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Introduction

Recent progress in Artificial Intelligence (AI) and Natural Language Processing (NLP) has greatly
increased their presence in everyday consumer products in the last decade. Common examples
include virtual assistants, recommendation systems, and personal healthcare management systems,
among others. Advancements in these fields have historically been driven by the goal of improving
model performance as measured by accuracy, but recently the NLP research community has started
incorporating additional constraints to make sure models are fair and privacy-preserving. However, these
constraints are not often considered together, which is important since there are critical questions at the
intersection of these constraints such as the tension between simultaneously meeting privacy objectives
and fairness objectives, which requires knowledge about the demographics a user belongs to. In this
workshop, we aim to bring together these distinct yet closely related topics.

We invited papers which focus on developing models that are “explainable, fair, privacy-preserving,
causal, and robust” (Trustworthy ML Initiative). Topics of interest include:

• Differential Privacy

• Fairness and Bias: Evaluation and Treatments

• Model Explainability and Interpretability

• Accountability

• Ethics

• Industry applications of Trustworthy NLP

• Causal Inference

• Secure and trustworthy data generation

In total, we accepted 11 papers, including 2 non-archival papers. We hope all the attendants enjoy this
workshop.

iii





Organizing Committee

• Yada Pruksachatkun - Alexa AI

• Anil Ramakrishna - Alexa AI

• Kai-Wei Chang - UCLA, Amazon Visiting Academic

• Satyapriya Krishna - Alexa AI

• Jwala Dhamala - Alexa AI

• Tanaya Guha - University of Warwick

• Xiang Ren - USC

Speakers

• Mandy Korpusik - Assistant professor, Loyola Marymount University

• Richard Zemel - Industrial Research Chair in Machine Learning, University of Toronto

• Robert Monarch - Author, Human-in-the-Loop Machine Learning

Program committee

• Rahul Gupta - Alexa AI

• Willie Boag - Massachusetts Institute of Technology

• Naveen Kumar - Disney Research

• Nikita Nangia - New York University

• He He - New York University

• Jieyu Zhao - University of California Los Angeles

• Nanyun Peng - University of California Los Angeles

• Spandana Gella - Alexa AI

• Moin Nadeem - Massachusetts Institute of Technology

• Maarten Sap - University of Washington

• Tianlu Wang - University of Virginia

• William Wang - University of Santa Barbara

• Joe Near - University of Vermont

• David Darais - Galois

• Pratik Gajane - Department of Computer Science, Montanuniversitat Leoben, Austria

• Paul Pu Liang - Carnegie Mellon University

v



• Hila Gonen - Bar-Ilan University

• Patricia Thaine - University of Toronto

• Jamie Hayes - Google DeepMind, University College London, UK

• Emily Sheng - University of California Los Angeles

• Isar Nejadgholi - National Research Council Canada

• Anthony Rios - University of Texas at San Antonio

vi



Table of Contents

Interpretability Rules: Jointly Bootstrapping a Neural Relation Extractorwith an Explanation Decoder
Zheng Tang and Mihai Surdeanu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Measuring Biases of Word Embeddings: What Similarity Measures and Descriptive Statistics to Use?
Hossein Azarpanah and Mohsen Farhadloo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Private Release of Text Embedding Vectors
Oluwaseyi Feyisetan and Shiva Kasiviswanathan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Accountable Error Characterization
Amita Misra, Zhe Liu and Jalal Mahmud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xER: An Explainable Model for Entity Resolution using an Efficient Solution for the Clique Partitioning
Problem

Samhita Vadrevu, Rakesh Nagi, JinJun Xiong and Wen-mei Hwu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Gender Bias in Natural Language Processing Across Human Languages
Abigail Matthews, Isabella Grasso, Christopher Mahoney, Yan Chen, Esma Wali, Thomas Middle-

ton, Mariama Njie and Jeanna Matthews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Interpreting Text Classifiers by Learning Context-sensitive Influence of Words
Sawan Kumar, Kalpit Dixit and Kashif Shah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Towards Benchmarking the Utility of Explanations for Model Debugging
Maximilian Idahl, Lijun Lyu, Ujwal Gadiraju and Avishek Anand . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii





Conference Program

June 10, 2021

9:00–9:10 Opening
Organizers

9:10–10:00 Keynote 1
Richard Zemel

10:00–11:00 Paper Presentations

Interpretability Rules: Jointly Bootstrapping a Neural Relation Extractorwith an
Explanation Decoder
Zheng Tang and Mihai Surdeanu

Measuring Biases of Word Embeddings: What Similarity Measures and Descriptive
Statistics to Use?
Hossein Azarpanah and Mohsen Farhadloo

Private Release of Text Embedding Vectors
Oluwaseyi Feyisetan and Shiva Kasiviswanathan

Accountable Error Characterization
Amita Misra, Zhe Liu and Jalal Mahmud

11:00–11:15 Break

ix



June 10, 2021 (continued)

11:15–12:15 Paper Presentations

xER: An Explainable Model for Entity Resolution using an Efficient Solution for the
Clique Partitioning Problem
Samhita Vadrevu, Rakesh Nagi, JinJun Xiong and Wen-mei Hwu

Gender Bias in Natural Language Processing Across Human Languages
Abigail Matthews, Isabella Grasso, Christopher Mahoney, Yan Chen, Esma Wali,
Thomas Middleton, Mariama Njie and Jeanna Matthews

Interpreting Text Classifiers by Learning Context-sensitive Influence of Words
Sawan Kumar, Kalpit Dixit and Kashif Shah

Towards Benchmarking the Utility of Explanations for Model Debugging
Maximilian Idahl, Lijun Lyu, Ujwal Gadiraju and Avishek Anand

12:15–1:30 Lunch Break

13:00–14:00 Mentorship Meeting

14:00–14:50 Keynote 2
Mandy Korpusik

14:50–15:00 Break

15:00–16:00 Poster Session

16:15–17:05 Keynote 3
Robert Munro

17:05–17:15 Closing Address

x



Proceedings of the First Workshop on Trustworthy Natural Language Processing, pages 1–7
June 10, 2021. ©2021 Association for Computational Linguistics

Interpretability Rules: Jointly Bootstrapping a Neural Relation Extractor
with an Explanation Decoder

Zheng Tang, Mihai Surdeanu
Department of Computer Science

University of Arizona, Tucson, Arizona, USA
{zhengtang, msurdeanu}@email.arizona.edu

Abstract

We introduce a method that transforms a rule-
based relation extraction (RE) classifier into
a neural one such that both interpretability
and performance are achieved. Our approach
jointly trains a RE classifier with a decoder
that generates explanations for these extrac-
tions, using as sole supervision a set of rules
that match these relations. Our evaluation on
the TACRED dataset shows that our neural RE
classifier outperforms the rule-based one we
started from by 9 F1 points; our decoder gen-
erates explanations with a high BLEU score of
over 90%; and, the joint learning improves the
performance of both the classifier and decoder.

1 Introduction

Information extraction (IE) is one of the key chal-
lenges in the natural language processing (NLP)
field. With the explosion of unstructured informa-
tion on the Internet, the demand for high-quality
tools that convert free text to structured information
continues to grow (Chang et al., 2010; Lee et al.,
2013; Valenzuela-Escarcega et al., 2018).

The past decades have seen a steady transition
from rule-based IE systems (Appelt et al., 1993) to
methods that rely on machine learning (ML) (see
Related Work). While this transition has generally
yielded considerable performance improvements, it
was not without a cost. For example, in contrast to
modern deep learning methods, the predictions of
rule-based approaches are easily explainable, as a
small number of rules tends to apply to each extrac-
tion. Further, in many situations, rule-based meth-
ods can be developed by domain experts with mini-
mal training data. For these reasons, rule-based IE
methods remain widely used in industry (Chiticariu
et al., 2013).

In this work we demonstrate that this transition
from rule- to ML-based IE can be performed such
that the benefits of both worlds are preserved. In
particular, we start with a rule-based relation ex-

traction (RE) system (Angeli et al., 2015) and boot-
strap a neural RE approach that is trained jointly
with a decoder that learns to generate the rules that
best explain each particular extraction. The contri-
butions of our idea are the following:

(1) We introduce a strategy that jointly learns a RE
classifier between pairs of entity mentions with a
decoder that generates explanations for these ex-
tractions in the form of Tokensregex (Chang and
Manning, 2014) or Semregex (Chambers et al.,
2007) patterns. The only supervision for our
method is a set of input rules (or patterns) in these
two frameworks (Angeli et al., 2015), which we
use to generate positive examples for both the clas-
sifier and the decoder. We generate negative exam-
ples automatically from the sentences that contain
positives examples.

(2) We evaluate our approach on the TACRED
dataset (Zhang et al., 2017) and demonstrate that:
(a) our neural RE classifier outperforms consider-
ably the rule-based one we started from; (b) our
decoder generates explanations with high accuracy,
i.e., a BLEU overlap score between the generated
rules and the gold, hand-written rules of over 90%;
and, (c) joint learning improves the performance of
both the classifier and decoder.

(3) We demonstrate that our approach generalizes
to the situation where a vast amount of labeled
training data is combined with a few rules. We com-
bined the TACRED training data with the above
rules and showed that when our method is trained
on this combined data, the classifier obtains near
state-of-art performance at 67.0% F1, while the de-
coder generates accurate explanations with a BLEU
score of 92.4%.

2 Related Work

Relation extraction using statistical methods is
well studied. Methods range from supervised,
“traditional” approaches (Zelenko et al., 2003;
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Bunescu and Mooney, 2005) to neural meth-
ods. Neural approaches for RE range from meth-
ods that rely on simpler representations such as
CNNs (Zeng et al., 2014) and RNNs (Zhang and
Wang, 2015) to more complicated ones such as
augmenting RNNs with different components (Xu
et al., 2015; Zhou et al., 2016), combining RNNs
and CNNs (Vu et al., 2016; Wang et al., 2016),
and using mechanisms like attention (Zhang et al.,
2017) or GCNs (Zhang et al., 2018). To solve the
lack of annotated data, distant supervision (Mintz
et al., 2009; Surdeanu et al., 2012) is commonly
used to generate a training dataset from an existing
knowledge base. Jat et al. (2018) address the in-
herent noise in distant supervision with an entity
attention method.

Rule-based methods in IE have also been ex-
tensively investigated. Riloff (1996) developed a
system that learns extraction patterns using only
a pre-classified corpus of relevant and irrelevant
texts. Lin and Pantel (2001) proposed a unsuper-
vised method for discovering inference rules from
text based on the Harris distributional similarity
hypothesis (Harris, 1954). Valenzuela-Escárcega
et al. (2016) introduced a rule language that covers
both surface text and syntactic dependency graphs.
Angeli et al. (2015) further show that converting
rule-based models to statistical ones can capture
some of the benefits of both, i.e., the precision of
patterns and the generalizability of statistical mod-
els.

Interpretability has gained more attention re-
cently in the ML/NLP community. For example,
some efforts convert neural models to more inter-
pretable ones such as decision trees (Craven and
Shavlik, 1996; Frosst and Hinton, 2017). Some
others focus on producing a post-hoc explanation
of individual model outputs (Ribeiro et al., 2016;
Hendricks et al., 2016).

Inspired by these directions, here we propose
an approach that combines the interpretability of
rule-based methods with the performance and gen-
eralizability of neural approaches.

3 Approach

Our approach jointly addresses classification and
interpretability through an encoder-decoder archi-
tecture, where the decoder uses multi-task learn-
ing (MTL) for relation extraction between pairs of
named entities (Task 1) and rule generation (Task
2). Figure 1 summarizes our approach.

3.1 Task 1: Relation Classifier
We define the RE task as follows. The inputs con-
sist of a sentence W = [w1, . . . , wn], and a pair
of entities (called “subject” and “object”) corre-
sponding to two spans in this sentence: Ws =
[ws1 , . . . , wsn ] and Wo = [wo1 , . . . , won ]. The
goal is to predict a relation r ∈ R (from a pre-
defined set of relation types) that holds between the
subject and object or “no relation” otherwise.

For each sentence, we associate each word wi

with a representation xxxi that concatenates three
embeddings: xxxi = eee(wi) ◦ eee(ni) ◦ eee(pi), where
eee(wi) is the word embedding of token i, eee(ni) is
the NER embedding of token i, eee(pi) is the POS
Tag embedding of token i. We feed these represen-
tations into a sentence-level bidirectional LSTM
encoder (Hochreiter and Schmidhuber, 1997):

[hhh1, . . . ,hhhn] = LSTM([xxx1, . . . ,xxxn]) (1)

Following (Zhang et al., 2018), we extract the
“K-1 pruned” dependency tree that covers the two
entities, i.e., the shortest dependency path between
two entities enhanced with all tokens that are di-
rectly attached to the path, and feed it into a
GCN (Kipf and Welling, 2016) layer:

hhh
(l)
i = σ(

n∑

j=1

ÃijWWW
(l)hhh

(l−1)
j /di + bbb(l)) (2)

where AAA is the corresponding adjacency matrix,
Ã̃ÃA = AAA+ III with III being the n× n identity matrix,
di =

∑n
j=1 Ãij is the degree of token i in the

resulting graph, and WWW (l) is linear transformation.
Lastly, we concatenate the sentence represen-

tation, the subject entity representation, and the
object entity representation as follows:

hhhsent = f(hhh(L)) = f(GCN(hhh(0)) (3)

hhhs = f(hhh(L)
s1:sn) (4)

hhho = f(hhh(L)
o1:on) (5)

hhhfinal = hhhsent ◦ hhhs ◦ hhho (6)

where hhh(l) denotes the collective hidden repre-
sentations at layer l of the GCN, and f : Rd×n →
Rd is a max pooling function that maps from n
output vectors to the representation vector. The
concatenated representation hhhfinal is fed to a feed-
forward layer with a softmax function to produce a
probability distribution over relation types.
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Figure 1: Neural architecture of the proposed multitask learning approach. The input is a sequence of words
together with NER labels and POS tags. The pair of entities to be classified (“subject” in blue and “object” in
orange) are also provided. We use a concatenation of several representations, including embeddings of words, NER
labels, and POS tags. The encoder uses a sentence-level bidirectional LSTM (biLSTM) and graph convolutional
networks (GCN). There are pooling layers for the subject, object, and full sentence GCN outputs. The concatenated
pooling outputs are fed to the classifier’s feedforward layer. The decoder is an LSTM with an attention mechanism.

3.2 Task 2: Rule Decoder

The rule decoder’s goal is to generate the pat-
tern P that extracted the corresponding data
point, where P is represented as a sequence
of tokens in the corresponding pattern lan-
guage: P = [p1, . . . , pn]. For example, the
pattern (([{kbpentity:true}]+)/was/
/born/ /on/([{slotvalue:true}]+))
(where kbpentity:true marks subject tokens,
and slotvalue:true marks object tokens)
extracts mentions of the per:date_of_birth
relation.

We implemented this decoder using an LSTM
with an attention mechanism. To center rule decod-
ing around the subject and object, we first feed the
concatenation of subject and object representation
from the encoder as the initial state in the decoder.
Then, in each timestep t, we generate the attention
context vectorCCCD

t by using the current hidden state
of the decoder, hhhDt :

ssst(j) = hhhE
(L)WWW

AhhhD
t (7)

aaat = softmax(ssst) (8)

CCCD
t =

∑

j

aaat(j)hhh
E
j (9)

where WWWA is a learned matrix, and hhhE(L) are hid-
den representations from the encoder’s GCN.

We feed this CCCD
t vector to a single feed forward

layer that is coupled with a softmax function and

Approach Precision Recall F1 BLEU
Rule-only data

Rule baseline 86.9 23.2 36.6 –
Our approach 60.0 36.7 45.5 90.3

w/o decoder 58.7 36.4 44.9 –
w/o classifier – – – 88.3

Rules + TACRED training data
C-GCN 69.9 63.3 66.4 –
Our approach 70.2 64.0 67.0 92.4

w/o decoder 71.2 62.3 66.5 –
w/o classifier – – – 91.6

Table 1: Results on the TACRED test partition, includ-
ing ablation experiments (the “w/o” rows). We exper-
imented with two configurations: Rule-only data uses
only training examples generated by rules; Rules + TA-
CRED training data applies the previous rules to the
training dataset from TACRED.

use its output to obtain a probability distribution
over the pattern vocabulary.

We use cross entropy to calculate the losses for
both the classifier and decoder. To balance the loss
between classifier and decoder, we normalize the
decoder loss by the pattern length. Note that for
the data points without an existing rule, we only
calculate the classifier loss. Formally, the joint loss
function is:

loss = lossc + lossd/length(P ) (10)

4 Experiments

Data Preparation: We report results on the TA-
CRED dataset (Zhang et al., 2017). We bootstrap

3



Hand-written Rule Decoded Rule
(([{kbpentity:true}]+)""" based ""in"([{slotvalue:true}]+)) (([{kbpentity:true}]+)"in"([{slotvalue:true}]+))
(([{kbpentity:true}]+)" CEO "([{slotvalue:true}]+)) (([{kbpentity:true}]+)" president "([{slotvalue:true}]+))

Table 2: Examples of mistakes in the decoded rules. We highlight in the hand-written rules the tokens that were
missed during decoding (false negatives) in green, and in the decoded rules we highlight the spurious tokens (false
positives) in red.

Model Precision Recall F1 BLEU
20% of rules 74.9 20.1 31.7 96.9
40% of rules 69.0 26.9 38.8 90.8
60% of rules 62.7 29.7 40.3 88.8
80% of rules 57.3 36.5 44.6 89.4

Table 3: Learning curve of our approach based on
amount of rules used, in the rule-only data configura-
tion. These results are on TACRED development.

our models from the patterns in the rule-based sys-
tem of Angeli et al. (2015), which uses 4,528 sur-
face patterns (in the Tokensregex language) and
169 patterns over syntactic dependencies (using
Semgrex). We experimented with two configura-
tions: rule-only data and rules + TACRED training
data. In the former setting, we use solely pos-
itive training examples generated by the above
rules. We combine these positive examples with
negative ones generated automatically by assigning
’no_relation’ to all other entity mention pairs in the
same sentence where there is a positive example.1

We generated 3,850 positive and 12,311 negative
examples for this configuration. In the latter con-
figuration, we apply the same rules to the entire
TACRED training dataset.2

Baselines: We compare our approach with two
baselines: the rule-based system of Zhang et al.
(2017), and the best non-combination method of
Zhang et al. (2018). The latter method uses an
LSTM and GCN combination similar to our en-
coder.3

Implementation Details: We use pre-trained
GloVe vectors (Pennington et al., 2014) to initialize

1During the generation of these negative examples we
filtered out pairs corresponding to inverse and symmetric re-
lations. For example, if a sentence contains a relation (Subj,
Rel, Obj), we do not generate the negative (Obj, no_relation,
Subj) if Rel has an inverse relation, e.g., per:children is
the inverse of per:parents.

2Thus, some training examples in this case will be asso-
ciated with a rule and some will not. We adjusted the loss
function to use only the classification loss when no rule ap-
plies.

3For a fair comparison, we do not compare against ensem-
ble methods, or transformer-based ones. Also, note that this
baseline does not use rules at all.

our word embeddings. We use the Adagrad opti-
mizer (Duchi et al., 2011). We apply entity mask-
ing to subject and object entities in the sentence,
which is replacing the original token with a spe-
cial <NER>–SUBJ or <NER>–OBJ token where
<NER> is the corresponding name entity label pro-
vided by TACRED.

We used micro precision, recall, and F1 scores
to evaluate the RE classifier. We used the BLEU
score to measure the quality of generated rules, i.e.,
how close they are to the corresponding gold rules
that extracted the same output. We used the BLEU
implementation in NLTK (Loper and Bird, 2002),
which allows us to calculate multi-reference BLEU
scores over 1 to 4 grams.4 We report BLEU scores
only over the non ’no_relation’ extractions with the
corresponding testing data points that are matched
by one of the rules in (Zhang et al., 2017).

Results and Discussion: Table 1 reports the
overall performance of our approach, the baselines,
and ablation settings, for the two configurations
investigated. We draw the following observations
from these results:

(1) The rule-based method of Zhang et al. (2017)
has high precision but suffers from low recall. In
contrast, our approach that is bootstrapped from the
same information has 13% higher recall and almost
9% higher F1 (absolute). Further, our approach
decodes explanatory rules with a high BLEU score
of 90%, which indicates that it maintains almost the
entire explanatory power of the rule-based method.

(2) The ablation experiments indicate that joint
training for classification and explainability helps
both tasks, in both configurations. This indi-
cates that performance and explainability are inter-
connected.

(3) The two configurations analyzed in the table
demonstrate that our approach performs well not
only when trained solely on rules, but also when
rules are combined with a training dataset anno-
tated for RE. This suggests that our direction may

4We scored longer n-grams to better capture rule syntax.
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be a general strategy to infuse some explainability
in a statistical method, when rules are available
during training.
(4) Table 3 lists the learning curve for our ap-
proach in the rule-only data configuration when
the amount of rules available varies.5 This table
shows that our approach obtains a higher F1 than
the complete rule-based RE classifier even when
using only 40% of the rules.6

(5) Note that the BLEU score provides an incom-
plete evaluation of rule quality. To understand if
the decoded rules explain their corresponding data
point, we performed a manual evaluation on 176
decoded rules. We classified them into three cate-
gories: (a) the rules correctly explain the prediction
(according to the human annotator), (b) they ap-
proximately explain the prediction, and (c) they
do not explain the prediction. Class (b) contains
rules that do not lexically match the input text,
but capture the correct semantics, as shown in Ta-
ble 2. The percentages we measured were: (a)
33.5%, (b) 31.3%, (c) 26.1%. 9% of these rules
were skipped in the evaluation because they were
false negatives( which are labeled as no relation
falsely by our model). These numbers support our
hypothesis that, in general, the decoded rules do
explain the classifier’s prediction.

Further, out of 750 data points associated with
rules in the evaluation data, our method incorrectly
classifies only 26. Out of these 26, 16 were false
negatives, and had no rules decoded. In the other 10
predictions, 7 rules fell in class (b) (see the exam-
ples in Table 2). The other 3 were incorrect due to
ambiguity, i.e., the pattern created is an ambiguous
succession of POS tags or syntactic dependencies
without any lexicalization. This suggests that, even
when our classifier is incorrect, the rules decoded
tend to capture the underlying semantics.

5 Conclusion

We introduced a strategy that jointly bootstraps a
relation extraction classifier with a decoder that
generates explanations for these extractions, us-
ing as sole supervision a set of example patterns
that match such relations. Our experiments on
the TACRED dataset demonstrated that our ap-
proach outperforms the strong rule-based method

5For this experiment we sorted the rules in descending
order of their match frequency in training, and kept the top
n% in each setting.

6 The high BLEU score in the 20% configuration is due to
the small sample in development for which gold rules exist.

that provided the training patterns by 9 F1 points,
while decoding explanations at over 90% BLEU
score. Further, we showed that the joint training
of the classification and explanation components
performs better than training them separately. All
in all, our work suggests that it is possible to marry
the interpretability of rule-based methods with the
performance of neural approaches.
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A Experimental Details

We use the dependency parse trees, POS and NER
sequences as included in the original release of the
TACRED dataset, which was generated with Stan-
ford CoreNLP (Manning et al., 2014). We use the
pretrained 300-dimensional GloVe vectors (Pen-
nington et al., 2014) to initialize word embeddings.
We use a 2 layers of bi-LSTM, 2 layers of GCN,
and 2 layers of feedforward in our encoder. And 2
layers of LSTM and 1 layer of feedforward in our
decoder. Table 4 shows the details of the proposed
neural network. We apply the ReLU function for
all nonlinearities in the GCN layers and the stan-
dard max pooling operations in all pooling layers.
For regularization we use dropout with p = 0.5 to
all encoder LSTM layers and all but the last GCN
layers.

For training, we use Adagrad (Duchi et al., 2011)
an initial learning rate, and from epoch 1 we start
to anneal the learning rate by a factor of 0.9 ev-
ery time the F1 score on the development set does
not increase after one epoch. We tuned the initial
learning rate between 0.01 and 1; we chose 0.3 as

Encoder and classifier components Size
Vocabulary 53953
POS embedding dimension 30
NER embedding dimension 30
LSTM hidden layers 200
Feedforward layers 200
GCN layers 200
Relation 41
Decoder component Size
LSTM hidden layers 200
Pattern embedding dimension 100
Feedforward layer 200
Maximum decoding length 100
Pattern 1141

Table 4: Details of our neural architecture.

this obtained the best performance on development.
We trained 100 epochs for all the experiments with
a batch size of 50. There were 3,850 positive data
points and 12,311 negative data in the rule-only
data. For this dataset, it took 1 minute to finish
one epoch in average. And for Rules + TACRED
training data, it took 4 minutes to finish one epoch
in average7.

All the hyperparameters above were tuned man-
ually. We trained our model on PyTorch 3.8.5 with
CUDA version 10.0, using one NVDIA Titan RTX.

B Dataset Introduction

You can find the details of TACRED data in
this link: https://nlp.stanford.edu/
projects/tacred/.

C Rules

The rule-base system we use is the combination
of Stanford’s Tokensregex (Chang and Manning,
2014) and Semregex (Chambers et al., 2007). The
rules we use are from the system of Angeli et al.
(2015), which contains 4528 Tokensregex patterns
and 169 Semgrex patterns.

We extracted the rules from CoreNLP and
mapped each rule to the TACRED dataset. We
provided the mapping files in our released dataset.
We also generate the dataset with only datapoints
matched by rules in TACRED training partition and
its mapping file.

7The software is available at this URL:
https://github.com/clulab/releases/tree/master/naacl-
trustnlp2021-edin.
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Abstract

Word embeddings are widely used in Natural
Language Processing (NLP) for a vast range
of applications. However, it has been consis-
tently proven that these embeddings reflect the
same human biases that exist in the data used
to train them. Most of the introduced bias in-
dicators to reveal word embeddings’ bias are
average-based indicators based on the cosine
similarity measure. In this study, we examine
the impacts of different similarity measures
as well as other descriptive techniques than
averaging in measuring the biases of contex-
tual and non-contextual word embeddings. We
show that the extent of revealed biases in word
embeddings depends on the descriptive statis-
tics and similarity measures used to measure
the bias. We found that over the ten categories
of word embedding association tests, Maha-
lanobis distance reveals the smallest bias, and
Euclidean distance reveals the largest bias in
word embeddings. In addition, the contextual
models reveal less severe biases than the non-
contextual word embedding models with GPT
showing the fewest number of WEAT biases.

1 Introduction

Word embedding models including Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), BERT (Devlin et al., 2018), ELMo (Peters
et al., 2018), and GPT (Radford et al., 2018) have
become popular components of many NLP frame-
works and are vastly used for many downstream
tasks. However, these word representations pre-
serve not only statistical properties of human lan-
guage but also the human-like biases that exist in
the data used to train them (Bolukbasi et al., 2016;
Caliskan et al., 2017; Kurita et al., 2019; Basta
et al., 2019; Gonen and Goldberg, 2019). It has
also been shown that such biases propagate to the
downstream NLP tasks and have negative impacts
on their performance (May et al., 2019; Leino et al.,
2018). There are studies investigating how to miti-

gate biases of word embeddings (Liang et al., 2020;
Ravfogel et al., 2020).

Different approaches have been used to present
and quantify corpus-level biases of word embed-
dings. Bolukbasi et al. (2016) proposed to mea-
sure the gender bias of word representations in
Word2Vec and GloVe by calculating the projections
into principal components of differences of embed-
dings of a list of male and female pairs. Basta et al.
(2019) adapted the idea of "gender direction" of
(Bolukbasi et al., 2016) to be applicable to contex-
tual word embeddings such as ELMo. In (Basta
et al., 2019) first, the gender subspace of ELMo
vector representations is calculated and then, the
presence of gender bias in ELMo is identified. Go-
nen and Goldberg (2019) introduced a new gender
bias indicator based on the percentage of socially-
biased terms among the k-nearest neighbors of a
target term and demonstrated its correlation with
the gender direction indicator.

