look at the top off-diagonal values in the
confusion matrix between Probcat and our best
transformer run (i.e. track 1, run 2, which per-
formed best overall) for all 178 languages, assum-
ing Probcat’s predictions as ground truth (as it per-
formed better), we find that the 10 most frequently
confused pairs (Probcat prediction, transformer pre-
diction) are:

1. Indonesian, Sundanese (10110)

2. Tatar, Bashkir (9897)

3. Indonesian, Wu Chinese (6184)

4. Indonesian, Standard Malay (5957)

5. Javanese, Sundanese (5550)

6. Croatian, Bosnian (5312)

7. Mandarin Chinese, Wu Chinese (4453)

8. Japanese, Wu Chinese (4136)

9. Iranian Persian, Pushto (3806)

10. Italian, Lombard (2574)

These contain pairs that are notoriously hard to
distinguish, e.g. Croatian and Bosnian.

If we restrict this analysis to pairs involving a
relevant language, we find that the top 10 most
confused pairs are:



133

1. Standard Estonian, Võro (467)

2. Võro, Standard Estonian (388)

3. Standard Estonian, Veps (86)

4. Finnish, Tornedalen Finnish (51)

5. Ludian, Veps (44)

6. Ludian, Livvi (43)

7. Tornedalen Finnish, Finnish (35)

8. Russian, Eastern and Meadow Mari (32)

9. Haitian, Veps (31)

10. Finnish, Võro (15)

Note that several of these involve a non-relevant
Uralic language, i.e. Standard Estonian or Finnish,
which raises the question as to whether the Stan-
dard Estonian and Finnish training corpora contain
noisy examples actually belonging to a relevant,
low-resource language variety.

We manually inspected some of the test cases
for which Probcat predicted a language that we
understand, i.e. English, and looked for potential
sources of errors. Without access to the gold labels,
we could not glean much, but we did observe ex-
amples where English is used within sentences that
are mainly in another language:

• Kanta horien artean ezagunenak "Cocaine",
"After Midnight", "Call Me the Breeze",
"Travelling Light" eta "Sensitive Kind" dira.

• 外国人以为皮蛋要腌交关年，所以叫
渠Century egg（世纪蛋）。

And examples that are not in Standard English,
but a closely related language or variety:

• The GT wis sauld alangside the GTi for a few
months, but wis eventually phased oot.

• The population increased frae 76,254 inhabi-
tants (1992 census) tae 77,566 (2001 census),
an increase o 1.7 %.

• Ships o the Hudson’s Bay Company wur reg-
ular visitors, as wur whalin fleets.

We plan on conducting a more extensive error
analysis once the gold labels of the test set are made
available.

6 Related Work

Thorough surveys of research on language identi-
fication are provided by Jauhiainen et al. (2019)
and Zampieri et al. (2020). Language identification
is one of the few tasks in natural language pro-
cessing where deep learning methods have yet to
provide convincing gains in accuracy or robustness.
Simpler classifiers based on character n-grams con-
tinue to provide state-of-the-art results on many
benchmarks. The winning submission by the NRC
team to the Cuneiform language identification task
at VarDial 2019 was the first time a neural sys-
tem was ranked first on a language identification
shared task (Zampieri et al., 2019). That task in-
volved 7 language varieties, and less complex class
imbalances. The results of this Uralic language
identification shared task cast doubt on whether a
character-based deep neural network can advance
the state of the art in settings more representative of
real-world applications of language identification,
such as crawling the web to automatically compile
monolingual corpora for low-resource languages.

7 Conclusion

For the Uralic language identification shared task
at the 2021 VarDial evaluation campaign, the
NRC team evaluated two different approaches: a
probabilistic classifier exploiting only character 5-
grams as features, and a character-based neural
network pre-trained through self-supervision, then
fine-tuned on the language identification task. The
former method ended up being ranked first on two
of the three tracks, and outperformed our neural
approach on all three tracks. We do not exclude
the possibility that deep learning approaches could
improve accuracy or robustness on this task, but
the results we were able to obtain within the lim-
ited time constraints of this shared task suggest that
the simpler, n-gram based approach is still a very
strong baseline.

Acknowledgments

We thank the organizers for their work developing
and running this shared task.

