
Validation of Universal Dependencies by regeneration

Guy Lapalme
RALI-DIRO / Université de Montréal

C.P. 6128, Succ. Centre-Ville
Montréal, Québec, Canada, H3C 3J7
lapalme@iro.umontreal.ca

Abstract

We describe the design and use of a web-based system for helping the validation of English
or French Universal Dependencies corpora by sentence regeneration. A symbolic approach
is used to transform the dependency tree into a constituency tree which is then regenerated as
a sentence in the original language. The comparison between regenerated sentences and the
original ones from version 2.8 of Universal Dependencies revealed some annotation errors
which are discussed and give rise to suggestions for improvement.

1 Introduction

Universal Dependencies (de Marneffe et al., 2021) (UD) have been developed for comparative linguis-
tics and are used in many NLP projects for developing parsers or machine learning systems for training
and/or evaluation. The accuracy of these annotations is thus very important. Many of these dependency
structure annotations are the result of manual revisions of automatic parses or mappings from other pars-
ing formalisms (e.g. EWT was originally derived from the Penn Treebank annotations). They are often
quite difficult to check manually as there are so many details to take into account. This paper describes
an alternative way of looking at the UD data, using it to regenerate a sentence that can be compared with
the original. As we will show in Section 3, regenerating from the source revealed small mistakes, most
often omissions, in quite a few of these structures which are often considered as gold standard. It is
indeed much easier to detect errors in a figure or in a generated sentence than in a list of tab separated
lines.

This approach for helping detecting potential errors in annotations can be compared with the work of
van Halteren (van Halteren, 2000) who compares the result of an automatic part-of-speech tagger with
the ones in the corpus and highlights tokens in which disagreement occurs. Wisniewski (Wisniewski,
2018) detects all identical sequences of words that are annotated differently in a corpus. This is achieved
by aligning, in Machine Translation parlance, the sentences with their annotation and then displaying
both sequences highlighting their differences.

UDREGENERATOR (see Figure 1) is a web-based English and French realizer written in JavaScript,
built using JSREALB1. Only the English realizer is shown here, but it is also possible to use it for
checking the French corpora of UD. The table at the top shows the token fields of the selected UD in the
menu with the corresponding dependency link structure in the middle.

A UD realizer might seem pointless, because most UD annotations are created from realized sentences
either manually or automatically. As UD contains all the tokens in their original form (except for elision
in some cases), the realization can be obtained trivially by listing the FORM in the second column of each
line. Taking into account the tree structure, another baseline generator can be implemented by a recursive
traversal of the UD tree by first outputting the forms of the left children, then the form of the head and
finally the forms of the right children.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1http://rali.iro.umontreal.ca/rali/?q=en/jsrealb-bilingual-text-realiser

Figure 1: Web page (http://rali.iro.umontreal.ca/JSrealB/current/demos/
UDregenerator/UDregenerator-en.html) for exploring UD structures in a local file that is
parsed to build a menu of their reference sentences in the middle of the page. Once a sentence is cho-
sen, the fields of its tokens are displayed in the table at the top and the graph of its dependency links is
displayed below the menu. A table below the graph shows information about this UD: the line number
in the file, its sent id and reference text (text), the regenerated text by JSREALB (TEXT). When
there are differences between the expected text and realized text, they are highlighted (not shown here).
The corresponding JSREALB expression is displayed in an editor that allows it to be changed and be
re-realized. The constituency tree corresponding to the JSREALB expression is displayed at the bottom.
Checkboxes are used to limit the sentences in the menu to those for which there are differences between
the references text and the generated sentence, those for which JSREALB issued warnings or those with
non-projective dependencies.

This method does not work for non-projective dependencies (Kahane et al., 1998) because then, words
under a node are not necessarily contiguous. This property is used in our system to detect non-projective
dependencies which account for about 4% of the dependencies in our corpora, which roughly corre-
sponds to what was observed by Perrier (Perrier, 2021). But even for projective ones, different trees can
be linearized in the same way. However we observed that, quite often, non-projective dependencies are
a symptom of badly linked nodes that should be checked.