Caliskan et al. (2017) developed Word Embed-
ding Association Test (WEAT) to measure bias by
comparing two sets of target words with two sets of
attribute words and documented that Word2Vec and
GloVe contain human-like biases such as gender
and racial biases. May et al. (2019) generalized the
WEAT test to phrases and sentences by inserting
individual words from WEAT tests into simple sen-
tence templates and used them for contextual word
embeddings.

Kurita et al. (2019) proposed a new method to
quantify bias in BERT embeddings based on its
masked language model objective using simple
template sentences. For each attribute word, us-
ing a simple template sentence, the normalized
probability that BERT assigns to that sentence for
each of the target words is calculated, and the dif-
ference is considered the measure of the bias. Ku-
rita et al. (2019) demonstrated that this probability-
based method for quantifying bias in BERT was
more effective than the cosine-based method.
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Motivated by these recent studies, we compre-
hensively investigate different methods for bias ex-
posure in word embeddings. Particularly, we inves-
tigate the impacts of different similarity measures
and descriptive statistics to demonstrate the degree
of associations between the target sets and attribute
sets in the WEAT. First, other than cosine similarity,
we study Euclidean, Manhattan, and Mahalanobis
distances to measure the degree of association be-
tween a single target word and a single attribute
word. Second, other than averaging, we investigate
minimum, maximum, median, and a discrete (grid-
based) optimization approach to find the minimum
possible association to report between a single tar-
get word and the two attribute sets in each of the
WEAT tests. We consistently compare these bias
measures for different types of word embeddings
including non-contextual (Word2Vec, GloVe) and
contextual ones (BERT, ELMo, GPT, GPT2).

2 Method

Implicit Association Test (IAT) was first intro-
duced by Greenwald et al. (1998a) in psychology to
demonstrate the enormous differences in response
time when participants are asked to pair two con-
cepts they deem similar, in contrast to two con-
cepts they find less similar. For example, when
subjects are encouraged to work as quickly as pos-
sible, they are much likely to label flowers as pleas-
ant and insects as unpleasant. In IAT, being able
to pair a concept to an attribute quickly indicates
that the concept and attribute are linked together
in the participants’ minds. The IAT has widely
been used to measure and quantify the strength of
a range of implicit biases and other phenomena,
including attitudes and stereotype threat (Karpinski
and Hilton, 2001; Kiefer and Sekaquaptewa, 2007;
Stanley et al., 2011).

Inspired by IAT, Caliskan et al. (2017) intro-
duced WEAT to measure the associations between
two sets of target concepts and two sets of attributes
in word embeddings learned from large text cor-
pora. A hypothesis test is conducted to demon-
strate and quantify the bias. The null hypothesis
states that there is no difference between the two
sets of target words in terms of their relative dis-
tance/similarity to the two sets of attribute words.
A permutation test is performed to measure the
null hypothesis’s likelihood. This test computes
the probability that target words’ random permuta-
tions would produce a greater difference than the

observed difference. Let X and Y be two sets
of target word embeddings and A and B be two
sets of attribute embeddings. The test statistics is
defined as:

s(X,Y,A,B) = |∑x∈X s(x,A,B)−∑y∈Y s(y,A,B)|

where:

s(w,A,B) = fa∈A(s(−→w ,−→a ))− fb∈B(s(−→w ,
−→
b )) (1)

In other words, s(w,A,B) quantifies the associ-
ation of a single word w with the two sets of at-
tributes, and s(X,Y,A,B) measures the differen-
tial association of the two sets of targets with the
two sets of attributes. Denoting all the partitions
of X ∪Y with (Xi,Yi)i, the one-sided p-value of
the permutation test is:

Pri(s(Xi, Yi,A,B) > s(X,Y,A,B))

The magnitude of the association of the two target
sets with the two attribute sets can be measured
with the effect size as:

d =
|s(x,A,B)− s(y,A,B)|
std-devw∈X∪Y s(w,A,B)

It is worth mentioning that d is a measure used to
calculate how separated two distributions are and is
basically the standardized difference of the means
of the two distributions (Cohen, 2013). Controlling
for the significance, a larger effect size reflects a
more severe bias.

WEAT and almost all the other studies inspired
by it (Garg et al., 2018; Brunet et al., 2018; Gonen
and Goldberg, 2019; May et al., 2019) use the fol-
lowing approach to measure the association of a
single target word with the two sets of attributes
(equation 1). First, they use cosine similarity to
measure the target word’s similarity to each word
in the attribute sets. Then they calculate the average
of the similarities over each attribute set.

In this paper we investigate the impacts of other
functions such as min(·), mean(·), median(·), or
max(·) for function f(·) in equation (1) (originally
onlymean(·) has been used). Also, in this paper in
addition to cosine similarity, we consider Euclidean
and Manhattan distances as well as the following
measures for the s(−→w ,−→a ) in equation (1).

Mahalanobis distance: introduced by P. C. Ma-
halanobis (Mahalanobis, 1936) this distance mea-
sures the distance of a point from a distribution:
s(−→w ,−→a ) = ((−→w − −→a )TΣ−1A (−→w − −→a ))

1
2 . It is
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worth noting that the Mahalanobis distance takes
into account the distribution of the set of attributes
while measuring the association of the target word
w with an attribute vector.

Discrete optimization of the association mea-
sure: In equation (1), s(w,A,B) quantifies the
association of a single target word w with the two
sets of attributes. To quantify the minimum pos-
sible association of a target word w with the two
sets of attributes, we first calculate the distance of
w from all attribute words in A and B, then calcu-
late all possible differences and find the minimum
difference.

s(w,A,B) = min
a∈A,b∈B

|s(−→w ,−→a )− s(−→w ,
−→
b )| (2)

3 Biases studied
We studied all ten bias categories introduced in IAT
(Greenwald et al., 1998a) and replicated in WEAT
to measure the biases in word embeddings. The ten
WEAT categories are briefly introduced in Table 1.
For more detail and example of target and attribute
words, please check Appendix A. Although WEAT
3 to 5 have the same names, they have different
target and attribute words.

WEAT Association
1 Flowers vs insects with pleasant vs unpleasant
2 Instruments vs weapons with pleasant vs unpleasant
3 Eur.-American vs Afr.-American names with Pleasant vs

unpleasant (Greenwald et al., 1998b)
4 Eur.-American vs Afr.-American names (Bertrand and Mul-

lainathan, 2004) with Pleasant vs unpleasant (Greenwald
et al., 1998b)

5 Eur.-American vs Afr.-American names (Bertrand and Mul-
lainathan, 2004) with Pleasant vs unpleasant (Nosek et al.,
2002)

6 Male vs female names with Career vs family
7 Math vs arts with male vs female terms
8 Science vs arts with male vs female terms
9 Mental vs physical disease with temporary vs permanent
10 Young vs old people’s name with pleasant vs unpleasant

Table 1: The associations studied in the WEAT

As described in section 2, we need each attribute
set’s covariance matrix to compute Mahalanobis
distance. To get stable covariance matrix estima-
tion due to the high dimension of the embeddings
we first created larger attribute sets by adding syn-
onym terms. Next, we estimated the sparse covari-
ance matrices as the number of samples in each
attribute set is smaller than the number of features.
To enforce sparsity, we estimated the l1 penalty
using k-fold cross validation with k=3.

4 Results of experiments
We examined the 10 different types of biases in
WEAT (Table 1) for word embedding models listed

in Table 2. We used publicly available pre-trained
models. For contextual word embeddings, we used
single word sentences as input instead of using
simple template sentences used in other studies
(May et al., 2019; Kurita et al., 2019). The sim-
ple template sentences such as "this is TARGET"
or "TARGET is ATTRIBUTE" used in other stud-
ies do not really provide any context to reveal the
contextual capability of embeddings such as BERT
or ELMo. This way, the comparisons between the
contextual embeddings and non-contextual embed-
dings are fairer as both of them only get the target
or attribute terms as input. For each model, we
performed the WEAT tests using four similarity
metrics mentioned in section 2: cosine, Euclidean,
Manhattan, Mahalanobis. For each similarity met-
ric, we also used min(·), mean(·), median(·), or
max(·) as the f(·) in equation (1). Also, as ex-
plained in section 2, we discretely optimized the
association measure and found the minimum asso-
ciation in equation (1). In these experiments (Table
3 and Table 4), the larger and more significant ef-
fect sizes imply more severe biases.

Model Embedding Dim
GloVe (840B tokens, web corpus) - 300
Word2Vec (GoogleNews-negative) - 300
ELMo (original) First hidden layer 1024
BERT (base, cased) Sum of last 4 hidden

layers in [CLS] 768

GPT Last hidden layer 768
GPT2 Last hidden layer 768

Table 2: Word embedding models, used representa-
tions, and their dimensions.

Impacts of different descriptive statistics: Our
first goal was to report the changes in the mea-
sured biases when we change the descriptive statis-
tics. The range of effect sizes was from 0.00 to
1.89 (µ = 0.65, σ = 0.5). Our findings show
that mean has a better capability to reveal biases
as it provides the most cases of significant effect
sizes (µ = 0.8, σ = 0.52) across models and dis-
tance measures. Median is close to the mean with
(µ = 0.74, σ = 0.48) among all its effect sizes.
The effect sizes for minimum (µ = 0.68, σ = 0.48)
and maximum (µ = 0.65, σ = 0.48) are close
to each other, but smaller than mean and median.
The discretely optimized association measure (Eq.
2) provides the smallest effect sizes (µ = 0.39,
σ = 0.3) and reveals the least number of implicit
biases. These differences as the result of apply-
ing different descriptive statistics in the association
measure (Eq. (1)) show that the revealed biases
depend on the applied statistics to measure the bias.
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For example, in the cosine distance of Word2Vec,
if we change the descriptive statistic from mean to
minimum, the biases for WEAT 3 and WEAT 4 will
become insignificant (no bias will be reported). In
another example, in GPT model, while the result
of mean cosine is not significant for WEAT 3 and
WEAT 4, they become significant for median co-
sine. Moreover, almost for all models, the effect
size of the discretely optimized minimum distance
is not significant. Our intention for considering
this statistic was to report the minimum possible
association of a target word with the attribute sets.
If this measure is used for reporting biases, one can
misleadingly claim that there is no bias.

Impacts of different similarity measures: The
effect sizes for cosine, Manhattan, and Euclidean
are closer to each other and greater than the Ma-
halanobis distance (cosine: (µ = 0.72, σ = 0.49),
Euclidean: (µ = 0.67, σ = 0.5), Manhattan:
(µ = 0.63, σ = 0.48), Mahalanobis: (µ = 0.58,
σ = 0.45)). Mahalanobis distance also detects the
fewest number of significant bias types across all
models. As an example, while mean and median
effect sizes for WEAT 3 and WEAT 5 in GloVe
and Word2Vec are mostly significant for cosine,
Euclidean, and Manhattan; the same results are
not significant for the Mahalanobis distance. That
means with the Mahalanobis distance as the mea-
sure of the bias, no bias will be reported for WEAT
3 and WEAT 5 tests. This emphasizes the impor-
tance of chosen similarity measures in detecting
biases of word embeddings. More importantly, as
the Mahalanobis distance considers the distribution
of attributes in measuring the distance, it may be a
better choice than the other similarity measures for
measuring and revealing biases with GPT showing
fewer number of biases.
Biases in different word embedding models:
Using any combination of descriptive statistics and
similarity measures, all the contextualized mod-
els have less significant biases than GloVe and
Word2Vec. In Table 3 the number of tests with
significant implicit biases out of the 10 WEAT tests
along with the mean and standard deviation of the
effect sizes for all embedding models have been
reported. The complete list of effect sizes along
with their p-value are provided in Table 4.

Following our findings in the previous sections,
we choose mean of Euclidean to reveal biases. By
doing so, GloVe and Word2Vec show the most num-
ber of significant biases with 9 and 7 significant

biases in 10 WEAT categories (Table 3). Using
mean of Euclidean, our results confirm all the re-
sults by Caliskan et al. (2017), which used mean
of cosine in all WEAT tests. The difference is that
with the mean of Euclidean measure, the biases are
revealed as being more severe. (smaller p-values).
Using mean of Euclidean, GPT and ELMo show
the fewest number of implicit biases. GPT model
shows bias in WEAT 2, 3, and 5. ELMo’s signifi-
cant biases are in WEAT 1, 3, and 6. Using mean
Euclidean, almost all models (except for ELMo)
confirm the existence of a bias in WEAT 3 to 5.
Moreover, all contextualized models found no bias
in associating female with arts and male with sci-
ence (WEAT 7), mental diseases with temporary
attributes and physical diseases with permanent at-
tributes (WEAT 9), and young people’s name with
pleasant attribute and old people’s name with un-
pleasant attributes (WEAT 10).

Model mean cosine mean Euc mean Maha Maha Eq.2

GloVe 9 9 3 0
(1.39, 0.21) (1.41, 0.2) (0.79, 0.53) (0.34, 0.27)

Word2Vec 7 7 5 0
(1.13, 0.54) (1.13, 0.55) (0.84, 0.52) (0.32, 0.33)

ELMo 3 3 3 0
(0.64, 0.51) (0,65, 0.52) (0.61, 0.42) (0.36, 0.23)

BERT 5 5 2 2
(0.74, 0.5) (0.74, 0.48) (0.47, 0.5) (0.55, 0.52)

GPT 2 3 4 0
(0.61, 0.48) (0.65, 0.42) (0.59, 0.35) (0.29, 0.27)

GPT2 3 4 3 3
(0.73, 0.46) (0.71, 0.46) (0.69, 0.49) (0.66, 0.49)

Table 3: Number of revealed biases out of the 10
WEAT bias types for the studied word embeddings
along with the (µ, σ) of their effect sizes. The larger
the effect size the more severe the bias.

5 Conclusions
We studied the impacts of different descriptive
statistics and similarity measures on association
tests for measuring biases in contextualized and
non-contextualized word embeddings. Our find-
ings demonstrate that the detected biases depend
on the choice of association measure. Based on
our experiments, mean reveals more severe biases
and the discretely optimized version reveals fewer
number of severe biases. In addition, cosine dis-
tance reveals more severe biases and the Maha-
lanobis distance reveals less severe ones. Report-
ing biases with mean of Euclidean/Mahalanobis
distances identifies more/less severe biases in the
models. Furthermore, contextual models show less
biases than the non-contextual ones across all 10
WEAT tests with GPT showing the fewest number
of biases.
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A The studied associations: 10 WEAT categories

WEAT Association NT NA

1 Flowers vs insects with pleasant vs unpleasant
Example: {aster, clover} vs {ant, caterpillar} with {caress, freedom} vs { abuse, crash} 25× 2 25× 2

2 Instruments vs weapons with pleasant vs unpleasant
Example: {bagpipe, cello} vs {arrow, club} with {caress, freedom} vs { abuse, crash} 25× 2 25× 2

3 Eur.-American vs Afr.-American names with Pleasant vs unpleasant
Example: {Adam, Harry} vs {Alonzo, Jamel} with {caress, freedom} vs {abuse, crash} 32× 2 25× 2

4 Eur.-American vs Afr.-American names with Pleasant vs unpleasant
Example: {Brad, Brendan} vs {Darnell, Hakim} with {caress, freedom} vs {abuse, crash} 16× 2 25× 2

5 Eur.-American vs Afr.-American names with Pleasant vs unpleasant
Example: {Brad, Brendan} vs {Darnell, Hakim} with {joy, love} vs {agony, terrible} 16× 2 8× 2

6 Male vs female names with Career vs family
Example: {John, Paul} vs {Amy, Joan} with {executive, management} vs {home, parents} 8× 2 8× 2

7 Math vs arts with male vs female terms
Example: {math, algebra} vs {poetry, art} with {male, man} vs {female, woman} 8× 2 8× 2

8 Science vs arts with male vs female terms
Example: {science, technology} vs {art, Shakespeare} with {brother, father} vs {sister, mother} 8× 2 8× 2

9 Mental vs physical disease with temporary vs permanent
Example: {sad, hopeless} vs {sick, illness} with {impermanent, unstable} vs {stable, always} 6× 2 7× 2

10 Young vs old people’s name with pleasant vs unpleasant
Example: {Tiffany, Michelle} vs {Ethel, Bernice} with {love, peace} vs {agony, terrible} 8× 2 8× 2

Table 1: The 10 WEAT categories.
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Abstract

Ensuring strong theoretical privacy guarantees
on text data is a challenging problem which is
usually attained at the expense of utility. How-
ever, to improve the practicality of privacy pre-
serving text analyses, it is essential to design
algorithms that better optimize this tradeoff.
To address this challenge, we propose a release
mechanism that takes any (text) embedding
vector as input and releases a corresponding
private vector. The mechanism satisfies an ex-
tension of differential privacy to metric spaces.
Our idea based on first randomly projecting
the vectors to a lower-dimensional space and
then adding noise in this projected space gen-
erates private vectors that achieve strong theo-
retical guarantees on its utility. We support our
theoretical proofs with empirical experiments
on multiple word embedding models and NLP
datasets, achieving in some cases more than
10% gains over the existing state-of-the-art pri-
vatization techniques.

1 Introduction

Privacy has emerged as a topic of strategic conse-
quence across all computational fields. Differential
Privacy (DP) is a mathematical definition of pri-
vacy proposed by (Dwork et al., 2006). Ever since
its introduction, DP has been widely adopted and as
of today, it has become the de facto privacy defini-
tion in the academic world with also wide adoption
in industry, e.g., (Erlingsson et al., 2014; Dajani
et al., 2017; Team, 2017; Uber Security, 2017). DP
provides provable protection against adversaries
with arbitrary side information and computational
power, allows clear quantification of privacy losses,
and satisfies graceful composition over multiple
access to the same data. In DP, two parameters ε
and δ control the level of privacy. Very roughly, ε is
an upper bound on the amount of influence a single
data point has on the information released and δ
is the probability that this bound fails to hold, so
the definition becomes more stringent as ε, δ → 0.

The definition with δ = 0 is referred to as pure
differential privacy, and with δ > 0 is referred to
as approximate differential privacy.

Within the field of Natural Language Process-
ing (NLP), the traditional approach for privacy
was to apply anonymization techniques such as k-
anonymity (Sweeney, 2002) and its variants. While
this offers an intuitive way of expressing privacy
guarantees as a function of an aggregation param-
eter k, all such methods are provably non-private
(Korolova et al., 2009). Given the sheer increase
in data gathering occurring across a multiplicity of
connected platforms – a great number of which is
being done via user generated voice conversations,
text queries, or other language based metadata (e.g.,
user annotations), it is imperative to advance the
development of DP techniques in NLP.

Vector embeddings are a popular approach for
capturing the “meaning” of text and a form of un-
supervised learning useful for downstream tasks.
Word embeddings were popularized via embed-
ding schemes such as WORD2VEC (Mikolov et al.,
2013), GLOVE (Pennington et al., 2014), and FAST-
TEXT (Bojanowski et al., 2017). There is also a
growing literature on creating embeddings for sen-
tences, documents, and other textual entities, in
addition to embeddings in other domains such as
in computer vision (Goodfellow et al., 2016).

Recent works such as (Fernandes et al., 2019;
Feyisetan et al., 2019, 2020; Xu et al., 2020) have
attempted to directly adapt the methods of DP to
word embeddings by borrowing ideas from the pri-
vacy methods used for map location data (Andrés
et al., 2013). In the DP literature, one standard
way of achieving privacy is by adding properly cal-
ibrated noise to the output of a function (Dwork
et al., 2006). This is also the premise behind these
previously proposed DP for text techniques, which
are based on adding noise to the vector represen-
tation of words in a high dimensional embedding
space and additional post-processing steps. The
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privacy guarantees of applying such a method is
quite straightforward. However, the main issue is
that the magnitude of the DP privacy noise scales
with dimensionality of the vector, which leads to a
considerable degradation to the utility when these
techniques are applied to vectors produced through
popular embedding techniques. In this paper, we
seek to overcome this curse of dimensionality aris-
ing through the differential privacy requirement.
Also unlike previous results which were focused
on word embeddings, we focus on the general prob-
lem of privately releasing vector embeddings, thus
making our scheme more widely applicable.

1.1 Related Work

Vector representations of words, sentences, and
documents, have all become basic building blocks
in NLP pipelines and algorithms. Hence, it is natu-
ral to consider privacy mechanisms that target these
representations. The most relevant to this paper
is the privacy mechanism proposed in (Feyisetan
et al., 2020) that works by computing the vector
representation x of a word in the embedding space,
applying noise N calibrated to the global metric
sensitivity to obtain a perturbed vector v = x+N ,
and then swapping the original word another word
whose embedding is closest to v. (Feyisetan et al.,
2020) showed that this mechanism satisfies the
(ε, 0)-Lipschitz privacy definition. However, the
issue with this mechanism is that the magnitude
(norm) of the added noise is proportional to d,
which we avoid by projecting these vectors down
before the noise addition step. Our focus here is
also more general and not just on word embeddings.
Additionally, we provide theoretical guarantees on
our privatized vectors. We experimentally compare
with this approach.

The privacy mechanisms of (Fernandes et al.,
2019; Feyisetan et al., 2019) are also based on
similar noise addition ideas. However, (Fernandes
et al., 2019) utilized the Earth mover metric to mea-
sure distances (instead of Euclidean), and (Feyise-
tan et al., 2019) perturb vector representations of
words in high dimensional Hyperbolic space (in-
stead of a real space). In this paper, we focus on the
Euclidean space as it captures the most common
choice of metric space with vector models.

Over the past decade, a large body of work has
been developed to design basic algorithms and
tools for achieving DP, understanding the privacy-
utility trade-offs in different data access setups, and

on integrating DP with machine learning and statis-
tical inference. We refer the reader to (Dwork and
Roth, 2013) for a more comprehensive overview.

Dimensionality reduction for word embeddings
using PCA was explored in (Raunak et al., 2019)
for computational efficiency purposes. In this pa-
per, we use random projections for dimensionality
reduction that helps with reducing the magnitude of
noise needed for privacy. Another issue with PCA
like scheme is that there are strong lower bounds
(that scale with dimension of the vectors d) on the
amount of distortion needed for achieving differ-
entially private PCA in the local privacy model
(Wang and Xu, 2020).

Random projections have been used as a tool
to design differentially private algorithms in other
problem settings too (Blocki et al., 2012; Wang
et al., 2015; Kenthapadi et al., 2013; Zhou et al.,
2009; Kasiviswanathan and Jin, 2016).

2 Preliminaries

We denote [n] = {1, . . . , n}. Vectors are in
column-wise fashion. We measure the distance
between embeddings through the Euclidean metric.
For a vector x, we set ‖x‖ to denote the Euclidean
(L2-) norm and ‖x‖1 denotes its L1-norm. For
sets S, T , the Minkowski sum S + T = {a + b :
a ∈ S, b ∈ T}. N (0, σ2) denotes the Gaussian
distribution with mean 0 and variance σ2.

2.1 Privacy Motivations for Text

The privacy concerns around word embedding vec-
tors stem from how they are created. For example,
embeddings created using neural models inherit the
side effects of unintended memorizations that come
with such models (Carlini et al., 2019). Similarly it
has been demonstrated that text generation models
that encode language representations also suffer
from various degrees of information leakage (Song
and Shmatikov, 2019; Lyu et al., 2020). While this
might not be concerning for off the shelf models
trained on public data, it becomes important for
word embeddings trained on non-public data.

Recent studies (Song and Raghunathan, 2020;
Thomas et al., 2020) have shown that word em-
beddings are vulnerable to 3 types of attacks (1)
embedding inversion where the vectors can be used
to recreate some of the input training data; (2) at-
tribution inference occurs when sensitive attributes
(such as authorship) of the input data are revealed
even when they are independent of the task at hand;
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and (3) membership inference where an attacker is
able to determine if data from a particular user was
used to train the word embedding model.

The privacy consequences are further amplified
depending on the domain of data under considera-
tion. For example, a study by (Abdalla et al., 2020)
on word embeddings in the medical domain demon-
strated that: (1) they were able to reconstruct up to
68.5% of full names based on the embeddings i.e.,
embedding inversion; (2) they were able to retrieve
associated sensitive information to specific patients
in the corpus i.e., attribution inference; and (3) by
using the distance between the vector of a patient’s
name and a billing code, they could differentiate
between patients that were billed, and those that
weren’t i.e., membership inference.

These findings all underscore the need to release
text embeddings using a rigorous notion of privacy,
such as differential privacy, that preserves user pri-
vacy and mitigates the attacks described above.

2.2 Background on Differential Privacy.
Differential privacy (Dwork et al., 2006) gives a
formal standard of privacy, requiring that, for all
pairs of datasets that differ in one element, the
distribution of outputs should be similar. In this
paper, we use the notion of local differential privacy
(LDP) (Kasiviswanathan et al., 2011).

A randomized algorithm A : X → Z is (ε, δ)-
local differentially private (LDP) if for any two
data x, x′ ∈ X and all (measurable) sets U ⊆ Z ,

Pr[A(x) ∈ U ] ≤ eεPr[A(x′) ∈ U ] + δ.

The probability is taken over the random coins
of A. Here, we think of δ as being cryptographi-
cally small, whereas ε is typically thought of as a
moderately small constant. The above definition
considers every pair of x and x′ (considered as
adjacent for the purposes of DP). The LDP no-
tion requires that the given x has a non-negligible
probability of being transformed into any other
x′ ∈ X no matter how unrelated (far) x and x′

are. However, for text embeddings, this strong re-
quirement makes it virtually impossible to enforce
that the semantics of a word are approximately pre-
served by the privatized vector (Feyisetan et al.,
2020). To address this problem, we work with a
modification of the above definition, referred to as
Lipschitz (or metric) privacy, that is better suited
for metric spaces defined through embedding mod-
els. Lipschitz privacy is closely related to LDP
where the adjacency relation is defined through

the Hamming metric, but also generalizes to in-
clude Euclidean, Manhattan, and Chebyshev met-
rics, among others (Chatzikokolakis et al., 2013;
Andrés et al., 2013; Chatzikokolakis et al., 2015;
Fernandes et al., 2019; Feyisetan et al., 2019, 2020).
Similar to differential privacy, Lipschitz privacy is
preserved under post-processing and composition
of mechanisms (Koufogiannis et al., 2016).
Definition 1 (Lipschitz Privacy (Dwork et al.,
2006; Chatzikokolakis et al., 2013)). Let (X , d)
be a metric space. A randomized algorithm A :
X → Z is (ε, δ)-Lipschitz private if for any two
data x, x′ ∈ X and all (measurable) sets U ⊆ Z ,

Pr[A(x) ∈ U ] ≤ exp(εd(x, x′))Pr[A(x′) ∈ U ] + δ.

An alternate equivalent way of stating this would
be to say that with probability at least 1 − δ,
over a drawn from either A(x) or A(x′), we have
| lnPr[A(x) = a]− lnPr[A(x′) = a]| ≤ εd(x, x′).

The key difference between Lipschitz privacy
and LDP is that the latter corresponds to a particular
instance of the former when the distance function
is given by d(x, x′) = 1 for every x 6= x′.

In this paper, the metric space of interest is de-
fined by embeddings which organize discrete ob-
jects in a continuous real space such that objects
that are “similar” result in vectors are “close” in
the embedded space. For the distance measure, we
focus on the Euclidean metric, d(x, x′) = ‖x−x′‖
that is known to capture semantic similarity be-
tween discrete words in a continuous space.

