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Abstract

In this report, we describe our Transformers
for text classification baseline (TTCB) submis-
sions to a shared task on implicit and under-
specified language 2021. We cast the task
of predicting revision requirements in collab-
oratively edited instructions as text classifica-
tion. We considered Transformer-based mod-
els which are the current state-of-the-art meth-
ods for text classification. We explored differ-
ent training schemes, loss functions, and data
augmentations. Our best result of 68.45% test
accuracy (68.84% validation accuracy), how-
ever, consists of an XLNet model with a linear
annealing scheduler and a cross-entropy loss.
We do not observe any significant gain on any
validation metric based on our various design
choices except the MiniLM which has a higher
validation F1 score and is faster to train by a
half but also a lower validation accuracy score.

1 Introduction

A shared task on implicit and underspecified lan-
guage 2021 is the first installment of predicting
revision requirements in collaboratively edited in-
structions (Bhat et al., 2020) based on the wikiHow-
ToImprove dataset (Anthonio et al., 2020). The
dataset consists of sentences and their revisions if
any. There are 5 rule-based revision types which
are pronoun replacement, ‘do’ verb replacement,
verbal phrase compliment insertion, adverbial and
adjectival modifier insertion, and logical quantifier
or modal verb insertion. The task is to determine
whether a given sentence with its corresponding
context paragraph needs any revision based on the
aforementioned revision types.

Previous work (Bhat et al., 2020) compares
BERT (Devlin et al., 2019) and BiLSTM on the full
wikiHowToImprove dataset which has 2.7 millions
sentences. The previous experiment integrates 4.25
millions of unrevised sentences from wikiHow to

Table 1: Example instances from the wikiHowToIm-
prove dataset. The first sentence does not require any
revision. The second sentence needs a revision by re-
placing the pronoun ‘They’ with the word ‘Meeting’ to
provide more clarity.

Sentence Label
Do not pour the petals KEEP UNREVIS
in the perfume on storing .
They also give managers REQ REVISION
the opportunity to tell
everyone the same thing
at once , which can
cut down on gossip .

further balance the training set. Their results sug-
gest BERT over BiLSTM. Our systems build upon
this finding and further explore Transformer-based
models.

The codes for our systems are open-sourced and
available at our GitHub repository1.

2 Models

2.1 XLNet

XLNet (Yang et al., 2019) is the current state-of-
the-art for text classification on various benchmarks
such as DBpedia, AG, Amazon-2, and Amazon-5.
XLNet is an autoregressive Transformer language
model which further explores longer context mod-
eling to capture long-term dependencies between
words. We consider the HuggingFace Transformer
library (Wolf et al., 2020) for our experiments on
XLNet.

2.2 Siamese training

Siamese model training (Bromley et al., 1993) is
an off-the-shelf neural-networks training paradigm
that learns similarity embedding for verification
by using two identical neural networks to extract

1https://github.com/perathambkk/unimplicit shared task acl 2021

https://github.com/perathambkk/unimplicit_shared_task_acl_2021
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Figure 1: The distribution of the input length de-
rived from the shared task training set.

feature vectors for a threshold-based input pair
comparison. The model is learned from the signal
whether an input pair is similar or dissimilar. This
approach has been shown in various settings to pro-
duce a good vector embedding space. We consider
the sentence-Transformers library (Reimers and
Gurevych, 2019) for our experiments on Siamese
training.

3 Experimental Setup

Our input is a simple concatenation of a sentence
and its context paragraph. We tried different con-
text lengths and found that 128 yields the best re-
sult. From Figure 1, the mean input length is only
62.58 with the standard deviation of 36.00. This
is from the shared task dataset which is the subset
of the original wikiHowToImprove dataset and has
45,909 sentences in total (39,187 sentences in the
training set.). The statistics suggest setting the con-
text length less than 200 to be cost-effective and
there are only 1,632 training instances (around 4%)
having their input lengths longer than 128 with the
maximum length of 770.

All of our experiments were done in the Google
Colab setting. We used only base models for all
Transformers. We used the batch size of 8 and
the learning rate of 1e-5 for all experiments. We
considered linear annealing scheduler since other
schedulers, such as ReduceLR scheduler, cosine
annealing scheduler, or cosine annealing scheduler
with restart, do not provide any significantly differ-
ent results. Also, adding a warm-up step does not
make any difference too. We trained the model for

Figure 2: Validation accuracies and losses during
training of the XLNet model.

Table 2: Development accuracies of text classification
Transformer models. Majority means always predict-
ing using the majority class label which is either always
positive or negative in this balanced development set.