UDREGENERATOR realizes a sentence from scratch using only the lemmas and the morphological and
syntactic information contained in the UD features and relations.

1.1 Constituency structure format
UDREGENERATOR transforms the UDs into a constituency structure format used as input for
JSREALB (Molins and Lapalme, 2015), a surface realizer written in JavaScript similar in principle to
SIMPLENLG (Gatt and Reiter, 2009) in which programming language instructions create data structures
corresponding to the constituents of the sentence to be realized. Once the data structure (a tree) is built
in memory, it is traversed to create the list of tokens of the sentence.

As is shown in Figure 1, the data structure is built by function calls whose names were chosen to be
similar to the symbols typically used for constituent syntax trees2:

• Terminal: N (Noun), V (Verb), A (adjective), D (determiner) ...

• Phrase: S (Sentence), NP (Noun Phrase), VP (Verb Phrase) ...

Features, called options, that modify some properties are added to the structures using the dot notation.
For terminals, they are used to specify the person, number, gender, etc. For phrases, the sentence may be
negated or set to a passive mode; a noun phrase can be pronominalized. Punctuation signs and HTML
tags can also be added.

For example, in the JSREALB structure of Figure 1, plural of treatment is indicated with the option
n("p") where n indicates the number and "p" the plural. Agreements within the NP and between NP
and VP are performed automatically, although this feature is not often used in this experiment because
features on each token provide, in principle, the appropriate morphological information.3

The affirmative sentence is modified to use the permission modal using the property
{typ({"mod":"perm"}) to be realized by the verb may. The modification of a sentence struc-
ture is an interesting feature of JSREALB. Once the sentence structure has been built, many variations
can be obtained by simply adding a set of options to the sentences, to get negative, progressive, passive,
modality and some type of questions. For example, the interrogative form What may place the child
at risk? could be generated by adding "int":"was" to the object given as parameter to .typ() at
the end of the original JSREALB expression. This feature is not needed in this work, but it was used for
creating questions from affirmative sentences to build a training corpus for a neural question-answering
system or for creating negations for augmenting a corpus of negative sentences for training a neural
semantic analyzer.

2 Building the Syntactic Representation

The first step, not described here, is straightforward: the CONLLU input format is parsed into a
JavaScript data structure for the tokens. Each token keeps information from the UD fields such as FORM,
LEMMA, FEATS, DEPREL and MISC. The HEAD field is used to build a list of pointers to the tokens on
its left and an another list for the tokens to the right children. So starting from the root, it is possible
to obtain the whole UD tree. Although the position of a node, given its ID, is not taken into account
during realization, the positions of the children relative to their parent are kept intact. We do not take
into account the absolute node positions, because our goal is to regenerate the sentence from the relative
positions indicated by the UD relations.

2See the documentation http://rali.iro.umontreal.ca/JSrealB/current/documentation/user.
html?lang=en for the complete list of functions and parameter types.

3Section 3 will show that, unfortunately, this is not always the case.

We now describe how a parsed UD is transformed into a Syntactic Representation (SR) which is
used as input to JSREALB. The principle is to reverse engineer the UD annotation guidelines4. This
is similar to the method described by Xia and Palmer (Xia and Palmer, 2001) to recover the syntactic
categories that are projected from the dependents and to determine the extents of those projections and
their interconnections.

Although this projection process is theoretically simple, there are peculiarities to take into account
when it is applied between two predefined formalisms. In this case, the UD relations with features being
associated with each token must be mapped into JSREALB constituents with options that are applied
either to a terminal or a phrase. We now give more detail on the mapping process for generating words
using the morphological information associated with tokens and for generating phrases from dependency
relations.