For a function, f : X → Rm, the most
basic technique in differential privacy to release
f(x) is to answer f(x) + ν , where ν is instance-
independent additive noise (e.g., Laplace or Gaus-
sian) with standard deviation proportional to the
global sensitivity of the function f .
Definition 2 (Global sensitivity). For a function
f : X → Rm, define the global sensitivity of f as

∆f = max
x,x′∈X

‖f(x)− f(x′)‖
‖x− x′‖ .

2.3 Dimensionality Reduction.
Dimensionality reduction is the problem of em-
bedding a set from high-dimensions into a low-
dimensional space, while preserving certain prop-
erties of the original high-dimensional set. Perhaps
the most fundamental result for dimensionality re-
duction is the Johnson-Lindenstrauss (JL) lemma
which states that any set of p points in high di-
mensions can be embedded into O(log(p)/β2) di-
mensions, while preserving the Euclidean norm of
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all points within a multiplicative factor between
1 − β and 1 + β. In fact, one could embed an in-
finite continuum of points into lower dimensions
while preserving the Euclidean norm of all point
up to a multiplicative distortion. A classical result
due to (Gordon, 1988) characterizes the relation
between the “size” of the set and the required di-
mensionality of the embedding on the unit sphere.
Before stating the result, we need to introduce the
notion of Gaussian width which captures the L2-
geometric complexity of X .
Definition 3 (Gaussian Width). Given a closed set
X ⊂ Rd, its Gaussian width ω(X ) is defined as:

ω(X ) = Eg∈N (0,1)d [sup
x∈X
〈x, g〉].

Many popular sets have low Gaussian width (Ver-
shynin, 2016). For example, ifX contains vector in
Rd that are c-sparse (at most c non-zero elements)
then ω(X ) =

√
c log(d/c). If X contains vec-

tors that are sparse in the L1-sense, say ∀x ∈ X ,
‖x‖1 ≤ c, then ω(X ) = O(c

√
log d). Similarly if

X is the d-dimensional probability simplex, then
ω(X ) = O(

√
log d). Notice that in all these cases

ω(X )2 is exponentially smaller than d.
The following is a restatement of the original

Gordon’s theorem that is better suited for this paper.
Theorem 1 (Gordon’s Theorem (Gordon, 1988)).
Let β ∈ (0, 1), X be a subset of the unit d-
dimensional sphere and let Φ ∈ Rm×d be a ma-
trix with i.i.d. entries from N (0, 1/m). Then,
|‖Φx‖ − 1| ≤ β, holds for all x ∈ X with
probability at least 1 − 2 exp(−γ2/2) if m =
Ω((ω(X ) + γ)2/β2).

In particular, for a set of points X ⊂ Rd, we
have the following:
Pr [∀x ∈ X , |‖Φx‖ − ‖x‖| ≤ β‖x‖] ≥ 1 − γ, if
m = Ω((ω(X ) +

√
log(1/γ))2/β2)

Since for any set X with |X | = p, w(X )2 ≤
log p, therefore the above theorem is a generaliza-
tion of the JL lemma. By a simple manipulation
and adjusting β, Theorem 1 can be restated for
preserving inner-products.
Corollary 2. Under the setting of Theorem 1, for
a set of points X in Rd,

∣∣〈Φx,Φx′〉 − 〈x, x′〉
∣∣ ≤ β‖x‖‖x′‖,

holds for all x, x′ ∈ X with probability at least
1− γ, if m = Ω((ω(X ) +

√
log(1/γ))2/β2).

The above result also holds if we replace the
Gaussian random matrix Φ by a sparse random
matrix (Bourgain et al., 2015). For simplicity, we
use a Gaussian matrix Φ for projection.

3 Our Approach

The main issue arising in constructing differentially
private vector embeddings is that a direct noise ad-
dition to the vectors (such as in (Feyisetan et al.,
2020)) would require that the L2-norm of the noise
vector scales almost linearly with the dimension-
ality of the vector. To overcome this dimension
dependence, our mechanism is based on the idea
of performing a dimensionality reduction and then
adding noise to the projected vector. By carefully
balancing the dimensionality of the vectors with the
magnitude of the noise needed for DP, the mecha-
nism achieves a superior performance overall.

We will add noise calibrated to the sensitivity of
the dimensionality reduction function. The noise
is sampled from a d-dimensional distribution with
density p(z) ∝ exp(−ε‖z‖/∆f ). Sampling from
this distribution is simple as noted in (Wu et al.,
2017).1. The following simple claim (that holds for
all functions f ) shows that this mechanism satis-
fies Definition 1. All the missing proofs from this
section are collected in Appendix C.

Claim 3. Let f : X → Rm. Then pub-
lishing A(x) = f(x) + κ where κ is sampled
from the distribution in Rm with density p(z) ∝
exp(−ε‖z‖/∆f ) satisfies (ε, 0)-Lipschitz privacy.

Let Φ be an m×d matrix with i.i.d. entries from
N (0, 1/m). Consider an embedding model M .
Let Dom(M) denote the domain and Ran(M) ⊂
Rd denote the range of M . Define a function fΦ :
Ran(M)→ Rm as

fΦ(x) = Φx and Φ ∈ Rm×d i.i.d. fromN (0, 1/m) . (1)

Let us first investigate the global sensitivity of fΦ

using Theorem 1. Instead of considering a fixed
bound on global sensitivity, we provide a proba-
bilistic upper bound.

Lemma 4. Let Φ be an m × d matrix with i.i.d.
entries from N (0, 1/m). Let β ∈ (0, 1). If
m = Ω((ω(Ran(M)) +

√
log(1/δ))2/β2), then

with probability, at least 1− δ, ∆fΦ
≤ 1 + β.

Let β ∈ (0, 1) be a fixed constant. Consider the
mechanism which publishes A(x) = fΦ(x) + κ
where κ is drawn from the distribution with density
p(z) ∝ exp(−ε‖z‖/(1 + β)). Given a set of sen-
sitive words (x1, . . . , xn), we can apply A(xi) to
each word xi, to release A(x1), . . . ,A(xn) ∈ Rm.

1The idea is to first sample a uniform vector in the unit
sphere in Rm, say v and to sample a magnitude l from the
Gamma distribution Γ(m,∆f/ε), and output κ = lv
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Algorithm PRIVEMB summarizes the mechanism.
Since each vector is perturbed independently, the
algorithm can be invoked locally. We now establish
the privacy guarantee of PRIVEMB. The δ factor
comes in from Lemma 4 because we only have a
probabilistic bound on the global sensitivity, i.e.,
there exists pairs of x, x′ for whom the bound on
global sensitivity of 1 + β could fail.

For example, imagine a situation where there are
n users each having a sensitive word (embedding).
Given access to a common Φ, they can perturb their
word locally and transmit only the perturbed vector.

Algorithm 1: PRIVEMB

Input: x1, . . . , xn ∈ Ran(M) for model M ,
privacy parameters ε, δ > 0,
and dimensionality reduction parameter β ∈ (0, 1)
Output: private vector embeddings w1, . . . , wn
Let m = Ω((ω(Ran(M)) +

√
log(1/δ))2/β2)

Let Φ ∼i.i.d. N (0, 1/m)
for i ∈ {1, . . . , n} do

wi = Φxi + κi where κi is i.i.d. from the distr.
with density p(z) ∝ exp(−ε‖z‖/(1 + β))

release (w1, . . . , wn)

Using Claim 3 and Lemma 4, we now establish
that privacy proof for Algorithm PRIVEMB.

Proposition 5. Algorithm PRIVEMB is (ε, δ)-
Lipschitz private. Let β ∈ (0, 1), δ > 0, ε > 0,
and m = Ω((ω(Ran(M)) +

√
log(1/δ))2/β2).

Let Φ be an m × d matrix with i.i.d. entries from
N (0, 1/m). Then publishing A(x) = fΦ(x) + κ
where κ is drawn from the distribution in Rm
with density p(z) ∝ exp(−ε‖z‖/(1 + β)) is (ε, δ)-
Lipschitz private.

It is important to note that the β does not affect
the privacy analysis, i.e., for any input parameter
β, Algorithm PRIVEMB is (ε, δ)-Lipschitz private.

While the idea behind Algorithm PRIVEMB is
simple, it is widely applicable and effective. As
an example consider vector representation of text
such as through Bag-of-K-grams, which creates
representations that are sparse in some very high-
dimensional space (say c-sparse vectors). In this
case, even though d could be extremely large,
we can project these vectors to ≈ c log(d/c)-
dimensional space (due to their low Gaussian
width) and add noise in the projected space for
achieving privacy. On the other hand, the privacy
mechanism of (Feyisetan et al., 2020), with noise
magnitude proportional to d will completely de-
stroy the information in these vectors.

4 Utility Analysis of Alg. PRIVEMB

We now provide utility performance bounds for Al-
gorithm PRIVEMB. As mentioned earlier these are
the first theoretical analysis for any private vector
embedding scheme. We start with two important
properties of interest based on distances and inner-
products that commonly arise when dealing with
text embeddings. Our next result compares the loss
of a linear model trained on these private vector em-
beddings to loss of a similar model trained on the
original vector embeddings. All our error bounds
depend on m ≈ ω(Ran(M))2.

We start with a simple observation about the
magnitude of the noise vector. Consider κ drawn
from the noise distribution with density p(z) ∝
exp(−ε‖z‖/(1 + β)). The Euclidean norm of κ
is distributed according to the Gamma distribution
Γ(m, (1 + β)/ε) (Wu et al., 2017) and satisfies the
following bound.

Claim 6 ((Wu et al., 2017; Chaudhuri et al., 2011)).
For the noise vector κ, we have that with probabil-
ity at least 1− γ, ‖κ‖ ≤ (m ln(m/γ)(1 + β))/ε.

Since β < 1, we can simplify the right hand
side of the above claim to (2m ln(m/γ))/ε. Let
τ be the maximum Euclidean norm of the vectors
x1, . . . , xn, i.e., ∀i ∈ [n], ‖xi‖ ≤ τ .

4.1 Distance Approximation Guarantee

Our first result compares the distances between the
private vectors and between the original vectors.

Proposition 7. Consider Algorithm PRIVEMB.
With probability at least 1 − δ, for all pairs
xi, xj ∈ (x1, . . . , xn), |‖wi−wj‖−‖xi−xj‖| ≤
2βτ + 4(m ln(2nm/δ))/ε.

As a baseline consider the privatization mecha-
nism proposed by (Feyisetan et al., 2020) which
computes a privatized version of an embedding
vector x by adding noise N to the original vec-
tor x. Formally, (Feyisetan et al., 2020) defined
a mechanism where the private vector vi is con-
structed from xi as follows: vi = xi + Ni where
Ni is drawn from the distribution in Rd with den-
sity p(z) ∝ exp(−ε‖z‖)) to x. Since the noise
vector Ni is now d-dimensional, its Euclidean
norm will tightly concentrate around its mean
E[‖Ni‖] = O(d). Therefore, with high probability,
|‖vi−vj‖−‖xi−xj‖| = Ω(d) holds for the mecha-
nism proposed in (Feyisetan et al., 2020). However,
in our mechanism, the dependence on d is replaced
by m which as argued above is generally much
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smaller than d. On the flip side though, PRIVEMB

satisfies (ε, δ)-Lipschitz privacy for δ > 0, whereas
the mechanism in (Feyisetan et al., 2020) achieves
the stronger (ε, 0)-Lipschitz privacy.

4.2 Inner-Product Approximation Guarantee

Word embeddings seek to capture word similarity,
so similar words (e.g., synonyms) have embeddings
with high inner product. We now compare the inner
product between the private vectors to the inner
product between the original embedding vectors.

Proposition 8. Consider Algorithm PRIVEMB.
With probability at least 1 − δ, for all pairs
xi, xj ∈ (x1, . . . , xn), |〈wi, wj〉 − 〈xi, xj〉| ≤
βτ2 +8τm ln(2nm/δ)/ε+(2m ln(2nm/δ))2/ε2.

4.3 Performance on Linear Models

We now discuss about the performance of the pri-
vate vectors (w1, . . . , wn) when used with com-
mon machine learning models. Given n datapoints,
(x1, y1), . . . , (xn, yn) drawn from some universe
Rd × R (where yi represents the label on point
xi), we consider the problem of learning a linear
model on this labeled data. We assume that xi’s
are sensitive whereas the yi’s are publicly known.
Such situations arise commonly in practice. For
example, consider a drug company investigating
the effectiveness of a drug trail over n users. Here,
yi could represent the response to the drug for user
i which is known to the drug company, whereas xi
could encode the medical history of user i which
the user would like to keep private.

We focus on a broad class of models, where
the loss functions have the form, `(〈x, θ〉; y) for
parameter θ ∈ Rd, where ` : R × R → R. This
captures a variety of learning problems, e.g., the lin-
ear regression is captured by setting `(〈x, θ〉; y) =
(y − 〈x, θ〉)2, logistic regression is captured by set-
ting `(〈x, θ〉; y) = ln(1+exp(−y〈x, θ〉)), support
vector machine is captured by setting `(〈x, θ〉; y) =
hinge(y〈x, θ〉), where hinge(a) = 1 − a if a ≤ 1
and 0 otherwise. We assume that the function ` is
convex and Lipschitz in the first parameter. Let λ`
denote the Lipschitz parameter of the loss function
` over the first parameter, i.e., |`(a; y)− `(b; y)| ≤
λ`|a− b| for all a, b ∈ R.

On the data (x1, y1), . . . , (xn, yn), the (empir-
ical) training loss for a parameter θ is defined
as: 1

n

∑n
i=1 `(〈xi, θ〉; yi) and the goal in train-

ing (empirical risk minimization) is to minimize
this loss over a parameter space Θ. Let θ? be a

true minimizer of 1
n

∑n
i=1 `(〈xi, θ〉; yi), i.e., θ? ∈

argminθ∈Θ
1
n

∑n
i=1 `(〈xi, θ〉; yi).

Our goal will be to compare the loss of
the model trained on the privatized points
(w1, y1), . . . (wn, yn) where the wi’s are produced
by Algorithm PRIVEMB to the true minimum loss
(= 1

n

∑n
i=1 `(〈xi, θ?〉; yi)). Let ‖Θ‖ defined as

supθ∈Θ ‖θ‖ denote the diameter of Θ. The follow-
ing proposition states our result.
Proposition 9. Consider Algorithm PRIVEMB.
With probability at least 1− δ,

min
θ∈Θ

1

n

n∑

i=1

`(〈wi,Φθ〉; yi) ≤ 1

n

n∑

i=1

`(〈xi, θ?〉; yi)

+
4λ`(m ln(2nm/δ))‖Θ‖

ε
+ λ`βτ‖Θ‖.

In the above result the error terms will be negligi-
ble if β � 1/(λ`τ‖Θ‖) and ε � λ`(m ln(2nm/δ))‖Θ‖.
Though in our experiments (see Section 5), we no-
tice good performance with private vectors even
when β and ε don’t satisfy these conditions.

Another point to note is that our setting, where
we train ML models over a differentially private
data release, is different from traditional literature
on differentially private empirical risk minimiza-
tion where the goal is to release only a private
version of model parameter θ, and not the data it-
self, see e.g., (Chaudhuri et al., 2011; Bassily et al.,
2014). In particular, this means that the results
from traditional differentially private empirical risk
minimization do not carry over to our setting. Our
data release setup allows training any number of
ML models on the private vectors without having
to pay for the cost of composition on the privacy
guarantees (as post-processing does not affect the
privacy guarantee), which is a desirable property.

5 Experimental Evaluations

We carry out four experiments to demon-
strate the improvement of our approach (Algo-
rithm PRIVEMB), denoted as M2, over (ε, 0)-
Lipschitz privacy mechanism proposed in (Feyise-
tan et al., 2020) (denoted by M1).2 The first three
map to the theoretical guarantees described Sec-
tion 4, i.e., (1) distance approximation guarantee,
(2) inner-product approximation guarantee, and (3)
performance on linear models. The final experi-
ment provides further evidence for performance of

2We choose this mechanism as the baseline as in this setup
it achieves the current state-of-the-art utililty guarantees.
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using these private vectors for downstream clas-
sification tasks. All our experiments are on em-
beddings generated by GLOVE (Pennington et al.,
2014) and FASTTEXT (Bojanowski et al., 2017).
The dimensionality of the embedding d = 300 in
both cases. Due to space constraints, we present
the FASTTEXT results in Appendix B.

The value of δ is kept constant for all exper-
iments (involving our scheme) at 1e − 6. We
set ω(Ran(M)) =

√
log d. The parameter

β only affects the utility guarantee, and Algo-
rithm PRIVEMB is always (ε, δ)-Lipschitz private
for any value of β. In our experiments, corrob-
orating our theoretical guarantees, we do vary β
to illustrate the effect of β on the guarantees. Re-
member that higher values of β results in lower-
dimensional vectors, so setting β appropriately lets
one trade-off between the loss of utility due to di-
mension reduction vs. the gain in the utility due to
lesser noise needed for lower-dimensional vectors.

We also vary the privacy parameter ε in our ex-
periments. While lower values ε are certainly de-
sirable, it is widely known that differentially pri-
vate algorithms for certain problems (such as those
arising in complex domains such as NLP) require
slightly larger ε values to provide reasonable util-
ity in practice (Fernandes et al., 2019; Feyisetan
et al., 2020; Xie et al., 2018; Ma et al., 2020). For
example, the related work on differential privately
releasing text embeddings from Fernandes et al.
(Fernandes et al., 2019) and Feyisetan et al. (Feyise-
tan et al., 2020) report values of ε of up to 20 and
30 depending on the dimensionality of the space.

5.1 Distance Approximation Guarantees

This experiment compares the distance between
pairs of private vectors to that between the corre-
sponding original vectors. We sampled 100 word
vectors from the vocabulary. For each of these 100
vectors, we compare the distance to another set of
100 randomly sampled vectors. These 100× 100
pair of vectors were kept constant across all ex-
periment runs. For each embedding model, we
compared |‖vi − vj‖ − ‖xi − xj‖| where the vi’s
are generated by the schemed in (Feyisetan et al.,
2020) (M1), to |‖wi − wj‖ − ‖xi − xj‖| where
the wi’s are generated by our scheme (M2). The
experiments were carried out at values of ε = 1, 2,
and 5 for M1 and M2, while varying the values of
β for M2 between 0.5 and 0.7.
Results. The results in Fig. 1 show the experiment
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Figure 1: Distance Approximation (GLOVE)

outcomes across the different values of ε, β, and
embeddings. Lower values on the y−axis indicate
better results in that the distance between the pri-
vate vectors are a good approximation to the actual
distances between the original vectors. Overall,
the guarantees of our approach M2 are better than
M1 as observed by the smaller distance differences
across all conditions. Next, the results also high-
light that for both mechanisms, as expected, the
guarantees get better as ε increases, due to the in-
troduction of less noise (note the different scales
across ε). Finally, the results reveal that for a given
value of ε, as the value of β increases, the guaran-
tees of our scheme improve. This can be viewed
through the guarantees of Proposition 7, which
consists of two terms, the first term increases with
β and the second term due to its dependence on
1/β2 (through m) decreases with β. Since the sec-
ond (noise) term generally dominates, we get an
improvement with β, suggesting that it is advanta-
geous to pick a larger β in practice.

5.2 Inner Prod Approximation Guarantees
This experiment compares the inner product be-
tween pairs of private vectors to that between the
corresponding original vectors. The setup here is
identical to the distance approximation experiments
(i.e., the same 100× 100 word pairs and mix of ε
and β). The results capture |〈wi, wj〉 − 〈xi, xj〉|.
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Figure 2: Inner Prod Approximation (GLOVE)

Results. The results in Fig. 2 show the experiment
outcomes across ε, β, and embeddings. Similar
to the findings in Fig. 1, the results of M2 are an
improvement over M1 with the same patterns of
improvement. For a fixed privacy budget, the per-
formance of M2 is better than that of M1 and the
gap increases as β increases. Again this suggests
that one should pick a larger β.
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Non-Private Baselines M1: ε = 10 M2: ε = 10, β = 0.9
Dataset InferSent SkipThought TRAIN ACC TEST ACC TRAIN ACC TEST ACC

MR (Pang and Lee, 2005) 81.10 79.40 58.10 55.61 57.76 58.11
CR (Hu and Liu, 2004) 86.30 83.10 68.32 63.97 72.52 71.02
MPQA (Wiebe et al., 2005) 90.20 89.30 78.76 77.98 77.84 78.86
SST-5 (Socher et al., 2013) 46.30 44.80 31.24 31.90 32.70 32.49
TREC-6 (Li and Roth, 2002) 88.20 88.40 60.54 53.20 62.53 73.00

Table 1: Training and test accuracy scores on classification tasks.

5.3 Performance on Linear Models

We built a simple binary SVM linear mode to clas-
sify single keywords into 2 classes: positive and
negative based on their conveyed sentiment. The
dataset used was a list from (Hu and Liu, 2004) con-
sisting of 4783 negative and 2006 positive words.
We selected a subset of words that occurred in both
GLOVE and FASTTEXT embeddings and capped
both lists to have an equal number of words. The re-
sulting datasets each had 1899 words. The purpose
of this experiment was to explore the behaviors of
M1 and M2 at different values of ε and β for a
linear model. Results shown are over 10 runs.
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Figure 3: Linear Model Performance (GLOVE)

Results. The results on the performance on linear
models are presented in Fig. 3. The performance
metrics are (i) accuracy on a randomly selected
20% test set, and (ii) the area under the ROC curve
(AUC). Higher values on the y−axis indicate better
results. The findings follow from our first 2 exper-
iments which demonstrate that for a fixed privacy
ε guarantee, the utility of M2 is better than that of
M1 and the gap between the performance of M2
and M1 increases as β increases.

5.4 Performance on NLP Datasets

We further evaluated M2 against M1 at a fixed
value of ε and β on classification tasks on 5 NLP
datasets. The experiments were done and can
be replicated using SentEval (Conneau and Kiela,
2018), an evaluation toolkit for sentence embed-
dings by replacing the default embeddings with

the private embeddings. From the previous experi-
ments, we know that it is better to pick a larger β,
so we set β = 0.9 here.
Results. Table 1 presents the results and summa-
rizes the datasets: MR (Pang and Lee, 2005), CR
(Hu and Liu, 2004), MPQA (Wiebe et al., 2005),
SST-5 (Socher et al., 2013), and TREC-6 (Li and
Roth, 2002). Table 1 presents the results from the
experiments. We also present results of 2 non-
private baselines on all the datasets based on In-
fersent and SkipThought described in (Conneau
et al., 2017). The evaluation metrics were train and
test accuracies, therefore, higher scores indicate
better utility. Not surprisingly, because of the noise
addition there is is a performance drop when we
compare the private mechanisms to the non-private
baselines. However, the results reinforce our find-
ings that the utility afforded by M2 are better than
M1 at fixed values of ε. Some of the improvements
are remarkably significant e.g., +7% on the CR
dataset, and +20% on TREC-6.
Summary of the Results. Overall, these exper-
iments demonstrate that PRIVEMB offers better
utility than the embedding privatization scheme
of (Feyisetan et al., 2020).

6 Concluding Remarks

In this paper, we introduced an (ε, δ)-Lipschitz
private algorithm for generating real valued em-
bedding vectors. Our mechanism works by first
reducing the dimensionality of the vectors though a
random projection, then adding noise calibrated to
the sensitivity of the dimensionality reduction func-
tion. The mechanism can be utilized for any well-
defined embedding model including but not limited
to word, sentence, and document embeddings. We
prove theoretical bounds that show how various
properties of interest important for vector embed-
dings are well-approximated through the private
vectors, and our empirical results across multiple
embedding models and NLP datasets demonstrate
the superior utility guarantees.
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Supplementary Material for
“Private Release of Text

Embedding Vectors”

A Additional Experiments

We now investigate a slightly different setup where
we perform the dimensionality reduction while
training the embeddings (denoted as A1). So here
instead of only assuming access to private embed-
dings vectors as in M1 and M2, we also assume
access to the corpus and training platform. Fig. 4
presents results (with linear models as in Experi-
ment 3) on 50d, 100d, and 200d GLOVE embed-
dings, and corresponding setting of β = 0.93, 0.66
and 0.468 in M2 to match the dimensionality. Un-
surprisingly the results below show that A1 obtains
better results than M2 where the dimensionality
reduction happens post training. Mechanism A1
however has two drawbacks compared to M2: (1) it
assumes access to the original training corpus and
platform which is not always accessible, and (2) it
is more computationally expensive as it requires
retraining the embeddings from scratch.
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Figure 4: Comparing effects of dimensionality reduc-
tion during training vs. after (GLOVE).

B Missing Experiment Results on
Fasttext

Experiment 1: Distance Approximation Guar-
antees.
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Figure 5: Distance Approximation Experiments
(FASTTEXT)

Experiment 2: Inner Prod Approximation
Guarantees.
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Figure 6: Inner Prod Approximation Experiment
(FASTTEXT)

Experiment 3: Performance on Linear Models.
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Figure 7: Linear Model Performance Experiments
(FASTTEXT)

C Missing Details from Section 3

Claim 10 (Claim 3 Restated). Let f : X → Rm.
Then publishing A(x) = f(x) + κ where κ is
sampled from the distribution in Rm with density
p(z) ∝ exp(−ε‖z‖/∆f ) satisfies (ε, 0)-Lipschitz
privacy.

Proof. First note that f(x) + κ has the same dis-
tribution as that of κ but with a different mean.
Consider any x, x′ ∈ X . We will be interested in
bounding the ratio Pr[A(x) = w]/Pr[A(x′) = w].

Pr[A(x) = w]

Pr[A(x′) = w]
=

exp(−ε‖w − f(x)‖/∆f )

exp(−ε‖w − f(x′)‖/∆f )

= exp(ε(‖w − f(x′)‖ − ‖w − f(x)‖)/∆f )

≤ exp(ε‖f(x)− f(x′)‖/∆f )

≤ exp(ε‖x− x′‖),
where the first inequality follows from triangle in-
equality and the last one follows from the definition
of global sensitivity (Definition 2). Therefore, for
any measurable set U ⊆ Rm, Pr[A(x) ∈ U ] ≤
exp(ε‖x− x′‖)Pr[A(x′) ∈ U ].

Lemma 11 (Lemma 4 Restated). Let Φ be an
m × d matrix with i.i.d. entries from N (0, 1/m).
Let β ∈ (0, 1). If m = Ω((ω(Ran(M)) +√

log(1/δ))2/β2), then with probability, at least
1− δ, ∆fΦ

≤ 1 + β.
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Proof. Consider the set Ran(M) − Ran(M)
(where − denotes the Minkowski difference be-
tween the sets). By properties of the Gaussian
width (see Section 2), the Gaussian width of this
new set is at most ω(Ran(M)) + ω(Ran(M)) ≤
2ω(Ran(M)). From Theorem 1, under the above
setting of m, with probability at least 1− δ,

∆fΦ
= max

x,x′∈Ran(M)

‖Φx− Φx′‖
‖x− x′‖ ≤ (1 + β).

This completes the proof.

Proposition 12 (Proposition 5 Restated). Algo-
rithm PRIVEMB is (ε, δ)-Lipschitz private.

Proof. Let A(x) = fΦ(x) + κ = Φx+ κ where κ
is drawn from the distribution in Rm with density
p(z) ∝ exp(−ε‖z‖/(1 + β)). Let E denote the
event that the ∆fΦ

≤ 1− β. From Lemma 11, we
know that over the choice of Φ, Pr[E ] ≥ 1 − δ.
Consider any x, x′ ∈ Ran(M).

Pr[A(x) = w]

= Pr[A(x) = w | E ]Pr[E ] + Pr[A(x) = w | Ē ]Pr[Ē ]

≤ Pr[A(x) = w | E ] + δ,

where we used that Pr[E ] ≤ 1, Pr[A(x) =
w | Ē ] ≤ 1, and Pr[Ē ] ≤ δ. Now under E ,
from Claim 10, Pr[A(x) = w] ≤ exp(ε‖x −
x′‖)Pr[A(x′) = w]. Since the above argument
holds for all x, x′ simultaneously, we get the A is
(ε, δ)-Lipschitz private.

