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Abstract

In this paper, we propose a global, self-
explainable solution to solve a prominent NLP
problem: Entity Resolution (ER). We formu-
late ER as a graph partitioning problem. Every
mention of a real-world entity is represented
by a node in the graph, and the pairwise sim-
ilarity scores between the mentions are used
to associate these nodes to exactly one clique,
which represents a real-world entity in the ER
domain. In this paper, we use Clique Partition-
ing Problem (CPP), which is an Integer Pro-
gram (IP) to formulate ER as a graph partition-
ing problem and then highlight the explainable
nature of this method. Since CPP is NP-Hard,
we introduce an efficient solution procedure,
the xER algorithm, to solve CPP as a combi-
nation of finding maximal cliques in the graph
and then performing generalized set packing
using a novel formulation. We discuss the
advantages of using xER over the traditional
methods and provide the computational exper-
iments and results of applying this method to
ER data sets.

1 Introduction

Entity Resolution (ER) is a prominent NLP prob-
lem, also referred to as co-reference resolution,
de-duplication and record linkage, depending on
the the problem set up. Irrespective of the name,
the objective is to combine and cluster multiple
mentions of a real-world entity from various data
sources into their respective real-world entities and
remove duplicates. Various techniques such as clus-
tering (Aslam et al., 2004), (Saeedi et al., 2017),
rule-based methods (Aumüller and Rahm, 2009),
mathematical programming, and combinatorial op-
timization (Tauer et al., 2019) have previously been
applied to ER. In this paper, we formulate and solve
ER as a graph partitioning problem.

Representing ER as a graph partitioning prob-
lem The transformation from the real-world ER

Figure 1: An example of converting a text into a graph.

problem domain to the mathematical Integer Pro-
gramming (IP) formulation setup is essential to
understand the model’s explainable nature and the
solution procedure. A node in the graph represents
a mention in the ER domain. An edge between any
two nodes has a weight associated with it, represent-
ing the similarity score between the two mentions
in consideration. This similarity score indicates the
probability that these mentions are associated with
the same entity. The goal is to ensure that based
on the weights, the nodes are optimally allotted
to their respective clusters. From a combinatorial
perspective, this problem is known as the Clique
Partitioning Problem (CPP). A clique is a complete
subgraph in which all its nodes are pairwise con-
nected. The weight of a clique is defined as the
sum of all its edges’ weights. The objective of this
mathematical formulation is to find disjoint cliques
in the graph such that the total weight of all the
cliques is maximized, which, in the ER domain,
translates to associating each mention to a single
real-world entity with the highest probability asso-
ciation. The constraints in this mathematical for-
mulation enforce that a particular node is mapped
to just one clique and ensure that the mentions’
transitivity conditions are obeyed.

Bhattacharya and Getoor (2004) was one of the
earlier papers that formulated ER as a graphical
problem and Bansal et al. (2004) proposed a corre-
lation clustering method for the graphical problem.
ER was also approached as a graph partitioning
problem in (Nicolae and Nicolae, 2006), (Chen
and Ji, 2009), (Chen and Ji, 2010) and the CPP
approach outperformed other solution methods for
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ER (Finkel et al., 2005), (Klenner and Ailloud,
2009). Tauer et al. (2019) formulated ER as CPP,
where an incremental graph partitioning approach
was applied and solved using a heuristic. Lokhande
et al. (2020) formulated ER as a set packing prob-
lem by considering the sets of all possible com-
binations of mentions and then choosing the best
combination, based on the weights of the sets. ER
has also been approached as a clustering problem.
Saeedi et al. (2017) conducted an extensive survey
on the clustering methods that had been applied to
the entity resolution problem. von Luxburg (2007)
solved ER as a spectral graph clustering problem,
which is based on the graph’s Laplacian matrix.
Star Clustering (Aslam et al., 2004) formalizes clus-
tering as graph covering and assigns each node to
the highest probabilistic cluster. k-means is also
a common technique to solve ER as a clustering
problem. However, the mathematical formulation
based methods come with a guarantee of optimality.
Furthermore, it is easy to obtain an upper bound to
these problems by relaxing the integer constraints.
These upper bounds provide a guarantee on any
feasible solution. In typical clustering algorithms,
the number of clusters to produce in the output
needs to be provided upfront, while it is decided
by the model intrinsically in the CPP framework.
The long convergence times and the iterations pose
a disadvantage for them to be used as a solution
technique for entity resolution (Saeedi et al., 2017).
Moreover, from an explainability perspective, in
the formulation-based methods proposed in this
paper, the explanation is substantiated with mathe-
matical guarantees, while the clustering-based ap-
proaches lack this mathematical precision and the
heuristic nature further confounds explainability.
Ribeiro et al. (2016), Ribeiro et al. (2018), Letham
et al. (2015) and Choudhary et al. (2018) have pro-
posed explainable systems for ER using local and
if-then-else based global explanations. Ebaid et al.
(2019) is a tool that provides explanations at differ-
ent granularity levels.