2.1 Morphology

UD Terminals are represented in JavaScript as tokens with no children. They are mapped to terminal
symbols in JSREALB. So we transform the JavaScript version of the UD notation to the SR one by
mapping lemma and feature names. The following table gives a few examples:

JavaScript fields SR
"upos":"NOUN", "lemma":"treatment", N("treatment").n("p")
"feats":{"Number":"Plur"}

"upos":"VERB", "lemma":"lean", V("lean").t("ps")
"feats":{"Mood":"Ind","Tense":"Past"}

"upos":"PRON", "lemma":"its", Pro("me").c("gen").pe("3")
f̈eats":{"Gender":"Neut","Number":"Sing", .g("n").n("s")
"Person":"3","Poss":"Yes","PronType":"Prs"}

As shown in the last example, we had to normalize pronouns to what JSREALB considers as its base
form. In the morphology principles of UD5, it is specified that treebanks have considerable leeway in
interpreting what canonical or base form means. In some English UD corpora, the lemma of a pronoun
is almost always the same as its form; it would have been better to use the tonic form. We decided
to lemmatize further instead of merely copying the lemma as a string input to JSREALB so that verb
agreement could eventually be performed. English UD do not seem to have a systematic encoding of
possessive determiners such as his which, for JSREALB at least, should be POS-tagged as a possessive
determiner. These are defined as pronouns in some sentences or determiners in others, we even found
cases of both encodings occurring in the same sentence. As the documentation seems to favor pronouns,6

we had to adapt our transformation process to deal with these errors as they occur quite often. This
problem is less acute in the French UD corpora.

What should be a lemma is a hotly discussed subject on the UD GitHub7, but there are still many
debatable lemmas such as an, n’t, plural nouns, etc. In one corpus, lowercasing has been applied to some
proper nouns, but not all. We think it would be preferable to apply a more aggressive lemmatization to
decrease the number of base forms to help further NLP processing that is often dependent on the number
of different types. The lexica for JSREALB being sufficiently comprehensive for most current uses (34K
lemmas for English and 53K lemmas for French), there are still unknown lemmas for specialized or
informal contexts. Our experience shows that, most often, unknown lemmas are symptoms of errors in
the lemma or the part of speech fields. Section 3.1 shows examples encountered in the corpora.

4https://universaldependencies.org/guidelines.html
5https://universaldependencies.org/u/overview/morphology.html
6https://universaldependencies.org/en/feat/Poss.html indicates that his can be marked as a pos-

sessive pronoun.
7https://github.com/UniversalDependencies/docs/labels/lemmatization

2.2 Translating the JavaScript notation of UD to Syntactic Representation

The goal is to map the JavaScript tree representation of the dependencies to a constituency tree that can
be used by JSREALB to realize the sentence. According to the UD annotation guidelines, there are two
main types of dependents: nominals and clauses, which themselves can be simple or complex.

The head of a Syntactic Representation is determined by the terminal at the head of the dependen-
cies. The system scans dependencies to determine if the sentence is negative, passive, progressive or
interrogative depending on whether combinations of aux, aux:pass with proper auxiliaries (possibly
modals) or interrogative advmod are found. When such a combination is found, then these relations
are removed before processing the rest. The appropriate JSREALB sentence typ will be added to the
resulting Universal Dependencies. For example, in Figure 1, the auxiliary may is removed from the
tree and the sentence is marked to be realized using the permission modal.

All dependencies are transformed recursively; as each child is mapped to a SR, children list are
mapped to a list of SR. Before combining the list of Syntactic Representations into a JSREALB
constituent, the following special cases are taken into account, for English sentences:

1. a UD with a copula is most often rooted at the attribute (e.g., mine in Figure 2), The constituency
representation must be reorganized so that the auxiliary is used as the root of a verb phrase (VP):
This reorganization could probably be simplified with the use of the Surface Syntactic Universal

S(NP(D("the"),
N("car").n("s")),

VP(V("be").t("p").pe("3").n("s"),
Pro("me").c("gen").pe("1")

.g("n").n("s"))
).typ({neg:true})

Figure 2: On the left, the dependency tree corresponding to the sentence The car is not mine; the center
shows the constituency tree after transformation with its JSREALB encoding on the right to realize the
original sentence.

Dependencies formalism (SUD)8 as input as it emphasizes syntax over semantics.

2. A verb at the infinitive tense is annotated in UD as the preposition to before the verb, so this
preposition is removed before processing the rest of the tree, it is reinserted at the end;

3. An adverb (from advmod relation) is removed from processing the rest and added to the resulting
VP at the end;

4. If the head is either a noun, an adjective, a proper noun, a pronoun or a number, it is processed as a
nominal clause mapped to a NP enclosing all its children UD.