Since Algorithm PRIVEMB can be viewed as ap-
plying the above mechanism A on the x1, . . . , xn
independently, we get that Algorithm PRIVEMB is
(ε, δ)-Lipschitz private.

Proposition 13 (Proposition 7 Restated). Consider
Algorithm PRIVEMB. With probability at least 1−δ,
for all pairs xi, xj ∈ (x1, . . . , xn), |‖wi − wj‖ −
‖xi − xj‖| ≤ 2βτ + 4(m ln(2nm/δ))/ε.

Proof. Let wi = Φxi + κi and wj = Φxj + κj .
Using Theorem 1, with probability at least 1− δ,

|‖wi − wj‖ − ‖xi − xj‖|
= |‖Φxi + κi − (Φxj + κj)‖ − ‖xi − xj‖|
≤ |‖Φ(xi − xj)‖ − ‖xi − xj‖+ ‖κi‖+ ‖κj‖|
≤ β‖xi − xj‖+ ‖κi‖+ ‖κj‖. (2)

For a fixed i, from Claim 6, we get that with prob-
ability at least 1 − δ, ‖κi‖ ≤ (2m ln(m/δ))/ε.
Using a union bound,

Pr[∀i ∈ [n], ‖κi‖ ≤ (2m ln(nm/δ))/ε] ≥ 1− δ.

Plugging this into (2), we get that with probability
at least 1− 2δ, for all i, j ∈ [n]

|‖wi−wj‖−‖xi−xj‖| ≤ β‖xi−xj‖+4(m ln(nm/δ))/ε.

Using ‖xi− xj‖ ≤ 2τ and scaling δ completes the
proof.

Proposition 14 (Proposition 8 Restated). Con-
sider Algorithm PRIVEMB. With probability at
least 1 − δ, for all pairs xi, xj ∈ (x1, . . . , xn),
|〈wi, wj〉−〈xi, xj〉| ≤ βτ2+8τm ln(2nm/δ)/ε+
(2m ln(2nm/δ))2/ε2.

Proof. Let wi = Φxi + κi and wj = Φxj + κj .
Using Corollary 2, with probability at least 1− δ,

|〈wi, wj〉 − 〈xi, xj〉|
= |〈Φxi + κi,Φxj + κj〉 − 〈xi, xj〉|
= |〈Φxi,Φxj〉+ 〈Φxi, κj〉+ 〈κi,Φxj〉+ 〈κi, κj〉 − 〈xi, xj〉|
≤ β‖xi‖xj‖+ |〈Φxi, κj〉+ 〈κi,Φxj〉+ 〈κi, κj〉|
≤ β‖xi‖xj‖+ (1 + β)‖xi‖‖κj‖+ (1 + β)‖xj‖‖κi‖+ ‖κi‖‖κj‖
≤ βτ2 + 2τ(‖κj‖+ ‖κi‖) + ‖κi‖‖κj‖. (3)

As in Proposition 7,

Pr[∀i ∈ [n], ‖κi‖ ≤ (2m ln(nm/δ))/ε] ≥ 1− δ.
Plugging this into (3), we get that with probability
at least 1− 2δ, for all i, j ∈ [n]

|〈wi, wj〉−〈xi, xj〉| ≤ βτ2+
8τm ln(nm/δ)

ε
+

(2m ln(nm/δ))2

ε2
.

By scaling δ we get the claimed bound.

Proposition 15 (Proposition 9 Restated). Consider
Algorithm PRIVEMB. With probability at least 1−
δ,

min
θ∈Θ

1

n

n∑

i=1

`(〈wi,Φθ〉; yi) ≤
1

n

n∑

i=1

`(〈xi, θ?〉; yi)

+
4λ`(m ln(2nm/δ))‖Θ‖

ε
+ λ`βτ‖Θ‖.

Proof. By the Lipschitzness assumption,

|`(〈wi,Φθ?〉; yi)− `(〈xi, θ?〉; yi)|
≤ λ`|〈wi,Φθ?〉 − 〈xi, θ?〉|. (4)

Focusing on the right hand side, from Corollary 2,
with probability at least 1− δ, for all i ∈ [n],

|〈wi,Φθ?〉 − 〈xi, θ?〉|
= |〈Φxi + κi,Φθ

?〉 − 〈xi, θ?〉|
≤ |〈κi,Φθ?〉|+ β‖xi‖‖θ?‖
≤ (1 + β)‖κi‖‖θ?‖+ β‖xi‖‖θ?‖
≤ 2‖κi‖‖Θ‖+ βτ‖Θ‖,
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where we used β ∈ (0, 1), ‖xi‖ ≤ τ , ‖θ?‖ ≤ ‖Θ‖,
and with probability at least 1− δ, ‖Φθ?‖ ≤ (1 +
β)‖θ?‖ (from Theorem 1). Using the bound on
‖κi‖, we get that with probability at least 1− δ, for
all i ∈ [n],

|〈wi,Φθ?〉−〈xi, θ?〉| ≤
4(m ln(2nm/δ))‖Θ‖

ε
+βτ‖Θ‖.

Plugging this into (4) and averaging over i gives
that with probability at least 1− δ,

1

n

n∑

i=1

`(〈wi,Φθ?〉; yi)

≤ 1

n

n∑

i=1

`(〈xi, θ?〉; yi) +
4λ`(m ln(2nm/δ))‖Θ‖

ε
+ λ`βτ‖Θ‖.

Since,

min
θ∈Θ

1

n

n∑

i=1

`(〈wi,Φθ〉; yi) ≤
1

n

n∑

i=1

`(〈wi,Φθ?〉; yi),

we get the claimed result.
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Abstract

Customers of machine learning systems de-
mand accountability from the companies em-
ploying these algorithms for various predic-
tion tasks. Accountability requires understand-
ing of system limit and condition of erro-
neous predictions, as customers are often in-
terested in understanding the incorrect predic-
tions, and model developers are absorbed in
finding methods that can be used to get in-
cremental improvements to an existing sys-
tem. Therefore, we propose an accountable
error characterization method, AEC, to un-
derstand when and where errors occur within
the existing black-box models. AEC, as con-
structed with human-understandable linguistic
features, allows the model developers to auto-
matically identify the main sources of errors
for a given classification system. It can also
be used to sample for the set of most infor-
mative input points for a next round of train-
ing. We perform error detection for a senti-
ment analysis task using AEC as a case study.
Our results on the sample sentiment task show
that AEC is able to characterize erroneous pre-
dictions into human understandable categories
and also achieves promising results on select-
ing erroneous samples when compared with
the uncertainty-based sampling.

1 Introduction

As machine learning is becoming the method of
choice for many analytics functionalities in indus-
try, it becomes crucial to be able to understand the
limits and risks of the existing models. In favour
of more accurate AI, the availability of computa-
tional resources is coupled with increasing dataset
sizes that has resulted in more complex models.
Complex models suffer from lack of transparency,
which leads to low trust as well as the inability
to fix or improve the models output easily. Deep
learning algorithms are among the highly accurate
and complex models. Most users of deep learning
models often treat them as a black box because of

its incomprehensible functions and unclear work-
ing mechanism (Liu et al., 2019). However, cus-
tomers’ retention requires accountability for these
systems (Galitsky, 2018). Interpreting and under-
standing what the model has learned, as well as the
limits and the risks of the existing model have there-
fore become a key ingredient of a robust validation
(Montavon et al., 2018).

One line of research on model accountability ex-
amines the information learned by the model itself
to probe the linguistic aspects of language learnt by
the models (Shi et al., 2016; Adi et al., 2017; Giu-
lianelli et al., 2018; Belinkov and Glass, 2019; Liu
et al., 2019). Other line of research gives machine
learning models the ability to explain or to present
their behaviours in understandable terms to humans
(Doshi-Velez and Kim, 2017) to make the predic-
tions more transparent, and trustworthy. However,
very few studies set the focus on error characteriza-
tion as well as automatic error detection and mitiga-
tion. To address the above-mentioned gaps in char-
acterizing model limits and risks, we seek to im-
prove a model’s behavior by categorizing incorrect
predictions using explainable linguistic features.
To accomplish that, we propose a framework called
Accountable Error Characterization (AEC) to ex-
plain the predictions of a neural network model by
constructing an explainable error classifier. The
most similar work to ours is by (Nushi et al., 2018).
They build interpretable decision-tree classifiers
for summarizing failure conditions using human
and machine generated features. In contrast, our
approach builds upon incorrect predictions on a
separate set to provide insights into model failure.

The AEC framework has three key components:
A base neural network model, an error character-
ization model, and a set of interpretable features
that serve as the input to the error characterization
model. The features used in the error characteriza-
tion model are based on explainable linguistic and
lexical features such as dependency relations, and

28



Figure 1: The overall workflow of AEC. Dashed lines
represent planned future work

various lexicons that have been inspired by prior
art, which allows the users and model developers
to identify when a model fails. The error charac-
terization model also offer rankings of informative
features to provide insight into where and why the
model fails.

By adding the error classification step on top of
the base model, AEC can also be adopted to iden-
tify the highly confident error cases as the most
informative samples for the next round of training.
Although uncertainty based sampling can also be
adopted to get the most informative samples (Lewis,
1995; Cawley, 2011; Shao et al., 2019), as it selects
the examples with the least confidence, Ghai et al.
(2020) show that uncertainty sampling led to an in-
creasing challenge for annotators to provide correct
labels. AEC avoids such problem by learning from
error cases from a validation set. Our results show
that AEC outperforms the uncertainty based sam-
pling in terms of selecting erroneous predictions
on a sample sentiment dataset (see Table 4).

We first present the overall framework of AEC
to construct the error classifier, followed by the
experiments and result. Finally, we conclude the
paper with future directions and work in progress.

2 Explainable Framework

Figure 1 summarizes our overall method for
constructing a human understandable classifier that
can be used to explain the erroneous predictions
of a deep neural network classifier and thus to
improve the model performance. Our method
consists of the following steps:

S1: Train a neural network based classifier using
labeled dataset I, call it as the base classifier.

S2: Apply the base classifier on another labeled
dataset II to get correct and incorrect predic-
tion cases, based on which train a second 2-
class error identification classifier with a set
of human understandable features. Note here
labeled dataset I and II can be in the same
domain or in different domains.

S3: Rank the features according to their individual
predictive power. Apply the error identifica-
tion classifier from step 2, to a set of unlabeled
data from the same domain as labeled dataset
II and rank the unlabeled instances according
to their prediction probability of being erro-
neous. These represent the most informative
samples that can be further used in an active
learning setting.

The focus of the current work is to identify and
characterize the error cases of a base classifier in
an human understandable manner. The following
two sections describe the experiments and imple-
mentation of the framework using a sentiment pre-
diction task as case study. The integration of these
samples into an iterative training set up is a work
in progress for future extension.

3 Machine Learning Experiments and
Results

3.1 Data

We adopt a cross-domain sentiment analysis task
as case study in this section to demonstrate the
AEC method, although the proposed method would
also be applicable to datasets from the same do-
main. We chose the cross-domain sentiment anal-
ysis task here as it is a challenging, but necessary
task within the NLP domain and there are high
chances of observing erroneous predictions. We
use data from two different domains, Stanford Sen-
timent Treebank (SST) (Socher et al., 2013) (La-
beled Dataset I) to train the base classifier, and a
conversational Kaggle Airlines dataset (Labeled
+ Unlabeled Dataset II) to build and evaluate the
error characterization classifier. The conversation
domain represents a new dataset seeking an im-
provement on the base classifier trained using sen-
timent reviews.
SST dataset: A dataset of movie reviews anno-
tated at 5 levels (very negative, negative, neutral,
positive, and very positive). Sentence level annota-
tions are extracted using the python package pytree-
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DataSet Negative Neutral Positive
SST 3304 1622 3605

Table 1: SST dataset distribution

DataSet Negative Neutral Positive
Airline 7366 2451 1847

Table 2: Airline dataset distribution

bank 1. We merged the negative and very-negative
class labels into a single negative class, positive
and very-positive into a single positive class, keep-
ing neutral as it is. A preprocessing step to remove
near duplicates gives a training set distribution as
shown in Table 1. This is the only dataset used to
train the base classifier.

Twitter Airline Dataset: The dataset is avail-
able through the library Crowdflower’s Data for
Everyone. 2 Each tweet is classified as either posi-
tive, neutral, or negative. The label distribution for
the Twitter Airline is shown in Table 2.

3.2 Train the Base Classifier

We chose Convolution Neural Network (CNN) as
a showcase here, as the base sentiment classifier
to be trained using the SST dataset. However, the
framework can be easily adapted to more advanced
state of the art classifiers such as BERT (Devlin
et al., 2019). A multi-channel CNN architecture
is employed to train as it has been shown to work
well on multiple sentiment datasets including SST
(Kim, 2014). The samples are weighted to account
for class imbalance.

3.3 Train the Error Characterization
Classifier

We next applied the trained base classifier on the
training set of a cross-domain dataset as described
in Table 2 to get the predictions on a sample of
11664 labeled instances of Airlines dataset. Predic-
tions from the base model on this Airlines dataset
are further divided into two classes based on the
ground truth test labels, correct-prediction and
incorrect-prediction. The base classifier has an
overall accuracy of 60.09% on the Airline dataset
as shown in Table 3. A balanced set is created
by undersampling the correct predictions giving a
dataset of total 9310 instances. We use a 80/20
split for training and testing giving a training set
of 7448 and a test set of 1862 instances. This train

1https://pypi.org/project/pytreebank
2https://appen.com/resources/datasets/

set serves as the input to train the error character-
ization classifier with erroneous or not as labels
and different collections of explainable features as
independent variables. A random forest classifier
using a 5-fold cross validation was used to train the
error characterization classifier. (Pedregosa et al.,
2011).

Dataset Total
instances

Correct
pred.

InCorrect
pred.

Airline dataset 11664 7009 4655

Table 3: Performance of the Base classifier on the Air-
line dataset

3.3.1 Features
Our features have been inspired by previous work
on sentiment, disagreement, and conversations.
The feature values are normalized by sentence
length.
Generalized Dependency. Dependency relations
are obtained using the python package spacy 3.
Relations are generalized by replacing the words
in each dependency relation by their corresponding
POS tag (Joshi and Penstein-Rosé, 2009; Abbott
et al., 2011; Misra et al., 2016).
Emotion. Count of words in each of the 8
emotion classes from the NRC emotion lexicon
(anger, anticipation, disgust, fear, joy, negative,
positive, sadness, surprise, and trust) available
from (Mohammad and Turney, 2010).
Named Entities. The count of named entities of
each entity type obtained from the python package
spacy.
Conversation. Lexical indicators indicating
greetings, thank, apology, second person reference,
questions starting with do, did, can, could, with
who, what, where as described by (Oraby et al.,
2017).

3.4 Predict erroneous predictions from
unlabeled data

Once the error characterization classifier was
trained with the set of correctly and incorrectly
predicted instances, we then apply it to the 20%
test set of the Twitter Airline data, which consists
of a total of 1862 instances as described in section
3.3. We selected the top K instances with the high-
est probability of being incorrectly predicted as the
erroneous cases. We hide the actual labels on this

3https://spacy.io
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test set when selecting the instances. The actual la-
bels will be later used to evaluate the performance
of the error characterization classifier.

4 Evaluation and Results

In terms of identifying erroneous predictions, in
our evaluation, we compare the performance of
AEC with uncertainty-based sampling, in which
the learner computes a probabilistic output for each
sample, and select the samples that the base classi-
fier is the most uncertain about based on probability
scores.

4.1 Most informative samples for labeling.

As we are interested in generating a ranking of
incorrect predictions for the base classifier from
error characterization classifier, we use precision
at top k as the evaluation metrics in here, which is a
commonly used metric in information retrieval, and
defined as P@K=N/K, where N is the actual num-
ber of errors samples among top K predicted. We
compare the performance of the error characteriza-
tion classifier and the uncertainty based sampling
on the test set of 1832 instances as shown in Table 4.
It shows the precision at top K where K varies from
10 to 50. For the first initial 10 samples, the uncer-
tainty based sampling performs marginally better
but as we select more samples (rows 2-5) the pro-
posed approach starts outperforming the baseline.

TOP K uncertainty-
based P@K

AEC P@K

10 0.8 0.7
20 0.75 0.8
30 0.77 0.83
40 0.75 0.83
50 0.74 0.76

Table 4: Comparison of uncertainty-based sampling
(Baseline) with proposed AEC on the test set.

4.2 Feature Characterization

When using uncertainity based sampling, it is not
always evident why certain samples were selected,
or how these samples map to actual errors of the
base classifier. In contrast, AEC framework in-
corporates explainability into sample selection by
mapping highly ranked feature sets from the er-
ror characterization model with the selected error
samples.

S.No Text Base
Pred.

Actual
Label

Error.
Prob

1 @usernameif you could change
your name to @southwestair and
do what they do...that’d be awe-
some. Also this plane smells like
onion rings.

Neutral Negative 0.84

2 @username now on hold for 90
minutes

Neutral Negative 0.82

3 @username user is a compassion-
ate professional! Despite the
flight challenges she made pas-
sengers feel like priorities!!

Neutral Positive 0.79

Table 5: A subset of most informative samples for the
Base classifier based on error characterization classifier
probability score for the error class.

Table 5 shows a few examples of actual errors
from the base classifier that are also predicted to be
errors on the test set from the error characterization
classifier. Words in bold show a few of these fea-
ture mappings. For example, feature set of Row-1
has higher values for the feature question-starters,
text of Row-3 contains Named Entity type: time, a
feature present in highly ranked feature-set of the
error characterization classifier as shown in Table 6.

Feature
Type

Highly ranked features

Lexical second_person, question_yesno, ques-
tion_wh !, ?,thanks, no

NRC positive, negative, trust, fear, anger,
Entities Org, Time , Date, Cardinal
Dependency amod-NN-JJ, nummod-NNS,CD,

compound-NN-NN, ROOT-NNP-NNP,
advmod-VB-RB compound-NN-NNP, neg-
VB-RB, amod-NNS,JJ, ROOT-VBN-VBN

Table 6: A subset of top 100 Features from Random
Forest.

5 Conclusion and Future Work

We present an error characterization framework,
called AEC, which allows the model users and de-
velopers to understand when and where a model
fails. AEC is trained on human understandable
linguistic features with erroneous predictions from
the base classifier as training input. We used a
cross-domain sentiment analysis task as case study
to showcase the effectiveness of AEC in terms of
error detection and characterization. Our experi-
ments showed that AEC outperformed uncertainty
based sampling in terms of selecting the erroneous
samples for continuous model improvements (a
strong active learning baseline for selecting the
most uncertain samples for continuous model im-
provements) for the task of predicting errors which
can act as most informative samples of the base
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classifier. In addition, errors automatically detected
by AEC seemed to be more understandable to the
model developers. Having these explanations lets
the end users make a more informed decision, as
well as guide the labeling decisions for next round
of training. As our initial results on sentiment
dataset look promising for both performance and
explainability, we are in the process of extending
the framework to run the algorithm iteratively on
multiple datasets. While applying the error charac-
terization classifier on the unlabeled datasets, not
only we will select the top K ′ instances with the
highest prediction probability of being correctly
predicted and add them back to the original train-
ing dataset for retraining purpose, but we will also
select top K instances with the highest prediction
probability of being incorrectly predicted. We will
assign those instances to human annotators for la-
bels and add them back to the original labeled data
as well for the next iteration of training process. We
will continuously feed these samples to train the
base network, and evaluate the actual performance
gains for the base classifier.
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Abstract

In this paper, we propose a global, self-
explainable solution to solve a prominent NLP
problem: Entity Resolution (ER). We formu-
late ER as a graph partitioning problem. Every
mention of a real-world entity is represented
by a node in the graph, and the pairwise sim-
ilarity scores between the mentions are used
to associate these nodes to exactly one clique,
which represents a real-world entity in the ER
domain. In this paper, we use Clique Partition-
ing Problem (CPP), which is an Integer Pro-
gram (IP) to formulate ER as a graph partition-
ing problem and then highlight the explainable
nature of this method. Since CPP is NP-Hard,
we introduce an efficient solution procedure,
the xER algorithm, to solve CPP as a combi-
nation of finding maximal cliques in the graph
and then performing generalized set packing
using a novel formulation. We discuss the
advantages of using xER over the traditional
methods and provide the computational exper-
iments and results of applying this method to
ER data sets.

1 Introduction

Entity Resolution (ER) is a prominent NLP prob-
lem, also referred to as co-reference resolution,
de-duplication and record linkage, depending on
the the problem set up. Irrespective of the name,
the objective is to combine and cluster multiple
mentions of a real-world entity from various data
sources into their respective real-world entities and
remove duplicates. Various techniques such as clus-
tering (Aslam et al., 2004), (Saeedi et al., 2017),
rule-based methods (Aumüller and Rahm, 2009),
mathematical programming, and combinatorial op-
timization (Tauer et al., 2019) have previously been
applied to ER. In this paper, we formulate and solve
ER as a graph partitioning problem.

Representing ER as a graph partitioning prob-
lem The transformation from the real-world ER

Figure 1: An example of converting a text into a graph.

problem domain to the mathematical Integer Pro-
gramming (IP) formulation setup is essential to
understand the model’s explainable nature and the
solution procedure. A node in the graph represents
a mention in the ER domain. An edge between any
two nodes has a weight associated with it, represent-
ing the similarity score between the two mentions
in consideration. This similarity score indicates the
probability that these mentions are associated with
the same entity. The goal is to ensure that based
on the weights, the nodes are optimally allotted
to their respective clusters. From a combinatorial
perspective, this problem is known as the Clique
Partitioning Problem (CPP). A clique is a complete
subgraph in which all its nodes are pairwise con-
nected. The weight of a clique is defined as the
sum of all its edges’ weights. The objective of this
mathematical formulation is to find disjoint cliques
in the graph such that the total weight of all the
cliques is maximized, which, in the ER domain,
translates to associating each mention to a single
real-world entity with the highest probability asso-
ciation. The constraints in this mathematical for-
mulation enforce that a particular node is mapped
to just one clique and ensure that the mentions’
transitivity conditions are obeyed.

Bhattacharya and Getoor (2004) was one of the
earlier papers that formulated ER as a graphical
problem and Bansal et al. (2004) proposed a corre-
lation clustering method for the graphical problem.
ER was also approached as a graph partitioning
problem in (Nicolae and Nicolae, 2006), (Chen
and Ji, 2009), (Chen and Ji, 2010) and the CPP
approach outperformed other solution methods for
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ER (Finkel et al., 2005), (Klenner and Ailloud,
2009). Tauer et al. (2019) formulated ER as CPP,
where an incremental graph partitioning approach
was applied and solved using a heuristic. Lokhande
et al. (2020) formulated ER as a set packing prob-
lem by considering the sets of all possible com-
binations of mentions and then choosing the best
combination, based on the weights of the sets. ER
has also been approached as a clustering problem.
Saeedi et al. (2017) conducted an extensive survey
on the clustering methods that had been applied to
the entity resolution problem. von Luxburg (2007)
solved ER as a spectral graph clustering problem,
which is based on the graph’s Laplacian matrix.
Star Clustering (Aslam et al., 2004) formalizes clus-
tering as graph covering and assigns each node to
the highest probabilistic cluster. k-means is also
a common technique to solve ER as a clustering
problem. However, the mathematical formulation
based methods come with a guarantee of optimality.
Furthermore, it is easy to obtain an upper bound to
these problems by relaxing the integer constraints.
These upper bounds provide a guarantee on any
feasible solution. In typical clustering algorithms,
the number of clusters to produce in the output
needs to be provided upfront, while it is decided
by the model intrinsically in the CPP framework.
The long convergence times and the iterations pose
a disadvantage for them to be used as a solution
technique for entity resolution (Saeedi et al., 2017).
Moreover, from an explainability perspective, in
the formulation-based methods proposed in this
paper, the explanation is substantiated with mathe-
matical guarantees, while the clustering-based ap-
proaches lack this mathematical precision and the
heuristic nature further confounds explainability.
Ribeiro et al. (2016), Ribeiro et al. (2018), Letham
et al. (2015) and Choudhary et al. (2018) have pro-
posed explainable systems for ER using local and
if-then-else based global explanations. Ebaid et al.
(2019) is a tool that provides explanations at differ-
ent granularity levels.

Since CPP is NP-hard (Grötschel and Wak-
abayashi, 1989), a novel two-phase solution is
proposed, in this paper, to solve CPP optimally.
This solution method can be easily accelerated and
scaled to handle large-sized datasets. As a part of
this two-phased approach, new and creative formu-
lations for the generalized set packing problem are
also proposed. The formulations and the approach
to obtain the optimal solution provide a mathemati-

cal guarantee on the output, and the results are eas-
ily interpretable and explainable. The constraints
and objective function mathematically support the
explanation behind the predicted output.

The rest of the paper is organized as follows. In
Section 2, entity resolution is formulated as CPP. In
Section 3, explainability and interpretability of this
method is discussed. Section 4 then introduces the
two-phase solution approach proposed for solving
the NP-hard CPP. Sections 5 and 6 go over the
computational experiments and the results.

2 Mathematical Formulation of CPP

As discussed in Section 1, the entity resolution
problem is transformed to a graph where each men-
tion is represented by nodes and the weight on
an edge between the nodes is the similarity score
between the mentions. To obtain the pairwise simi-
larity scores, we use an open-source entity resolu-
tion library called Dedupe (Gregg and Eder, 2019),
which applies blocking and a logistic regression
based model to obtain the similarity scores between
mentions. See Section 5 for more details about this.

In this section, the graph partitioning setup is
formally represented by a mathematical formula-
tion. Let i, j (i < j) be two nodes in the graph
(representing two mentions) and wij be the weight
of the edge between these nodes. xij is a binary
variable that denotes whether i, j are associated or
co-referent (belong to the same clique).

xij =

{
1 if nodes i, j are associated
0 otherwise

The “traditional” math formulation of CPP is:

CPP (w) = max

N−1∑

i=1

N∑

j=i+1

wijxij ; s.t. (1)

xij + xik − xjk ≤ 1, ∀1 ≤ i < j < k ≤ N, (2)
−xij + xik + xjk ≤ 1, ∀1 ≤ i < j < k ≤ N, (3)
xij − xik + xjk ≤ 1, ∀1 ≤ i < j < k ≤ N, (4)

xij ∈ {0, 1}, ∀1 ≤ i < j ≤ N. (5)

Constraints (2), (3), and (4) are the transitivity
constraints enforced among the nodes. These three
constraints ensure that if mention a is the same as
b and b is the same as c, then it must also be that
a is the same as c. The graph is assumed to be di-
rected to avoid duplication of cliques and memory
exhaustion. An optimal solution to this problem
results in the best possible solution to the ER for
the given similarity scores. However, due to cubic
number of constraints, this particular formulation
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for CPP, does not scale with the number of nodes.
Hence, heuristics are prevalent to find an approxi-
mate solution to CPP; see Section 4 for details.

3 Model Explainability and
Interpretability

Before we discuss our solution approaches, the
explainable nature of this method is highlighted.
The definitions of explainability have been stud-
ied in various works (Guidotti et al., 2019), (Arya
et al., 2019). As defined in Danilevsky et al. (2020)
and Guidotti et al. (2019), understanding the level
of explainability of models can be interpreted as
outcome explanation problems, where the empha-
sis lies in understanding the rationale behind the
prediction of a specific output or all outputs in gen-
eral. In this paper, the definitions and categoriza-
tions of explanations are based on the definitions
in Danilevsky et al. (2020). Two major categoriza-
tions of explanations are emphasized. The first is
based on the explanation process’s target set, and
divided into two types: Local and Global. Suppose
the explanation is for a particular individual output.
In that case, the explanation type is referred to as
Local. On the other hand, if the explanation is for
the whole model in itself, then it is a Global expla-
nation. The second categorization is based on the
origin of the explanation process. If the explanation
is from the prediction process itself, then it belongs
to the Self Explaining or the Directly Interpretable
category (Arya et al., 2019). Otherwise, if post pre-
diction processing is required to explain the output,
it can be categorized as Post-hoc explanation.