Model Dev Accuracy
Majority 50.00
OpenGPT-2 65.50
XLNet 68.84
Bigbird 68.69

4 epochs (following the standard fine-tuning pro-
cedure in the original BERT paper (Devlin et al.,
2019) which recommends 2-4 epochs.) and sample
a model state at every 500 training steps for eval-
uation on the development set. Most of the best
models are from the second epoch. This step helps
to save the best model parameter state which could
be empirically up to 1% better in development ac-
curacy than only collecting the model state at the
end of each training epoch as depicted in Figure 2
for XLNet.

3.1 Text Classification

We compare XLNet with OpenGPT-2 (Radford
et al., 2019) and Bigbird (Zaheer et al., 2020) for
text sequence classification in Table 2. OpenGPT-2
is an unsupervised multitask language model. Big-
bird is a recent state-of-the-art text classification
model on some benchmarks, such as arXiv (He
et al., 2019), Patents (Lee and Hsiang, 2020), or
Hyperpartisan (Kiesel et al., 2019). Bigbird utilizes
better computation methods to efficiently model
longer sequence lengths than XLNet. The results
suggest that modeling longer sequence length than
a sentence helps as seen in XLNet and Bigbird,
however, Bigbird is only comparable to XLNet in
terms of accuracy.
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Table 3: Development accuracies of different loss func-
tions on the XLNet model.

Loss Function Dev Accuracy
binary cross-entropy (BCE) 68.84
label smoothed BCE 68.78
cost-sensitive BCE 68.81
cost-sensitive multiclass CE 67.80

Table 4: Development accuracies of data augmented
Bigbird.

Augmentation Dev Accuracy
Bigbird 68.69
+ negative class augmentation 64.74
+ cost-sensitive BCE 68.47

3.2 Loss Functions

Label smoothing (Szegedy et al., 2016) is a design
choice in loss function which helps improve the
model performance in many tasks by smoothing
the cross-entropy label loss from 0/1 to α/K for
other classes and (1− α) for the target class using
an arbitrary hyperparameter α. We used the α value
of 0.1.

Previous work (Bhat et al., 2020) also empha-
sizes the class-imbalance issue in this task. There-
fore, we tried cost-sensitive cross-entropy loss to
weigh more on the positive class (revision needed)
which suppose to have more information. We
weighted the positive class by 0.6 and the negative
class by 0.4. We also tried cost-sensitive multiclass
cross-entropy loss where we train on revision types
as the label set and convert them to 0/1 for predic-
tion with the hope that the model might better learn
the structure in the data. We weighted each class
by the inverse of its number of instances.

The results in Table 3 suggest that there might
not be any significant class-imbalance issue that
can be alleviated via various cost function design
choices since the development accuracies are very
much the same. The exception is the multiclass
setting where we conjecture that that revision types
might make the training task harder instead.

3.3 Data Augmentation

The shared task data provide the revisions when the
labels are positive (revision needed) so we tried to
generate more data from these. We assumed the re-
vised sentences provide more signals of no revision
required. Therefore, we simply put the negative
label on those sentences. We hoped that these data
instances will provide more useful learning signals
when added to the training set as more informative

Table 5: Development accuracies and F1 scores on
CrossEncoder or BinaryEncoder for text classification.

Model Dev Accuracy F1 Score
XLNet 68.84 70.08
MiniLM-L-12 68.44 71.72
Siamese-BERT 63.57 69.77

negative instances. Our reason is it should be more
certain that most revised sentences should not re-
quire revisions, at least from the revised type. From
Table 4, we chose Bigbird since it is more computa-
tionally efficient. However, adding more data does
not improve the performance. Instead, the perfor-
mance decreases to 64.74% accuracy. Still, adding
cost-sensitive binary cross-entropy can bring the
accuracy back to be comparable to a vanilla Big-
bird. This indicates that cost-sensitive loss may be
helpful if we were to perform data augmentation.
The cost-sensitive binary cross-entropy loss func-
tion adds a scalar weighting w to the cross-entropy
loss term for each class.

loss(x, class) = w[class] · (−x[class]

+ log (
∑

j(exp(x[j])))(1)
Since the revision types are based on syntax, we

also tried to add more syntactic information to the
models. Our preliminary attempt is to add part-
of-speech tags and dependency trees (tagged using
spaCy (Honnibal et al., 2020)) as additional context
inputs by concatenation to existing sentence and
context inputs. However, they do not provide any
useful learning signals as also observed from recent
attempts to learn syntactic Transformers. We also
tried to learn solely from part-of-speech tags and
dependency trees inputs and they provide very low
accuracies similar to random. Many recent stud-
ies (Clark et al., 2019; Hewitt and Manning, 2019;
Rogers et al., 2020) also show that BERT learns
some syntactic information during its pretraining
steps. However, there are still some works (Sun-
dararaman et al., 2019; Wang et al., 2020a) showing
that explicitly adding syntactic information may
still improve BERT or Transformer performance.