Since CPP is NP-hard (Grötschel and Wak-
abayashi, 1989), a novel two-phase solution is
proposed, in this paper, to solve CPP optimally.
This solution method can be easily accelerated and
scaled to handle large-sized datasets. As a part of
this two-phased approach, new and creative formu-
lations for the generalized set packing problem are
also proposed. The formulations and the approach
to obtain the optimal solution provide a mathemati-

cal guarantee on the output, and the results are eas-
ily interpretable and explainable. The constraints
and objective function mathematically support the
explanation behind the predicted output.

The rest of the paper is organized as follows. In
Section 2, entity resolution is formulated as CPP. In
Section 3, explainability and interpretability of this
method is discussed. Section 4 then introduces the
two-phase solution approach proposed for solving
the NP-hard CPP. Sections 5 and 6 go over the
computational experiments and the results.

2 Mathematical Formulation of CPP

As discussed in Section 1, the entity resolution
problem is transformed to a graph where each men-
tion is represented by nodes and the weight on
an edge between the nodes is the similarity score
between the mentions. To obtain the pairwise simi-
larity scores, we use an open-source entity resolu-
tion library called Dedupe (Gregg and Eder, 2019),
which applies blocking and a logistic regression
based model to obtain the similarity scores between
mentions. See Section 5 for more details about this.

In this section, the graph partitioning setup is
formally represented by a mathematical formula-
tion. Let i, j (i < j) be two nodes in the graph
(representing two mentions) and wij be the weight
of the edge between these nodes. xij is a binary
variable that denotes whether i, j are associated or
co-referent (belong to the same clique).

xij =

{
1 if nodes i, j are associated
0 otherwise

The “traditional” math formulation of CPP is:

CPP (w) = max

N−1∑
i=1

N∑
j=i+1

wijxij ; s.t. (1)

xij + xik − xjk ≤ 1, ∀1 ≤ i < j < k ≤ N, (2)
−xij + xik + xjk ≤ 1, ∀1 ≤ i < j < k ≤ N, (3)
xij − xik + xjk ≤ 1, ∀1 ≤ i < j < k ≤ N, (4)

xij ∈ {0, 1}, ∀1 ≤ i < j ≤ N. (5)

Constraints (2), (3), and (4) are the transitivity
constraints enforced among the nodes. These three
constraints ensure that if mention a is the same as
b and b is the same as c, then it must also be that
a is the same as c. The graph is assumed to be di-
rected to avoid duplication of cliques and memory
exhaustion. An optimal solution to this problem
results in the best possible solution to the ER for
the given similarity scores. However, due to cubic
number of constraints, this particular formulation
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for CPP, does not scale with the number of nodes.
Hence, heuristics are prevalent to find an approxi-
mate solution to CPP; see Section 4 for details.

3 Model Explainability and
Interpretability

Before we discuss our solution approaches, the
explainable nature of this method is highlighted.
The definitions of explainability have been stud-
ied in various works (Guidotti et al., 2019), (Arya
et al., 2019). As defined in Danilevsky et al. (2020)
and Guidotti et al. (2019), understanding the level
of explainability of models can be interpreted as
outcome explanation problems, where the empha-
sis lies in understanding the rationale behind the
prediction of a specific output or all outputs in gen-
eral. In this paper, the definitions and categoriza-
tions of explanations are based on the definitions
in Danilevsky et al. (2020). Two major categoriza-
tions of explanations are emphasized. The first is
based on the explanation process’s target set, and
divided into two types: Local and Global. Suppose
the explanation is for a particular individual output.
In that case, the explanation type is referred to as
Local. On the other hand, if the explanation is for
the whole model in itself, then it is a Global expla-
nation. The second categorization is based on the
origin of the explanation process. If the explanation
is from the prediction process itself, then it belongs
to the Self Explaining or the Directly Interpretable
category (Arya et al., 2019). Otherwise, if post pre-
diction processing is required to explain the output,
it can be categorized as Post-hoc explanation.