As seen in Tauer et al. (2019), mathematical
formulation based methods have a notion of op-
timality infused in the problems. The design of
NLP problems like ER as mathematical formula-
tions ensures that various constraints are met simul-
taneously, and hence making the output and the
prediction process trustworthy and reliable. Since
the constraints and the objective function are en-
forced into the mathematical formulation, the ex-
planation behind any output comes directly from
the model itself, making it a self-explainable model
model. Moreover, the explanation behind any out-
put is only dependent on the formulation and not
on the output itself. This makes the model globally
explainable. Therefore, by applying an efficient
approach based on mathematical formulations, the
solution method discussed in this paper presents an
easily interpretable and explainable model for ER.

4 Solution Approach for CPP

As discussed in Section 2, CPP is NP-hard. In this
paper, an efficient and scalable solution approach
is proposed to solve the CPP.

The solution procedure is divided into two
phases: Phase 1 involves finding the maximal
cliques in the graph. A maximal clique is a
clique that is not a sub-clique of a larger clique
(Akkoyunlu, 1973). For Phase 2, we propose a
novel generalized set packing formulation that not
only ensures that each node belongs to a single
clique, but it is able to break larger cliques into
smaller sub-cliques if necessary. The formulation
enables to find the optimal combinations of the
cliques, that maximize the weight of the system.
The algorithm (Phase 1 + Phase 2), is referred to
as xER (Explainable ER).

4.1 Phase 1: Finding Maximal Cliques

In this phase, all the maximal cliques in a graph are
found and stored. There are many approaches to
find maximal cliques, but the most prominent and
efficient approach is the Bron-Kerbosch (BK) algo-
rithm (Bron and Kerbosch, 1973). There are multi-
ple variants of BK, and in this paper, we adopt the
pivot-based BK algorithm with node ordering. For
simplicity, a recursion-based sequential implemen-
tation is used for BK. However, a scalable GPU-
accelerated implementation for maximal clique list-
ing is currently in progress based on (Almasri et al.,
2021).

4.2 Phase 2: Set Packing

The output of Phase 1 is a list of cliques that are
not disjoint. This phase aims to find the optimal
combination of these cliques such that the cliques
are disjoint and the total weight of all these disjoint
cliques is maximized. Thus, Phase 2 is a maximum
weighted Set Packing Problem (SPP). The original
SPP is formulated as:

(SPP) max W Tx (6)

s.t Ax = 1 (7)

x ∈ {0, 1}. (8)

Here, S is the list of sets (cliques) and V is the set
of nodes in the graph. W denotes the weight vec-
tor, where each entry is the weight of a clique. The
binary variable xt denotes if a set t ∈ S is chosen
or not, A : V ×S is the incidence matrix indicating
the presence of a node in a set. ait ∈ A is 1 if node
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i ∈ V is in the set t ∈ S and 0, otherwise. The
formulation of the original set packing problem is
designed to choose the optimal packing of sets that
maximizes the system’s overall weight. Multiple
solution procedures have been developed to solve
this set packing problem, and these procedures can
be categorized as either exact or approximate al-
gorithms. Rossi and Smriglio (2001) proposed a
branch-and-cut approach for solving the SPP. Lan-
dete et al. (2013) proposed alternate formulations
for SPP in higher dimensions and then added valid
inequalities that were facets to the lifted polytope.
Kwon et al. (2008) and Kolokolov and Zaozerskaya
(2009) also proposed new facets that strengthen
the relaxed formulations of SPP. Li et al. (2020)
encoded SPP as a maximum weighted indepen-
dent set and then used a Diversion Local Search
based on the Weighted Configuration Checking
(DLSWCC) algorithm to solve it. Since SPP is NP-
hard (Garey and Johnson, 2009), many heuristics
have also been proposed to obtain a solution for
SPP in a reasonable amount of time. Rönnqvist
(1995) proposed a Lagrangian relaxation based
method and Delorme et al. (2004) used a greedy
randomized adaptive search procedure (GRASP)
to solve SPP. Gandibleux et al. (2004) proposed an
ant colony heuristic for SPP.

Lokhande et al. (2020) has recently formulated
ER as a set packing problem. All possible com-
binations of groups of mentions are given as an
input to the SPP. Each of these groups is referred
to as a hypothesis. Every hypothesis has a weight
associated with it, which is computed as the sum
of weights on a pair of nodes in that hypothesis.
The best combination of the sets is chosen based
on the weights. A major drawback of formulating
and solving ER as a traditional set packing problem
is the huge input size even for considerably small
graphs. Table 1 shows a comparison between the
number of cliques (|C|) and the number of maximal
cliques (|MC|) in small-sized graphs, with number
of edges denoted as |E|. The number of maximal
cliques is significantly less than the total number
of cliques. The number of all the cliques in the
graph grows exponentially, much faster than the
number of maximal cliques as the graph’s size in-
creases. In this paper, our proposed formulation for
set packing can break a large set into smaller ones
if required. Therefore, it only needs the maximal
cliques as an input, contrary to SPP, which requires
all the cliques as an input.

Nodes |E| |MC| |C| Ratio d |C|
|MC|e

38 147 70 528 8
38 203 101 801 8
38 379 433 5619 13
46 223 87 2466 28
46 317 162 3264 20
46 556 829 17114 21

Table 1: Statistics of small graphs and their associated
edges.

4.2.1 Proposed SPP Formulation
As discussed in Section 4.2, the formulation of
the original set packing problem is designed to
choose the combination of sets that are disjoint and
maximize the problem’s overall weight. Thus, it
requires the power set of cliques as an input. In
this paper, the traditional set packing formulation
is modified to fit the ER problem’s requirements
and made it more efficient and scalable to handle
large datasets. Our novel formulation for set pack-
ing is introduced in Section 4.2 requires a much
smaller input size. The formulation itself is en-
abled to carve out sub-cliques of a larger clique
while keeping them disjoint. Eventually, the same
optimal solution would be found, but the difference
is in the manageable input size.

Notation: Here, K is the total number of max-
imal cliques in the input. Each set of index k,
is denoted by Sk (cliques and sets are used inter-
changeably to accommodate the notation of both
the traditional set packing and the new proposed
formulation). The inputs to the problem is a set
of incidence matrices {Ak} corresponding to each
set Sk, and W , the weight matrix of arcs in the
original graph. The graph is directed, and an edge
can only exist between two nodes i, j, with i < j
and weight Wij . Each set can be broken down into
multiple partitions, and M is the upper bound on
the total number of partitions any set can be broken
down into. The index for each partition of a set is
m and is local to a set Sk, where 0 ≤ m ≤M − 1.
zij denotes the connection between two nodes i, j
in the optimal solution and yimk denotes if node i
is assigned to partition m of set Sk .

Decision Variables:

yimk =

{
1 if node i is chosen for partition m in set Sk

0 otherwise

zij =

{
1 if nodes i, j belong to the same partition
0 otherwise

All the nodes in V are ordered. E represents the
edge set of the graph. E = {(i, j) : i < j}.
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4.2.2 Quadratic Set Packing
The new set packing formulation is as follows:

(QSP) max
N−1∑

i=0

N−1∑

j=i+1

Wijzij ; s.t. (9)

zij −
∑

k

∑

m

yimk × yjmk = 0, ∀i, j ∈ V, (10)

∑

k

∑

m

yimk ≤ 1 ∀i ∈ V, (11)

0 ≤ zij ≤ 1, yimk ∈ {0, 1}, ∀i, j ∈ V,m ∈M,k ∈ K.
(12)

QSP stands for Quadratic Set Packing, deriving
the name from the quadratic nature of the con-
straints. It can be observed that the notation of
the variables in this formulation is different from
the traditional set packing formulation. In the tra-
ditional set packing formulation, the decision vari-
able is the binary variable xt, denoting the presence
of a set t in the optimal solution. However, in QSP,
the decision variable yimk denotes the presence of
a node i in the partition m of set Sk. If a node
i from set Sk should belong to partition m, the
value of yimk = 1 and 0 otherwise. This shows
that yimk is modified to remove nodes from the
maximal cliques if necessary, eliminating the need
to provide the power set of the maximal cliques
as an input to the original SPP formulation. As
mentioned before, this ordering avoids duplication
of nodes and saves memory. Moreover, due to the
nature of the formulation, even though zij is not ex-
plicitly assigned to be an integral solution, solving
the QSP optimally results in an integer solution for
zij . An off-the-shelf optimization solver, Gurobi
(Gurobi Optimization, 2021) was used to solve the
problem optimally. zij is used to compute the pre-
cision, recall and the F1 scores.

Algorithm 1: xER Algorithm
Result: Resolved datasets with no duplicate

mentions
Step 1 : Perform blocking and compute pairwise

similarity scores (§5);
Step 2 : Construct a directed graph with the mentions

as nodes and similarity scores as weights on the
edges. (§4);

Step 3 : Find maximal cliques in the graph using BK
(§4.1);

Step 4 : Perform Set Packing using the QSP
formulation (§4);

Step 5 : Use the output of z to compute precision,
recall and F1 (§5);

Currently, we are working on developing scal-
able heuristics for the xER algorithm. As men-
tioned in Sec 4.1, a GPU accelerated version for

Phase 1 is currently in progress based on Almasri
et al. (2021). For Phase 2, an accelerated and scal-
able approach is being developed. The QSP formu-
lation is linearized to provide the Linearized Set
Packing (LSP) formulation. We are working on
the linear relaxations of LSP and using accelerated
computing to solve this and a family of relaxations.
Subsequently, one can develop branch-and-bound
approaches for solving the integer programming
problem to optimality.

5 Computational Experiments

In this section, the xER algorithm’s performance
is evaluated through experiments on different ER
datasets. In this paper, two primary data sources
considered: benchmarking datasets (Saeedi et al.,
2017) and ECB+ (Cybulska and Vossen, 2014).
Datasets from both these sources are used to test the
algorithm and analyze the algorithm’s performance
in terms of the F1 scores, solution times and their
potential for scalability. Different blocking and
scoring techniques have been applied to both these
datasets, and are discussed in detail.

Blocking is a pre-processing technique applied to
the datasets. The purpose is to eliminate the need
to store similarity scores between those pairs of
mentions that are extremely unlikely to being asso-
ciated to the same entity. This increases the sparsity
in the graph, making it easier to process the graph
and perform computations. Blocking and similar-
ity score computation techniques are different for
different data sources and are discussed below.

5.1 Benchmarking Datasets

Saeedi et al. (2017) provides benchmark datasets,
three of which are used in this paper. Table 2 shows
the statistics for these benchmarking datasets. An
open-source entity resolution library called Dedupe
(Gregg and Eder, 2019) is used to preprocess these
datasets by applying blocking techniques and gen-
erating similarity scores. The blocking technique
and the scoring scheme are obtained from the code
base of Lokhande et al. (2020). The dataset is di-
vided into training and validation sets, with a split
ratio of 50%. Our similarity scores for the bench-
mark datasets are obtained from the Dedupe library
by training a ridge regression model.

5.2 ECB+ Corpus

Event Coreference Bank (ECB) (Bejan and
Harabagiu, 2010)) is an event coreference resolu-
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Dataset Entities Matches Clusters
patent_example 2379 293785 102
csv_example 3337 6608 1162
settlements 3054 4388 820

Table 2: Statistics of the benchmarking datasets

tion dataset that includes a collection of documents
found through Google Search. ECB+ (Cybulska
and Vossen, 2014) is an extension of this dataset
with newly added documents. Table 3 shows the
statistics for this dataset.

The ECB+ dataset comes with the gold standard
or the Ground Truth (GT) values used to generate
the similarity scores. The ground truth values for
two connected (or co-referent) and not connected
mentions are +1 and −1, respectively. The “syn-
thetic” similarity scores are generated from a nor-
mal distribution with a fixed mean and an added
noise. If the ground-truth is +1 then µ = 0.5 and
if it is −1, then µ = −0.5. A variance of 0.3 is
added to the generated scores using this distribu-
tion. Once the similarity scores are computed, a
blocking threshold T is applied to these scores. A
pair of mentions with a similarity score less than
T is blocked, and the edge between these nodes
is removed from the original graph. The mentions
in this dataset could belong to the event class or
the entity class. The mention pairs are taken from
the same class for the experiments, and xER is
indifferent to the class.

Type Mentions Chains (clusters)
Event 6833 2741
Entity 8289 2224

Table 3: Statistics of ECB+ datasets

This dataset is broken down into smaller graphs
using topic modelling from (Barhom et al., 2019).
It facilitated the use of these different sized graphs
to experiment with the blocking thresholds, analyze
the F1 scores, and understand the xER algorithm’s
performance.

6 Results

The experiments are performed on an Intel i5 pro-
cessor with 8GB RAM. The datasets from both
sources are preprocessed and converted into graphs
given as an input to the xER algorithm. These
graphs have mentions as nodes and the pairwise
similarity scores as the edges’ weight. As shown
in the xER algorithm (1), this graph is first passed

through Phase 1, which is the Bron-Kerbosch al-
gorithm with pivoting (Bron and Kerbosch, 1973).
This step’s output is a set of maximal cliques that
are not disjoint and passed on to Phase 2 for the set
packing step. QSP formulation is modelled using
Gurobi (Gurobi Optimization, 2021) and solved
optimally. The solution for the z variable from
the optimally solved model is used to compute F1
scores. The xER algorithm is applied to all the
datasets listed above and is evaluated in terms of
F1 scores and computation times, and compared to
the other competing algorithms. xER is also com-
pared with the traditional set packing algorithm
and the difference in the input sizes between SPP
and QSP is highlighted through experiments. Also,
to demonstrate the quality of the xER algorithm,
the weights on the edges are replaced with Ground
Truth (GT) values (+1 and −1) instead of simi-
larity scores and tested. This helps in analyzing
and confirming the model’s consistency and accu-
racy, irrespective of the method used to compute
similarity scores.

6.1 Testing xER on benchmarking datasets

Dedupe is used to perform blocking and compute
the similarity scores as mentioned in Section 5.1.
First, Dedupe employs specific blocking techniques
on the data. A ridge regression model is then
trained and used to compute the scores on the vali-
dation dataset. The pairwise nodes and the scores
are passed on to the xER algorithm, and F1 scores
are computed using the solutions from the z vari-
able. These scores are obtained from the code
base of (Lokhande et al., 2020) for a fair com-
parison and the performance of xER is compared
with F-MWSP in (Lokhande et al., 2020) and a
standard Hierarchical Clustering (HC) approach
(Hastie et al., 2009). As mentioned before, M is
a hyperparameter, and for these three datasets, we
set it to 10. Table 4 shows that xER is at least
as good as the other algorithms. For the settle-
ments dataset, xER outperforms both F-MWSP
and HC. For csv_example, xER has the same F1
score as F-MWSP, which is better than that of HC.
For patent_sample, the F1 score for xER is less
than HC and F-MWSP. However, since xER is de-
signed to provide an optimal solution to a graph
with a given set of nodes and weights, it is possible
that the blocking techniques were too severe or the
computational scores were not the best, leading
to a lower F1 score. As discussed before, a high-
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quality blocking technique and similarity scores
will lead to high-quality F1 scores, since the xER
algorithm is designed to give the best possible so-
lution to a given input. Another comparison factor
considered is the size of the input between SPP
and QSP. The size of the input cliques required
for a traditional set packing based formulation (F-
MWSP) is significantly greater compared to that of
the QSP formulation, which can be seen in the Ta-
ble 1. Thus, a scalable xER algorithm can be useful
to produce optimal outputs in lesser time. More-
over, with xER, the outputs and the explanations
are supported by mathematical guarantees.

Datasets Nodes F1
xER F-MWSP HC

patent_sample 2379 92.0 94.8 92.2
csv_example 3337 95.1 95.1 94.4
settlements 3054 95.7 94.4 95.3

Table 4: Dedupe F1 scores

In addition to the F1 scores, other metrics have
also been used to evaluate and compare the algo-
rithms’ performance. The dataset settlements is
considered to analyze the algorithms in terms of all
the evaluation metrics and is shown in Table 5.

Metric xER F-MWSP HC
F1 95.7% 94.4% 95.3 %

Homogeneity 99.8% 99.8 % 99.9%
Completeness 98.9 % 98.5 % 98.7%
V measure 99.4 % 99.1 % 99.3 %

Adjusted Rand Index 0.957 0.944 0.953
Fowlkes Mallows 0.958 0.945 0.953

Table 5: Evaluation metrics for settlements dataset

6.1.1 Performance of xER on ECB+ Datasets
As discussed in Section 5, smaller datasets are
constructed from the ECB+ dataset by perform-
ing topic wise modelling from (Barhom et al.,
2019). Moreover, instead of performing entity res-
olution on the whole corpus, a subset of documents
from the topics is considered as the input. Smaller
datasets of different sizes are generated this way
and are used to test and assess the xER algorithm.

After the similarity scores are computed, block-
ing techniques are applied based on a threshold of
T on the similarity scores, in contrast to the block-
ing before the similarity score generation technique
in the benchmarking datasets. The number of edges
and the tightness among the nodes, measured by the
Clustering Coefficient (CC) (Wang et al., 2017), is

varied by varying this threshold T . The xER algo-
rithm is also tested with the groundtruth values as
weights. These tests are listed below and analyzed.

6.1.2 Tests Based on Thresholds

As described in Section 5.2, the similarity scores
are generated from the normal distribution with
means 0.5 and −0.5 depending on the ground
truth, and the threshold values belong to the range
[−0.7,−0.2]. As the threshold T increases, the
graph’s size becomes smaller due to the removal
of edges with a weight less than the T . To demon-
strate the impact of thresholding, a graph of 49
nodes is considered, and different graphs are gener-
ated from it by applying varying T values and the
results are presented in Table 6.

T |E| CC |C| |MC| F1 Time (s) Total Time(s)
Phase 1 Phase 2 xER SPP

-0.7 863 0.739 - 6425 97.33 0.199 9202.66 9202.86 -
-0.5 598 0.512 16619 827 97.33 0.017 4.772 4.780 99.88
-0.3 309 0.315 2906 174 97.33 0.0027 0.465 0.468 31.71
-0.2 228 0.312 2491 108 97.33 0.0017 0.294 0.296 30.2

Table 6: F1 for varying T on a graph of 49 nodes

The graph is denser and tightly connected with
a tight threshold. The number of edges (|E|), the
clustering coefficient (CC), the number of maximal
cliques (|MC|) and the number of all the cliques in
the graph (|C|) decrease with increasing T . For a
particular T , the input size of SPP (|C|) compared
to the input size of QSP (|MC|) is almost exponen-
tial and only increases with the graph’s size. This
difference is reflected in the solution times and can
be seen that the SPP solution time is quite large
when compared to the xER solution time. With
larger graphs, the formulations will be unable to
handle this large SPP input size. For the largest
graph with T = −0.7, the computation time ex-
ceeded the time limit and was terminated. Another
observation is that tighter thresholds lead to higher
computation times for both phase 1 and phase 2.
Thus, a higher T value is preferred in terms of solu-
tion time and memory management. However, it is
possible that blocking with a higher threshold value
might lead to a reduction in the recall and affect the
F1 scores. So, a moderate threshold is preferred to
balance both the F1 scores and the memory issues.
T is treated as a hyperparameter, and the optimal T
value can be chosen so that the graph size is small
enough to handle, and the F1 scores are acceptable.
When testing with ground truth values as weights,
all the above graphs resulted in a 100% F1 score.
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6.1.3 Evaluation: F1 scores
In addition to the thresholding tests, the xER al-
gorithm is tested on other graphs generated using
the same approach described above. The threshold
value T is set to −0.3. The F1 scores for these
graphs are reported in Table 7. As mentioned pre-
viously, xER is also tested using the groundtruth
values as weights on the edges. xER results in
a 100% F1 score when using the groundtruth, in
all these datasets, which is also shown in Table
7. This implies that with the best possible scores
(groundtruth), the algorithm works perfectly, which
highlights the significance of high-quality similar-
ity scores. M is set to 3 for all these graphs, and
when the groundtruth is being used as weights, the
value of M = 10.

This is because the input graph is fully connected
because of no thresholding. So Phase 1 returns the
whole graph as the maximal clique and phase 2
is responsible for partitiong the whole graph into
smaller cliques, which is done using the M value.
So a larger value of M enabled the graph to be
partitioned into smaller sets as per the weights.

Nodes Edges F1-GT (%) F1 (%)
46 317 100 97.43
135 2589 100 96.46
226 7727 100 91.62
262 10804 100 91.03

Table 7: F1 scores of graphs from the ECB+ dataset.

6.2 Explainability of xER
We now understand the model’s explainable nature
in an intuitive way with an example. The dataset
with 49 nodes and T = −0.3 in Table 6 is consid-
ered. Three nodes: (7, 12, 20) that form a 3-clique
or a triangle in the groundtruth are picked and an-
alyzed. When xER is executed with weights, the
thresholding does not remove one node: 25, that is
connected to all these three nodes, thus having the
potential to form a 4-clique. However, from the Ta-
ble 8, the total weight that node 25 brings into the
triangle is negative (−3.0) and thus, this 4-clique
is not a good choice to be included in the optimal
solution. Thus, the model automatically prevents
this node from forming a 4-clique with the three
nodes, thus ensuring that the precision wouldn’t
decrease. Another important observation is that
blocking with a threshold of T = −0.2 would have
removed the edge between the nodes 20 and 25,
thus totally eliminating the potential of forming a
4-clique.

Node 1 Node 2 Weight Node 1 Node 2 Weight
7 12 0.456 7 25 -0.076
7 20 0.999 12 25 -0.156
12 20 0.085 20 25 -0.253

Table 8: Weights on the edges of nodes (7, 12, 20, 25)

Another example of explainable ER and the
importance of having high-quality scores, is
considered for the same graph. Four edges:
(3-15), (19-29), (21-25), (23-40) with weights
0.316, 0.095, 0.232, 0.046, respectively, were in-
cluded in the optimal solution, while these nodes
are not connected in the ground truth. The “noisy”
weights between these nodes which should have
been negative per the ground truth. This shows that
a poor scoring scheme can lead to a low quality
solution.

As explained in Danilevsky et al. (2020), the ex-
plainability of a model can be evaluated in three
ways: Comparison with the groundtruth, Informal
explanations and Human evaluation. We compared
the model with ground truth values and obtained the
F1 scores. In addition to it, we also performed ex-
periments with the groundtruth scores and the sim-
ilarity scores to argue the reasoning behind a par-
ticular solution. For evaluation through informal
explanation, we considered examples from graphs
and understood the reasoning behind this output
produced by the model. For future work, we plan
to include a viable human evaluation technique for
the ER problem.

In this paper, we compared our model to an exist-
ing approach for ER from Lokhande et al. (2020).
As future direction of research, we aim to develop
a scalable approach to handle large datasets that
would not depend on an off-the-shelf solver to ob-
tain optimal and explainable solutions(with math-
ematical guarantee), enabling us to compare the
performance of xER with more approaches that
have been used for ER.

7 Conclusion

A graph partitioning based approach is proposed
to solve the entity resolution problem and is for-
mulated as a clique partitioning problem. A node
in the graph represents each mention, and the ob-
jective was to assign nodes to cliques optimally,
and each clique represents a real-world entity. This
mathematical formulation based model is inher-
ently explainable. Since CPP is NP-Hard, a two-
phased algorithm called xER is proposed and tested
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on multiple datasets. Phase 1 of xER finds all the
graph’s maximal cliques, which is much more prac-
tical than finding all the cliques in the graph. Phase
2 is a generalized set packing formulation and has
a much smaller input size than the traditional set
packing problem. These contributions help develop
a practical and easily parallelizable implementa-
tion for xER. xER shows promising performance
in terms of accuracy.

A GPU accelerated approach for xER is in
progress and will provide a scalable and practical
model. Also, xER can be extended to other applica-
tions such as Topic modelling, Community Detec-
tion, Temporal Analysis. We believe this paper will
lead the way to more mathematical formulation-
based approaches and NLP problems can be solved
using such highly explainable models, thus reduc-
ing the dependency on black-box models.
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Abstract
Natural Language Processing (NLP) systems
are at the heart of many critical automated
decision-making systems making crucial rec-
ommendations about our future world. Gender
bias in NLP has been well studied in English,
but has been less studied in other languages.
In this paper, a team including speakers of 9
languages - Chinese, Spanish, English, Ara-
bic, German, French, Farsi, Urdu, and Wolof -
reports and analyzes measurements of gender
bias in the Wikipedia corpora for these 9 lan-
guages. We develop extensions to profession-
level and corpus-level gender bias metric cal-
culations originally designed for English and
apply them to 8 other languages, including
languages that have grammatically gendered
nouns including different feminine, masculine,
and neuter profession words. We discuss fu-
ture work that would benefit immensely from
a computational linguistics perspective.

1. Introduction
Corpora of human language are regularly fed into ma-
chine learning systems as a key way to learn about
the world. Natural Language Processing plays a signifi-
cant role in many powerful applications such as speech
recognition, text translation, and autocomplete and is
at the heart of many critical automated decision sys-
tems making crucial recommendations about our fu-
ture world (Yordanov 2018)(Banerjee 2020)(Garbade
2018). Systems are taught to identify spam email, sug-
gest medical articles or diagnoses related to a patient’s
symptoms, sort resumes based on relevance for a given
position, and many other tasks that form key compo-
nents of critical decision making systems in areas such
as criminal justice, credit, housing, allocation of public
resources and more.

In a highly influential paper “Man is to Computer
Programmer as Woman is to Homemaker? Debiasing
Word Embeddings”, Bolukbasi et al. (2016) developed
a way to measure gender bias using word embedding
systems like Word2vec. Specifically, they defined a
set of gendered word pairs such as (“he”,“she”) and
used the difference between these word pairs to de-
fine a gendered vector space. They then evaluated the

relationship of profession words like doctor, nurse, or
teacher relative to this gendered vector space. They
demonstrated that word embedding software trained on
a corpus of Google news could associate men with the
profession computer programmer and women with the
profession homemaker. Systems based on such mod-
els, trained even with “representative text” like Google
news, could lead to biased hiring practices if used to,
for example, parse resumes and suggest matches for
a computer programming job. However, as with many
results in NLP research, this influential result has not
been applied beyond English.

In some earlier work from this team, “Quantifying
Gender Bias in Different Corpora”, we applied Boluk-
basi et al.’s methodology to computing and compar-
ing corpus-level gender bias metrics across different
corpora of the English text (Babaeianjelodar 2020).
We measured the gender bias in pre-trained models
based on a “representative” Wikipedia and Book Cor-
pus in English and compared it to models that had been
fine-tuned with various smaller corpora including the
General Language Understanding Evaluation (GLUE)
benchmarks and two collections of toxic speech, Rt-
Gender and IdentityToxic. We found that, as might be
expected, the RtGender corpora produced the highest
gender bias score. However, we also found that the hate
speech corpus, IdentityToxic, had lower gender bias
scores than some of more representative corpora found
in the GLUE benchmarks. By examining the contents
of the IdentityToxic corpus, we found that most of the
text in Identity Toxic reflected bias towards race or sex-
ual orientation, rather than gender. These results con-
firmed the use of a corpus-level gender bias metric as
a way of measuring gender bias in an unknown corpus
and comparing across corpora, but again was only ap-
plied in English.