References
Gabriel Bernier-Colborne and Cyril Goutte. 2020.

Challenges in neural language identification: NRC
at VarDial 2020. In Proceedings of the 7th Work-
shop on NLP for Similar Languages, Varieties and

https://www.aclweb.org/anthology/2020.vardial-1.26
https://www.aclweb.org/anthology/2020.vardial-1.26


134

Dialects, pages 273–282, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics (ICCL).

Gabriel Bernier-Colborne, Cyril Goutte, and Serge
Léger. 2019. Improving cuneiform language iden-
tification with BERT. In Proceedings of the Sixth
Workshop on NLP for Similar Languages, Varieties
and Dialects, pages 17–25, Ann Arbor, Michigan.
Association for Computational Linguistics.

Bharathi Raja Chakravarthi, Mihaela Găman, Radu Tu-
dor Ionescu, Heidi Jauhiainen, Tommi Jauhiainen,
Krister Lindén, Nikola Ljubešić, Niko Partanen,
Ruba Priyadharshini, Christoph Purschke, Eswari
Rajagopal, Yves Scherrer, and Marcos Zampieri.
2021. Findings of the VarDial Evaluation Campaign
2021. In Proceedings of the Eighth Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL, pages 4171–
4186.

Eric Gaussier, Cyril Goutte, Kris Popat, and Francine
Chen. 2002. A hierarchical model for clustering and
categorising documents. In Proceedings of the 24th
BCS-IRSG European Colloquium on IR Research:
Advances in Information Retrieval, pages 229–247.
Springer-Verlag.

Cyril Goutte and Serge Léger. 2016. Advances in
Ngram-based Discrimination of Similar Languages.
In Proceedings of the Third Workshop on NLP
for Similar Languages, Varieties and Dialects (Var-
Dial3), pages 178–184, Osaka, Japan.

Cyril Goutte, Serge Léger, and Marine Carpuat. 2014.
The NRC system for discriminating similar lan-
guages. In Proceedings of the First Workshop on
Applying NLP Tools to Similar Languages, Varieties
and Dialects (VarDial), pages 139–145, Dublin, Ire-
land.

Mihaela Găman, Dirk Hovy, Radu Tudor Ionescu,
Heidi Jauhiainen, Tommi Jauhiainen, Krister
Lindén, Nikola Ljubešić, Niko Partanen, Christoph
Purschke, Yves Scherrer, and Marcos Zampieri.
2020. A Report on the VarDial Evaluation Cam-
paign 2020. In Proceedings of the Seventh Work-
shop on NLP for Similar Languages, Varieties and
Dialects (VarDial).

Tommi Jauhiainen, Heidi Jauhiainen, Niko Partanen,
and Krister Lindén. 2020. Uralic Language Identifi-
cation (ULI) 2020 shared task dataset and the Wanca
2017 corpus. In Proceedings of the Seventh Work-
shop on NLP for Similar Languages, Varieties and
Dialects (VarDial), pages 688–698.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2017. Evaluating HeLI with non-linear map-
pings. In Proceedings of the Fourth Workshop on

NLP for Similar Languages, Varieties and Dialects
(VarDial), pages 102–108, Valencia, Spain.

Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Tim-
othy Baldwin, and Krister Lindén. 2019. Automatic
Language Identification in Texts: A Survey. Journal
of Artificial Intelligence Research, 65:675–782.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
HuggingFace’s Transformers: State-of-the-art natu-
ral language processing.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
Tanja Samardžić, Francis Tyers, Miikka Silfverberg,
Natalia Klyueva, Tung-Le Pan, Chu-Ren Huang,
Radu Tudor Ionescu, Andrei Butnaru, and Tommi
Jauhiainen. 2019. A Report on the Third VarDial
Evaluation Campaign. In Proceedings of the Sixth
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial). Association for Computa-
tional Linguistics.

Marcos Zampieri, Preslav Nakov, and Yves Scherrer.
2020. Natural language processing for similar lan-
guages, varieties, and dialects: A survey. Natural
Language Engineering, 26(6):595–612.

https://doi.org/10.18653/v1/W19-1402
https://doi.org/10.18653/v1/W19-1402
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