As seen in Tauer et al. (2019), mathematical
formulation based methods have a notion of op-
timality infused in the problems. The design of
NLP problems like ER as mathematical formula-
tions ensures that various constraints are met simul-
taneously, and hence making the output and the
prediction process trustworthy and reliable. Since
the constraints and the objective function are en-
forced into the mathematical formulation, the ex-
planation behind any output comes directly from
the model itself, making it a self-explainable model
model. Moreover, the explanation behind any out-
put is only dependent on the formulation and not
on the output itself. This makes the model globally
explainable. Therefore, by applying an efficient
approach based on mathematical formulations, the
solution method discussed in this paper presents an
easily interpretable and explainable model for ER.

4 Solution Approach for CPP

As discussed in Section 2, CPP is NP-hard. In this
paper, an efficient and scalable solution approach
is proposed to solve the CPP.

The solution procedure is divided into two
phases: Phase 1 involves finding the maximal
cliques in the graph. A maximal clique is a
clique that is not a sub-clique of a larger clique
(Akkoyunlu, 1973). For Phase 2, we propose a
novel generalized set packing formulation that not
only ensures that each node belongs to a single
clique, but it is able to break larger cliques into
smaller sub-cliques if necessary. The formulation
enables to find the optimal combinations of the
cliques, that maximize the weight of the system.
The algorithm (Phase 1 + Phase 2), is referred to
as xER (Explainable ER).

4.1 Phase 1: Finding Maximal Cliques

In this phase, all the maximal cliques in a graph are
found and stored. There are many approaches to
find maximal cliques, but the most prominent and
efficient approach is the Bron-Kerbosch (BK) algo-
rithm (Bron and Kerbosch, 1973). There are multi-
ple variants of BK, and in this paper, we adopt the
pivot-based BK algorithm with node ordering. For
simplicity, a recursion-based sequential implemen-
tation is used for BK. However, a scalable GPU-
accelerated implementation for maximal clique list-
ing is currently in progress based on (Almasri et al.,
2021).

4.2 Phase 2: Set Packing

The output of Phase 1 is a list of cliques that are
not disjoint. This phase aims to find the optimal
combination of these cliques such that the cliques
are disjoint and the total weight of all these disjoint
cliques is maximized. Thus, Phase 2 is a maximum
weighted Set Packing Problem (SPP). The original
SPP is formulated as:

(SPP) max W Tx (6)

s.t Ax = 1 (7)

x ∈ {0, 1}. (8)

Here, S is the list of sets (cliques) and V is the set
of nodes in the graph. W denotes the weight vec-
tor, where each entry is the weight of a clique. The
binary variable xt denotes if a set t ∈ S is chosen
or not, A : V ×S is the incidence matrix indicating
the presence of a node in a set. ait ∈ A is 1 if node
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i ∈ V is in the set t ∈ S and 0, otherwise. The
formulation of the original set packing problem is
designed to choose the optimal packing of sets that
maximizes the system’s overall weight. Multiple
solution procedures have been developed to solve
this set packing problem, and these procedures can
be categorized as either exact or approximate al-
gorithms. Rossi and Smriglio (2001) proposed a
branch-and-cut approach for solving the SPP. Lan-
dete et al. (2013) proposed alternate formulations
for SPP in higher dimensions and then added valid
inequalities that were facets to the lifted polytope.
Kwon et al. (2008) and Kolokolov and Zaozerskaya
(2009) also proposed new facets that strengthen
the relaxed formulations of SPP. Li et al. (2020)
encoded SPP as a maximum weighted indepen-
dent set and then used a Diversion Local Search
based on the Weighted Configuration Checking
(DLSWCC) algorithm to solve it. Since SPP is NP-
hard (Garey and Johnson, 2009), many heuristics
have also been proposed to obtain a solution for
SPP in a reasonable amount of time. Rönnqvist
(1995) proposed a Lagrangian relaxation based
method and Delorme et al. (2004) used a greedy
randomized adaptive search procedure (GRASP)
to solve SPP. Gandibleux et al. (2004) proposed an
ant colony heuristic for SPP.