5. If the head is a verb: check if the auxiliary will is present, then a future tense option will be added
to the verb; in the case of the do auxiliary, feature information (tense and person) is copied into the
JSREALB options.

6. Otherwise, bundle Syntactic Representations into a sentence S, the subject being the first child
and the VP being the second child.

7. Coordinate VPs and NPs must also be dealt in a special way because the way that JSREALB expects
the arguments of a CP is different from the way coordinates are encoded in UD (see Figure 3) where
the elements are joined by conj relations. in JSREALB, all these elements must be wrapped in a
global CP, the conjunction being indicated once at the start.

8\sudurl{}

Figure 3: The graph at the left, a subgraph of the UD w02013093 in en pud-ud-test.conllu,
illustrates the UD encoding of coordinated nouns Finland, Poland and the Baltic States; the right part
shows the constituency tree expected by JSREALB.

This exercise in transforming UD structures to JSREALB revealed an important difference in their
level of representation. By design UD stays at the level of the form in the sentence, while JSREALB
works at the constituent level. For example, in UD, negation is indicated by annotating not and the
auxiliary elsewhere in the sentence, while in JSREALB the negation is given as an option for the whole
sentence. So as shown above, the structure is checked for the occurrence of not and an auxiliary to
generate the .typ({neg:true}) option for JSREALB (see Figure 2); these dependents are then
removed for the rest of the processing. Similar checks must also be performed for passive constructs,
modal verbs, progressive, perfect and even future tense in order to abstract the UD annotations into the
corresponding structure for JSREALB. It would be interesting to check if working with SUD (Gerdes et
al., 2018) would simplify the transformation process into the dependency structure.

2.3 Working with French

As JSREALB can also be used for realizing sentences in French and that many UD are available in French,
we adapted for French the methodology described in the previous section. For morphology, we changed
the lemmas for pronouns and numerals. Fortunately, the ambiguity between pronouns and determiners
seldom occurs in the French UD corpora, so this step was more straightforward. The transformation for
clauses stays essentially the same as for English, except that there is no need to cater for the special cases
for modals, future tense and infinitives.

3 Experiments

UDREGENERATOR can be used interactively,9 but it can also be used as a NODE.JS module to process a
corpus and print the differences between the original text and the regenerated one. We ran the NODE.JS

version on the French and English corpora of UD (Version 2.8), the most recent at the time of writ-
ing.10 UDREGENERATOR handled all sentences and is quite fast: about 1 millisecond per sentence on a
commodity Mac laptop.

When all lemmas of UD structure appear in the JSREALB lexicon and are used with the appropri-
ate features, UDREGENERATOR creates a tree and realizes the corresponding sentence. In other cases,
JSREALB emits warnings so that the unknown words can either be corrected or added to the lexicon
of JSREALB; in those cases, JSREALB inserts the lemma verbatim in the generated string which works
out all right in English which is not too morphologically rich. But in many cases, these erroneous lem-
mata should be more closely checked. The tokens of the generated sentence are then compared with the
tokens of the original text using the Levenshtein distance ignoring case and spacing. When there are dif-
ferences, they are highlighted in the output or the display; the number of UD with differences are called
#diff in the following tables. Differences can come from limitations of JSREALB (e.g., contractions,
special word ordering that cannot be generated verbatim, non-projective dependencies) or from errors or
underspecification of the part-of-speech, features or head field in the UD.

For this experiment, we consider generated sentences with non-projective dependencies as errors. In

9http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/
UDregenerator-en.html

10Using a previous version of this tool, we detected errors in Version 2.7 that were then corrected by the maintainers of the
corpora once we raised the issues to them.