Here we build on the work of Bolukbasi et al. and
our own earlier work to extend these important tech-
niques in gender bias measurement and analysis be-
yond English. This is challenging because unlike En-
glish, many languages like Spanish, Arabic, German,
French, and Urdu, have grammatically gendered nouns
including feminine, masculine and, neuter or neutral
profession words. We translate and modify Boluk-
basi et al.’s defining sets and profession sets in En-
glish for 8 additional languages and develop exten-
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sions to the profession-level and corpus-level gender
bias metric calculations for languages with grammati-
cally gendered nouns. We use this methodology to an-
alyze the gender bias in Wikipedia corpora for Chinese
(Mandarin Chinese), Spanish, English, Arabic, Ger-
man, French, Farsi, Urdu, and Wolof. We demonstrate
how the modern NLP pipeline not only reflects gender
bias, but also leads to substantially over-representing
some (especially English voices recorded in the digital
text) and under-representing most others (speakers of
most of the 7000 human languages and even writers of
classic works that have not been digitized).

In Section 2, we describe modifications that we
made to the defining set and profession set proposed
by Bolukbasi et al. in order to extend the method-
ology beyond English. In Section 3, we discuss the
Wikipedia corpora and the occurrence of words in the
modified defining and profession sets for 9 languages
in Wikipedia. In Section 4, we extend Bolukbasi’s gen-
der bias calculation to languages, like Spanish, Arabic,
German, French, and Urdu, with grammatically gen-
dered nouns. We apply this to calculate and compare
profession-level and corpus-level gender bias metrics
for Wikipedia corpora in the 9 languages. We conclude
and discuss future work in Section 5. Throughout this
paper, we discuss future work that would benefit im-
mensely from a computational linguistics perspective.

2. Modifying Defining Sets and Profession
Sets
Word embedding is a powerful NLP technique that rep-
resents words in the form of numeric vectors. It is used
for semantic parsing, representing the relationship be-
tween words, and capturing the context of a word in a
document (Karani 2018). For example, Word2vec is a
system used to efficiently create word embeddings by
using a two-layer neural network that efficiently pro-
cesses huge data sets with billions of words, and with
millions of words in the vocabulary (Mikolov 2013).

Bolukbasi et al. developed a method for measur-
ing gender bias using word embedding systems like
Word2vec. Specifically, they defined a set of highly
gendered word pairs such as (“he”, “she”) and used the
difference between these word pairs to define a gen-
dered vector space. They then evaluated the relation-
ship of profession words like doctor, nurse or teacher
relative to this gendered vector space. Ideally, profes-
sion words would not reflect a strong gender bias. How-
ever, in practice, they often do. According to such a
metric, doctor might be male biased or nurse female bi-
ased based on how these words are used in the corpora
from which the word embedding model was produced.
Thus, this gender bias metric of profession words as
calculated from the Word2Vec model can be used as
a measure of the gender bias learned from corpora of
natural language.

In this section, we describe the modifications we
made to the defining set and profession set proposed by

Bolukbasi et al. in order to extend the methodology be-
yond English. Before applying these changes to other
languages, we evaluate the impact of the changes on
calculations in English. In this section, we also describe
the Wikipedia corpora we used across 9 languages and
analyze the occurrences of our defining set and profes-
sion set words in these corpora. This work is also de-
scribed, but with a different focus in Wali et al. (2020)
and Chen et al. (2021).

2.1. Defining Set

The defining set is a list of gendered word pairs
used to define what a gendered relationship looks
like. Bolukbasi et al’s original defining set contained
10 English word pairs (she-he, daughter-son, her-his,
mother-father, woman-man, gal-guy, Mary-John, girl-
boy, herself-himself, and female-male) (Bobluski et al.
2016). We began with this set, but made substantial
changes in order to compute gender bias effectively
across 9 languages.

Specifically, we removed 6 of the 10 pairs, added 3
new pairs and translated the final set into 8 additional
languages. For example, we removed the pairs she-he
and herself-himself because they are the same word in
some languages like Wolof, Farsi, Urdu, and German.
Similarly, we removed the pair her-his because in some
languages like French and Spanish, the gender of the
object does not depend on the person to which it be-
longs.

We also added 3 new pairs (queen-king, wife-
husband, and madam-sir) for which more consistent
translations were available across languages. Interest-
ingly, as we will discuss, the pair wife-husband intro-
duces surprising results in many languages. Our final
defining set for this study thus contained 7 word pairs
and Table 1 shows our translations of this final defining
set across the 9 languages included in our study.

2.2 Professions Set

We began with Bolukbasi et al’s profession word set
in English, but again made substantial changes in or-
der to compute gender bias effectively across 9 lan-
guages. Bolukbasi et al. had an original list of 327
profession words (2016), including some words that
would not technically be classified as professions like
saint or drug addict. We narrowed this list down to 32
words including: nurse, teacher, writer, engineer, sci-
entist, manager, driver, banker, musician, artist, chef,
filmmaker, judge, comedian, inventor, worker, soldier,
journalist, student, athlete, actor, governor, farmer, per-
son, lawyer, adventurer, aide, ambassador, analyst, as-
tronaut, astronomer, and biologist. We tried to choose
a diverse set of professions from creative to scientific,
from high-paying to lower-paying, etc. that occured in
as many of the 9 languages as we could. As with Boluk-
basi et al.’s profession set, one of our profession words,
person, is not technically a profession, but we kept it
because, unlike many professions, it is especially likely
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English Chinese Spanish Arabic German French Farsi Urdu Wolof
woman 女人 mujer ZA� 	�Ë @ Frau femme 	à 	P �HPñ« Jigéen

man 男人 hombre Ég. P Mann homme XQÓ ú×X
�
@ Góor

daughter 女儿 hija �é 	JK. @ Tochter fille Q�� 	gX ú �æJK. Doom ju jigéen

son 儿子 hijo YËð Sohn fils Qå��� A�J�K. Doom ju góor

mother 母亲 madre Ð@ Mutter mère PXAÓ àAÓ Yaay

father 父亲 padre H. @ Vater père PYK� H� AK. Baay

girl 女孩 niña �é 	JK. @ Mädchen fille Q�� 	gX ú» �QË Janxa

boy 男孩 niño ú
æ.� Junge garçon Qå��� A¿�QË Xale bu góor

queen 女王 reina �éºÊÓ Königin reine ífºÊÓ ífºÊÓ Jabari buur

king 国王 rey ½ÊÓ König roi èA ��XAK� èf A ��XAK. Buur

wife 妻子 esposa �ék. ð 	P Ehefrau épouse Qå�Òë øñJK. Jabar

husband 丈夫 esposo h. ð 	QË @ Ehemann mari Qëñ �� Qïfñ
�� jëkkër

madam 女士 señora ú

�GYJ
� Dame madame Õç 	' A 	g ífÓQ

��m× Ndawsi

sir 男士 señor ø
 YJ
� Herr monsieur A�̄
�
@ H. A 	Jk. Góorgui

Table 1: Final defining set translated across languages. Note: Wolof is primarily a spoken language and is often
written as it would be pronounced in English, French and Arabic. This table shows it written as it would be
pronounced in French.

to have a native word in most human languages.
The primary motivation for reducing the profession

set from 327 to 32 was to reduce the work needed to
translate and validate all of them in 9 languages. Even
with 32 words, there were substantial complexities in
translation. As we mentioned, languages with gram-
matically gendered nouns can have feminine, mascu-
line, and neuter words for the same profession. For in-
stance, in Spanish, the profession “writer” will be trans-
lated as “escritora” for women and “escritor” for men,
but the word for journalist, “periodista”, is used for
both women and men.

Profession words are often borrowed from other lan-
guages. In this study, we found that Urdu and Wolof
speakers often use the English word for a profession
when speaking in Urdu or Wolof. In some cases, there
is a word for that profession in the language as well
and in some cases, there is not. For example, in Urdu,
it is more common to use the English word “man-
ager” when speaking even though there are Urdu words
for the profession manager. In written Urdu, man-
ager could be written directly in English characters
(manager) or written phonetically as the representa-
tion of the word manager using Urdu/Arabic characters
(Qj. J 	�JÓ) or written as an Urdu word for manager (Ñ 	¢�J 	JÓ
/ éÒ 	¢�J 	JÓ).

A similar pattern occurs in Wolof and also in Wolof
there are some additional complicating factors. Wolof
is primarily a spoken language that when written is
transcribed phonetically. This may be done using En-
glish, French, or Arabic character sets and pronuncia-
tion rules. Thus, for the same pronunciation, spelling
can vary substantially and this complicates NLP pro-
cessing such as with Word2Vec significantly. After

making these substantial changes to the defining sets
and profession sets, the first thing we did was analyze
their impact on gender bias measurements in English.
Using both Bolukbasi et al’s original defining and pro-
fessions sets and our modified sets, we computed the
gender bias scores on the English Wikipedia corpus.
With our 7 defining set pairs and 32 profession words,
we conducted a T-test and even with these substantial
changes the T-test results were insignificant, inferring
that the resulting gender bias scores in both instances
have no statistically significant difference for the En-
glish Wikipedia corpus. This result was an encouraging
validation that our method was measuring the same ef-
fects as in Bolukbasi et al. even with the modified and
reduced defining set and profession set.

While our goal in this study was to identify a defin-
ing set and profession set that could more easily be
used across many languages and for which the T-test re-
sults indicated no statistically significant difference in
results over the English Wikipedia corpus, it would be
interesting to repeat this analysis with additional varia-
tions in the defining set and profession set. For exam-
ple, we considered adding additional pairs like sister-
brother or grandmother-grandfather. In some languages
like Chinese, Arabic, and Wolof, there are different
words for younger and older sister or brother. We also
considered and discarded many other profession words
such as bartender, policeman, celebrity, and electrician.
For example, we discarded bartender because it is not
a legal profession in some countries. We would wel-
come collaborators from the computational linguistics
community to help identify promising defining set pairs
and profession set words which which to experiment.
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3. Wikipedia Corpora Across Languages
Bolukbasi et al. applied their gender bias calculations
to a Word2Vec model trained with a corpus of Google
news in English. In Babaeianjelodar et al., we used
the same defining and profession sets as Bolukbasi et
al. to compute gender bias metrics for a BERT model
trained with Wikipedia and a BookCorpus also in En-
glish. In this paper, we train Word2Vec models us-
ing our modified defining and profession sets and the
Wikipedia corpora for 9 languages. Specifically, we use
the Chinese, Spanish, Arabic, German, French, Farsi,
Urdu, and Wolof corpora downloaded from Wikipedia
on 2020-06-20. We would like to examine more lan-
guages in this way and would welcome suggestions of
languages to prioritize in future work.

3.1. Differences in Wikipedia across Languages
While there are Wikipedia corpora for all 9 of our lan-
guages, they differ substantially in size and quality.
Wikipedia is a very commonly used dataset for test-
ing NLP tools and even for building pre-trained mod-
els. However, for many reasons, a checkmark simply
saying that a Wikipedia corpus exists for a language
hides many caveats to full representation and participa-
tion. In addition to variation in size and quality across
languages, not all speakers of a language have equal ac-
cess to contributing to Wikipedia. For example, in the
case of Chinese, Chinese speakers in mainland China
have little access to Wikipedia because it is banned by
the Chinese government (Siegel 2019). Thus, Chinese
articles in Wikipedia are more likely to have been con-
tributed by the 40 million Chinese speakers in Taiwan,
Hong Kong, Singapore, and elsewhere (Su 2019). In
other cases, the percentage of speakers with access to
Wikipedia may vary for other reasons such as access to
computing devices and Internet access.

Using Wikipedia as the basis of pre-trained models
and testing of NLP tools also means that the voices of
those producing digital text are prioritized. Even au-
thors of classic works of literature that fundamentally
shaped cultures are under-represented in favor of writ-
ers typing Wikipedia articles on their computer or even
translating text written in other languages with auto-
mated tools.

3.2. Word Count Results
One critical aspect of our process was to examine the
number of times each word in our defining set (7 pairs)
and 32 profession words occurs in the Wikipedia cor-
pus for each language. This proved an invaluable step
in refining our defining and profession sets, under-
standing the nature of the Wikipedia corpora them-
selves, catching additional instances where NLP tools
were not designed to handle the complexities of some
languages, and even catching simple errors in our own
translations and process. For example, when our orig-
inal word count results for German showed a count of
zero for all words, we discovered that even though all

nouns in German are capitalized, in the Word2vec pro-
cessed Wikipedia corpus for German, all words were
in lowercase. This was an easy problem to fix, but il-
lustrates the kind of “death by a thousand cuts” list
of surprising errors that can occur for many languages
throughout the NLP pipeline.

One important limitation to note is that for many lan-
guages, if a word is expressed with a multi-word phrase
(e.g. astronomer(½Ê 	®Ë @ ÕË A«) in Arabic), the word count
reported by Word2Vec for this phrase will be zero. For
each language, there is a tokenizer that identifies the
words or phrases to be tracked. In many cases, the to-
kenizer identifies words as being separated by a space.
The Chinese tokenizer however attempts to recognize
when multiple characters that are separated with spaces
should be tracked as a multi-character word or con-
cept. This involves looking up a string of characters
in a dictionary. Once again this demonstrates the types
of surprising errors that can occur for many languages
throughout the NLP pipeline. It is also possible to add
the word vectors for component words together as a
measure of the multi-word pair, but this is not always
ideal. In this study, we did not attempt this, but it would
be interesting future work.

Another important factor is that the Wikipedia cor-
pora for some languages are quite small. In Wolof, for
example, only two of our profession words occurred
(“nit”, the word for person, occurred 1401 times and
waykat, the word for musician, occurred 5 times). This
is partly because of multi-word pairs and partly because
of variants in spelling. However, we think it is espe-
cially due to the small size of the Wolof corpus because
the percentage of profession words amongst the total
words for Wolof is similar to that of other languages.
Across the 9 languages, the percentage of profession
words varied from 0.014% and 0.037%. Wolof actually
had one of the higher percentages at 0.026%. However,
its overall Wikipedia corpus is tiny (1422 articles or
less than 1% of the number of articles even in Urdu, the
next smallest corpora) and that simply isn’t a lot of text
with which to work. Even so, Wolof is still better repre-
sented in Wikipedia than the vast majority of the over
7000 human languages spoken today! This is another
clear illustration of how the gap in support for so many
languages leads directly to the under-representation of
many voices in NLP-guided decision-making.

We do not have room to include the word counts for
the defining sets and profession sets for all 9 languages
here, but an expanded technical report with this data is
available at http://tinyurl.com/clarksonnlpbias.

4. Extending Profession and Corpora
Level Gender Bias Metrics
We have already described how we established a mod-
ified defining set and profession set for use across 9
languages and then evaluated the use of these sets of
words in Wikipedia. We also described how we used
the Wikipedia corpora of these 9 languages to train
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Word2Vec models for each language. In this section,
we describe how we extend Bolukbasi et al.’s method
for computing the gender bias of each word.

We begin with Bolukbasi et al.’s method for com-
puting a gender bias metric for each word. Specifically,
each word is expressed as a vector by Word2Vec and
we calculate the center of the vectors for each defini-
tional pair. For example, to calculate the center of the
definitional pair she/he, we average the vector for “she”
with the vector for “he”. Then, we calculate the dis-
tance of each word in the definitional pair from the cen-
ter by subtracting the center from each word in the pair
(e.g. “she” - center). We then apply Principal Compo-
nent Analysis (PCA) to the matrix of these distances.
PCA is an approach that compresses multiple dimen-
sions into fewer dimensions, ideally in a way that the
information within the original data is not lost. Usu-
ally the number of reduced dimensions is 1-3 as it al-
lows for easier visualization of a dataset. Bolukbasi et
al. used the first eigenvalue from the PCA matrix (i.e.
the one that is larger than the rest). Because the defin-
ing set pairs were chosen to the highly gendered, they
expect this dimension to be relate primarily to gender
and therefore call it the gender direction or the g direc-
tion. (Note: The effectiveness of this compression can
vary and in some cases, the first eigenvalue may not
actually be much larger than the second. We see cases
of this in our study as we will discuss.) Finally, we use
Bolukbasi et al.’s formula for direct gender bias:

DirectBiasc =
1

|N |
∑

w∈N

| cos (−→w , g)|c (1)

where N represents the list of profession words, g
represents the gender direction calculated, w represents
each profession word, and c is a parameter to measure
the strictness of the bias. In this paper, we used c = 1; c
values and their effects are explained in more detail in
Bolukbasi et al. We examine this gender bias score both
for the individual words as well as an average gender
bias across profession words as a measure of gender
bias in a corpus.

To apply this methodology across languages, some
important modifications and extensions were required,
especially to handle languages, like Spanish, Arabic,
German, French, and Urdu, that have grammatically
gendered nouns. In this section, we describe our mod-
ifications and apply them to computing and comparing
both profession-level and corpus-level gender bias met-
rics across the Wikipedia corpora for 9 languages.

4.1. Evaluating the Gender Bias of Defining Sets
Across Languages
To begin, in Figure 1, we present the gender bias scores,
calculated as described above according to Bolukbasi et
al.’s methodology, for each of our 14 defining set words
(7 pairs) across 9 languages. Female gender bias is rep-
resented as a positive number (red bar) and male gender
bias is represented as a negative number (blue bar). Not

all defining set words occur in the Wikipedia corpus for
Wolof. Some because they are translated in multi-word
phrases and some simply because of the same size of
the corpora.

The defining set pairs were specifically chosen be-
cause we expect them to be highly gendered. In most
cases, the defining set words indicated male or fe-
male bias as expected, but there were some exceptions.
One common exception was the word husband. Hus-
band, somewhat surprisingly, has a female bias in a
number of languages. We hypothesize that “husband”
may more often be used in relationship to women (e.g.
“her husband”). One might guess that the same pattern
would happen for wife then but it does not appear to be
the case. We hypothesize that it may be less likely for
a man to be defined as a husband outside of a female
context, where women may often be defined by their
role as a wife even when not in the context of the hus-
band. This is an interesting effect we saw across many
languages.

In Figure 2, we aggregate the gender bias for all the
male words (sir, husband, king, etc.) and all the fe-
male words (madam, wife, queen, etc.) This presenta-
tion emphasizes several key aspects of the results. For
example, we can see that for Spanish, English, Arabic,
German, French, Farsi, and Urdu, that the female words
are female leaning and that most male words and male
leaning as one might expect,with the exception of hus-
band in all of these languages and also man in Farsi.
We can also see that female words have more female
bias than male words have male bias.

We can also see problems with both Chinese and
Wolof. We have discussed some of the problems in
Wolof with the size of the corpora and the difficulty
of matching phonetically transcribed words. However,
for Chinese, we have a sizable corpora and many occur-
rences of the defining set words. After much investiga-
tion, we isolated an issue related to the Principal Com-
ponent Analysis (PCA) in Chinese. As we described at
the beginning of this section, Bolukbasi et al.’s method-
ology calls for using the largest eigenvalue and in their
experience the first eigenvalue was much larger than
the second and they analyzed their results using only
this dominant dimension. However, we found that this
was not always the case. In particular for the Chinese
Wikipedia corpus, the largest eigenvalue of the PCA
matrix is not much larger than the second.

In Figure 3, we report the difference in PCA scores
between the dominant component and the next most
dominant component across 9 languages in our study.
We also add a bar for the value Bolukbasi et al. reported
for the Google News Corpora in English that they an-
alyzed. Chinese has the lowest. Wolof has the highest
with 1.0, but only because there were not enough defin-
ing pairs to meaningfully perform dimension reduction
into 2 dimensions. We repeated our analysis without
the wife-husband pair and found that the difference
in PCA scores improved for all languages except for
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Figure 1: Defining Sets Across Languages The x-axis represents per-word gender bias scores as proposed by
Bolukbasi et al. Female gender bias is represented as a positive number (red bar) and male gender bias is repre-
sented as a negative number (blue bar). Not all defining set words occur in the small Wikipedia corpus for Wolof.
We note that boy in English has a gender bias of -0.002 which is such a small blue line that it is difficult to see.

Figure 2: Defining Set Summary For each language, we
aggregate the gender bias scores of male defining set
words (the M bar) and female defining set words (the F
bar).

Wolof. Wolof remains 1.0 because we didn’t find any
defining pairs. We have been experimenting with mod-
ifications to the defining set in Chinese including isolat-
ing the contribution of each individual defining set pair
and adding many pairs that while meaningful specifi-

Figure 3: Difference in importance between first and
second principal components by language. A larger
difference increases the confidence we’ve isolated the
gender direction.

cally in Chinese would not have worked well across all
languages (e.g. different pairs for paternal and maternal
grandmother and grandfather). However, we have yet to
find a defining set that works well and would welcome
collaborations from linguists with expertise in Chinese.

The word boy in German, Junge, also highlights
some important issues. Junge can also be used as an
adjective such as in “junge Leute” (young people) and
it is also a common surname. Since these different uses
of the word are not disambiguated, it is likely that the
token “junge” encompasses more meaning than simply
boy. We also saw this with the defining set word “fille”
in French which means both girl and daughter. This
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Figure 4: Per Profession Gender Bias for Spanish. Broken down into female only variants, male only variants and
neutral variants.

Figure 5: (LEFT)Per-Profession Gender Bias Metrics for Languages Without Grammatically Gendered Nouns
(RIGHT)Per-Profession Gender Bias Metrics for All Languages Weighting by Word Count

problem of disambiguation occurs in many languages
and multiple meanings for words should be considered
when selecting terms. We would appreciate the insight
of linguists in how to handle disambiguation of terms
more generally.

4.2. Evaluating the Gender Bias of Profession Sets
Across Languages

Having analyzed the defining set results where there
is a clearly expected gender for each word, we move
on to the question of computing the gender bias scores
for each of our 32 profession words. Bolukbasi et al.’s
methodology can be applied directly in English and
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also in other languages which, like English, do not
have many grammatically gendered nouns. Of the 9
languages, we studied, Chinese, Farsi and Wolof are
also in this category.

The situation is more complicated in languages with
grammatically gendered nouns. Five of the languages
we are studying fall into this category: Spanish, Arabic,
German, French, and Urdu. In these languages, many
professions have both a feminine and masculine form.
In some cases, there is also a neutral form and in some
cases there is only a neutral form. In Section 2.2, we
discussed how Urdu also often uses English words di-
rectly. Thus there are neutral Urdu words and neutral
English words used in Urdu. To form a per-profession
bias metric, we averaged the bias metrics of these vari-
ous forms in several different ways. First, we averaged
them, weighting each different form of a profession
equally. However, we found that this overestimated the
female bias in many cases. For example, in German
the male form of scientist, Wissenschaftler, has a slight
male gender bias (-0.06) and the female form, Wis-
senschaftlerin, has a strong female gender bias (0.32).
When averaged together evenly, we would get an over-
all female gender bias of 0.13. However, the male form
occurs 32,467 times in the German Wikipedia corpus
while the female form occurs only 1354 times. To take
this difference into account, we computed a weighted
average resulting in an overall male gender bias of -
0.04. With this weighted average, we could observe
intuitive patterns across languages with grammatically
gendered nouns and languages without. This increases
our confidence in the usefulness of these profession
level metrics and in particular the weighted average.

In Figure 4, we show an example breakdown of the
gender bias scores for the Spanish profession words.
We show female only variants, male only variants and
neutral only variants. At http://tinyurl/clarksonnlpbias,
we provide a technical report with a breakdown like
this for all 5 of the gendered languages in our study.
Notice that the gender bias for all female words is in-
deed female and that the gender bias for all male words
is indeed male. Neutral words show a mix of male
and female bias. This an intuitive and encouraging re-
sult that further supports the use of per-word gender
bias calculations across languages. This is often true in
other languages, but not exclusively so.

In Figure 5, we compare these profession-level gen-
der bias scores across languages. On the left, we show
results for the languages without grammatically gen-
dered nouns. On the right, we show results across all
languages using the weighted average (weighted by
word count).

In Figure 6, we use Pearson’s correlation for clus-
ter analysis to examine 7 languages, omitting Chinese
and Wolof because of problems with PCA and corpora
size. This exploratory analysis provokes a number of
questions for future work including: How do linguistics
inform bias outputs (e.g. If English is a mixture of Ger-

Figure 6: Pearson’s correlation for cluster analysis
across 7 languages

manic and Latin languages, is that why it’s clustered
with those languages even though it’s not gendered?)
and How does a language being inherently gendered
affect the resulting bias of a NLP model in that lan-
guage?

6. Conclusion and Future Work

We have extended an influential method for comput-
ing gender bias from Bolukbasi et al., a technique that
had only been applied in English. We made key modi-
fications that allowed us to extend the methodology to
8 additional languages, including languages with gram-
matically gendered nouns. With this, we quantified how
gender bias varies across the Wikipedia corpora of 9
languages and discuss future work that could benefit
immensely from a computational linguistics perspec-
tive.

Specifically, we would like to explore additional lan-
guages as well as understand better how variations in
defining sets and profession sets can highlight differ-
ences among languages. We would like to compare
gender bias across different corpora of culturally im-
portant texts written by native speakers. Even within
one language, we would like to examine collections
with different emphasis such as gender of author, dif-
ferent time periods, different genres of text, different
country of origin,etc. Our work is an important first
step toward quantifying and comparing gender bias
across languages - what we can measure, we can more
easily begin to track and improve, but it is only a start.
The majority of human languages need more useful
tools and resources to overcome the barriers such that
we can build NLP tools with less gender bias.
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Abstract

Many existing approaches for interpreting text
classification models focus on providing im-
portance scores for parts of the input text, such
as words, but without a way to test or im-
prove the interpretation method itself. This
has the effect of compounding the problem of
understanding or building trust in the model,
with the interpretation method itself adding to
the opacity of the model. Further, importance
scores on individual examples are usually not
enough to provide a sufficient picture of model
behavior. To address these concerns, we pro-
pose MOXIE (MOdeling conteXt-sensitive In-
fluencE of words) with an aim to enable a
richer interface for a user to interact with
the model being interpreted and to produce
testable predictions. In particular, we aim to
make predictions for importance scores, coun-
terfactuals and learned biases with MOXIE.
In addition, with a global learning objective,
MOXIE provides a clear path for testing and
improving itself. We evaluate the reliability
and efficiency of MOXIE on the task of sen-
timent analysis.

1 Introduction

Interpretability, while under-specified as a goal, is
a crucial requirement for artificial intelligence (AI)
agents (Lipton, 2018). For text classification mod-
els, where much of the recent success has come
from large and opaque neural network models (De-
vlin et al., 2019; Liu et al., 2019; Raffel et al., 2019),
a popular approach to enable interpretability is to
provide importance scores for parts of the input
text, such as words, or phrases. Given only these
numbers, it is difficult for a user to understand or
build trust in the model. Going beyond individual
examples, such as scalable and testable methods

∗Work done during an internship at Amazon AWS AI,
USA.

1No offense is intended towards any particular community
in this or in subsequent sections. Rather, we are interested in
probing for unexpected biases.

Input text: he played a homosexual character
Model prediction: Negative sentiment1

Question 1 (Importance scores): Which words had
the most influence towards the prediction? Is the word
‘homosexual’ among them?
Answer: The word ‘homosexual’ has the highest nega-
tive influence.
Question 2 (Counterfactuals): If so, which words in-
stead would have made the prediction positive?
Answer: If you replace the word ‘homosexual’ with the
word ‘straight’, the model would have made a positive
sentiment prediction.
Question 3 (Biases): Is there a general bias against the
word ‘homosexual’ compared to the word ‘straight’?
Answer: Yes, there are a large number of contexts
where the model predicts negatively with the word ‘ho-
mosexual’, but positively with the word ‘straight’. Here
are some examples:

• the most homosexual thing about this film
• though it’s equally homosexual in tone
• . . .