Lokhande et al. (2020) has recently formulated
ER as a set packing problem. All possible com-
binations of groups of mentions are given as an
input to the SPP. Each of these groups is referred
to as a hypothesis. Every hypothesis has a weight
associated with it, which is computed as the sum
of weights on a pair of nodes in that hypothesis.
The best combination of the sets is chosen based
on the weights. A major drawback of formulating
and solving ER as a traditional set packing problem
is the huge input size even for considerably small
graphs. Table 1 shows a comparison between the
number of cliques (|C|) and the number of maximal
cliques (|MC|) in small-sized graphs, with number
of edges denoted as |E|. The number of maximal
cliques is significantly less than the total number
of cliques. The number of all the cliques in the
graph grows exponentially, much faster than the
number of maximal cliques as the graph’s size in-
creases. In this paper, our proposed formulation for
set packing can break a large set into smaller ones
if required. Therefore, it only needs the maximal
cliques as an input, contrary to SPP, which requires
all the cliques as an input.

Nodes |E| |MC| |C| Ratio d |C|
|MC|e

38 147 70 528 8
38 203 101 801 8
38 379 433 5619 13
46 223 87 2466 28
46 317 162 3264 20
46 556 829 17114 21

Table 1: Statistics of small graphs and their associated
edges.

4.2.1 Proposed SPP Formulation
As discussed in Section 4.2, the formulation of
the original set packing problem is designed to
choose the combination of sets that are disjoint and
maximize the problem’s overall weight. Thus, it
requires the power set of cliques as an input. In
this paper, the traditional set packing formulation
is modified to fit the ER problem’s requirements
and made it more efficient and scalable to handle
large datasets. Our novel formulation for set pack-
ing is introduced in Section 4.2 requires a much
smaller input size. The formulation itself is en-
abled to carve out sub-cliques of a larger clique
while keeping them disjoint. Eventually, the same
optimal solution would be found, but the difference
is in the manageable input size.

Notation: Here, K is the total number of max-
imal cliques in the input. Each set of index k,
is denoted by Sk (cliques and sets are used inter-
changeably to accommodate the notation of both
the traditional set packing and the new proposed
formulation). The inputs to the problem is a set
of incidence matrices {Ak} corresponding to each
set Sk, and W , the weight matrix of arcs in the
original graph. The graph is directed, and an edge
can only exist between two nodes i, j, with i < j
and weight Wij . Each set can be broken down into
multiple partitions, and M is the upper bound on
the total number of partitions any set can be broken
down into. The index for each partition of a set is
m and is local to a set Sk, where 0 ≤ m ≤M − 1.
zij denotes the connection between two nodes i, j
in the optimal solution and yimk denotes if node i
is assigned to partition m of set Sk .

Decision Variables:

yimk =

{
1 if node i is chosen for partition m in set Sk

0 otherwise

zij =

{
1 if nodes i, j belong to the same partition
0 otherwise

All the nodes in V are ordered. E represents the
edge set of the graph. E = {(i, j) : i < j}.
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4.2.2 Quadratic Set Packing
The new set packing formulation is as follows:

(QSP) max
N−1∑
i=0

N−1∑
j=i+1

Wijzij ; s.t. (9)

zij −
∑
k

∑
m

yimk × yjmk = 0, ∀i, j ∈ V, (10)∑
k

∑
m

yimk ≤ 1 ∀i ∈ V, (11)

0 ≤ zij ≤ 1, yimk ∈ {0, 1}, ∀i, j ∈ V,m ∈M,k ∈ K.
(12)