3.4 Siamese Training
To begin with, the sentence-Transformers library
(Reimers and Gurevych, 2019) supports both
CrossEncoder (the same architecture for text clas-
sification) and BiEncoder (Siamese training). We
tried their CrossEncoder model with MiniLM-L-
12 model (Wang et al., 2020b) pretrained on ms-
marco (Nguyen et al., 2016) for passage reranking
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Figure 3: BertViz XLNet attention-head visualiza-
tion from the first attention head of layers {1, 7, 12}
for a revision-required sentence, ‘Once you get to
him, save it.’

(slightly after the competition). The results in Ta-
ble 5 indicate a lower development accuracy for
MiniLM-L-12 but a comparable F1 score. The ad-
vantage of MiniLM-L-12 is its training cost is less
than half of the XLNet model. We observed the
speed-up on an NVIDIA-K80, an NVIDIA-P100,
and an NVIDIA-T4 GPU from Google’s Colab
in our experiments. MiniLM is more lightweight
and may be suitable for faster research cycles in
general. Next, we depict our results on vanilla
Siamese-BERT. We speculate that sentence em-
bedding models have effortlessly good F1 scores
because of their higher recall based on the nature
of embedding vector spaces.

3.5 Visualizing XLNet

We consider BertViz (Vig, 2019) to explain the
XLNet model via attention visualization. Figure
3 shows the attention weights from layers {1, 7,
12} for a revision-required input sentence from
the development set, ‘Once you get to him, save
it.’ The visualization suggests that early layers
learn simple and local patterns while middle layers
learn longer dependencies and the top layers learn
revision patterns. This is from the rightmost plot
which shows large weights on the terms, ‘him’ and
‘it’, which probably require revisions.

Figure 4 shows another example from a no-
revision-required input sentence from the develop-
ment set, ‘It’s at the bottom of the page.’ The early
and middle layers exhibit similar patterns as the pre-
vious example which are local or longer dependen-
cies. However, the top layers show even weighting
for each word in the input sentence which instead
does not indicate any revision signal. From the
model views which show all attention heads in all

Figure 4: BertViz XLNet attention-head visualiza-
tion from the first attention head of layers {1, 7, 12}
for a no-revision-required sentence, ‘It’s at the bot-
tom of the page.’

layers in Figure 5 and Figure 6, the visualizations
suggest that different attention heads from the same
layer exhibit similar patterns.

4 Conclusion

This report describes our baseline systems for a
shared task on implicit and underspecified language
2021, predicting revision requirements in wikiHow.
Our best result is from the XLNet model with a
linear annealing scheduler and a cross-entropy loss.
We do not observe any significant gain on any vali-
dation metric based on our various design choices.
The cost-sensitive loss might help only when per-
forming data augmentation. MiniLM is compara-
ble to XLNet but at a half computation cost. We
summarize the results as finetuning Transformer-
based language models for text classification only
provides incremental improvements even though
better language models consistently lead to better
results. Also, the accuracies at most∼ 70% are not
very practical. This suggests a big challenge for
the language models in the context of implicit and
underspecified language. We release our training
code as an unofficial baseline for the challenge.

There are many possible future directions. First,
we have not considered any advanced loss func-
tions, such as Triplet loss (Weinberger et al., 2005;
Hoffer and Ailon, 2015), for our Siamese training
experiments. Second, recent work on predicting
revisions in wikiHow (Debnath and Roth, 2021)
depicts a promising integration of syntactic prepro-
cessing and sentence embedding training. Never-
theless, more data analysis is needed to pinpoint
what a particular model should learn.
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Figure 5: BertViz XLNet model-view shows all at-
tention heads from all layers for a revision-required
sentence, ‘Once you get to him, save it.’ Each
row corresponds to a layer and each column corre-
sponds to an attention head.

Figure 6: BertViz XLNet model-view shows all atten-
tion heads from all layers for no-revision-required
sentence, ‘It’s at the bottom of the page.’ Each
row corresponds to a layer and each column corre-
sponds to an attention head.
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