Corpus type #sent #toks #nPrj #diff #lerr %regen %terr %nPrj
ewt dev 2,001 25,149 44 987 219 51% 1% 2,2%

test 2,077 25,097 41 970 174 53% 1% 2,0%
train 12,543 204,584 462 6,780 1,698 46% 1% 3,7%

gum dev 843 16,164 49 486 153 42% 1% 5,8%
test 895 16,066 43 478 149 47% 1% 4,8%
train 5,664 102,258 263 3,204 1,073 43% 1% 4,6%

lines dev 1,032 19,170 102 664 228 36% 1% 9,9%
test 1,035 17,765 67 645 257 38% 1% 6,5%
train 3,176 57,372 254 2,040 702 36% 1% 8,0%

partut dev 156 2,722 4 83 33 47% 1% 2,6%
test 153 3,408 1 86 11 44% 0% 0,7%
train 1,781 43,305 33 946 392 47% 1% 1,9%

pronouns test 285 1,705 - 65 - 77% 0% 0,0%
pud test 1,000 21,176 45 550 197 45% 1% 4,5%
Total 32,641 555,941 1,408 17,984 5,286 47% 1% 4,1%
sample 60 1,086 - 30 50% 0% 0,0%

Table 1: Statistics for the English UD corpora: for each corpus and type, it shows the numbers of
sentences (#sent), tokens (#toks) and non-projective dependencies (#nPrj); the number of sentences that
had at least one difference with the original (#diff); the number of tokens that had at least one lexical
error (#lerr); the percentages of sentences regenerated exactly (%regen), of tokens in error (%terr) and
of non-projective sentences (%nPrj). The next-to-last line displays the total of these values and the mean
percentages over all sentences of the corpora. The last line shows the statistics for the sample that is
studied more closely in Section 3.3.

the case of legitimate non-projectivity, the generated sentences are appropriate but with a different word
order. But we also found quite a few non-projective dependencies caused by a single erroneous head
link which can easily be fixed using the tree display showing crossing links. It might be interesting to
explore generating the original word order by generating each token separately using only their lemma
and features, but then we would lose the opportunity of checking links.

As we use a symbolic approach, we do not distinguish between the training, development and test
splits of a corpus, we consider them as different corpora. This allows an overall judgment on what
we feel to be the precision of the information in the UD. The last subsection provides a more detailed
analysis of a representative sample of the corpora.

3.1 English corpora

Table 1 shows statistics on the 14 English corpora that comprise 32,641 sentences, of which 1,408 (4,1%)
have non-projective dependencies and gave rise to 17,984 warnings. We did not use the three English
ESL corpora because they do not provide any information about the lemma and the features of tokens,
they only give the form and relation name.

Table 1 shows that on average about 47% of the sentences are regenerated exactly ignoring capitaliza-
tion and spacing. Many of the differences are due to contractions (e.g. aint or he’ll) for which JSREALB
realizes the long form (is not or he will). There are two outliers: the pronouns corpus which uses a
limited vocabulary and was manually designed to illustrate many variations of pronouns; in fact, we used
it to design our pronoun transformations; the lines corpus has a high ratio of unknown lemmata, some
of which are dubious: (collapsible|expandable), &, course as an adverb, smile’ and even wrote,
which occurs 11 times or opened, 21 times.

Looking at the results, we found that one important source of differences was the fact that in many
English corpora, person and number were not given as features of verbs except for the third person

United
Corpus #occ upos lemma feats
EWT 93 ADJ United Degree=Pos
GUM 80 VERB Unite Tense=Past,VerbForm=Part
Lines 9 PROPN United Number=Sing
Partut 11 PROPN United
PUD 6 PROPN United Number=Sing

New
Corpus #occ upos lemma feats
EWT 95 ADJ New Degree=Pos
GUM 80 PROPN New Number=Sing
Lines 21 PROPN New Number=Sing
Partut 3 PROPN New
PUD 7 PROPN United Number=Sing

Table 2: This table shows the different, and inconsistent across English corpora, part of speech, lemma
and features associated with two common English words used in proper nouns. The second column gives
the number of occurrences in each English corpus.

singular. There are about 11.5K instances of these in the EWT corpus11, but none in the GUM corpus
and about 9K in all other English corpora. As JSREALB uses the third person singular as default, the
generated sentence comes out right most of the time, except when the subject is a pronoun at the first or
second person or is plural.

We also discovered some inconsistencies between English corpora even for very common words.
Table 2 shows occurrences of United used in United States, United Nations or United Kingdom and
of New such as in New York, New England, New Delhi... In the previous version (2.7) of UD, all
United had been tagged as PROPN.