QSP stands for Quadratic Set Packing, deriving
the name from the quadratic nature of the con-
straints. It can be observed that the notation of
the variables in this formulation is different from
the traditional set packing formulation. In the tra-
ditional set packing formulation, the decision vari-
able is the binary variable xt, denoting the presence
of a set t in the optimal solution. However, in QSP,
the decision variable yimk denotes the presence of
a node i in the partition m of set Sk. If a node
i from set Sk should belong to partition m, the
value of yimk = 1 and 0 otherwise. This shows
that yimk is modified to remove nodes from the
maximal cliques if necessary, eliminating the need
to provide the power set of the maximal cliques
as an input to the original SPP formulation. As
mentioned before, this ordering avoids duplication
of nodes and saves memory. Moreover, due to the
nature of the formulation, even though zij is not ex-
plicitly assigned to be an integral solution, solving
the QSP optimally results in an integer solution for
zij . An off-the-shelf optimization solver, Gurobi
(Gurobi Optimization, 2021) was used to solve the
problem optimally. zij is used to compute the pre-
cision, recall and the F1 scores.

Algorithm 1: xER Algorithm
Result: Resolved datasets with no duplicate

mentions
Step 1 : Perform blocking and compute pairwise

similarity scores (§5);
Step 2 : Construct a directed graph with the mentions

as nodes and similarity scores as weights on the
edges. (§4);

Step 3 : Find maximal cliques in the graph using BK
(§4.1);

Step 4 : Perform Set Packing using the QSP
formulation (§4);

Step 5 : Use the output of z to compute precision,
recall and F1 (§5);

Currently, we are working on developing scal-
able heuristics for the xER algorithm. As men-
tioned in Sec 4.1, a GPU accelerated version for

Phase 1 is currently in progress based on Almasri
et al. (2021). For Phase 2, an accelerated and scal-
able approach is being developed. The QSP formu-
lation is linearized to provide the Linearized Set
Packing (LSP) formulation. We are working on
the linear relaxations of LSP and using accelerated
computing to solve this and a family of relaxations.
Subsequently, one can develop branch-and-bound
approaches for solving the integer programming
problem to optimality.

5 Computational Experiments

In this section, the xER algorithm’s performance
is evaluated through experiments on different ER
datasets. In this paper, two primary data sources
considered: benchmarking datasets (Saeedi et al.,
2017) and ECB+ (Cybulska and Vossen, 2014).
Datasets from both these sources are used to test the
algorithm and analyze the algorithm’s performance
in terms of the F1 scores, solution times and their
potential for scalability. Different blocking and
scoring techniques have been applied to both these
datasets, and are discussed in detail.

Blocking is a pre-processing technique applied to
the datasets. The purpose is to eliminate the need
to store similarity scores between those pairs of
mentions that are extremely unlikely to being asso-
ciated to the same entity. This increases the sparsity
in the graph, making it easier to process the graph
and perform computations. Blocking and similar-
ity score computation techniques are different for
different data sources and are discussed below.

5.1 Benchmarking Datasets

Saeedi et al. (2017) provides benchmark datasets,
three of which are used in this paper. Table 2 shows
the statistics for these benchmarking datasets. An
open-source entity resolution library called Dedupe
(Gregg and Eder, 2019) is used to preprocess these
datasets by applying blocking techniques and gen-
erating similarity scores. The blocking technique
and the scoring scheme are obtained from the code
base of Lokhande et al. (2020). The dataset is di-
vided into training and validation sets, with a split
ratio of 50%. Our similarity scores for the bench-
mark datasets are obtained from the Dedupe library
by training a ridge regression model.

5.2 ECB+ Corpus

Event Coreference Bank (ECB) (Bejan and
Harabagiu, 2010)) is an event coreference resolu-
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Dataset Entities Matches Clusters
patent_example 2379 293785 102
csv_example 3337 6608 1162
settlements 3054 4388 820

Table 2: Statistics of the benchmarking datasets

tion dataset that includes a collection of documents
found through Google Search. ECB+ (Cybulska
and Vossen, 2014) is an extension of this dataset
with newly added documents. Table 3 shows the
statistics for this dataset.

The ECB+ dataset comes with the gold standard
or the Ground Truth (GT) values used to generate
the similarity scores. The ground truth values for
two connected (or co-referent) and not connected
mentions are +1 and −1, respectively. The “syn-
thetic” similarity scores are generated from a nor-
mal distribution with a fixed mean and an added
noise. If the ground-truth is +1 then µ = 0.5 and
if it is −1, then µ = −0.5. A variance of 0.3 is
added to the generated scores using this distribu-
tion. Once the similarity scores are computed, a
blocking threshold T is applied to these scores. A
pair of mentions with a similarity score less than
T is blocked, and the edge between these nodes
is removed from the original graph. The mentions
in this dataset could belong to the event class or
the entity class. The mention pairs are taken from
the same class for the experiments, and xER is
indifferent to the class.