Table 1: Example questions we aim to answer us-
ing MOXIE. The first question has commonly been ad-
dressed in existing approaches. The ability of an inter-
pretation method to answer the second and third ques-
tions enables a rich and testable interface.

to identify biases at a dataset level, are desired but
currently missing. Questions can be raised about
whether the methods of interpretation themselves
are trustworthy. Recent analyses (Ghorbani et al.,
2019) of such interpretation methods for computer
vision tasks suggest that such skepticism is valid
and important.

A method which aims to elucidate a black-box’s
behavior should not create additional black boxes.
Measuring trustworthiness, or faithfulness2, of in-
terpretation methods, is itself a challenging task
(Jacovi and Goldberg, 2020). Human evaluation
is not only expensive, but as Jacovi and Goldberg
(2020) note human-judgments of quality shouldn’t

2In this work, a faithful interpretation is one which is
aligned with the model’s reasoning process. The focus of
this work is to make predictions testable by the model being
interpreted and thus have a clear measure of faithfulness.
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be used to test the faithfulness of importance scores.
What needs testing is whether these scores reflect
what has been learned by the model being inter-
preted, and not whether they are plausible scores.

We believe the aforementioned issues in existing
methods that produce importance scores can be
circumvented through the following changes.

A global learning objective: Several existing
approaches rely on some heuristic to come up with
importance scores, such as gradients (Wallace et al.,
2019), attentions (Wiegreffe and Pinter, 2019), or
locally valid classifiers (Ribeiro et al., 2016) (see
Atanasova et al. (2020) for a broad survey). In-
stead, we propose to identify a global learning ob-
jective which, when learned, enables prediction
of importance scores, with the assumption that if
the learning objective was learned perfectly, we
would completely trust the predictions. This would
provide a clear path for testing and improving the
interpretation method itself. Quick and automatic
evaluation on a held-out test set allows progress us-
ing standard Machine Learning (ML) techniques.

Going beyond importance scores: Importance
scores, even when generated using a theoretically
inspired framework (Sundararajan et al., 2017), are
generally hard to evaluate. Further, the aim of
the interpretation method shouldn’t be producing
importance scores alone, but to enable a user to ex-
plore and understand model behavior3, potentially
over large datasets. In Table 1, we illustrate a way
to do that through a set of questions that the inter-
pretation method should answer. Here, we provide
more details on the same.

Importance Scores ‘Which parts of the input text
were most influential for the prediction?’
Such importance scores, popular in existing
approaches, can provide useful insights but
are hard to evaluate.

Counterfactuals ‘Can it predict counterfactuals?’
We define a good counterfactual as one with
minimal changes to the input text while caus-
ing the model to change its decision. Such
predictions can be revealing but easy to test.
They can provide insights into model behavior
across a potentially large vocabulary of words.

In this work, we consider counterfactuals ob-
tained by replacing words in the input text

3The need for going beyond importance scores has also
been realized and explored for user-centric explainable AI
interface design (Liao et al., 2020).

with other words in the vocabulary. We limit
to one replacement.

Biases ‘Is the model biased against certain words?’
For example, we could ask if the model is
biased against LGBTQ words, such as the
word ‘homosexual’ compared to the word
‘straight’? One way to provide an answer
to such a question is to evaluate a large num-
ber of contexts, replacing a word in the origi-
nal context with the words‘homosexual’ and
‘straight’. Doing that however is prohibitive
with large text classification models. If an in-
terpretation method can do this in a reasonable
time and accuracy, it enables a user access to
model behavior across a large number of con-
texts.

Considering the preceding requirements, we pro-
pose MOXIE (MOdeling conteXt-sensitive Influ-
encE of words) to enable a reliable interface for
a user to query a neural network based text clas-
sification model beyond model predictions. In
MOXIE, we aim to learn the context-sensitive in-
fluence of words (see Figure 1 for the overall ar-
chitecture). We show that learning this objective
enables answers to the aforementioned questions
(Section 3.2). Further, having a global learning
objective provides an automatic way to test the
interpretation method as a whole and improve it
using the standard ML pipeline (Section 3.3). We
evaluate the reliability and efficiency of MOXIE
on the task of sentiment analysis (Section 4)4.

2 Related Work

Word importance scores have been a popular area
of research for interpreting text classifiers, includ-
ing gradient based methods (Wallace et al., 2019),
using nearest neighbors (Wallace et al., 2018), in-
trinsic model-provided scores such as attention
(Wiegreffe and Pinter, 2019), and scores learned
through perturbations of the test example (Ribeiro
et al., 2016). There has also been effort to expand
the scope to phrases (Murdoch et al., 2018), as well
as provide hierarchical importance scores (Chen
et al., 2020). However these methods tend to de-
rive from an underlying heuristic applicable at the
example level to get the importance scores. With

4Note that we are not claiming to build inherently faithful
mechanisms, but ones which allow inherent testing of their
faithfulness. For example, a counterfactual or a bias prediction
can be tested by the model under interpretation (see Section 4).
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Figure 1: Overall architecture of MOXIE: The model being interpreted (f ) which we call the teacher model is
shown on the left. It processes an input text such as ‘. . . very very slow’ to produce a representation z through
module M and label scores y through a linear classification layer C. When presented with the same input but the
word ‘slow’ masked, it produces outputs z′ and y′ respectively. We learn the difference in the two representations
(z − z′) as a proxy for the context-sensitive influence of the word ‘slow’ in the student model (g). This is done
by processing the masked context and the token masked through arbitrarily complex modules AC and AT which
produce fixed length representations zc and zt respectively. The combine module (AM ) takes these as input to
produce the output r. We learn by minimizing the mean square error between z and z′′ = z′ + r. Keeping the
combine module shallow allows the processing of a large number of tokens for a given context and vice versa in
a reasonable time. Please see Section 3.1 for details on the architecture and Section 3.2 for how this architecture
enables answers to the motivating questions.

perturbation methods, where a locally valid classi-
fier is learned near the test example (Ribeiro et al.,
2016), there is a hyperparameter dependence as
well as stochasticity at the level of test examples.

While it’s not inherently problematic to use such
heuristics, it makes it hard to improve upon the
method, as we need to rely on indirect measures
to evaluate the method. Further, recent work has
shown that the skepticism in the existing methods
is valid and important (Ghorbani et al., 2019). In
this work, we use a global learning objective which
allows us to make predictions of importance scores.

Apart from word importance scores, explanation
by example style method have been studied (Han
et al., 2020). Like word importance based meth-
ods, however, these methods don’t provide a clear
recipe for further analysis of the model. In this
work, we aim to produce testable predictions such
as counterfactuals and potential biases.

Measuring faithfulness of an interpretation

model can be hard. Jacovi and Goldberg (2020)
suggest that human evaluation shouldn’t be used.
In this work, we circumvent the hard problem
of evaluating the faithfulness of an interpretation
method by making it output predictions which can
be tested by the model being interpreted.

3 MOXIE

The overall architecture employed to learn MOXIE
is shown in Figure 1. We introduce the notation
and describe the architecture in detail in Section 3.1.
In Section 3.2, we discuss how MOXIE provides
answers to the motivating questions.

3.1 Notation and Architecture

Let x denote a text sequence x1x2...xn. We
denote by ximask the same sequence but the
ith token xi replaced by a mask token:
x1x2 . . . xi−1〈mask〉xi+1 . . . xn.

In the following, we refer to the model being
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interpreted as the teacher model and the learned
interpretation model as the student model.

Teacher model: The teacher model f is com-
posed of a representation module M and a linear
classification layer C, and produces a representa-
tion z = M(x) and label scores y = C(z) for a
text input x. The label prediction is obtained as
the label with the highest score: l = argmax(y).
We believe this covers a fairly general class of text
classifiers: y = f(x) = C(M(x)) = C(z).

Student model: With mask token maskt for the
teacher model, we create masked input ximaskt

for
which the teacher model outputs z′i = M(ximaskt

).
As a proxy for the context-sensitive influence of

the token xi, we aim to model z − z′i in the student
model. For this, we use the following submodules:

• Context processor AC processes masked text to
produce a context representation. In particular,
with mask token masks for the context processor,
we create the masked input ximasks

for which the
context processor outputs zc,i = AC(x

i
masks

).
Note that the mask token could be different
for the teacher model and the context proces-
sor. We fine-tune a pre-trained roberta-base (Liu
et al., 2019) model to learn the context proces-
sor, where we take the output at the mask token
position as zc,i.

• Token processor AT processes the token which
was masked to produce representation zt,i =
AT (xi). Note that we can mask spans as well
with the same architecture, where xi denotes a
span of tokens instead of one. For all our experi-
ments, we fine-tune a pre-trained RoBERTa-base
model to learn the token processor, where we
take the output at the first token position as zt,i.

• Combine module AM combines the outputs
from the context and token processors to produce
representation r.

In summary, the sub-module h takes the input x
and token location i to produce output ri:

ri = h(x, i) = AM (AC(x
i
masks), AT (xi)) (1)

To get label predictions, we add z′i to ri and feed
it to the teacher model classification layer C. In
summary, the student model g takes as input x and
token location i to make predictions y′′i :

y′′i = g(x, i) = C(z′i+h(x, i)) = C(z′i+ri) (2)

Modules h and g provide token influence and la-
bel scores respectively. We learn the parameters of
the student model by minimizing the mean square
error between z and z′′i .

Keeping the combine module shallow is crucial
as it allows evaluating a large number of tokens in a
given context and vice versa quickly (Section 3.2).
For all our experiments, we first concatenate zc,i +
zt,i, zc,i−zt,i and zc,i�zt,i to obtain zconcat, where
� represents element wise multiplication. zconcat,i
is then processed using two linear layers:

AM (zc,i, zt,i) = W2(tanh(W1zconcat,i+b1))+b2
(3)

where W1, b1, W2, and b2 are learnable parameters.
The parameter sizes are constrained by the input
and output dimensions and assuming W1 to be a
square matrix.

3.2 Using MOXIE
3.2.1 Importance Scores
MOXIE provides two kinds of token-level scores.
Influence scores can be obtained from predictions
of the sub-module h, ri = h(x, i):

ŝi = softmax(C(ri)) (4)

For binary classification, we map the score to the
range [−1, 1] and select the score of the positive
label: si = 2 ∗ ŝi[+ve] + 1. The sign of the score
si can then be interpreted as indicative of the sen-
timent (positive or negative), while its magnitude
indicates the strength of the influence.
Unlike ratios aim to give an estimate of the ratio
of words in the vocabulary which when used to re-
place a token lead to a different prediction. The stu-
dent model architecture allows us to pre-compute
and store token representations through the token
processor (AT ) for a large vocabulary, and evaluate
the impact each token in the vocabulary might have
in a given context. This requires running the con-
text processor and the teacher model only once. Let
V be a vocabulary of words, then for each word wj ,
we can pre-compute and store token embeddings
EV such that Ej

V = AT (w
j). For example x with

label l, teacher model representations z and z′i for
the full and masked input, and context processor
output zc,i, the unlike ratio ui can be computed as:

rV,i = AM (zc,i, EV )

yV,i = C(z + rV,i)

ui =
|{w : w ∈ V, argmax(yV,i) 6= l}|

|V |

(5)
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If the unlike ratio ui for a token xi is 0, it would
imply that the model prediction is completely de-
termined by the rest of the context. On the other
hand, an unlike ratio close to 1.0 would indicate
that the word xi is important for the prediction as
replacing it with any word is likely to change the
decision. In this work we restrict the vocabulary V
using the part-of-speech (POS) tag of the token in
consideration (see Appendix C for details).

Finally, getting phrase-level scores is easy with
MOXIE when the student model is trained by mask-
ing spans and not just words.

Please see Section 4.3 for details and evaluation.

3.2.2 Counterfactuals
As discussed in the preceding section, the student
model allows making predictions for a large num-
ber of token replacements for a given context. As
before, we restrict the vocabulary of possible re-
placements using the POS tag of the token in con-
sideration. To generate potential counterfactuals,
we get predictions from the student model for all
replacements and select the ones with label pre-
dictions different from the teacher model’s label.
Please see Section 4.4 for details and evaluation.

3.2.3 Biases
Modeling the context-sensitive influence of words
in MOXIE enables analyzing the effect of a word
in a large number of contexts. We can pre-compute
and store representations for a large number of con-
texts using the teacher model and the context pro-
cessor of the student model. Given a query word,
we can then analyze how it influences the predic-
tions across different contexts. Pairwise queries,
i.e., queries involving two words can reveal relative
biases against a word compared to the other. Please
see Section 4.5 for details and evaluation.

3.3 Improving the Interpretation Method
The student model g introduced in the preced-
ing section is expected to approximate the teacher
model f , and the accuracy of the same can be mea-
sured easily (see Section 4.2). We expect that as
this accuracy increases, the answers to the preced-
ing questions will become more reliable. Thus,
MOXIE provides a straightforward way to improve
itself. The standard ML pipeline involving testing
on a held-out set can be employed.

4 Experiments

We aim to answer the following questions:

Q1 How well does the student model approximate
the teacher model? (Section 4.2)

Q2 How does MOXIE compare with methods
which access test example neighborhoods to
generate importance scores? (Section 4.3)

Q3 Can MOXIE reliably produce counterfactuals?
(Section 4.4)

Q4 Can MOXIE predict potential biases against
certain words? (Section 4.5)

We use the task of binary sentiment classifica-
tion on the Stanford Sentiment Treebank-2 (SST-2)
dataset (Socher et al., 2013; Wang et al., 2018) for
training and evaluation. In Section 4.1.2, we pro-
vide text preprocessing details. We evaluate the
student model accuracy against the teacher model
(Q1) across four models: bert-base-cased (Devlin
et al., 2019), roberta-base (Liu et al., 2019), xlmr-
base (Conneau et al., 2019), RoBERTa-large (Liu
et al., 2019). For the rest of the evaluation, we use
RoBERTa-base as the teacher model. We use the
Hugging Face transformers library v3.0.2 (Wolf
et al., 2019) for our experiments.

4.1 Experimental Setup
4.1.1 Training Details
As models to be interpreted (teacher models), we
fine-tuned bert-base-cased, RoBERTa-base, xlmr-
base and RoBERTa-large on the SST-2 train set.
We trained each model for 3 epochs.

For the interpretation models (student models),
we initialize the context processor and token pro-
cessor with a pre-trained RoBERTa-base model.
We then train the context processor, token proces-
sor and combine module parameters jointly for 10
epochs with model selection using dev set (using
all-correct accuracy, see Section 4.2 for details).

For both teacher and student models, we use the
AdamW (Loshchilov and Hutter, 2018) optimizer
with an initial learning rate of 2e−5 (see Appendix
A for other training details).

For all experiments, for training, we generate
context-token pairs by masking spans obtained
from a constituency parser (the span masked is fed
to the token processor). For all evaluation, we use
a word tokenizer unless otherwise specified. Train-
ing with spans compared to words didn’t lead to
much difference in the overall results (as measured
in Section 4.2), and we retained the span version to
potentially enable phrase level scores.
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Model Teacher baseline
(Context-only)

Student Model
(Context &Token)

bert-base-cased 73.48 87.64
RoBERTa-base 78.64 89.24
xlmr-base 74.08 86.93
RoBERTa-large 82.37 89.74

Table 2: Evaluation of the student model and a context-
only teacher baseline against teacher model predic-
tions on the test set using the all-correct accuracy met-
ric. The context-only teacher model baseline does bet-
ter than chance but the student model provides gains
across all teacher models. This indicates that the stu-
dent model learns context-token interactions. Please
see Section 4.2 for details.

Text: it ’s a charming and often affecting journey
Prediction: +ve
Top 2 scores: charming (0.38), affecting (0.12)
Text: unflinchingly bleak and desperate
Prediction: -ve
Top 2 scores: bleak (-0.99), desperate (-0.92)
Text: allows us to hope that nolan is posed to embark a
major career as a commercial yet inventive filmmaker .
Prediction: +ve
Top 2 scores: allows (0.97), inventive (0.91)

Table 3: Word importance scores on the first three dev
set examples. Top two scores are shown.

4.1.2 Tokenization and POS Tagging
We use the nltk (Bird et al., 2009) tokenizer for
getting word level tokens. For training by mask-
ing spans, we obtain spans from benepar (Kitaev
and Klein, 2018), a constituency parser plugin for
nltk. We use nltk’s averaged_perceptron_tagger for
obtaining POS tags, and use the universal_tagset.

4.2 Evaluating Student Model on the Test Set
In this section, we measure how well the student
model approximates the teacher model. The stu-
dent model provides a prediction at the token level:
g(x, i). We define an example level all-correct
accuracy metric: the set of predictions for an ex-
ample are considered correct only if all predictions
match the reference label.

As a baseline, we consider token level predic-
tions from the teacher model obtained from masked
contexts: f(ximaskt

). If the student model improves
over this baseline, it would suggest having learned
context-token interactions and not just using the
contexts for making predictions.

In Table 2, we show all-correct accuracies of the
baseline and the student model on the test set. The
baseline does better than chance but the student
model provides significant gains over it. This indi-
cates that the student model learns context-token

Text: in exactly 89 minutes , most of which passed as
slowly as if i ’d been sitting naked on an igloo , formula
51 sank from quirky to jerky to utter turkey . (-ve)
Prediction: -ve
Top 2 word-level scores: quirky (0.26), formula (-0.22)
Top 2 phrase-level scores: to utter turkey (-0.35), quirky
(0.26)

Table 4: Word and Phrase importance scores on an
example selected from the first 10 dev set examples.

interactions and is not relying on the context alone.
A key advantage of MOXIE is providing a way

to improve upon itself. We believe improvements in
the all-correct accuracy of the student model would
lead to improved performance when evaluated as
in the subsequent sections. For completion, we
provide the accuracies of the student model against
gold labels in Appendix B.

4.3 Importance Scores

Table 3 capture the importance scores on the first
three dev set examples. Table 4 shows an exam-
ple selected from the first 10 dev set examples
demonstrating how MOXIE can produce meaning-
ful phrase-level scores.

As discussed before, it’s hard to evaluate im-
portance scores for trustworthiness. We evaluate
the trustworthiness of MOXIE in subsequent sec-
tions. Here, we aim to contrast MOXIE, which
doesn’t learn its parameters using test examples,
with methods which do. We aim to devise a test
which would benefit the latter and see how well
MOXIE performs. We choose LIME (Ribeiro et al.,
2016) which directly incorporates the knowledge
of teacher model predictions when words in the
input text are modified. To test the same, we start
with test examples where the teacher model makes
an error, and successively mask words using im-
portance scores, with an aim to correct the label
prediction. With a masking budget, we compute
the number of tokens that need masking. We re-
port on: Coverage, the % of examples for which
the model decision could be changed, and Aver-
age length masked, the average number of words
that needed masking (see Appendix D for detailed
steps). The test favors LIME as LIME learns using
teacher model predictions on the test example and
its neighborhood while MOXIE learns only on the
train set.

We compare against LIME and a Random base-
line where we assign random importance scores to
the words in the input. From MOXIE, we obtain
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Figure 2: Evaluation of importance scores on examples where the teacher model makes an error. Tokens are
successively masked using importance scores until the masking budget is met or the prediction of the teacher
model changes. We report on the coverage and the average length that needed masking when the decision could be
changed. We note that all methods perform better than the random baseline. MOXIE competes with LIME despite
not seeing the test example and its neighborhood during training. Please see Section 4.3 for details.

influence scores and unlike ratios. We also derive
a hybrid score (Unlike ratio+influence score) by
using unlike ratios with influence scores as back-
off when the former are non-informative (e.g., all
scores are 0). Figure 2 captures the results of this
test on the 49 dev set examples where the teacher
model prediction was wrong.

We note that all scores are better than the random
baseline. Influence scores do worse than LIME but
unlike ratios and the hybrid scores are competitive
with LIME. This is despite never seeing the test ex-
ample neighborhood during training, unlike LIME.
The results support the hypothesis that a global
learning objective can provide effective importance
scores. However, this is not the main contribu-
tion of this paper. Our aim is to enable increased
interaction with the model by providing testable
predictions as discussed in subsequent sections.

4.4 Counterfactuals

As discussed in the Section 3.2.2, MOXIE allows
predictions of counterfactuals using pre-computed
token embeddings. We show examples of gener-
ated counterfactuals in Appendix E.1. We evaluate
the reliability of the generated counterfactuals by
computing the accuracy of the top-10 predictions
using the teacher model. The student model takes a
pre-computed POS-tagged dictionary of token em-
beddings (obtained using token processor AT ) and
a context as input and predicts the top-10 candidate
replacements (see Appendix E.2 for details).

Figure 3 captures the counterfactual accuracies
obtained across contexts (with at least one coun-
terfactual) in the dev set. Out of 872 examples,
580 examples had at least one context for which
the student model made counterfactual predictions.
In total, there were 1823 contexts with counterfac-

Figure 3: Counterfactual prediction accuracies:
across contexts for which at least one counterfactual
was found. The box indicates the range between quar-
tiles 1 & 3. The median accuracy was 90.0% which is
better than chance. This indicates that MOXIE is ca-
pable of reliably predicting counterfactuals. Please see
Section 4.4 for details.

tuals. The median counterfactual accuracy across
contexts with at least one counterfactual was 90%
which is significantly higher than chance.

4.5 Biases

As discussed in the Section 3.2.3, MOXIE can
quickly process a large number of contexts for a
given word. As a case study, we look for potential
biases against LGBTQ words in the teacher model.

We make pairwise queries to the student model,
with a pair of words: a control word and a probe
word, where we expect task specific meaning to
not change between these words. We require the
student model to find contexts from an input dataset
where the control word leads to a positive sentiment
prediction but the probe word leads to a negative
sentiment prediction. We use the training dataset
as the input dataset.

To avoid any negative influence from other parts
of the context, we further require that the original
context (as present in the input dataset) lead to a
positive sentiment by the teacher model. Finally,
we remove negative contexts, e.g., the context ‘The
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Figure 4: Measuring potential biases: using the stu-
dent model. We show the relative sizes of the sets ob-
tained with positive predictions with control word but
negative predictions with the probe word. The results
indicate a potential bias against the word ‘lesbian’ com-
pared to the word ‘straight’ (see Section 4.5)

.

movie is not bad’ would be positive despite ‘bad’
clearly having a negative influence. To ease the bias
analysis by remove such contexts, we can remove
all sentences with words which tend to be negative,
e.g., not, never etc. For adjective contexts, we use
the student model to filter out such contexts using
a list of clearly positive/negative adjectives (see
Appendix F for details on pre-processing contexts).

The output of the preceding steps can be pre-
computed and stored. Next, we find the set of
contexts satisfying the following criteria (e.g., with
control word ‘straight’ and probe word ‘lesbian’):

S1 Teacher model predicts positive on the original
context (pre-computed and stored), e.g., x:‘I
have cool friends’, argmax(f(x)) = +ve.

S2 Student model predicts positive when the
marked token is replaced with the control
word, e.g., xcontrol:‘I have straight friends’,
argmax(g(xcontrol, i)) = +ve.

S3 Student model predicts negative when the
marked token is replaced with the probe
word, e.g., xprobe: ‘I have lesbian friends’,
argmax(g(xprobe, i)) = −ve.

S2 and S3 can be computed efficiently by pre-
computing the output of the context processor AC

for all contexts in the input dataset. If EC denotes
the matrix of output embeddings from the context
processor, S2 and S3 for word w can be computed
by first obtaining the token processor representa-
tion zt = AT (w) and then using the combine mod-
ule yC = C(AM (EC , zt)).

The relative size of the set S1 ∩ S2 ∩ S3 is in-
dicative of a potential bias against the probe word.
Figure 4 shows the size of the set S1∩S2∩S3 with
‘straight’ and ‘lesbian’ interchangeably as control
and probe words. Note that the relative size with
probe word as ‘lesbian’ is much larger than the

almost every lesbian facet of production
gay to its animatronic roots
the bisexual lives of the characters in his film
the most transsexual thing about this film

Table 5: Examples of biased contexts (negative predic-
tion). If the highlighted word were to be swapped by
the word ‘straight’, the prediction would be positive.
See Section 4.5 for details.

Size of
S1 ∩ S2 ∩ S3

(top-100)

Control
word Acc Probe

word Acc

100 straight 67.0 lesbian 90.0
100 straight 61.0 gay 93.0
100 straight 68.0 bisexual 82.0
100 straight 69.0 transsexual 85.0

0 straight - queer -

Table 6: Evaluating student model claims of biases:
Up to 100 confident contexts are selected using student
model predictions where the student model claims a
+ve prediction using the control word and -ve predic-
tion using the probe word. The predictions are tested
using the teacher model and the accuracy reported.
Note that except for ‘queer’ where the set size is zero,
the prediction accuracy of the student model is better
than chance. This indicates the ability of the student
model to predict biases. See Section 4.5 for details.

relative size with probe word as ‘straight’. This
is indicative of a potential bias against the word
‘lesbian’. Table 5 shows some examples of biased
sentences obtained through this procedure.

Next, we aim to evaluate the claim of the stu-
dent model using the teacher model. For this, we
consider the set S1 ∩ S2 ∩ S3 with probe word
as ‘lesbian’ and evaluate the contexts with both
‘straight’ and ‘lesbian’. The student model claims
the model prediction to be positive for the former
and negative for the latter. We process the exam-
ples with the corresponding replacements using the
teacher model to measure the accuracy of this claim
(i.e., teacher model’s outputs serve as the reference
label). The accuracy of the student model claim
with ‘straight’ is 65.16% while with ‘lesbian’, it
is 75.88%. We also evaluate the 100 most con-
fident predictions from the student model (using
softmax scores). The accuracies with ‘straight’ and
‘lesbian’ then increase to 67.0% and 90.0% respec-
tively. In Table 6, we show the results on the 100
most confident predictions for more LGBTQ words.
Note that we don’t claim this to be an exhaustive
set of words reflecting the LGBTQ community, but
as only roughly representative. The results indicate
a similar pattern as with ‘lesbian’, except for the
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word ‘queer’ where the student model doesn’t pre-
dict any biased contexts. This is presumably due
to the word ‘queer’ carrying additional meanings,
unlike the other LGBTQ words.

Finally, the student model provides ~450
speedup when compared to using the teacher model
to probe for biases. It takes less than 1s to test
a control word against a probe word on a single
NVIDIA V100 GPU using the student model, thus
enabling an interactive interface. Unlike using the
teacher model directly, MOXIE allows precomput-
ing large sets of context/token representations and
thus obtain the aforementioned gains.

In summary, the results indicate bias against
LGBTQ words. The evaluation indicates that the
student model can make reliable bias predictions.

5 Conclusion

In summary, we have shown that MOXIE provides
a novel framework for interpreting text classifiers
and a method to draw quick insights about the
model on large datasets. MOXIE can make effi-
cient, testable and reliable predictions beyond im-
portance score, such as counterfactuals and poten-
tial biases. Further, with a global learning objective,
it provides a clear path for improving itself using
the standard ML pipeline. Finally, the principles
and the evaluation methodology should help the
interpretability research overcome the problem of
testing the faithfulness of interpretation methods.

As future work, we identify improving the accu-
racy of the student model. Further analysis of the
nature of counterfactuals selected by the student
model could lead to useful insights towards improv-
ing the interpretation method. Finally, identifying
other learning objectives which enable testable pre-
dictions would be useful and challenging.

6 Broader Impact

In this work, we aim to improve interpretability
of existing text classification systems. More inter-
pretable systems are likely to reveal biases and help
towards a fairer deployment of production systems
built using these systems.