Given the fact that the JSREALB lexicon does not include the adjective United (with a capital U) or the
verb Unite also with a capital, this raised warnings. A similar problem occurred for the adjective New
used in New Year, New Left for which some occurrences are adjectives and others are part of a proper
noun. JSREALB lexicon does not contain these lemmata with a capital. This may seem anecdotical, but
it occurs quite frequently and is typical of inconsistency problems.

Another source of warnings is the fact that some words are tagged dubiously: there are strange con-
junctions such as: of (264 occurrences), in (181), by (162), with (142), on (99) ...

Although POS tags are consistent most of the time within a corpus, this is not the case between corpora
of the same language, especially for a non-low resource language such as English, so some care should
be used when combining these corpora in a learning scheme for a given language, unless the learning
scheme does not care about number, person and POS tags.

In order to limit the number of warnings, we decided to add a few dubious lemmas12:

• best and better were added as lemmas, although we think that the appropriate lemma should be
good or well specifying the Degree feature: superlative (Sup) or comparative (Cmp).

• & was added as a lemma for a conjunction, but it should be and.

• in formal English, adjective and nouns corresponding to nationalities start with a capital letter (e.g.
American or European), but we also had to accept the lowercase form as lemma for these.

11Following our suggestion, most of these features have been added to EWT in version 2.9
12Many of these cases, have been corrected in version 2.8 of some corpora, namely EWT, following our remarks about this

problem on version 2.7

Corpus type #sent #toks #nPrj #diff #lerr %regen %terr %nPrj
fqb test 2,289 23,901 75 1,321 682 42% 3% 3,3%
gsd dev 1,476 35,707 60 702 522 52% 1% 4,1%

test 416 10,013 17 233 147 44% 1% 4,1%
train 14,449 354,529 587 6,670 4,971 54% 1% 4,1%

partut dev 107 1,870 2 64 64 40% 3% 1,9%
test 110 2,603 1 62 68 44% 3% 0,9%
train 803 24,122 49 506 463 37% 2% 6,1%

pud test 1,000 24,726 17 445 460 56% 2% 1,7%
sequoia dev 412 9,999 10 175 190 58% 2% 2,4%

test 456 10,044 9 204 182 55% 2% 2,0%
train 2,231 50,505 47 992 915 56% 2% 2,1%

spoken dev 919 9,973 73 400 252 56% 3% 7,9%
test 743 9,968 80 220 300 70% 3% 10,8%
train 1,175 15,031 103 509 347 57% 2% 8,8%

Total 26,586 582,991 1,130 12,503 9,563 53% 2% 4,3%
Sample 60 1,233 3 37 24 38% 2% 5,0%

Table 3: Statistics for the French UD corpora: for each corpus and type, it shows the numbers of sen-
tences (#sent), tokens (#toks) and non-projective dependencies (#nPrj); the number of sentences that
had at least one difference with the original (#diff); the number of tokens that had at least one lexical
error (#lerr); the percentages of sentences regenerated exactly (%regen), of tokens in error (%terr) and
of non-projective sentences (%nPrj). The next-to-last line displays the total of these values and the mean
percentages over all sentences of the corpora. The last line shows the statistics for the sample that is
studied more closely in Section 3.3.

3.2 French corpora
The 14 French UD corpora (see Table 3) provide 26,586 sentences of which 1,130 (4,3 %) have non-
projective dependencies. UDREGENERATOR regenerates about 53% of the sentences, which is slightly
more than for the English corpora, but the overall statistics are similar between French and English.

As for English, many of the warnings were generated by strange part of speech tags: comme tagged as
a preposition instead of adverb or conjunction (796 occurrences), puis as conjunction instead of adverb
(225 occurrences). There were a number of incomplete or erroneous lemmata. Here are a few examples
across all French corpora:

bad part of speech : certain (343 times) is a determiner instead of an adjective; comme (796 times) is
a preposition instead of a conjunction;

orthographic error in lemma : region (14 times) instead of région, inégalite (4 times) instead of
inégalité, pubblicitaire (5 times) instead of publicitaire;

bad lemma : humains (6 times), performances (5 times), normes (4 times), financements, intactes
or ressources whose lemma should be singular.