Type Mentions Chains (clusters)
Event 6833 2741
Entity 8289 2224

Table 3: Statistics of ECB+ datasets

This dataset is broken down into smaller graphs
using topic modelling from (Barhom et al., 2019).
It facilitated the use of these different sized graphs
to experiment with the blocking thresholds, analyze
the F1 scores, and understand the xER algorithm’s
performance.

6 Results

The experiments are performed on an Intel i5 pro-
cessor with 8GB RAM. The datasets from both
sources are preprocessed and converted into graphs
given as an input to the xER algorithm. These
graphs have mentions as nodes and the pairwise
similarity scores as the edges’ weight. As shown
in the xER algorithm (1), this graph is first passed

through Phase 1, which is the Bron-Kerbosch al-
gorithm with pivoting (Bron and Kerbosch, 1973).
This step’s output is a set of maximal cliques that
are not disjoint and passed on to Phase 2 for the set
packing step. QSP formulation is modelled using
Gurobi (Gurobi Optimization, 2021) and solved
optimally. The solution for the z variable from
the optimally solved model is used to compute F1
scores. The xER algorithm is applied to all the
datasets listed above and is evaluated in terms of
F1 scores and computation times, and compared to
the other competing algorithms. xER is also com-
pared with the traditional set packing algorithm
and the difference in the input sizes between SPP
and QSP is highlighted through experiments. Also,
to demonstrate the quality of the xER algorithm,
the weights on the edges are replaced with Ground
Truth (GT) values (+1 and −1) instead of simi-
larity scores and tested. This helps in analyzing
and confirming the model’s consistency and accu-
racy, irrespective of the method used to compute
similarity scores.

6.1 Testing xER on benchmarking datasets

Dedupe is used to perform blocking and compute
the similarity scores as mentioned in Section 5.1.
First, Dedupe employs specific blocking techniques
on the data. A ridge regression model is then
trained and used to compute the scores on the vali-
dation dataset. The pairwise nodes and the scores
are passed on to the xER algorithm, and F1 scores
are computed using the solutions from the z vari-
able. These scores are obtained from the code
base of (Lokhande et al., 2020) for a fair com-
parison and the performance of xER is compared
with F-MWSP in (Lokhande et al., 2020) and a
standard Hierarchical Clustering (HC) approach
(Hastie et al., 2009). As mentioned before, M is
a hyperparameter, and for these three datasets, we
set it to 10. Table 4 shows that xER is at least
as good as the other algorithms. For the settle-
ments dataset, xER outperforms both F-MWSP
and HC. For csv_example, xER has the same F1
score as F-MWSP, which is better than that of HC.
For patent_sample, the F1 score for xER is less
than HC and F-MWSP. However, since xER is de-
signed to provide an optimal solution to a graph
with a given set of nodes and weights, it is possible
that the blocking techniques were too severe or the
computational scores were not the best, leading
to a lower F1 score. As discussed before, a high-
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quality blocking technique and similarity scores
will lead to high-quality F1 scores, since the xER
algorithm is designed to give the best possible so-
lution to a given input. Another comparison factor
considered is the size of the input between SPP
and QSP. The size of the input cliques required
for a traditional set packing based formulation (F-
MWSP) is significantly greater compared to that of
the QSP formulation, which can be seen in the Ta-
ble 1. Thus, a scalable xER algorithm can be useful
to produce optimal outputs in lesser time. More-
over, with xER, the outputs and the explanations
are supported by mathematical guarantees.

Datasets Nodes F1
xER F-MWSP HC

patent_sample 2379 92.0 94.8 92.2
csv_example 3337 95.1 95.1 94.4
settlements 3054 95.7 94.4 95.3

Table 4: Dedupe F1 scores

In addition to the F1 scores, other metrics have
also been used to evaluate and compare the algo-
rithms’ performance. The dataset settlements is
considered to analyze the algorithms in terms of all
the evaluation metrics and is shown in Table 5.