To demonstrate our work, we choose to study
potential biases against words associated with
the LGBTQ community. In particular, we probe
for bias in a learned sentiment classification sys-
tems against the words that make up the acronym
LGBTQ - Lesbian, Gay, Bisexual, Transsexual and
Queer. Note that we don’t use identity informa-

tion of any individual for this. Instead, we probe
whether, in arbitrary contexts, the learned senti-
ment classification model is likely to find these
qualifiers more negative when compared to adjec-
tives in general or adjectives usually associated
with the hegemony. Our work doesn’t aim to dis-
criminate but instead provides a way to measure if
there are intended or unintended biases in a learned
system.
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A Training Details

A.1 Data

The SST-2 dataset (Socher et al., 2013; Wang et al.,
2018) contains English language movie reviews
from the “Rotten Tomatoes" website. The training
data consists of 67349 examples and is roughly
label-balanced with 56% positive label and 44%
negative label data. The dev and test sets contain
872 and 1821 examples respectively.

A.2 Other Training Details

For the teacher models, we train the models for 3
epochs. For optimization, we use an initial learning
rate of 2e-5, adam epsilon of 1e-8, max gradient
norm of 1.0 and a batch size of 64. The maximum
token length for a text example was set to 128.
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Teacher
Model

(accuracy)

Student
Model

(All-correct
accuracy)

bert-base-cased 91.97 85.09
roberta-base 94.38 86.93
xlmr-base 92.55 83.37
roberta-large 95.64 88.88

Table 7: Accuracy against gold labels on the dev set.
The student model does significantly better than chance
with scope for improvement.

POS tag Size of extracted vocabulary
NOUN 7534
VERB 2749
ADJ 3394
ADV 809
. 15
DET 26
ADP 79
CONJ 12
PRT 19
PRON 28

Table 8: Size of extracted lists of POS-tagged words.

For student models, we train the models for 10
epochs. For optimization, we use an initial learning
rate of 2e-5, adam epsilon of 1e-8, max gradient
norm of 1.0 and a batch size of 64. The maximum
token length for a text example was set to 128. The
maximum token length of the masked span input
to the token processor was set to 50. When trained
on Nvidia’s GeForce GTX 1080 Ti GPUs, each run
took approximately 6 hours to complete.

B Evaluating Student Model against
Gold Labels

In Table 7, we provide the accuracies of the teacher
and student models against gold labels. In this
work, we care about accuracies of the student
model against teacher model predictions and we
show accuracies against gold labels here only for
completion.

C Pre-computing POS-tagged Dictionary
of Token Embeddings

For evaluating importance scores and counterfac-
tual predictions, we use a POS-tagged dictionary
of token embeddings. The token embeddings are
obtained by processing the tokens through the to-
ken processor AT . This is done only once for a
given student model and used for all subsequent
experiments.

We use the training dataset for extracting the

Input: A text sequence x: x1x2...xn

Input: Importance scores s: s1s2...sn
Input: A masking budget m
Output: The number of words that need masking
Initialize: count← −1; a← x
Compute teacher prediction:
prediction← argmax(f(a))

Sort importance scores:
ImportanceOrder← argsort(s)

for k ← 1 to m do
i← ImportanceOrder(k)

Mask the next important word: a← ai
mask_t

Compute teacher prediction: l = argmax(f(a))
if l 6= prediction then

Set count if criterion met: count← k
return count

end
end
return count

Algorithm 1: MASKLENGTH Computes the
number of words that need masking to change
the model prediction

list of open class words. We use nltk’s aver-
aged_perceptron_tagger for obtaining POS tags,
and use the universal_tagset5. The open class
words correspond to the tags — NOUN, VERB,
ADJ, ADV. We assign each word to the POS tag
with which it occurs most commonly in the training
dataset.

For closed class words, we use the Penn Tree-
bank corpus included in the ntlk toolkit (treebank).
Again, we use the universal_tagset from nltk toolkit.
We ignore the NUM and X as well as open class
tags. For the punctuation tag, we remove any token
containing alphanumeric characters.

In Table 8, we show the size of the extracted lists
for each POS tag.

D Importance Scores

D.1 Evaluating Importance Scores

In Algorithm 1, we provide the detailed steps for
computing the mask length as used in the evalua-
tion of importance scores.

Unlike ratios are computed using the pre-
computed POS-tagged dictionary of token embed-
dings obtained as in Section C.

In Table 9, we show the top-3 importance scores
supporting the prediction from the model being
interpreted, obtained from LIME and MOXIE on
the first 4 dev set examples where the model be-
ing interpreted makes an error (wrong label pre-

5The meaning and examples of the tags in the
universal tagset can be found in the nltk book
https://www.nltk.org/book/ch05.html
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Text: the iditarod lasts for days - this just felt like it
did .
Gold label:-ve
Prediction:+ve

LIME: did (0.24), lasts (0.19), it (0.13)
MOXIE influence scores: days (0.88), like (0.82),
the (0.77)
MOXIE unlike ratios: for (78.48), did (63.26),
like (41.77)
Text: holden caulfield did it better .
Gold label:-ve
Prediction:+ve

LIME: better (0.03), it (0.02), holden (0.01)
MOXIE influence scores: better (0.97), . (0.93),
did (0.93)
MOXIE unlike ratios: holden (22.54),
caulfield (17.61), better (12.36)
Text: you wo n’t like roger , but you will quickly
recognize him .
Gold label:-ve
Prediction:+ve

LIME: recognize (0.20), but (0.19), will (0.14)
MOXIE influence scores: quickly (0.98), but (0.93),
n’t (0.68)
MOXIE unlike ratios: recognize (12.62),
quickly (3.58), will (0.54)
Text: if steven soderbergh ’s ‘ solaris ’ is a failurea it is
a glorious failureb .
Gold label:+ve
Prediction:-ve

LIME: failurea (-0.91), failureb (-0.91), if (-0.03)
MOXIE influence scores: failureb (-1.00), a (-0.56),
if (-0.36)
MOXIE unlike ratios: failureb (30.33)

Table 9: Word importance scores when the model to
be interpreted makes a wrong prediction The top three
scores supporting the model prediction obtained using
LIME and MOXIE are shown for the first 4 dev set ex-
amples where the model being interpreted makes an er-
ror. For MOXIE, we show scores obtained using influ-
ence scores as well as unlike ratios. Superscripts are
used to distinguish word positions if required.

diction). For MOXIE, we show importance scores
obtained using both influence scores and unlike ra-
tios. MOXIE scores are position independent and
we assign the same scores to all occurrences of a
word.

E Counterfactuals

E.1 Example Counterfactual Predictions

In Table 10, we show selected examples of coun-
terfactual predictions. The examples have been
picked from the first 10 dev set examples.

Text (Prediction) Replacement
Prediction

unflinchingly bleak and desperate (-
ve)

sensual

it ’s slow – very , very slow . (-ve) enjoyable
a sometimes tedious film (-ve) heart-breaking

Table 10: Example counterfactual predictions selected
from the first 10 examples of the dev set. The high-
lighted words in the left column indicate the words
which are replaced with the words in the right column.

E.2 Computing Counterfactual Accuracy

In Algorithm 2, we provide the detailed steps for
computing counterfactual accuracy for a context
as used in evaluating counterfactual predictions.
Pre-computed POS-tagged dictionary of token em-
beddings are obtained as in Section C.

The median size and median accuracy when se-
lecting top-10 tokens (as done in Algorithm 2) are
90.0 and 10.0 respectively. If we don’t do any se-
lection, the median size and median accuracy are
72.0 and 63.41 respectively.

F Biases

F.1 Filtering Contexts for Analyzing Biases

Here, we detail the steps used to filter the contexts
from the input dataset below when probing with
adjectives as control/probe words:

1. Get teacher model predictions on each exam-
ple.

2. Tokenize and get a POS tag for each example
in the input dataset.

3. Select contexts (an example with a marked
token position) with adjective POS tag. This
could lead to none, one or more contexts per
example.

4. Select contexts for which teacher model pre-
dictions (on the corresponding example) are
positive.

5. Remove contexts for which the student model
predicts negative for at least one replacement
from the set {immense, marvelous, wonderful,
glorious, divine, terrific, sensational, magnifi-
cent, tremendous, colossal} and positive for at
least one replacement from the set {dreadful,
terrible, awful, hideous, horrid, horrible}.

6. Additionally, remove contexts for which the
student model predictions never change when
the marked token is replaced by another word
with the same POS tag.

Again, we use nltk’s aver-
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Input: A text sequence x: x1x2...xn

Input: Location in the sequence i
Input: Precomputed token embeddings EV with

words of the same POS tag as xi

Output: Size and accuracy of generated
counterfactuals

Compute teacher prediction:
prediction← argmax(f(x))

Compute context embedding: zc = AC(x
i
mask_t)

Compute predictions for each token in the vocabulary:
yV = C(AM (zc, EV ))

Sort according to the probability of differing from
teacher prediction, i.e., using (1− yj

V [prediction]),
to get the list Vsorted

Select up to 10 tokens from the top of the list that
differ from teacher prediction:
argmax(yj

V ) 6= prediction, to get the list Vselected

Initialize: size← 0; correct← 0
for k ← 1 to |Vselected| do

size← size + 1
w ← Vselected[k]
a← x Replace the i-th token with word w:
a[i]← w

Compute teacher prediction: l← argmax(f(a))
if l 6= prediction then

correct = correct + 1;
end

end
if count = 0 then

return 0, 0
end
acc← 100.0 ∗ correct/count
return count, acc

Algorithm 2: COUNTERFACTUAL_ACC
Computes the accuracy of generated counter-
factuals

aged_perceptron_tagger for obtaining POS
tags, and use the universal_tagset. For Step 6, we
used the pre-computed POS-tagged dictionary of
token embeddings as obtained in Section C.

There were a total of 81435 adjective contexts
in the training dataset. The size of the filtered set
was 29885.
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Abstract

Post-hoc explanation methods are an impor-
tant class of approaches that help understand
the rationale underlying a trained model’s de-
cision. But how useful are they for an end-user
towards accomplishing a given task? In this
vision paper, we argue the need for a bench-
mark to facilitate evaluations of the utility of
post-hoc explanation methods. As a first step
to this end, we enumerate desirable properties
that such a benchmark should possess for the
task of debugging text classifiers. Additionally,
we highlight that such a benchmark facilitates
not only assessing the effectiveness of explana-
tions but also their efficiency.

1 Introduction

A large variety of post-hoc explanation methods
have been proposed to provide insights into the
reasons behind predictions of complex machine
learning models (Ribeiro et al., 2016; Sundarara-
jan et al., 2017). Recent work on explainable ma-
chine learning in deployment (Bhatt et al., 2020)
highlights that explanations are mostly utilized by
engineers and scientists to debug models.

The use of explanations for model debugging is
motivated by their ability to help detect right for
the wrong reasons bugs in models. These bugs
are difficult to identify from observing predictions
and raw data alone and are also not captured by
common performance metrics computed on i.i.d.
datasets. Deep neural networks are particularly
vulnerable to learning decision rules that are right
for the wrong reasons. They tend to solve datasets
in unintended ways by performing shortcut learn-
ing (Geirhos et al., 2020), picking up spurious cor-
relations, which can result in “Clever Hans behav-
ior” (Lapuschkin et al., 2019). Considering this
important role of explanations during the model
validation or selection phase, we call for more
utility-focused evaluations of explanation methods
for model debugging.

We identify two key limitations in current ap-
proaches for measuring the utility of explanations
for debugging: 1) A ground-truth problem, and 2)
an efficiency problem.

First, in all common evaluation setups, the pres-
ence of bugs serves as a ground truth and although
crucial to the evaluation’s outcome, intentionally
adding bugs to create models that exhibit right
for the wrong reasons behavior has not been thor-
oughly studied. We envision a benchmark collec-
tion of verified buggy models to encourage compa-
rable utility-centric evaluations of different expla-
nation methods. Bugs can be injected into models
by introducing artificial decision rules, so-called
decoys, into existing datasets. To establish a rig-
orous design of decoy datasets, we enumerate de-
sirable properties of decoys for text classification
tasks. While a decoy has to be adoptable enough
to be verifiably picked up during model training,
the resulting decoy dataset should also be natural.

Second, the utility of explanations is not only
determined by their effectiveness. For local expla-
nation methods, i.e., methods that generate expla-
nations for individual instances, the selection of
instances examined by humans is crucial to the
utility of explanation methods, and thus successful
debugging. This efficiency problem of how fast
users can detect a bug has been mostly ignored in
previous evaluations. By presenting only instances
containing a bug they implicitly assume the selec-
tion process to be optimal; an assumption that does
not transfer to real-world scenarios and potentially
leads to unrealistic expectations regarding the util-
ity of explanations.

2 Evaluating the Utility of Explanations
for Debugging

The utility of explanations is measured by how
useful the explanation is to an end-user towards
accomplishing a given task. In this work, we focus
on the model developer (as the stakeholder). We
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outline four different task setups used in previous
work.

2.1 Setup I: Identify and Trust
In a first setting employed by Ribeiro et al. (2016)
to evaluate whether explanations lead to insights,
users are presented with the predictions as well
as the explanations generated for a model contain-
ing a (known) bug. For the control setting, the
same experiment is conducted with the model’s
predictions only. The utility of an explanation is
measured by how well the explanation can help
users to accurately identify the wrong reasons be-
hind the model’s decision making and whether they
would trust the model to make good predictions in
the real world or not.

2.2 Setup II: Model Comparison
In another setup used by Ribeiro et al. (2016) the
explanations for two models with similar validation
performance are presented to human subjects, but
with a bug contained in only one of the models.
Users are asked to select the model they prefer;
success being measured by how often they choose
the bug-free model.

2.3 Setup III: Identify and Improve
Similar to Setup I, users are shown predictions and
explanations for a model that contains at least one
bug. Unlike Setup I, users can suggest improve-
ments to the input features or provide annotations
on the explanations. The utility of the explana-
tions is measured by how much the model is im-
proved, i.e. the difference in test performance be-
fore and after debugging. Improvements can be
applied by retraining and either removing input
features (Ribeiro et al., 2016) or integrating expla-
nation annotations into the objective function via
explanation regularization (Ross et al., 2017; Liu
and Avci, 2019; Rieger et al., 2020). Alternatively,
features can also be disabled on the representation
level (Lertvittayakumjorn et al., 2020).

2.4 Setup IV: Data Contamination
In a setup aimed at evaluating explanation-by-
example methods, the training data itself is modi-
fied, such that a selected fraction of instances con-
tains a bug that is then inherited by a model. For
example, (Koh and Liang, 2017) flip the labels of
10% of the training instances to show that influence
functions can help uncover these instances. Here,
the utility of the explanations is measured by how

many of these instances were uncovered, and by
the performance gain obtained by re-labeling the
uncovered instances.

3 Ground Truth for Debugging with
Explanations

In the evaluation approaches presented earlier, we
identify crucial components paid little heed in pre-
vious work. All the evaluation setups require a
model containing one or multiple bugs. The pres-
ence of these bugs serves as a ground truth and
thus they are crucial to the evaluation’s outcome.

The bugs introduced into models in the eval-
uation regimes are “well understood” and added
purposely. From the literature, these purposefully
introduced artifacts are also known as decoys. Al-
though crucial to the evaluation’s outcome, these
decoys have not been thoroughly studied. As a
first step towards a more rigorous design of decoy
datasets, we define properties and desiderata for
text classification tasks. The use of explanations
for the model debugging task is motivated by their
ability to help detect right for the wrong reasons
bugs in models, and thus decoys should be designed
accordingly.

3.1 Decoy Datasets

Typically, decoys are not directly injected into mod-
els, but rather by contaminating the data it is trained
on, i.e., by creating a decoy dataset. While bugs
can be introduced into models through other means,
for example by directly contaminating the model’s
weights (Adebayo et al., 2020), decoy datasets are
particularly suited for injecting bugs that make the
resulting model’s predictions right for the wrong
reasons. In contrast, the model contamination bugs
introduced by Adebayo et al. (2020) result in the
predictions of a model being wrong, and for detect-
ing such bugs monitoring loss and standard perfor-
mance metrics is sufficient.

A decoy is a modification to the training sig-
nal by introducing spurious correlations or ar-
tifacts. For example, Ross et al. (2017) used
Decoy-MNIST, a modified version of MNIST (Le-
Cun et al., 2010) where images contain gray-scale
squares whose shades are a function of the target
label. Similarly, Rieger et al. (2020) create de-
coy variants of the Stanford Sentiment Treebank
(SST) dataset (Socher et al., 2013) by injecting con-
founder words. Both works use the decoy datasets
to evaluate whether their proposed explanation reg-
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ularizers can correct a model’s wrong reasons to-
wards the indented decision-making behavior. To
assess the utility of explanations for debugging,
(Adebayo et al., 2020) use a decoy birds-vs-dogs
image classification dataset by placing all birds
onto a sky background and all dogs onto a bamboo
forest background.

3.2 Verifying Decoy Adoption
When using decoys, an important step is to ver-
ify if a model trained on a decoy dataset indeed
“adopts” or learns a decoy. Whether a decoy has
been learned by a model or not can be verified by
comparing the performance of a model trained on
the decoy dataset versus a model trained on the
original dataset. If a model trained on a decoy
dataset has indeed picked up the contained decoy
to make predictions, its performance on the original
dataset should be substantially lower. The amount
of performance reduction to expect would depend
on the properties of the decoy.

4 Properties of Decoys for Text
Classification

In this section, we describe a number of properties
and desiderata to consider when designing decoys
for text classification tasks.

Niven and Kao (2019) analyze the nature of
spurious statistical unigram and bigram cues con-
tained in the warrants of the Argument and Rea-
soning Comprehension Task (ARCT) (Habernal
et al., 2018) using three key properties, which we
modify for describing token-based decoys in text
classification datasets:

Let X be a dataset of labeled instances (xi, yi)
and Xd ⊆ X be the subset of instances contain-
ing a decoy d. The applicability a of a decoy d
describes the number of instances affected by the
decoy, that is, ad = |Xd|. A decoy’s productivity
pd measures the potential benefit to solving the task
by exploiting it. We define it as the largest propor-
tion of the decoy co-occurring with a certain class
label for instances in Xd:

pd =

max
c∈C

(
∑

yj∈Y d

{
1, if yj = c

0, otherwise

)

ad
(1)

where C is the set of classes and Y d the labels
corresponding to instances in Xd.

Finally, the signal strength provided by a decoy
is measured by its coverage cd. It is defined as the

fraction of instances containing the decoy over the
total number of instances: cd = ad/|X|.

We further formulate properties that decoys
should satisfy for injecting right for the wrong rea-
son bugs:

Adoptable. Discriminative machine learning mod-
els typically adopt the decision-rules offering the
biggest reward w.r.t minimizing some objective
function. If there exists a simpler, more productive
decision-rule than the one introduced by the decoy,
a model might not adopt the latter and the decoy-
rule is not learned. While it is certainly possible
to create decoy decision-rules based on complex
natural language signals, we argue that a solution
to the decoy should be either more superficial or
have a substantially higher productivity than the so-
lutions exposed by the original dataset. Although
the potential solutions to a dataset are typically not
apparent to humans (otherwise one should probably
refrain from using complex machine learning mod-
els), researchers and practitioners often have some
intuition about the complexity of intended solutions
to the task at hand. The adoptability also depends
on the decoy being representative. Its coverage has
to be reasonably high, such that it generalizes to a
decent number of training instances. Additionally,
whether a decoy is adoptable depends on the in-
ductive biases of the model, e.g., a decoy based on
word positions is not adoptable by a bag-of-words
model.

Natural. Explanations are supposed to help de-
tect right for the wrong reason bugs, which are
difficult to identify from observing predictions and
raw data alone. It should be possible for a decoy
to occur naturally, such that insights from evalua-
tions on decoy datasets can potentially transfer to
real-world scenarios. A natural decoy also ensures
that humans are not able to easily spot the decoy
by observing raw data examples, which would de-
feat the purpose of using explanations in the first
place. Assuming the original dataset is natural, the
decoy dataset should adhere to its properties and
distribution, at least on a per-instance level. For
example, for text tasks, the instances affected by a
decoy should not violate grammar, syntax, or other
linguistic properties, if these are also not violated
in the original dataset.

The first example in Fig. 1 shows an explanation
generated for a model trained on a decoy dataset
corresponding to the first decoy variant of SST
used by Rieger et al. (2020). In this decoy dataset,
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[CLS] a gorgeous , witty , seductive movie . [SEP][CLS] a gorgeous , witty , seductive movie . [SEP]

[CLS] it ' s a charming and often affecting journey . [SEP] [CLS] it ' s a charming and often affecting journey . [SEP]

[CLS] has a lot of the virtues of eastwood at his best . [SEP][CLS] has a lot of the virtues of eastwood at his best . [SEP]

1)

2)

3)

4)

[CLS] a fast , funny , highly enjoyable movie . [SEP] [CLS] a fast , funny , highly enjoyable movie . [SEP]

[CLS] the performances take text the movie to a higher level . [SEP][CLS] the performances take the movie to a higher level . [SEP]

5)

Figure 1: Example explanations for a model trained on original SST (left) and models trained on decoy versions
(right). For all sentences, groundtruth class and predicted class is ‘positive’. The input tokens are highlighted based
on their contributions towards the prediction, from negative (red) to positive (green) contribution. We finetune
BERTbase (Devlin et al., 2019) with the default hyperparameter settings recommended in the original paper. The
explainer is Integrated Gradients1 (Sundararajan et al., 2017).

two class-indicator words are added at a random
location in each sentence, with ‘text’ indicating
the positive class and ‘video’ indicating the nega-
tive class. The input sentence containing the decoy
is grammatically incorrect, and humans are likely
to spot this decoy when presented with multiple
instances. Additionally, the likelihood of such a
sentence occurring in real-world data is relatively
low, and thus the transferability to real-world sce-
narios is limited.

A more natural decoy is shown in rows 2 - 5 in
Fig. 1, where we create a decoy dataset by remov-
ing all instances which contain the word ‘movie’
and are labeled ‘negative’, retaining the original
dataset’s naturalness on a local level. Considering
all test set instances containing the word ‘movie’,
the performance of a model trained on this decoy
dataset drops to random chance (47.5%), indicating
that the model was indeed misled by the decoy rule
even though its applicability is below 3.3%.

5 Efficient Debugging with Explanations

Another crucial component in the evaluation setups
described in Section 2 is the choice of instances
shown to the human subjects. Such a selection is es-
pecially important when dealing with large datasets
where the majority of instances have correct pre-
dictions with explanations aligning with human
understanding. Showing all instances to humans
in order to isolate a few errors is inefficient and of-
ten infeasible as the inspection of many individual
explanations is expensive in time and resources, es-
pecially when requiring domain experts. Thus, the
examination is typically conducted under a tight
budget on the number of instances.

Apart from the greedy Submodular Pick (SP)
1As provided by Captum (Kokhlikyan et al., 2020).

algorithm proposed by Ribeiro et al. (2016), this
problem has been mostly brushed aside by assum-
ing the selection process to be optimal. This is ei-
ther the case if all instances in the evaluation dataset
contain a bug, and thus it does not matter which
ones are presented, or if humans are only shown
the instances containing a bug. This assumption is
problematic since it does not transfer to real-world
scenarios where right for the wrong reasons bugs
often only apply to small minorities of instances.
Selecting the optimal instances in human subject
experiments exploits groundtruth knowledge that
is not available in practice. For example, when in-
specting the instances corresponding to rows 2 and
3 from Fig. 1, the ‘movie’ bug is easily noticeable,
while it is undetectable by observing rows 4 and 5.
When sampling instances of this decoy dataset uni-
formly, there is a chance of less than 3.3% of being
presented with an instance containing the bug.

As a result, an evaluation that assumes the se-
lection process to be optimal might not reflect the
actual utility of explanations for debugging in prac-
tical applications at all. Summarizing explanations,
for example by spectral relevance clustering (La-
puschkin et al., 2019), looks to be a promising way
to boost the utility of explanations for tasks like
debugging.

6 Outlook

Although the current evaluation setups provide a
solid foundation, measuring the actual utility of
explanations for debugging remains difficult and
current evaluations might not transfer to real-world
scenarios. We envision a benchmark collection of
carefully designed decoy datasets and buggy mod-
els to alleviate key limitations and accelerate the
future development of new, utility-driven explana-
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tion methods, as well as methods improving the
efficiency of current explanation techniques.

Acknowledgements

We thank Schufa Holding AG for generously sup-
porting this work. Additionally, we thank the
anonymous reviewers for their feedback.

References
Julius Adebayo, Michael Muelly, Ilaria Liccardi, and

Been Kim. 2020. Debugging tests for model expla-
nations. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian
Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh,
Ruchir Puri, José M. F. Moura, and Peter Eckers-
ley. 2020. Explainable machine learning in deploy-
ment. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, FAT*
’20, page 648–657, New York, NY, USA. Associa-
tion for Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1930–1940, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1885–1894,
International Convention Centre, Sydney, Australia.
PMLR.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,

Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, and Orion Reblitz-Richardson.
2020. Captum: A unified and generic model inter-
pretability library for pytorch.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander
Binder, Grégoire Montavon, Wojciech Samek, and
Klaus-Robert Müller. 2019. Unmasking clever hans
predictors and assessing what machines really learn.
Nature communications, 10(1):1–8.

Yann LeCun, Corinna Cortes, and CJ Burges. 2010.
Mnist handwritten digit database. ATT Labs [On-
line]. Available: http://yann.lecun.com/exdb/mnist,
2.

Piyawat Lertvittayakumjorn, Lucia Specia, and
Francesca Toni. 2020. FIND: Human-in-the-Loop
Debugging Deep Text Classifiers. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
332–348, Online. Association for Computational
Linguistics.

Frederick Liu and Besim Avci. 2019. Incorporating
priors with feature attribution on text classification.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6274–6283, Florence, Italy. Association for Compu-
tational Linguistics.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language ar-
guments. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4658–4664, Florence, Italy. Association
for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
’16, page 1135–1144, New York, NY, USA. Asso-
ciation for Computing Machinery.

Laura Rieger, Chandan Singh, W. James Murdoch, and
Bin Yu. 2020. Interpretations are useful: Penaliz-
ing explanations to align neural networks with prior
knowledge. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event, volume 119 of Proceed-
ings of Machine Learning Research, pages 8116–
8126. PMLR.

Andrew Slavin Ross, Michael C. Hughes, and Finale
Doshi-Velez. 2017. Right for the right reasons:
Training differentiable models by constraining their
explanations. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI-17, pages 2662–2670.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment

72



treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page
3319–3328. JMLR.org.

73





Author Index

Anand, Avishek, 68
Azarpanah, Hossein, 8

Chen, Yan, 45

Dixit, Kalpit, 55

Farhadloo, Mohsen, 8
Feyisetan, Oluwaseyi, 15

Gadiraju, Ujwal, 68
Grasso, Isabella, 45

Hwu, Wen-mei, 34

Idahl, Maximilian, 68

Kasiviswanathan, Shiva, 15
Kumar, Sawan, 55

Liu, Zhe, 28
Lyu, Lijun, 68

Mahmud, Jalal, 28
Mahoney, Christopher, 45
Matthews, Abigail, 45
Matthews, Jeanna, 45
Middleton, Thomas, 45
Misra, Amita, 28

Nagi, Rakesh, 34
Njie, Mariama, 45

Shah, Kashif, 55
Surdeanu, Mihai, 1

Tang, Zheng, 1

Vadrevu, Samhita, 34

Wali, Esma, 45

Xiong, JinJun, 34

75


	Program
	Interpretability Rules: Jointly Bootstrapping a Neural Relation Extractorwith an Explanation Decoder
	Measuring Biases of Word Embeddings: What Similarity Measures and Descriptive Statistics to Use?
	Private Release of Text Embedding Vectors
	Accountable Error Characterization
	xER: An Explainable Model for Entity Resolution using an Efficient Solution for the Clique Partitioning Problem
	Gender Bias in Natural Language Processing Across Human Languages
	Interpreting Text Classifiers by Learning Context-sensitive Influence of Words
	Towards Benchmarking the Utility of Explanations for Model Debugging