This is a good illustration of how UDREGENERATOR can help improve UD information.
In both French and English corpora, we found a few instances of bad head links for which regen-

eration produces words in the wrong order. We noticed that most often this occurs in non-projective
dependencies, the tree representation is particularly useful for checking these as there are crossing arcs.
This is why the system flags these so that they can be identified more easily and checked.

3.3 Sample corpora
In order to get a more precise appraisal of the quality of the UD information, we studied in detail a sample
of 10 sentences from the 6 English and French test corpora for which we used UDREGENERATOR to

recreate the original sentences.13 The percentages on the last line of Tables 1 and 3 show that these
samples have roughly the same characteristics as the whole corpus from which they were taken, except
for the fact that there are no non-projective dependencies in the English sample.

This experiment shows that JSREALB has an almost complete coverage of English and French gram-
matical constructs found in the corpora, except for some specialized terminology which can be easily
added to the lexicon or given as quoted words that will appear verbatim in the output. We encountered
only 12 unknown tokens over 1,086 in English (e.g. shippeddate, luncheonnette as noun, related
or numismatic as adjective) and 4 unknown tokens over 1233 in French (e.g. boxeuse as noun or
déclassifier as verb). In some cases (7 for English and 5 in French) JSREALB could not reproduce the
exact order of some of the words in a sentence: e.g., when an adverb is inserted within a conjugated
modal (e.g. would never use) or because of non-projective dependencies. In all cases, the sentences
kept their original meaning.

In English, 24 sentences were reproduced verbatim, without any modification either to the UD coding
or the generated JSREALB expression. There were 5 cases of contractions (e.g., doesn’t instead of does
not, I’ve instead of I have) that JSREALB does not generate. Three cases of limitations of JSREALB
because of modals being applied to noun phrases because of the transformation process limits. But we
found 23 tokens (over 1,086) for which there were errors or omissions in either the part of speech tags
(UPOS), features or lemma (e.g. follow as adjective, Sir or Council as noun, with or of as conjunction).
Those are very small numbers computed over only 60 sentences, the whole corpus being 490 times
greater.

We also experimented with 60 sentences sampled from French corpora with the following results: 26
were regenerated verbatim without any intervention. 48 tokens (over 1233) had errors or omissions in
either the part of speech tags (UPOS), features or lemma (e.g. mot as adjective, octobre and expire
as a feminine noun, but voile (in the sense of sail) as a masculine noun even though the attribute is
feminine). There were 5 cases of word ordering in some part of a sentence, most because of non-
projective dependencies, a case of an incomplete sentence and an unusual encoding of coordination. The
encoding of pronouns is especially delicate because different corpora do not use the same conventions. A
case of JSREALB limitations was encountered for the verb pouvoir: je peux at interrogative form should
be realized as puis-je and not peux-je.

This is an experiment over a very small sample (0,23%) of sentences from the French and English
corpora, but it shows the need to recheck the information in UD as it is often used as a gold standard and
sometimes even used as a mapping source for other lower-resourced languages. We also showed that
UDREGENERATOR it can be a useful tool for pointing out some eventual problems in the annotation of
tokens and relations.

4 Conclusion

This work made us realize that UD corpora, while being a source of useful linguistic information, would
benefit from a check by trying to regenerate the sentences from the provided annotation. We are not aware
of any previous attempt to perform such an experiment. Sentence regeneration is not foolproof because
different feature combinations can produce the same sentences, but we showed that in some cases it helps
to pinpoint discrepancies between what is specified and the expected outcome. UDREGENERATOR is far
from perfect, but it proved to be a convenient tool for doing some sanity checking on the lemma, part of
speech, features and head fields. We hope that this work will help improve the precision of the wealth of
useful information contained in UD corpora.