Metric xER F-MWSP HC
F1 95.7% 94.4% 95.3 %

Homogeneity 99.8% 99.8 % 99.9%
Completeness 98.9 % 98.5 % 98.7%
V measure 99.4 % 99.1 % 99.3 %

Adjusted Rand Index 0.957 0.944 0.953
Fowlkes Mallows 0.958 0.945 0.953

Table 5: Evaluation metrics for settlements dataset

6.1.1 Performance of xER on ECB+ Datasets
As discussed in Section 5, smaller datasets are
constructed from the ECB+ dataset by perform-
ing topic wise modelling from (Barhom et al.,
2019). Moreover, instead of performing entity res-
olution on the whole corpus, a subset of documents
from the topics is considered as the input. Smaller
datasets of different sizes are generated this way
and are used to test and assess the xER algorithm.

After the similarity scores are computed, block-
ing techniques are applied based on a threshold of
T on the similarity scores, in contrast to the block-
ing before the similarity score generation technique
in the benchmarking datasets. The number of edges
and the tightness among the nodes, measured by the
Clustering Coefficient (CC) (Wang et al., 2017), is

varied by varying this threshold T . The xER algo-
rithm is also tested with the groundtruth values as
weights. These tests are listed below and analyzed.

6.1.2 Tests Based on Thresholds

As described in Section 5.2, the similarity scores
are generated from the normal distribution with
means 0.5 and −0.5 depending on the ground
truth, and the threshold values belong to the range
[−0.7,−0.2]. As the threshold T increases, the
graph’s size becomes smaller due to the removal
of edges with a weight less than the T . To demon-
strate the impact of thresholding, a graph of 49
nodes is considered, and different graphs are gener-
ated from it by applying varying T values and the
results are presented in Table 6.

T |E| CC |C| |MC| F1 Time (s) Total Time(s)
Phase 1 Phase 2 xER SPP

-0.7 863 0.739 - 6425 97.33 0.199 9202.66 9202.86 -
-0.5 598 0.512 16619 827 97.33 0.017 4.772 4.780 99.88
-0.3 309 0.315 2906 174 97.33 0.0027 0.465 0.468 31.71
-0.2 228 0.312 2491 108 97.33 0.0017 0.294 0.296 30.2

Table 6: F1 for varying T on a graph of 49 nodes

The graph is denser and tightly connected with
a tight threshold. The number of edges (|E|), the
clustering coefficient (CC), the number of maximal
cliques (|MC|) and the number of all the cliques in
the graph (|C|) decrease with increasing T . For a
particular T , the input size of SPP (|C|) compared
to the input size of QSP (|MC|) is almost exponen-
tial and only increases with the graph’s size. This
difference is reflected in the solution times and can
be seen that the SPP solution time is quite large
when compared to the xER solution time. With
larger graphs, the formulations will be unable to
handle this large SPP input size. For the largest
graph with T = −0.7, the computation time ex-
ceeded the time limit and was terminated. Another
observation is that tighter thresholds lead to higher
computation times for both phase 1 and phase 2.
Thus, a higher T value is preferred in terms of solu-
tion time and memory management. However, it is
possible that blocking with a higher threshold value
might lead to a reduction in the recall and affect the
F1 scores. So, a moderate threshold is preferred to
balance both the F1 scores and the memory issues.
T is treated as a hyperparameter, and the optimal T
value can be chosen so that the graph size is small
enough to handle, and the F1 scores are acceptable.
When testing with ground truth values as weights,
all the above graphs resulted in a 100% F1 score.
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6.1.3 Evaluation: F1 scores
In addition to the thresholding tests, the xER al-
gorithm is tested on other graphs generated using
the same approach described above. The threshold
value T is set to −0.3. The F1 scores for these
graphs are reported in Table 7. As mentioned pre-
viously, xER is also tested using the groundtruth
values as weights on the edges. xER results in
a 100% F1 score when using the groundtruth, in
all these datasets, which is also shown in Table
7. This implies that with the best possible scores
(groundtruth), the algorithm works perfectly, which
highlights the significance of high-quality similar-
ity scores. M is set to 3 for all these graphs, and
when the groundtruth is being used as weights, the
value of M = 10.