We only experimented with the French and English UD corpora because the text realizer we used
only deals with these languages, but it showed the potential of detecting errors even in so-called high
resource languages whose annotation is often considered as golden. It would be interesting to apply the
same technique using a text realizer in other languages. Should a full-text realizer not be available for
this target language, we conjecture that already checking the tokens with a conjugation or declension

13These sample corpora including the equivalent JSREALB expressions are available at
http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UD-2.8/sample/

tool might already be useful to detect some interesting or dubious cases. The appendix describes briefly
a language independent UD exploration tool that we used to pinpoint recurrent patterns that might be
symptoms of errors.

Acknowledgements

We thank François Lareau from OLST in the Linguistics Department of Université de Montréal for many
fruitful discussions and suggestions about this tool and for his long-standing and continued interest in
JSREALB.

References
Marie-Catherine de Marneffe, Christopher D. Manning, Joakim Nivre, and Daniel Zeman. 2021. Universal De-

pendencies. Computational Linguistics, 47(2):255–308, 07.

Albert Gatt and Ehud Reiter. 2009. SimpleNLG: A realisation engine for practical applications. In Proceedings
of the 12th European Workshop on Natural Language Generation (ENLG 2009), pages 90–93, Athens, Greece,
March. Association for Computational Linguistics.

Kim Gerdes, Bruno Guillaume, Sylvain Kahane, and Guy Perrier. 2018. SUD or Surface-Syntactic Universal
Dependencies: An annotation scheme near-isomorphic to UD. In Universal Dependencies Workshop 2018,
Brussels, Belgium, November.

Sylvain Kahane, Alexis Nasr, and Owen Rambow. 1998. Pseudo-projectivity, a polynomially parsable non-
projective dependency grammar. In 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Volume 1, pages 646–652, Montreal, Quebec,
Canada, August. Association for Computational Linguistics.

Paul Molins and Guy Lapalme. 2015. JSrealB: A bilingual text realizer for web programming. In Proceedings
of the 15th European Workshop on Natural Language Generation (ENLG), pages 109–111, Brighton, UK,
September. Association for Computational Linguistics.

Guy Perrier. 2021. Étude des dépendances syntaxiques non projectives en français. Revue TAL, 62(1).

Hans van Halteren. 2000. The detection of inconsistency in manually tagged text. In Proceedings of the COLING-
2000 Workshop on Linguistically Interpreted Corpora, pages 48–55, Centre Universitaire, Luxembourg, August.
International Committee on Computational Linguistics.

Guillaume Wisniewski. 2018. Errator: a tool to help detect annotation errors in the Universal Dependencies
project. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan, May. European Language Resources Association (ELRA).

Fei Xia and Martha Palmer. 2001. Converting dependency structures to phrase structures. In Proceedings of the
First International Conference on Human Language Technology Research, pages 1–5. Association for Compu-
tational Linguistics.

Appendix: Searching for combinations of tokens

UDREGENERATOR can identify some errors or missing features in a given UD, but we found interesting
to search in a file of UDs if this combination exists in others UD. Many researchers use grep or string
searching of a text editor or even special purpose scripts to check for specific combinations of features
for a given token. None of these combinations are foolproof, but they can easily be checked once they
are identified and they can then be modified in the original file if needed. To help identify these types
of feature combinations, we have set up a web page14 to search in local UD files. Each UD field can be
matched for a regular expression or its negation. It is also possible to check if a FORM is the same or
different from the LEMMA. All tokens in the file that match these conditions are displayed in a table, in
which it is possible to select one to get the sentence in which it occurs, the identification of the sentence
(sent id) and the line number in the file. This tool is not as sophisticated as Grew-match15 which
defines a pattern language to allow also searching for combinations of links.

As UDGREP does not use any language specifics, it can be used to find patterns on UDs in any
language. Patterns entered by the user are, of course, language specific.

Figure 4: Identification of curious English nouns that end with s, but not their lemma and that do not
contain Plur in their features. A colored field name shows a regular expression that should match the
field, a complemented name (with an overbar) shows a regular expression that should not match. The
identified tokens are shown in a table in which it is possible to select a cell to show the context of this
token: sentence with the token highlighted, the id of the sentence and its line number in the file. The
dependency graph of the sentence is also shown.

14Available at http://rali.iro.umontreal.ca/JSrealB/current/demos/UDregenerator/UDgrep.
html

15http://match.grew.fr