This is because the input graph is fully connected
because of no thresholding. So Phase 1 returns the
whole graph as the maximal clique and phase 2
is responsible for partitiong the whole graph into
smaller cliques, which is done using the M value.
So a larger value of M enabled the graph to be
partitioned into smaller sets as per the weights.

Nodes Edges F1-GT (%) F1 (%)
46 317 100 97.43
135 2589 100 96.46
226 7727 100 91.62
262 10804 100 91.03

Table 7: F1 scores of graphs from the ECB+ dataset.

6.2 Explainability of xER
We now understand the model’s explainable nature
in an intuitive way with an example. The dataset
with 49 nodes and T = −0.3 in Table 6 is consid-
ered. Three nodes: (7, 12, 20) that form a 3-clique
or a triangle in the groundtruth are picked and an-
alyzed. When xER is executed with weights, the
thresholding does not remove one node: 25, that is
connected to all these three nodes, thus having the
potential to form a 4-clique. However, from the Ta-
ble 8, the total weight that node 25 brings into the
triangle is negative (−3.0) and thus, this 4-clique
is not a good choice to be included in the optimal
solution. Thus, the model automatically prevents
this node from forming a 4-clique with the three
nodes, thus ensuring that the precision wouldn’t
decrease. Another important observation is that
blocking with a threshold of T = −0.2 would have
removed the edge between the nodes 20 and 25,
thus totally eliminating the potential of forming a
4-clique.

Node 1 Node 2 Weight Node 1 Node 2 Weight
7 12 0.456 7 25 -0.076
7 20 0.999 12 25 -0.156
12 20 0.085 20 25 -0.253

Table 8: Weights on the edges of nodes (7, 12, 20, 25)

Another example of explainable ER and the
importance of having high-quality scores, is
considered for the same graph. Four edges:
(3-15), (19-29), (21-25), (23-40) with weights
0.316, 0.095, 0.232, 0.046, respectively, were in-
cluded in the optimal solution, while these nodes
are not connected in the ground truth. The “noisy”
weights between these nodes which should have
been negative per the ground truth. This shows that
a poor scoring scheme can lead to a low quality
solution.

As explained in Danilevsky et al. (2020), the ex-
plainability of a model can be evaluated in three
ways: Comparison with the groundtruth, Informal
explanations and Human evaluation. We compared
the model with ground truth values and obtained the
F1 scores. In addition to it, we also performed ex-
periments with the groundtruth scores and the sim-
ilarity scores to argue the reasoning behind a par-
ticular solution. For evaluation through informal
explanation, we considered examples from graphs
and understood the reasoning behind this output
produced by the model. For future work, we plan
to include a viable human evaluation technique for
the ER problem.

In this paper, we compared our model to an exist-
ing approach for ER from Lokhande et al. (2020).
As future direction of research, we aim to develop
a scalable approach to handle large datasets that
would not depend on an off-the-shelf solver to ob-
tain optimal and explainable solutions(with math-
ematical guarantee), enabling us to compare the
performance of xER with more approaches that
have been used for ER.

7 Conclusion

A graph partitioning based approach is proposed
to solve the entity resolution problem and is for-
mulated as a clique partitioning problem. A node
in the graph represents each mention, and the ob-
jective was to assign nodes to cliques optimally,
and each clique represents a real-world entity. This
mathematical formulation based model is inher-
ently explainable. Since CPP is NP-Hard, a two-
phased algorithm called xER is proposed and tested
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on multiple datasets. Phase 1 of xER finds all the
graph’s maximal cliques, which is much more prac-
tical than finding all the cliques in the graph. Phase
2 is a generalized set packing formulation and has
a much smaller input size than the traditional set
packing problem. These contributions help develop
a practical and easily parallelizable implementa-
tion for xER. xER shows promising performance
in terms of accuracy.

A GPU accelerated approach for xER is in
progress and will provide a scalable and practical
model. Also, xER can be extended to other applica-
tions such as Topic modelling, Community Detec-
tion, Temporal Analysis. We believe this paper will
lead the way to more mathematical formulation-
based approaches and NLP problems can be solved
using such highly explainable models, thus reduc-
ing the dependency on black-box models.
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